KR20200094265A - Method for manufacturing silicon nanoparticle and method for manufacturing carbon coating silicon nanoparticle of a secondary cell - Google Patents

Method for manufacturing silicon nanoparticle and method for manufacturing carbon coating silicon nanoparticle of a secondary cell Download PDF

Info

Publication number
KR20200094265A
KR20200094265A KR1020190011440A KR20190011440A KR20200094265A KR 20200094265 A KR20200094265 A KR 20200094265A KR 1020190011440 A KR1020190011440 A KR 1020190011440A KR 20190011440 A KR20190011440 A KR 20190011440A KR 20200094265 A KR20200094265 A KR 20200094265A
Authority
KR
South Korea
Prior art keywords
silicon nanoparticles
silicon
milling
particle size
manufacturing
Prior art date
Application number
KR1020190011440A
Other languages
Korean (ko)
Inventor
육경창
오진석
Original Assignee
주식회사 엠지이노베이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠지이노베이션 filed Critical 주식회사 엠지이노베이션
Priority to KR1020190011440A priority Critical patent/KR20200094265A/en
Publication of KR20200094265A publication Critical patent/KR20200094265A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method of manufacturing silicon nanoparticles and a method of manufacturing carbon-coated silicon nanoparticles for a secondary battery, which: can save time in manufacturing etched silicon nanoparticles through a simple process of etching after preparing milled silicon nanoparticles by ball milling of silicon microparticles; can manufacture etched silicon nanoparticles having excellent electrical properties with a high recovery rate at low cost without expensive equipment or harsh process conditions such as high pressure and high temperature; and can maximize charging efficiency of a secondary battery using the same.

Description

실리콘나노입자 제조방법 및 2차전지용 카본코팅 실리콘나노입자 제조방법{METHOD FOR MANUFACTURING SILICON NANOPARTICLE AND METHOD FOR MANUFACTURING CARBON COATING SILICON NANOPARTICLE OF A SECONDARY CELL}Manufacturing method of silicon nanoparticles and manufacturing method of carbon nanoparticles for secondary battery {METHOD FOR MANUFACTURING SILICON NANOPARTICLE AND METHOD FOR MANUFACTURING CARBON COATING SILICON NANOPARTICLE OF A SECONDARY CELL}

본 발명은 실리콘나노입자 제조방법 및 2차전지용 카본코팅 실리콘나노입자 제조방법에 관한 것으로, 더욱 상세하게는 실리콘마이크로입자의 볼 밀링으로 밀링실리콘나노입자를 마련한 후 에칭의 간단한 공정으로 에칭실리콘나노입자를 제조함에 있어서 시간을 절약할 수 있으며, 고가의 장비나 높은 압력 및 높은 온도와 같은 가혹한 공정 조건 없이도 높은 회수율로 우수한 전기적 특성을 갖는 에칭실리콘나노입자를 저비용으로 제조할 수 있으며, 이를 이용하여 2차전지의 충전효율까지 극대화시킬 수 있는 실리콘 나노입자 제조방법 및 2차전지용 카본 코팅 실리콘 나노입자 제조방법에 관한 것이다.
The present invention relates to a method of manufacturing silicon nanoparticles and a method of manufacturing carbon coated silicon nanoparticles for a secondary battery, and more specifically, to prepare milling silicon nanoparticles by ball milling of silicon microparticles, and then etching silicon nanoparticles by a simple process of etching. It can save time in manufacturing, and can manufacture etched silicon nanoparticles with excellent electrical properties at low cost with high recovery rate without expensive equipment or harsh process conditions such as high pressure and high temperature, and using this, 2 The present invention relates to a method of manufacturing silicon nanoparticles that can maximize the charging efficiency of a secondary battery and a method of manufacturing carbon coated silicon nanoparticles for a secondary battery.

일반적으로 실리콘은 지구에 풍부하게 존재하면서도 무독성 반도체 물질로 가장 많이 사용되고 있다.In general, silicon is abundant on the earth, but it is most frequently used as a non-toxic semiconductor material.

최근, 전자기기들의 소량화, 경량화, 유연화에 대한 요구가 증대됨에 따라 실리콘나노입자가 차세대 실리콘기반 광전자 소자(opto-electronic device)로서의 응용과 나노 소자 개발의 핵심 요소로 많은 연구자들에게 높은 관심의 대상이 되고 있다.In recent years, as the demand for miniaturization, light weight, and flexibility of electronic devices has increased, silicon nanoparticles are of great interest to many researchers as a key element of application as a next-generation silicon-based opto-electronic device and nano device development. It is targeted.

실리콘나노입자는 디스플레이의 전계효과 트랜지스터(TFT), PN정션을 이용한 태양전지, 다이오드 그리고 생체의 표시제 등에 응용이 광범위하다.Silicon nanoparticles are widely used in display field effect transistors (TFTs), solar cells using PN junctions, diodes, and biomarkers.

이미 실리콘나노입자를 전계효과트랜지스터(Appl. Phys. Lett., 2009, 94, 193509.)와 하이브리드 태양전지(Nanoletters, 2009, 9, 449.)에 용액공정기반으로 적용 가능함이 공지되어 있으며, 특히 용액공정기반의 실리콘나노입자 박막은 전자장치의 유연화에 매우 유용하다.It is already known that silicon nanoparticles can be applied as a solution process based on field effect transistors (Appl. Phys. Lett., 2009, 94, 193509.) and hybrid solar cells (Nanoletters, 2009, 9, 449.). The solution process-based silicon nanoparticle thin film is very useful for the softening of electronic devices.

일례로, 실리콘(Si)은 4200mAh/g의 이론 용량을 가짐으로써 고용량의 2차전지, 즉 리튬이온전지를 구현할 수 있는 최적의 재질로 선택되고 있으나, 리튬이온전지에서는 충전이 이루어질 때, Li4.4와 Si가 반응하여 Li4.4Si를 형성함으로써 약 400%에 이르는 매우 높은 부피 팽창이 일어나는 특성을 나타나게 된다.As an example, silicon (Si) is selected as an optimal material capable of realizing a high-capacity secondary battery, that is, a lithium-ion battery by having a theoretical capacity of 4200mAh/g, but when charging is performed in a lithium-ion battery, Li4. By reacting 4 and Si to form Li4.4Si, very high volume expansion up to about 400% occurs.

하지만, 실리콘(Si)은 마이크로사이즈(㎛)에서 나노사이즈(㎚)로 입자 사이즈 변화시 부피팽창에 의한 스트레스도 감소되는 특성을 가지고, 이러한 특성을 이용해 나노사이즈(㎚), 즉 실리콘나노입자로 실리콘전극을 제조함으로써 고용량의 2차전지(리튬이온전지)가 용이하게 구현될 수 있다.However, silicon (Si) has a property in which stress due to volume expansion is reduced when the particle size changes from micro size (µm) to nano size (nm), and by using these properties, nano size (nm), that is, silicon nanoparticles By manufacturing a silicon electrode, a high capacity secondary battery (lithium ion battery) can be easily implemented.

한편, 실리콘나노입자를 제조하는 방법이 다양하게 공지되어 있다.Meanwhile, various methods for manufacturing silicon nanoparticles are known.

가장 일반적인 방법이 실리콘테트라클로라이드, 실리콘트리에틸오소실리케이트와 같은 실리콘 소스를 화학적인 방법으로 환원하는 방법이나, 이러한 방법은 실리콘나노입자의 과도한 캡핑, 실리콘나노입자의 산화, 소결 과정 후의 탄소 등의 불순물로 인해 실리콘나노입자를 함유하는 전자장치의 전기적 특성저하를 유발할 수 있는 단점을 안고 있다.The most common method is a method of chemically reducing a silicon source such as silicon tetrachloride or silicon triethyl orthosilicate, but these methods include excessive capping of silicon nanoparticles, oxidation of silicon nanoparticles, and impurities such as carbon after the sintering process. Due to this, it has the disadvantage that it may cause electrical characteristics of electronic devices containing silicon nanoparticles to deteriorate.

또 다른 방법은 vapor-liquid-solid(VLS) or solid-liquid-solid(SLS)에 의해 실리콘 소스를 증착하는 방법이 있는데, 이러한 방법은 실리콘 소스가 높은 압력, 높은 온도에서 증착되어 반응조건이 가혹할 뿐만이 아니라 핸들링이 어렵고 고가인 장비가 필요하며, 실리콘나노입자의 수율도 낮은 한계가 있다.Another method is a method of depositing a silicon source by vapor-liquid-solid (VLS) or solid-liquid-solid (SLS), which is a severe reaction condition because the silicon source is deposited at high pressure and high temperature. In addition, it is difficult to handle and requires expensive equipment, and the yield of silicon nanoparticles is low.

따라서, 용액공정기반에 적용 가능하면서도 종래의 문제점을 해결할 수 있는 실리콘나노입자의 제조방법에 대한 요구가 증대되고 있는 것이다.
Accordingly, there is an increasing demand for a method of manufacturing silicon nanoparticles that can be applied to a solution process base and solve conventional problems.

한편, 선행기술문헌(대한민국 공개특허 제2015-0072976호)에 따른 실리콘 나노물질의 제조방법은 실리카-함유 물질을 포함하는 콜로이드를 분말화시켜 실리카-함유 물질을 포함하는 분말을 수득하고, 실리카-함유 물질을 포함하는 분말에 알칼리토 금속을 첨가하여 혼합물을 형성하고, 혼합물을 열처리함으로써 실리카-함유 물질에 함유된 실리카를 실리콘으로 환원시키는 것을 소개하고 있는데, 실리카-함유 물질을 포함하는 콜로이드를 분말화시키는 것은 실리카-함유 물질을 포함하는 콜로이드에 알칼리토 금속의 양이온을 첨가하여 재적층(restacking)시키는 것 또는 실리카-함유 물질을 포함하는 콜로이드를 동결 건조시키는 것으로 실행해야 하여 실리콘 입자를 나노(㎚)화하기가 극히 어려울 뿐만 아니라 시간 또한 많이 걸리는 문제점을 지니고 있다.
On the other hand, a method of manufacturing a silicon nanomaterial according to the prior art document (Republic of Korea Patent Publication No. 2015-0072976) powders a colloid containing a silica-containing material to obtain a powder containing a silica-containing material, and silica- Alkaline earth metal is added to the powder containing the contained material to form a mixture, and the heat treatment of the mixture is introduced to reduce the silica contained in the silica-containing material to silicon, and the colloid containing the silica-containing material is powdered. Nanoparticles of silicon particles should be nanostructured by performing re-stacking by adding a cation of an alkaline earth metal to a colloid containing a silica-containing material or freeze-drying a colloid containing a silica-containing material. Not only is it very difficult to reconcile, but it also takes a long time.

대한민국 공개특허 제2015-0072976호 - 실리콘 나노물질의 제조방법, 및 이에 의하여 제조된 실리콘 나노물질Republic of Korea Patent Publication No. 2015-0072976-Method for manufacturing silicon nanomaterial, and silicon nanomaterial prepared thereby

본 발명의 목적은 실리콘나노입자의 신속한 제조로서 생산성을 보장함과 동시에 특히 크기가 작고 균일하여 우수한 전기적 특성까지 보장케 할 수 있는 실리콘나노입자 제조방법 및 2차전지용 카본코팅 실리콘나노입자 제조방법을 제공함에 있다.The objective of the present invention is to provide a silicon nanoparticle manufacturing method and a carbon coating silicon nanoparticle manufacturing method for a secondary battery, which are capable of guaranteeing productivity as well as ensuring excellent electrical properties, especially at the same time as ensuring rapid production of silicon nanoparticles. In the offer.

본 발명은 전기적 특성이 우수한 2차전지의 음극활물질로 활용될 수 있는 실리콘나노입자 제조방법 및 2차전지용 카본코팅 실리콘나노입자 제조방법을 제공함에 있다.The present invention is to provide a method of manufacturing silicon nanoparticles and a carbon coating silicon nanoparticle for secondary batteries, which can be used as a negative electrode active material of a secondary battery having excellent electrical properties.

본 발명은 실리콘마이크로입자의 볼 밀링으로 밀링실리콘나노입자를 마련한 후 에칭의 간단한 공정으로 에칭실리콘나노입자를 제조함에 있어서 시간을 절약할 수 있으며, 고가의 장비나 높은 압력 및 높은 온도와 같은 가혹한 공정 조건 없이도 높은 회수율로 우수한 전기적 특성을 갖는 에칭실리콘나노입자를 저비용으로 제조할 수 있으며, 이를 이용하여 2차전지용 카본코팅 실리콘나노입자 제조방법에 적용하여 충전효율까지 극대화시킬 수 있는 실리콘나노입자 제조방법 및 2차전지용 카본코팅 실리콘나노입자 제조방법을 제공함에 있다.The present invention can save time in manufacturing the etched silicon nanoparticles by a simple process of etching after the milling silicon nanoparticles are prepared by ball milling of the silicon microparticles, and a severe process such as expensive equipment or high pressure and high temperature It is possible to manufacture etched silicon nanoparticles with excellent electrical properties at low cost without conditions, and by using this method for manufacturing carbon coating silicon nanoparticles for secondary batteries to maximize charging efficiency. And it is to provide a method for producing a carbon coating silicon nanoparticles for secondary batteries.

본 발명은 경제적으로 실리콘나노입자를 제조할 수 있으며, 크기가 작고 균일하여 우수한 전기특성을 발휘하는 실리콘나노입자 제조방법 및 2차전지용 카본코팅 실리콘나노입자 제조방법을 제공함에 있다.
The present invention is to provide a method for producing silicon nanoparticles that can economically produce silicon nanoparticles and exhibit excellent electrical properties due to their small size and uniformity, and a method for producing carbon coated silicon nanoparticles for secondary batteries.

상기 목적을 달성하기 위한 본 발명에 따른 실리콘나노입자 제조방법은,Method for producing silicon nanoparticles according to the present invention for achieving the above object,

㎛ 입도의 실리콘마이크로입자를 볼 밀링하여 ㎚ 입도의 밀링실리콘나노입자를 마련하는 스텝과,Ball milling silicon microparticles having a particle size of µm to prepare milling silicon nanoparticles having a particle size of nm;

상기 밀링실리콘나노입자를 에칭하여 ㎚ 입도의 에칭실리콘나노입자를 마련하는 스텝을 포함하는 것을 그 기술적 방법상의 기본 특징이다.
A basic feature of the technical method is to include the step of preparing the etched silicon nanoparticles having a particle size of nm by etching the milling silicon nanoparticles.

상기 목적을 달성하기 위한 본 발명에 따른 2차전지용 카본코팅 실리콘나노입자 제조방법은,Method for producing carbon coated silicon nanoparticles for secondary batteries according to the present invention for achieving the above object,

㎛ 입도의 실리콘마이크로입자를 볼 밀링하여 ㎚ 입도의 밀링실리콘나노입자를 마련하는 스텝과,Ball milling silicon microparticles having a particle size of µm to prepare milling silicon nanoparticles having a particle size of nm;

상기 밀링실리콘나노입자를 에칭하여 ㎚ 입도의 에칭실리콘나노입자를 마련하는 스텝과,Etching the milling silicon nanoparticles to prepare a etched silicon nanoparticles of ㎚ particle size,

상기 에칭실리콘나노입자에 증류수를 첨가하면서 볼 밀링하여 실리콘나노입자분산액을 마련하는 스텝과,Step of preparing a silicon nanoparticle dispersion by ball milling while adding distilled water to the etching silicon nanoparticles,

상기 실리콘나노입자분산액, 글루코스, 증류수 및 카본전구체를 혼합하여 콜로이드용액을 마련하는 스텝과,A step of preparing a colloidal solution by mixing the silicon nanoparticle dispersion, glucose, distilled water and a carbon precursor;

상기 콜로이드용액을 액적으로 분무하면서 아르곤가스 분위기에서 열을 가해 실리콘카본전구응집체를 마련하는 스텝과,Step of preparing a silicon carbon precursor aggregate by applying heat in an argon gas atmosphere while spraying the colloidal solution as a droplet,

상기 실리콘카본전구응집체를 아르곤가스 분위기에서 열처리하여 카본전구체가 코팅된 실리콘나노입자를 마련하는 스텝을 포함하는 것을 그 기술적 방법상의 다음 특징으로 한다.
It comprises the steps of heat-treating the silicon carbon precursor aggregate in an argon gas atmosphere to prepare the silicon nanoparticles coated with the carbon precursor is characterized by the following in the technical method.

본 발명은 작고 균일한 에칭실리콘나노입자의 신속한 제조로서 생산성을 보장함과 동시에 특히 크기가 작고 균일하여 우수한 전기적 특성까지 보장케 할 수 있는 효과가 있다.The present invention has the effect of ensuring productivity as well as ensuring rapid electrical production of small and uniform etched silicon nanoparticles, and at the same time, excellent electrical properties due to its small size and uniformity.

본 발명은 전기적 특성이 우수한 2차전지의 음극활물질로 활용될 수 있는 효과가 있다.The present invention has an effect that can be utilized as a negative electrode active material of a secondary battery having excellent electrical properties.

본 발명은 실리콘마이크로입자의 볼 밀링으로 밀링실리콘나노입자를 마련한 후 에칭의 간단한 공정으로 에칭실리콘나노입자를 제조함에 있어서 시간을 절약할 수 있으며, 고가의 장비나 높은 압력 및 높은 온도와 같은 가혹한 공정 조건 없이도 높은 회수율로 우수한 전기적 특성을 갖는 에칭실리콘나노입자를 저비용으로 제조할 수 있으며, 이를 이용하여 2차전지용 카본코팅 실리콘나노입자 제조방법에 적용하여 충전효율까지 극대화시킬 수 있는 효과가 있다.The present invention can save time in manufacturing the etched silicon nanoparticles by a simple process of etching after the milling silicon nanoparticles are prepared by ball milling of the silicon microparticles, and a severe process such as expensive equipment or high pressure and high temperature Etching silicon nanoparticles having excellent electrical properties with high recovery rate without conditions can be manufactured at a low cost, and by using this, it is possible to maximize charging efficiency by applying to the method of manufacturing carbon coated silicon nanoparticles for secondary batteries.

본 발명은 경제적으로 실리콘나노입자를 제조할 수 있으며, 크기가 작고 균일하여 우수한 전기특성을 발휘하는 효과가 있다.
The present invention can economically produce silicon nanoparticles, and has the effect of exerting excellent electrical properties due to its small size and uniformity.

도 1a는 본 발명에 따른 실리콘나노입자 제조방법을 나타내는 흐름도.
도 1b는 본 발명에 따른 2차전지용 카본코팅 실리콘나노입자 제조방법을 나타내는 흐름도.
도 2는 본 발명에 따른 실리콘나노입자 제조방법으로 제조된 에칭실리콘나노입자의 입도 분석을 나타내는 그래프.
도 3은 본 발명에 따른 실리콘나노입자 제조방법으로 제조된 에칭실리콘나노입자를 나타내는 SEM 사진.
도 4는 본 발명에 따른 실리콘나노입자 제조방법으로 제조된 에칭실리콘나노입자를 나타내는 XPS 스펙트럼.
도 5는 본 발명에 따른 실리콘나노입자 제조방법으로 제조된 에칭실리콘나노입자를 나타내는 XRD 스펙트럼.
도 6 및 도 7은 본 발명에 따른 2차전지용 카본코팅 실리콘나노입자 제조방법으로 제조된 카본코팅실리콘나노입자를 각각 나타내는 SEM 사진 및 TEM 사진.
도 8은 본 발명에 따른 2차전지용 카본코팅 실리콘나노입자 제조방법으로 제조된 카몬코팅 실리콘나노입자를 적용하여 2차전지를 마련한 후 충방전 실험을 한 결과 그래프.
1A is a flow chart showing a method of manufacturing silicon nanoparticles according to the present invention.
Figure 1b is a flow chart showing a method of manufacturing a carbon coating silicon nanoparticles for a secondary battery according to the present invention.
Figure 2 is a graph showing the particle size analysis of the etched silicon nanoparticles prepared by the method of manufacturing silicon nanoparticles according to the present invention.
Figure 3 is a SEM photograph showing the etching silicon nanoparticles prepared by the method of manufacturing silicon nanoparticles according to the present invention.
4 is an XPS spectrum showing the etching silicon nanoparticles produced by the method of manufacturing silicon nanoparticles according to the present invention.
Figure 5 is an XRD spectrum showing the etching silicon nanoparticles prepared by the silicon nanoparticle manufacturing method according to the present invention.
6 and 7 are SEM and TEM photographs respectively showing carbon coated silicon nanoparticles produced by the method for manufacturing carbon coated silicon nanoparticles for secondary batteries according to the present invention.
8 is a graph showing the results of charging and discharging experiments after preparing a secondary battery by applying the carmon-coated silicon nanoparticles prepared by the method of manufacturing carbon coated silicon nanoparticles for a secondary battery according to the present invention.

본 발명에 따른 실리콘나노입자 제조방법 및 2차전지용 카본코팅 실리콘나노입자 제조방법의 바람직한 실시예를 도면을 참조하여 설명하기로 하고, 그 실시예로는 다수 개가 존재할 수 있으며, 이러한 실시예를 통하여 본 발명의 목적, 특징 및 이점들을 더욱 잘 이해할 수 있게 된다.A preferred embodiment of the method for manufacturing a silicon nanoparticle according to the present invention and a method for manufacturing a carbon coated silicon nanoparticle for a secondary battery will be described with reference to the drawings, and a number of examples may exist, and through such an embodiment The objects, features and advantages of the present invention will be better understood.

도 1a는 본 발명에 따른 실리콘나노입자 제조방법을 나타내는 흐름도이다.1A is a flow chart showing a method of manufacturing silicon nanoparticles according to the present invention.

본 발명에 따른 실리콘나노입자 제조방법은 도 1a에 도시된 바와 같이 ㎛ 입도의 실리콘마이크로입자를 볼 밀링하여 ㎚ 입도의 밀링실리콘나노입자를 마련하고(S10), 밀링실리콘나노입자를 에칭하여 ㎚ 입도의 에칭실리콘나노입자를 마련하는 공정(S20)으로 이루어진다.The method of manufacturing silicon nanoparticles according to the present invention provides milling silicon nanoparticles having a particle size of nm by ball milling silicon microparticles having a particle size of µm as shown in FIG. 1A (S10), and etching the milling silicon nanoparticles to form a nanometer particle size. It consists of a step (S20) of preparing the etched silicon nanoparticles.

㎛ 입도의 실리콘마이크로입자를 볼 밀링으로 신속하게 ㎚ 입도의 밀링실리콘나노입자, 즉 300∼800㎚ 입도, 바람직하게는 500㎚ 입도로 된 밀링실리콘나노입자를 마련한 후 에칭으로 ㎚ 입도, 즉 30∼80㎚ 입도, 바람직하게는 80㎚ 입도로 된 에칭실리콘나노입자를 정밀하게 마련할 수 있도록 하여, 작고 균일한 에칭실리콘나노입자의 신속한 제조로서 생산성을 보장함과 동시에 특히 크기가 작고 균일하여 우수한 전기적 특성까지 보장케 할 수 있게 된다.The milling silicon nanoparticles having a particle size of nm are rapidly prepared by ball milling silicon microparticles having a particle size of µm, that is, milling silicon nanoparticles having a particle size of 300 to 800 nm, preferably 500 nm. Efficient preparation of etched silicon nanoparticles with a particle size of 80 nm, preferably 80 nm, enables rapid production of small and uniform etched silicon nanoparticles, guarantees productivity, and is particularly small and uniform, providing excellent electrical The characteristics can be guaranteed.

구체적으로, 상기 S10 스텝은 실리콘마이크로입자를 지르코니아 볼을 이용하여 500∼700rpm[500rpm 이하일 경우 시간이 오래 거리고 700rpm 이상일 경우 ㎛ 입도의 실리콘마이크로입자에 대한 스트레스를 지나치게 주어 전기적 특성이 떨어짐]으로 2∼4시간[2시간 이하일 경우 ㎚ 입도의 균일한 밀링실리콘나노입자를 제조하기가 어렵고 4시간 이상일 경우 시간적으로 효율적이지 않아 바람직하지 않음] 동안 밀링하여 300∼800㎚[300㎚ 이하일 경우 에칭시 시간이 오래 걸리고 800㎚ 이상일 경우 밀링실리콘나노입자의 볼 밀링시 스트레스를 많이 받아 전기적 특성이 저하됨] 입도의 밀링실리콘나노입자를 마련할 수 있도록 한다.Specifically, the S10 step uses silicon zirconia balls with a zirconia ball of 500 to 700 rpm (if 500 rpm or less, the time is long, and if it is 700 rpm or more, the stress on silicon microparticles with a particle size is too high, resulting in poor electrical properties) 2 ~ It is milled for 4 hours [it is difficult to manufacture uniform milling silicon nanoparticles with a particle size of less than 2 hours and is not efficient in time when it is more than 4 hours] and milling for 300 to 800 nm [when etching is less than 300 nm] If it takes longer and is more than 800nm, the electrical properties are deteriorated due to the high stress during ball milling of the milling silicon nanoparticles] It is possible to prepare the milling silicon nanoparticles having a particle size.

이때, 상기 S20 스텝은 S10 스텝의 밀링실리콘나노입자를 증류수에 교반 분산시키면서 Na2O, KOH 및 NaOH 시약 중 어느 하나 또는 이들의 혼합물로 된 시약을 첨가하여 식각되도록 한 후 원심분리하여 30∼80㎚ 입도의 에칭실리콘나노입자를 마련할 수 있도록 한다.In this case, the step S20 is 30 to 80 by centrifugation after the milling silicon nanoparticles of step S10 are stirred and dispersed in distilled water and etched by adding a reagent of any one of Na 2 O, KOH and NaOH reagents or a mixture thereof. It is possible to provide etched silicon nanoparticles with a particle size of ㎚.

Na2O, KOH 및 NaOH 시약 중 어느 하나 또는 이들의 혼합물이 중류수와 함께 300∼800㎚ 입도의 밀링실리콘나노입자에 투입되어 용이하게 식각되도록 하여 원심분리시킬 경우 30∼80㎚ 입도의 에칭실리콘나노입자를 신속하게 마련할 수 있게 된다.When any one of Na 2 O, KOH, and NaOH reagents or a mixture thereof is introduced into milling silicon nanoparticles having a particle size of 300 to 800 nm together with midstream water to be easily etched and centrifuged to etch silicon of 30 to 80 nm particle size It is possible to rapidly prepare nanoparticles.

이때, 밀링실리콘나노입자 및 시약은 1:1∼20[1:1 이하일 경우 시약의 중량비가 낮아 에칭을 효율적으로 실현할 수 없고 1:20 이상일 경우 시약의 중량비 대비 효율성을 극대화시킬 수 없음]의 중량비율로 이루어지도록 하여 보다 신속하고 효율적으로 밀링실리콘나노입자의 에칭을 실현할 수 있도록 한다.At this time, the milling silicon nanoparticles and reagents have a weight of 1:1 to 20 [if the ratio is 1:1 or less, the weight ratio of the reagent cannot be effectively realized, and if it is 1:20 or more, efficiency cannot be maximized compared to the weight ratio of the reagent] It is possible to achieve the etching of the milling silicon nanoparticles more quickly and efficiently by making the ratio.

그리고, 상기 S20 스텝은 식각 후 원심분리하여 마련된 에칭실리콘나노입자를 물에 혼합하고 초음파 세척하여 불순물을 완전히 제거할 수 있도록 한다.
Then, the step S20 is to etch the silicon nanoparticles prepared by centrifugation after etching in water and ultrasonic cleaning to completely remove impurities.

도 1b는 본 발명에 따른 2차전지용 카본코팅 실리콘나노입자 제조방법을 나타내는 흐름도이다.1B is a flow chart showing a method of manufacturing carbon coated silicon nanoparticles for a secondary battery according to the present invention.

본 발명에 따른 2차전지용 카본코팅 실리콘나노입자 제조방법은 도 1b에 도시된 바와 같이 ㎛ 입도의 실리콘마이크로입자를 볼 밀링하여 ㎚ 입도의 밀링실리콘나노입자를 마련하고(S100), 밀링실리콘나노입자를 에칭하여 ㎚ 입도의 에칭실리콘나노입자를 마련하고(S200), 에칭실리콘나노입자에 증류수를 첨가하면서 볼 밀링하여 실리콘나노입자분산액을 마련하고(S300), 실리콘나노입자분산액, 글루코스, 증류수 및 카본전구체를 혼합하여 콜로이드용액을 마련하고(S400), 콜로이드용액을 액적으로 분무하면서 아르곤가스 분위기에서 열을 가해 실리콘카본전구응집체를 마련한 후(S500), 실리콘카본전구응집체를 아르곤가스 분위기에서 열처리하여 카본전구체가 코팅된 카본코팅실리콘나노입자를 마련하는 공정(S600)으로 이루어진다.The method for manufacturing carbon coated silicon nanoparticles for a secondary battery according to the present invention is ball milling silicon microparticles having a particle size of µm as shown in FIG. 1B to prepare milling silicon nanoparticles having a particle size of ㎚ (S100), milling silicon nanoparticles Etching to prepare etched silicon nanoparticles of nm particle size (S200), ball milling while adding distilled water to the etched silicon nanoparticles to prepare a silicon nanoparticle dispersion (S300), silicon nanoparticle dispersion, glucose, distilled water and carbon Prepare a colloidal solution by mixing the precursor (S400), apply heat in an argon gas atmosphere while spraying the colloidal solution as a droplet (S500), and then heat-treat the silicon carbon precursor aggregate in an argon gas atmosphere to carbon It consists of a step (S600) of preparing a precursor coated carbon coating silicon nanoparticles.

㎛ 입도의 실리콘마이크로입자를 볼 밀링으로 신속하게 ㎚ 입도의 밀링실리콘나노입자, 즉 300∼800㎚ 입도, 바람직하게는 500㎚ 입도로 된 밀링실리콘나노입자를 마련한 후 에칭으로 ㎚ 입도, 즉 30∼80㎚ 입도, 바람직하게는 80㎚ 입도로 된 에칭실리콘나노입자를 정밀하게 마련할 수 있도록 하여, 작고 균일한 에칭실리콘나노입자의 신속한 제조로서 생산성을 보장함과 동시에 전기적 특성까지 보장케 한 후 다시 에칭실리콘나노입자에 증류수를 첨가하면서 볼 밀링하여 실리콘나노입자분산액을 마련하고, 이 실리콘나노입자분산액, 글루코스, 증류수 및 카본전구체를 혼합하여 콜로이드(Colloid)용액[실리콘나노입자분산액이 카본전구체와 더불어 균일하게 퍼지도록 함]을 마련하고, 콜로이드용액을 액적으로 분무하면서 아르곤가스 분위기에서 열을 가해 실리콘카본전구응집체를 마련한 다음 실리콘카본전구응집체를 아르곤가스 분위기에서 열처리하여 카본전구체가 코팅된 카본코팅실리콘나노입자를 마련하여 전기적 특성이 우수한 2차전지의 음극활물질로 활용될 수 있도록 한다.The milling silicon nanoparticles having a particle size of nm are rapidly prepared by ball milling silicon microparticles having a particle size of µm, that is, milling silicon nanoparticles having a particle size of 300 to 800 nm, preferably 500 nm. Etching silicon nanoparticles with an 80 nm particle size, preferably 80 nm particle size, can be precisely provided, thereby ensuring rapid productivity of small and uniform etched silicon nanoparticles, ensuring productivity while ensuring electrical properties, and then again While adding distilled water to the etched silicon nanoparticles, ball milling is performed to prepare a silicon nanoparticle dispersion liquid, and this silicon nanoparticle dispersion liquid, glucose, distilled water and carbon precursors are mixed to form a colloidal solution [silicon nanoparticle dispersion liquid along with a carbon precursor. To spread evenly], spraying colloidal solution as droplets, applying heat in an argon gas atmosphere to prepare a silicon carbon precursor aggregate, and then heat-treating the silicon carbon precursor aggregate in an argon gas atmosphere to coat carbon coated silicon coated with carbon precursors. The nanoparticles are prepared to be used as a negative electrode active material of a secondary battery having excellent electrical properties.

이때, 상기 S500 스텝에서 아르곤가스 분위기의 온도는 180∼200℃로 하여 실리콘카본전구응집체가 용이하게 마련될 수 있도록 하고, 상기 S600 스텝에서 아르곤가스 분위기의 온도는 280∼320℃로 실리콘나노입자에 카본전구체가 견고하고 균일하게 코팅될 수 있도록 한다.At this time, in the step S500, the temperature of the argon gas atmosphere is 180 to 200°C so that the silicon carbon precursor aggregate can be easily provided, and in the step S600, the temperature of the argon gas atmosphere is 280 to 320°C to the silicon nanoparticles. It ensures that the carbon precursor can be coated firmly and uniformly.

그리고, ㎛ 입도의 실리콘마이크로입자를 볼 밀링으로 신속하게 ㎚ 입도의 밀링실리콘나노입자, 즉 300∼800㎚ 입도, 바람직하게는 500㎚ 입도로 된 밀링실리콘나노입자를 마련한 후 에칭으로 ㎚ 입도, 즉 30∼80㎚ 입도, 바람직하게는 80㎚ 입도로 된 에칭실리콘나노입자를 정밀하게 마련할 수 있도록 하여, 작고 균일한 에칭실리콘나노입자의 신속한 제조로서 생산성을 보장함과 동시에 특히 크기가 작고 균일하여 우수한 전기적 특성까지 보장케 할 수 있게 된다.In addition, milling silicon nanoparticles having a particle size of nm are rapidly prepared by ball milling silicon microparticles having a particle size of µm, that is, milling silicon nanoparticles having a particle size of 300 to 800 nm, preferably 500 nm, and then etching the particle size, i.e. Etching silicon nanoparticles with a particle size of 30 to 80 nm, preferably 80 nm, can be precisely provided, thereby ensuring productivity with rapid production of small and uniform etched silicon nanoparticles, while at the same time being particularly small and uniform in size. It is possible to ensure excellent electrical properties.

나아가, 상기 S100 스텝은 실리콘마이크로입자를 지르코니아 볼을 이용하여 500∼700rpm[500rpm 이하일 경우 시간이 오래 거리고 700rpm 이상일 경우 ㎛ 입도의 실리콘마이크로입자에 대한 스트레스를 지나치게 주어 전기적 특성이 떨어짐]으로 2∼4시간[2시간 이하일 경우 ㎚ 입도의 균일한 밀링실리콘나노입자를 제조하기가 어렵고 4시간 이상일 경우 시간적으로 효율적이지 않아 바람직하지 않음] 동안 밀링하여 300∼800㎚[300㎚ 이하일 경우 에칭시 시간이 오래 걸리고 800㎚ 이상일 경우 밀링실리콘나노입자의 볼 밀링시 스트레스를 많이 받아 전기적 특성이 저하됨] 입도의 밀링실리콘나노입자를 마련할 수 있도록 한다.Furthermore, the step S100 is 2 to 4 with the use of zirconia balls of silicon microparticles in the range of 500 to 700 rpm (in case of 500 rpm or less, the time is long and when 700 rpm or more, the stress on silicon microparticles with the particle size is too high, resulting in poor electrical properties). Milling for 300 [800 nm or less [300 nm or less] by milling for a period of time [it is difficult to produce uniform milling silicon nanoparticles with a particle size of less than 2 hours and is not efficient in time when more than 4 hours] If it takes more than 800nm, milling silicon nanoparticles are subjected to a lot of stress during ball milling, resulting in reduced electrical properties.] It is possible to prepare milling silicon nanoparticles having a particle size.

이때, 상기 S200 스텝은 S100 스텝의 밀링실리콘나노입자를 증류수에 교반 분산시키면서 Na2O, KOH 및 NaOH 시약 중 어느 하나 또는 이들의 혼합물로 된 시약을 첨가하여 식각되도록 한 후 원심분리하여 30∼80㎚ 입도의 에칭실리콘나노입자를 마련할 수 있도록 한다.At this time, the step S200 is 30 to 80 by centrifuging after adding the reagent of any one of Na 2 O, KOH, and NaOH reagents or a mixture thereof while etching and dispersing the milling silicon nanoparticles of step S100 in distilled water with stirring and dispersing. It is possible to provide etched silicon nanoparticles with a particle size of ㎚.

Na2O, KOH 및 NaOH 시약 중 어느 하나 또는 이들의 혼합물이 중류수와 함께 300∼800㎚ 입도의 밀링실리콘나노입자에 투입되어 용이하게 식각되도록 하여 원심분리시킬 경우 30∼80㎚ 입도의 에칭실리콘나노입자를 신속하게 마련할 수 있도록 한다.When any one of Na 2 O, KOH, and NaOH reagents or a mixture thereof is introduced into milling silicon nanoparticles having a particle size of 300 to 800 nm together with midstream water to be easily etched and centrifuged to etch silicon of 30 to 80 nm particle size It is possible to rapidly prepare nanoparticles.

나아가, 밀링실리콘나노입자 및 시약은 1:1∼20[1:1 이하일 경우 시약의 중량비가 낮아 에칭을 효율적으로 실현할 수 없고 1:20 이상일 경우 시약의 중량비 대비 효율성을 극대화시킬 수 없어 바람직하지 않게 됨]의 중량비율로 이루어지도록 하여 보다 신속하고 효율적으로 밀링실리콘나노입자의 에칭을 실현할 수 있도록 한다.Furthermore, the milling silicon nanoparticles and reagents are 1:1 to 20 [1:1 or less, the weight ratio of the reagents is low, so it is not possible to efficiently perform etching, and when it is 1:20 or more, the efficiency compared to the weight ratio of the reagents cannot be maximized. It is made to be made by the weight ratio of], so that the etching of the milling silicon nanoparticles can be realized more quickly and efficiently.

그리고, 상기 S200 스텝은 식각 후 원심분리하여 마련된 에칭실리콘나노입자를 물에 혼합하여 초음파 세척하여 불순물을 완전히 제거할 수 있도록 한다.
In addition, the step S200 is performed by ultrasonic cleaning by mixing the etched silicon nanoparticles prepared by centrifugation after etching in water to completely remove impurities.

이와 같이 본 발명은 실리콘마이크로입자의 볼 밀링으로 밀링실리콘나노입자를 마련한 후 에칭의 간단한 공정으로 에칭실리콘나노입자를 제조함에 있어서 시간을 절약할 수 있으며, 고가의 장비나 높은 압력 및 높은 온도와 같은 가혹한 공정 조건 없이도 높은 회수율로 우수한 전기적 특성을 갖는 에칭실리콘나노입자를 저비용으로 제조할 수 있으며, 이를 이용하여 2차전지용 카본코팅 실리콘나노입자 제조방법에 적용하여 충전효율까지 극대화시킬 수 있도록 한 것이다.
As described above, the present invention can save time in manufacturing etched silicon nanoparticles by a simple process of etching after preparing milling silicon nanoparticles by ball milling of silicon microparticles, such as expensive equipment, high pressure, and high temperature. It is possible to manufacture etched silicon nanoparticles having excellent electrical properties at low cost with high recovery rate without harsh process conditions, and to maximize charging efficiency by applying to the method of manufacturing carbon coated silicon nanoparticles for secondary batteries.

[실시예 1] 실리콘나노입자의 제조[Example 1] Preparation of silicon nanoparticles

a) ㎛ 단위의 실리콘마이크로입자 15g을 지르코니아 볼 15개와 함께 밀링을 진행하였으며, 밀링은 600RPM으로 3시간 진행하여 500nm 입도의 밀링실리콘나노입자를 14g 제조하였다.a) Milling of 15 micrometers of silicon microparticles with 15 zirconia balls was performed, and milling was performed at 600 RPM for 3 hours to prepare 14 g of milling silicon nanoparticles having a particle size of 500 nm.

b) a) 단계에서 얻어진 500㎚ 입도의 밀링실리콘나노입자 3g을 증류수에 교반 분산시키고 5wt%의 Na2O 용액을 천천히 10㎖ 첨가하여 10시간 에칭을 진행하고, 10,000rpm으로 30분간 원심분리하여 시액을 제거하고 얻어진 80㎚ 입도의 에칭실리콘나노입자를 1:2로 물에 혼합, 교반 및 초음파 세척 3회 진행하여 최종 에칭실리콘나노입자를 제조하였다.b) 3 g of milling silicon nanoparticles having a particle size of 500 nm obtained in step a) were stirred and dispersed in distilled water, and 10 ml of 5 wt% Na 2 O solution was slowly added to perform etching for 10 hours, and centrifuged at 10,000 rpm for 30 minutes. After removing the test solution, the obtained 80 nm particle size of the etched silicon nanoparticles was mixed in water at 1:2, stirred and ultrasonically washed three times to prepare a final etched silicon nanoparticle.

c) b) 단계에서 제조된 에칭실리콘나노입자 분말 3g을 증류수 57g에 첨가하고 30분 동안 볼밀 처리하여 5wt% 실리콘나노입자분산액을 제조하였다. c) 3 g of the etched silicon nanoparticle powder prepared in step b) was added to 57 g of distilled water and subjected to a ball mill treatment for 30 minutes to prepare a 5 wt% silicon nanoparticle dispersion.

도 2는 본 발명에 따른 실리콘나노입자 제조방법으로 제조된 에칭실리콘나노입자의 입도 분석을 나타내는 그래프로서, 입도 분석결과 정규 분포도를 보이고 있으며, 중심 입경은 89.1㎚인 것을 알 수 있었다.2 is a graph showing the particle size analysis of the etched silicon nanoparticles prepared by the method of manufacturing silicon nanoparticles according to the present invention, showing a normal distribution as a result of the particle size analysis, and it was found that the central particle size was 89.1 nm.

도 3은 본 발명에 따른 실리콘나노입자 제조방법으로 제조된 에칭실리콘나노입자를 나타내는 SEM 사진으로서, 에칭실리콘나노입자는 입자크기가 균일하고 표면이 매끄러운 것을 알 수 있었다.3 is a SEM photograph showing an etched silicon nanoparticle prepared by the method of manufacturing a silicon nanoparticle according to the present invention, it was found that the etched silicon nanoparticles have a uniform particle size and a smooth surface.

도 4는 본 발명에 따른 실리콘나노입자 제조방법으로 제조된 에칭실리콘나노입자를 나타내는 XPS 스펙트럼으로서, 에칭실리콘나노입자를 표면처리하지 않고 곧바로 XPS 분석하면 Si-O 결합 피크가 103eV 근처에서 나타남을 확인할 수 있었고, 이는 분석샘플 준비 및 장착과정에서 발생되는 표면 산화에 의한 것으로 XPS 챔버 안에서 스퍼터링을 통한 볼 밀링을 한 후에는 순수하게 Si 금속결합에 의한 피크만 남는다.4 is an XPS spectrum showing the etched silicon nanoparticles prepared by the method of manufacturing silicon nanoparticles according to the present invention, it is confirmed that the Si-O binding peak appears near 103eV when XPS analysis is performed immediately without surface treatment of the etched silicon nanoparticles. This is due to surface oxidation generated during the preparation and mounting of the analytical sample. After ball milling through sputtering in the XPS chamber, only peaks due to Si metal bonding remain.

결과적으로 실리콘나노입자 제조공정에서 에칭실리콘나노입자가 효과적으로 제조된 것을 확인할 수 있었다. As a result, it was confirmed that etched silicon nanoparticles were effectively produced in the silicon nanoparticle manufacturing process.

도 5는 본 발명에 따른 실리콘나노입자 제조방법으로 제조된 에칭실리콘나노입자를 나타내는 XRD 스펙트럼으로서, 실리콘산화물에서 나타나는 회절피크가 관찰되지 않았으며 오직 실리콘 단결정이 가지는 특성피크를 모두 가지고 있음을 알 수 있었다.
FIG. 5 is an XRD spectrum showing the etched silicon nanoparticles prepared by the method of manufacturing silicon nanoparticles according to the present invention. It can be seen that diffraction peaks appearing in silicon oxide are not observed and only have all the characteristic peaks of the silicon single crystal. there was.

[실시예 2] 2차전지용 카본코팅실리콘나노입자[Example 2] Carbon coated silicon nanoparticles for secondary batteries

실리콘나노입자분산액 3g과 글루코스 2g 증류수에 분산시킨 실리콘나노입자 그리고 카본전구체가 혼합된 콜로이드용액을 제조하였다. 이 콜로이드용액을 이류체 노즐을 이용하여 액적을 발생시키는 상용 분무건조기(Mini Spray Drier, B-191, Buchi)를 이용하여 액적으로 분무하였다.A colloidal solution in which silicon nanoparticles dispersed in 3 g of silicon nanoparticles and 2 g of glucose was dispersed in distilled water and carbon precursor was prepared. The colloidal solution was sprayed as droplets using a commercial spray dryer (Mini Spray Drier, B-191, Buchi) that generates droplets using a double nozzle.

분무된 액적은 유량 4.5 L/min인 아르곤가스에 의해 온도가 190℃의 가열로로 운송되었으며, 설정된 온도에 의해 증류수가 증발되어 실리콘카본전구체응집체를 제조하였다. The sprayed droplets were transported to a heating furnace of 190°C by argon gas having a flow rate of 4.5 L/min, and distilled water was evaporated at a set temperature to prepare a silicon carbon precursor aggregate.

이와 같이 제조된 실리콘카본전구체응집체를 아르곤가스 분위기 하에서 300℃로 4시간 동안 열처리하여 카본전구체가 코팅된 카본코팅실리콘나노입자를 제조하였으며, 이러한 카본코팅실리콘나노입자의 평균 입도는 5㎛였다.The thus prepared silicon carbon precursor aggregate was heat-treated at 300° C. for 4 hours under an argon gas atmosphere to prepare carbon coated silicon nanoparticles coated with carbon precursors, and the average particle size of these carbon coated silicon nanoparticles was 5 μm.

도 6 및 도 7은 본 발명에 따른 2차전지용 카본코팅 실리콘나노입자 제조방법으로 제조된 카본코팅실리콘나노입자를 각각 나타내는 SEM 사진 및 TEM 사진으로서, 둥근 원형으로 응집이 잘 되어 있음을 확인할 수 있었고, 표면에 탄소가 약 20nm로서 균일하게 코팅되어 있음을 확인할 수 있었다.6 and 7 are SEM pictures and TEM pictures respectively showing carbon coated silicon nanoparticles prepared by the method of manufacturing carbon coated silicon nanoparticles for a secondary battery according to the present invention, and it was confirmed that aggregation was good in a round circle. , It was confirmed that the surface of the carbon is uniformly coated as about 20 nm.

본 발명에 의해 제조된 카본코팅실리콘나노입자, 케첸블랙(ketjenblack), 및 PVDF(Polyvinylidene fluoride)를 중량비 40:40:20로 혼합하고, 닥터블레이딩을 통해 음극재료를 제조하였다.Carbon-coated silicon nanoparticles prepared by the present invention, ketjenblack, and PVDF (Polyvinylidene fluoride) were mixed in a weight ratio of 40:40:20, and a negative electrode material was prepared through doctor blading.

그 후, 상기 제조된 음극재료, 리튬금속, 전해질 및 분리막을 혼합하여 하기와 같이 리튬이온전지를 제작하였다.Thereafter, the prepared negative electrode material, lithium metal, electrolyte and separator were mixed to prepare a lithium ion battery as follows.

실시예의 방법으로 합성된 시료, 도전체인 카본 블랙(Acetylene black) 및 바인더인 polyvinylidene difluoride(PVDF)를 중량비 20:20:50:10 (0.4g:0.4g:1g:0.2g)으로 혼합하여 구리 집전체에 압착한 후 120℃의 진공오븐에서 1시간 건조시켰다. 대극 및 기준 전극으로는 리튬 금속 호일을 사용하여 반쪽 전지를 제조하였다. 분리막으로는 celgard 2400을 사용하였다.Samples synthesized by the method of Example, copper black by mixing carbon black (Acetylene black) as a conductor and polyvinylidene difluoride (PVDF) as a binder in a weight ratio of 20:20:50:10 (0.4g:0.4g:1g:0.2g) After pressing the whole, it was dried in a vacuum oven at 120°C for 1 hour. A half cell was prepared using lithium metal foil as the counter electrode and the reference electrode. As a separator, celgard 2400 was used.

그리고, 전해질로서 1몰 농도 LiPF6 / 에틸렌카보네이트(EC):디메틸카보네이트(DMC)(부피비 1:1)을 0.5cc 사용하여 코인 형태(CR2032)의 2전극 반쪽 전지를 제조하고 상온에서 정전류로 충방전 실험을 수행하였다. In addition, a 2-electrode half cell of coin form (CR2032) was prepared using 0.5 cc of 1 mol concentration LiPF6 / ethylene carbonate (EC):dimethyl carbonate (DMC) (volume ratio 1:1) as the electrolyte and charged and discharged at a constant current at room temperature. The experiment was conducted.

비교예 1 실시예 1에서 제조된 카본코팅실리콘나노입자 대신 벌크실리콘(1㎛)을 사용하여 실시예 2의 제조방법과 동일하게 코인 형태의 2전극 반쪽 전지를 제조하고 상온에서 정전류로 충방전 실험을 수행하였다.Comparative Example 1 Instead of the carbon coated silicon nanoparticles prepared in Example 1, bulk silicon (1 µm) was used to prepare a coin-shaped two-electrode half cell in the same manner as in Example 2, and a charge/discharge experiment with constant current at room temperature. Was performed.

도 8은 본 발명에 따른 2차전지용 카본코팅 실리콘나노입자 제조방법으로 제조된 카몬코팅 실리콘나노입자를 적용하여 2차전지를 마련한 후 충방전 실험을 한 결과 그래프를 보면 50cycle까지 비교예 대비 안정적인 모습을 관찰할 수 있었다.
Figure 8 shows a stable appearance compared to the comparative example up to 50 cycles by looking at the graph of the results of charging and discharging experiments after preparing the secondary battery by applying the carmon-coated silicon nanoparticles prepared by the method of manufacturing carbon-coated silicon nanoparticles for a secondary battery according to the present invention I could observe.

본 발명은 실리콘나노입자를 제조하는 산업분야 및 2차전지 관련 산업분야에 이용 가능하다.
The present invention can be used in the industry of manufacturing silicon nanoparticles and in the industry related to secondary batteries.

도 8의 비교예1 : 종래의 충방전 그래프
도 8의 실시예2 : 본 발명의 충방전 그래프
Comparative Example 1 of Figure 8: Conventional charge and discharge graph
Example 2 of Figure 8: Charging and discharging graph of the present invention

Claims (13)

㎛ 입도의 실리콘마이크로입자를 볼 밀링하여 ㎚ 입도의 밀링실리콘나노입자를 마련하는 스텝(S10)과,
상기 밀링실리콘나노입자를 에칭하여 ㎚ 입도의 에칭실리콘나노입자를 마련하는 스텝(S20)을 포함하는 것을 특징으로 하는 실리콘나노입자 제조방법.
A step (S10) of ball milling silicon microparticles having a particle size of µm to prepare milling silicon nanoparticles having a particle size of ㎚,
And etching the milling silicon nanoparticles to prepare etched silicon nanoparticles having a particle size of S (S20).
제1항에 있어서,
상기 S10 스텝에서 상기 밀링실리콘나노입자는 300∼800㎚ 입도이고,
상기 S20 스텝에서 상기 에칭실리콘나노입자는 30∼80㎚ 입도인 것을 특징으로 하는 실리콘나노입자 제조방법.
According to claim 1,
In the step S10, the milling silicon nanoparticles have a particle size of 300 to 800 nm,
The method of manufacturing silicon nanoparticles, characterized in that the etching silicon nanoparticles in the step S20 is 30 to 80 nm particle size.
제2항에 있어서,
상기 S10 스텝은 상기 실리콘마이크로입자를 지르코니아 볼을 이용하여 500∼700rpm으로 2∼4시간 동안 밀링하여 300∼800㎚ 입도의 상기 밀링실리콘나노입자를 마련하는 것을 특징으로 하는 실리콘나노입자 제조방법.
According to claim 2,
In the step S10, the silicon microparticles are milled at 500 to 700 rpm for 2 to 4 hours using a zirconia ball to prepare the milling silicon nanoparticles having a particle size of 300 to 800 nm.
제3항에 있어서,
상기 S20 스텝은 상기 S10 스텝의 상기 밀링실리콘나노입자를 증류수에 교반 분산시키면서 Na2O, KOH 및 NaOH 시약 중 어느 하나 또는 이들의 혼합물로 된 시약을 첨가하여 식각되도록 한 후 원심분리하여 30∼80㎚ 입도의 상기 에칭실리콘나노입자를 마련하는 것을 특징으로 하는 실리콘나노입자 제조방법.
According to claim 3,
In step S20, the milling silicon nanoparticles of step S10 are stirred and dispersed in distilled water, and then etched by adding a reagent made of any one of Na 2 O, KOH, and NaOH reagents or a mixture thereof, and centrifuged for 30 to 80. Method of manufacturing silicon nanoparticles, characterized in that to prepare the etched silicon nanoparticles of ㎚ particle size.
제4항에 있어서,
상기 밀링실리콘나노입자 및 시약은 1:1∼20의 중량비율로 이루어지는 것을 특징으로 하는 실리콘나노입자 제조방법.
According to claim 4,
The method of manufacturing silicon nanoparticles, characterized in that the milling silicon nanoparticles and reagents have a weight ratio of 1:1 to 20.
제4항에 있어서,
상기 S20 스텝은 식각 후 원심분리하여 마련된 상기 에칭실리콘나노입자를 물에 혼합하여 초음파 세척하는 것을 더 포함하는 것을 특징으로 하는 실리콘나노입자 제조방법.
According to claim 4,
The S20 step is a method of manufacturing silicon nanoparticles further comprising ultrasonic cleaning by mixing the etched silicon nanoparticles prepared by centrifugation after etching in water.
㎛ 입도의 실리콘마이크로입자를 볼 밀링하여 ㎚ 입도의 밀링실리콘나노입자를 마련하는 스텝(S100)과,
상기 밀링실리콘나노입자를 에칭하여 ㎚ 입도의 에칭실리콘나노입자를 마련하는 스텝(S200)과,
상기 에칭실리콘나노입자에 증류수를 첨가하면서 볼 밀링하여 실리콘나노입자분산액을 마련하는 스텝(S300)과,
상기 실리콘나노입자분산액, 글루코스, 증류수 및 카본전구체를 혼합하여 콜로이드용액을 마련하는 스텝(S400)과,
상기 콜로이드용액을 액적으로 분무하면서 아르곤가스 분위기에서 열을 가해 실리콘카본전구응집체를 마련하는 스텝(S500)과,
상기 실리콘카본전구응집체를 아르곤가스 분위기에서 열처리하여 카본전구체가 코팅된 카본코팅실리콘나노입자를 마련하는 스텝(S600)을 포함하는 것을 특징으로 하는 2차전지용 카본코팅 실리콘나노입자 제조방법.
Step (S100) to prepare a milling silicon nanoparticles of ㎚ particle size by ball milling the silicon microparticles of the particle size,
Step S200 of etching the milling silicon nanoparticles to prepare etched silicon nanoparticles having a particle size of S,
Step (S300) to prepare a silicon nanoparticle dispersion by ball milling while adding distilled water to the etched silicon nanoparticle,
Step (S400) to prepare a colloidal solution by mixing the silicon nanoparticle dispersion, glucose, distilled water and carbon precursor,
Step (S500) for preparing a silicon carbon precursor aggregate by applying heat in an argon gas atmosphere while spraying the colloidal solution as a droplet,
A method of manufacturing carbon coated silicon nanoparticles for a secondary battery, comprising the step (S600) of heat-treating the silicon carbon precursor aggregate in an argon gas atmosphere to prepare carbon coated silicon nanoparticles coated with a carbon precursor.
제7항에 있어서,
상기 S500 스텝에서 상기 아르곤가스 분위기의 온도는 180∼200℃이고,
상기 S600 스텝에서 상기 아르곤가스 분위기의 온도는 280∼320℃인 것을 특징으로 하는 2차전지용 카본코팅 실리콘나노입자 제조방법.
The method of claim 7,
In the step S500, the temperature of the argon gas atmosphere is 180 to 200°C,
Method of manufacturing carbon-coated silicon nanoparticles for a secondary battery, characterized in that the temperature of the argon gas atmosphere in the step S600 is 280 to 320°C.
제8항에 있어서,
상기 S100 스텝에서 상기 밀링실리콘나노입자는 300∼800㎚ 입도이고,
상기 S200 스텝에서 상기 에칭실리콘나노입자는 30∼80㎚ 입도인 것을 특징으로 하는 2차전지용 카본코팅 실리콘나노입자 제조방법.
The method of claim 8,
In the step S100, the milling silicon nanoparticles have a particle size of 300 to 800 nm,
The method of manufacturing carbon-coated silicon nanoparticles for a secondary battery, characterized in that the etched silicon nanoparticles in the step S200 have a particle size of 30 to 80 nm.
제9항에 있어서,
상기 S100 스텝은 상기 실리콘마이크로입자를 지르코니아 볼을 이용하여 500∼700rpm으로 2∼4시간 동안 밀링하여 300∼800㎚ 입도의 상기 밀링실리콘나노입자를 마련하는 것을 특징으로 하는 2차전지용 카본코팅 실리콘나노입자 제조방법.
The method of claim 9,
The S100 step is milling the silicon microparticles at 500 to 700 rpm for 2 to 4 hours using a zirconia ball to prepare the milling silicon nanoparticles having a particle size of 300 to 800 nm. Particle manufacturing method.
제10항에 있어서,
상기 S200 스텝은 상기 S100 스텝의 상기 밀링실리콘나노입자를 증류수에 교반 분산시키면서 Na2O, KOH 및 NaOH 시약 중 어느 하나 또는 이들의 혼합물로 된 시약을 첨가하여 식각되도록 한 후 원심분리하여 30∼80㎚ 입도의 상기 에칭실리콘나노입자를 마련하는 것을 특징으로 하는 2차전지용 카본코팅 실리콘나노입자 제조방법.
The method of claim 10,
In the S200 step, the milling silicon nanoparticles of the S100 step are stirred and dispersed in distilled water, and then etched by adding a reagent of any one of Na 2 O, KOH, and NaOH reagents or a mixture thereof, and centrifuged for 30 to 80. Method for producing carbon coated silicon nanoparticles for a secondary battery, characterized in that the etched silicon nanoparticles having a particle size of ㎚ are provided.
제11항에 있어서,
상기 밀링실리콘나노입자 및 시약은 1:1∼20의 중량비율로 이루어지는 것을 특징으로 하는 2차전지용 카본코팅 실리콘나노입자 제조방법.
The method of claim 11,
The milling silicon nanoparticles and reagents are method of producing carbon coated silicon nanoparticles for a secondary battery, characterized in that consisting of a weight ratio of 1:1 to 20.
제11항에 있어서,
상기 S200 스텝은 식각 후 원심분리하여 마련된 상기 에칭실리콘나노입자를 물에 혼합하여 초음파 세척하는 것을 더 포함하는 것을 특징으로 하는 2차전지용 카본코팅 실리콘나노입자 제조방법.
The method of claim 11,
The step S200 is a method of manufacturing carbon coated silicon nanoparticles for a secondary battery, further comprising ultrasonic cleaning by mixing the etched silicon nanoparticles prepared by centrifugation after etching in water.
KR1020190011440A 2019-01-29 2019-01-29 Method for manufacturing silicon nanoparticle and method for manufacturing carbon coating silicon nanoparticle of a secondary cell KR20200094265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190011440A KR20200094265A (en) 2019-01-29 2019-01-29 Method for manufacturing silicon nanoparticle and method for manufacturing carbon coating silicon nanoparticle of a secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190011440A KR20200094265A (en) 2019-01-29 2019-01-29 Method for manufacturing silicon nanoparticle and method for manufacturing carbon coating silicon nanoparticle of a secondary cell

Publications (1)

Publication Number Publication Date
KR20200094265A true KR20200094265A (en) 2020-08-07

Family

ID=72050075

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190011440A KR20200094265A (en) 2019-01-29 2019-01-29 Method for manufacturing silicon nanoparticle and method for manufacturing carbon coating silicon nanoparticle of a secondary cell

Country Status (1)

Country Link
KR (1) KR20200094265A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220077259A (en) 2020-12-01 2022-06-09 한국세라믹기술원 Composite anode active material, and method of preparing the same
CN116282033A (en) * 2023-04-11 2023-06-23 昆明理工大学 Preparation method of honeycomb reduction pellets for industrial silicon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150072976A (en) 2013-12-20 2015-06-30 이화여자대학교 산학협력단 Producing method of silicon nanomaterial and silicon nanomaterial thereby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150072976A (en) 2013-12-20 2015-06-30 이화여자대학교 산학협력단 Producing method of silicon nanomaterial and silicon nanomaterial thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220077259A (en) 2020-12-01 2022-06-09 한국세라믹기술원 Composite anode active material, and method of preparing the same
CN116282033A (en) * 2023-04-11 2023-06-23 昆明理工大学 Preparation method of honeycomb reduction pellets for industrial silicon

Similar Documents

Publication Publication Date Title
KR102382277B1 (en) Positive electrode for lithium ion secondary battery, graphene-positive electrode active material composite particle and method for manufacturing the same, and positive electrode paste for lithium ion secondary battery
CN108172787B (en) Monodisperse hollow nano silicon/carbon sphere and preparation method and application thereof
KR101805079B1 (en) Electrode material and use thereof in lithium ion batteries
CN102064313B (en) Open type stephanoporate conductive nano composite material
JP6199491B2 (en) Method for size reduction of silicon and use of size-reduced silicon in lithium ion batteries
JP2018530859A (en) Silicon particle-containing anode material for lithium ion batteries
JP5853850B2 (en) Method for producing positive electrode material particles for lithium ion battery
CN111902210A (en) Silicon-carbon nanomaterial, preparation method and application thereof
TW201711960A (en) Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
CN105813981A (en) Improved lithium metal oxide cathode materials and method to make them
CN104969386A (en) Composite active material, manufacturing method for composite active material, and lithium secondary battery including composite active material
US20150340687A1 (en) Negative Electrode Material for a Rechargeable Battery, and Method for Producing It
TW201417380A (en) Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery
US20150340695A1 (en) Active material for negative electrodes of nonaqueous secondary batteries, and nonaqueous secondary battery
TW201910260A (en) Carbon material, positive electrode for all solid battery, negative electrode for all solid battery, and all solid battery
KR20160040103A (en) Negative electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
TWI420729B (en) Anode material of rapidly chargeable lithium battery and manufacturing method thereof
CN106558683B (en) Cladded type negative electrode material and preparation method thereof
Yao et al. LiMnPO4 surface coating on LiNi0. 5Co0. 2Mn0. 3O2 by a simple sol-gel method and improving electrochemical properties
CN114728797B (en) Composite material, method for producing same, and negative electrode material for lithium ion secondary battery
CN106414326A (en) Nano-silicon material, method for producing same and negative electrode of secondary battery
JP5813972B2 (en) Lithium-transition metal composite oxide powder, method for producing the same, and positive electrode active material for all solid lithium battery using the powder
CN108305994A (en) A kind of coated graphite lithium ion battery negative material and preparation method thereof
EP3973584A1 (en) Anode active material including low-defect turbostratic carbon
Xu et al. Synthesis and electrochemical properties of Li3V2 (PO4) 3/C cathode material with an improved sol–gel method by changing pH value

Legal Events

Date Code Title Description
E601 Decision to refuse application