KR20200089523A - Method for increasing growth and metabolite contents of pirodela polyrhiza (L.) Schleid - Google Patents

Method for increasing growth and metabolite contents of pirodela polyrhiza (L.) Schleid Download PDF

Info

Publication number
KR20200089523A
KR20200089523A KR1020190006366A KR20190006366A KR20200089523A KR 20200089523 A KR20200089523 A KR 20200089523A KR 1020190006366 A KR1020190006366 A KR 1020190006366A KR 20190006366 A KR20190006366 A KR 20190006366A KR 20200089523 A KR20200089523 A KR 20200089523A
Authority
KR
South Korea
Prior art keywords
light
duckweed
metabolites
red light
ratio
Prior art date
Application number
KR1020190006366A
Other languages
Korean (ko)
Other versions
KR102199401B1 (en
Inventor
김수영
권혁준
김종윤
오세량
류형원
김두영
Original Assignee
대한민국(환경부 국립생물자원관장)
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(환경부 국립생물자원관장), 한국생명공학연구원 filed Critical 대한민국(환경부 국립생물자원관장)
Priority to KR1020190006366A priority Critical patent/KR102199401B1/en
Publication of KR20200089523A publication Critical patent/KR20200089523A/en
Application granted granted Critical
Publication of KR102199401B1 publication Critical patent/KR102199401B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/001Culture apparatus for tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/002Culture media for tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/005Methods for micropropagation; Vegetative plant propagation using cell or tissue culture techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Wood Science & Technology (AREA)
  • Hydroponics (AREA)

Abstract

The present invention relates to a method for increasing the growth and metabolite content of Spirodela polyrhiza (L.) Schleid, comprising: 1) a step of placing seedlings of Spirodela polyrhiza (L.) Schleid in a nutrient solution; and 2) a step of culturing the seedlings of Spirodela polyrhiza (L.) Schleid placed in the nutrient solution of step 1) under light-emitting diode (LED) light conditions. Since the method increases the fresh weight, the dry weight, and the number of fronds of Spirodela polyrhiza (L.) Schleid and increases the content of metabolites, the method can be usefully used for mass proliferation of Spirodela polyrhiza (L.) Schleid and production of Spirodela polyrhiza (L.) Schleid with enhanced metabolite content.

Description

개구리밥의 생육 및 대사산물 함량 증진 방법{Method for increasing growth and metabolite contents of pirodela polyrhiza (L.) Schleid}Method for increasing growth and metabolite contents of pirodela polyrhiza (L.) Schleid}

본 발명은 개구리밥(Spirodela polyrhiza (L.) Schleid)의 생육 및 대사산물 함량을 증진시키는 방법에 관한 것이다. The present invention is duckweed ( Spirodela polyrhiza (L.) Schleid ) is related to a method for enhancing the growth and metabolite content.

개구리밥[Spirodela polyrhiza (L.) Schleid]은 개구리밥과(Lemnaceae)에 속하는 영양번식을 하는 작은 수생식물로, 다른 식물에 비하여 높은 생장률을 나타낸다 (Vermaat, J. E., & Hanif, K. M. (1998), Performance of common duckweed species (Lemnaceae) and the waterfern Azolla filiculoides on different types of waste water. Water Research, 32, 2569-2576). 개구리밥의 이러한 장점을 이용하여 하수처리시스템이나 부영양화 개선과 같은 수질개선에 이용되기도 하며 (Dalu, J. M., & Ndamba, J. (2003). Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe). Physics and Chemistry of the Earth, Parts A/B/C, 28(20), 1147-1160), 상대적으로 낮은 섬유소와 높은 단백질을 함유하고 있어 가축의 사료로도 사용되고 있다 (Landolt E (1986), The family of Lemnaceae: A monographic study. Vol. 1. Biosystematic investigations in the family of duckweeds (Lemnaceae) (vol. 2). VeroE . Geobot. Inst. ETH Stift. RuEbel 71, 1-566; Oron G. et al. (1986), J. Environ. Eng. (Am. Soc. Civil Eng.) 112, 247-263; Whitehead A. J. et al. (1987), In Aquatic Plants for Water Treatment and Resource Recovery, eds. K. R. Reddy and W. H. Smith, pp. 697-703. Magnolia Publ. Orlando, FL, U.S.A.). Duckweed[ Spirodela polyrhiza (L.) Schleid ] is a small aquatic plant that breeds antelope (Lemnaceae) and has a higher growth rate than other plants (Vermaat, JE, & Hanif, KM (1998), Performance of common duckweed species ( Lemnaceae ) and the waterfern Azolla filiculoides on different types of waste water. Water Research, 32, 2569-2576). By using these advantages of duckweed, it is also used for water quality improvement such as sewage treatment system and improvement of eutrophication (Dalu, JM, & Ndamba, J. (2003). Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe).Physics and Chemistry of the Earth, Parts A/B/C, 28(20), 1147-1160), contain relatively low fiber and high protein and are also used as feed for livestock (Landolt E (1986), The family of Lemnaceae: A monographic study.Vol. 1.Biosystematic investigations in the family of duckweeds (Lemnaceae) (vol. 2).VeroE.Geobot.Inst.ETH Stift.Ruebel 71, 1-566; Oron G. et al. (1986), J. Environ. Eng. (Am. Soc. Civil Eng.) 112, 247-263; Whitehead AJ et al. (1987), In Aquatic Plants for Water Treatment and Resource Recovery, eds.KR Reddy and WH Smith, pp. 697-703.Magnolia Publ. Orlando, FL, USA).

Culley D. D.와 Epps E. A. (J. Wat. Poll. Control Fed. 45, 337-347, 1973)의 연구 결과에 따르면, 특정 하수에서 생육된 개구리밥은 건물중(dry weight) 기준으로 단백질 함량이 40% 가량 되며, 비타민 A의 효능을 나타내는 카로틴 함량이 30-50 mg/lb 검출되었음을 밝혔다.According to research by Culley DD and Epps EA (J. Wat. Poll. Control Fed. 45, 337-347, 1973), duckweed grown in a specific sewage has a protein content of 40% based on dry weight. And 30-50 mg/lb of carotene, indicating the efficacy of vitamin A, was detected.

이와 같이 개구리밥의 활용 가치가 높아지고 있으나, 개구리밥의 대량 증식 및 이차 대사산물의 함량 증진에 관한 연구는 미비한 실정이다. 이에 개구리밥의 생육을 증진시키고 대사산물의 함량을 증진시키는 방법의 개발이 필요하다. As described above, although the value of utilization of duckweed is increasing, studies on the mass growth of duckweed and the content of secondary metabolites have been insufficient. Therefore, it is necessary to develop a method of promoting the growth of duckweed and enhancing the content of metabolites.

본 발명의 목적은 개구리밥(Spirodela polyrhiza (L.) Schleid)의 생육 및 대사산물의 함량을 증진시키는 방법을 제공하는 것이다. The purpose of the present invention is duckweed ( Spirodela polyrhiza (L.) Schleid ) to provide a method for enhancing the growth and content of metabolites.

상기 목적을 달성하기 위하여, 본 발명은 1) 개구리밥(Spirodela polyrhiza (L.) Schleid)의 유묘를 양액에 치상하는 단계; 및 2) 상기 단계 1)의 양액에 치상된 개구리밥의 유묘를 발광다이오드(light emitting diode; LED) 광 조건하에서 배양하는 단계를 포함하는 개구리밥의 생육 및 대사산물의 함량을 증진시키는 방법을 제공한다. In order to achieve the above object, the present invention is 1) duckweed ( Spirodela polyrhiza (L.) Schleid ) to the seedling of the seedling; And 2) culturing the seedlings of duckweed dentured in the nutrient solution of step 1) under light emitting diode (LED) light conditions.

본 발명에서 개구리밥의 유묘를 질소, 인산 및 칼륨이 각각 20%씩 포함된 양액에 치상하고, 발광다이오드(light emitting diode; LED) 적색광, 녹색광, 청색광 또는 백색광의 광도 비율을 조절하여 배양하였을 때, 개구리밥의 생체중, 건물중 및 엽상체 수가 증가하고 대사산물의 함량이 증가함을 확인하였으므로, 상기 방법은 개구리밥의 대량 증식 및 대사산물 함량이 증진된 개구리밥을 생산하는 데 유용하게 이용될 수 있다. When seedlings of duckweed in the present invention are dentified in a nutrient solution containing 20% of nitrogen, phosphoric acid and potassium, respectively, and cultured by adjusting the light-emitting diode (LED) red light, green light, blue light or white light ratio. Since it was confirmed that the number of live weight, building weight, and fronds of the duckweed increased and the content of metabolites increased, the method can be usefully used to produce duckweed with a large amount of duckweed and an enhanced metabolite content.

도 1은 양액의 농도 조건 및 발광다이오드 적색광, 녹색광 또는 청색광의 광도 비율 조건에 따라 배양한 개구리밥의 모습을 나타낸 도이다
(R: 적색광(660 nm); G: 녹색광(525 nm); B: 청색광(450 nm); Solar: 태양광; Tap: 수돗물(대조군)).
도 2는 양액의 농도 조건 및 발광다이오드 적색광, 녹색광 또는 청색광의 광도 비율 조건에 따라 배양한 개구리밥의 생체중(fresh weight) 및 건물중(dry weight)의 결과를 나타낸 도이다
- Fw-con: 대조군의 생체중; Fw-500: 양액 500 ppm 처리군의 생체중; Fw-1000: 양액 1,000 ppm 처리군의 생체중; Fw-2000: 양액 2,000 ppm 처리군의 생체중;
- Dw-con: 대조군의 건물중; Dw-500: 양액 500 ppm 처리군의 건물중; Dw-1000: 양액 1000 ppm 처리군의 건물중; Dw-2000: 양액 2000 ppm 처리군의 건물중;
- con: 태양광; R8G2: 적색광:녹색광의 광도 비율=8:2; R6B4: 적색광:청색광의 광도 비율=6:4; R8B2: 적색광:청색광의 광도 비율=8:2; R6G2B2: 적색광:녹색광:청색광의 광도 비율=6:2:2;
- a, b, c 및 d: SAS 통계 프로그램을 이용한 던컨의 다중검정 결과.
도 3은 양액의 농도 조건 및 발광다이오드 적색광, 녹색광 또는 청색광의 광도 비율 조건에 따라 배양한 개구리밥의 엽상체 수(number of fronds)의 결과를 나타낸 도이다
- control: 태양광; R8G2: 적색광:녹색광의 광도 비율=8:2; R6B4: 적색광:청색광의 광도 비율=6:4; R8B2: 적색광:청색광의 광도 비율=8:2; R6G2B2: 적색광:녹색광:청색광의 광도 비율=6:2:2;
- a, b, c 및 d: SAS 통계 프로그램을 이용한 던컨의 다중검정 결과.
도 4는 양액의 농도 조건 및 발광다이오드 적색광, 녹색광 또는 청색광의 광도 비율 조건에 따라 배양한 개구리밥의 엽상체 수(number of fronds)의 결과를 나타낸 도이다
- control: 태양광; R8G2: 적색광:녹색광의 광도 비율=8:2; R6B4: 적색광:청색광의 광도 비율=6:4; R8B2: 적색광:청색광의 광도 비율=8:2; R6G2B2: 적색광:녹색광:청색광의 광도 비율=6:2:2;
- a, b, c 및 d: SAS 통계 프로그램을 이용한 던컨의 다중검정 결과.
도 5는 양액 농도 1,000 ppm의 조건 및 발광다이오드 적색광, 녹색광 및 청색광의 광도 비율 조건에 따라 배양한 개구리밥의 생체중의 결과를 나타낸 도이다
- R8G4B5: 적색광:녹색광:청색광의 광도 비율=8:4:5; R7G4B6: 적색광:녹색광:청색광의 광도 비율=7:4:6; R6G4B7: 적색광:녹색광:청색광의 광도 비율=6:4:7; R5G4B8: 적색광:녹색광:청색광의 광도 비율=5:4:8).
도 6은 양액 농도 1,000 ppm의 조건 및 발광다이오드 적색광, 녹색광 및 청색광의 광도 비율 조건에 따라 배양한 개구리밥의 대사산물(metabolite) 함량을 나타낸 도이다
- Per weight: 동일한 무게에 포함된 대사산물 함량; X Fresh weight: 생산된 총 개구리밥의 생체중에 포함된 총 대사산물 함량;
- R8G4B5: 적색광:녹색광:청색광의 광도 비율=8:4:5; R7G4B6: 적색광:녹색광:청색광의 광도 비율=7:4:6; R6G4B7: 적색광:녹색광:청색광의 광도 비율=6:4:7; R5G4B8: 적색광:녹색광:청색광의 광도 비율=5:4:8).
도 7은 양액 농도 1,000 ppm의 조건 및 발광다이오드 적색광, 녹색광, 청색광 또는 백색광의 광도 비율 조건에 따라 배양한 개구리밥의 생체중 및 건물중 결과를 나타낸 도이다
- W9R1: 백색광:적색광의 광도 비율=9:1; White: 백색광; W3R1: 백색광:적색광의 광도 비율=3:1; R8G4B5: 적색광:녹색광:청색광의 광도 비율=8:4:5; R6B4: 적색광:청색광의 광도 비율=6:4).
- a, b 및 c: SAS 통계 프로그램을 이용한 던컨의 다중검정 결과.
도 8은 양액 농도 1,000 ppm의 조건 및 발광다이오드 적색광, 녹색광, 청색광 또는 백색광의 광도 비율 조건에 따라 배양한 개구리밥의 성분을 분석한 CAD(Charged Aerosol Detector) 크로마토그램을 나타낸 도이다
- 표준품: 실외에서 재배된 개구리밥의 분석 결과; 피크(peak) 1: 루테올린 8-C-글루코시드(Luteolin 8-C-glucoside); 피크 2: 아피제닌 6-C-글루코시드(Apigenin 6-C-glucoside); 피크 3: 루테올린 7-O-글루코시드(Luteolin 7-O-glucoside); 피크 4: 아피제닌 7-O-글루코시드(Apigenin 7-O-glucoside); 피크 5: 루테올린 8-C-(2''-O-페룰로일)-글루코시드(Luteolin 8-C-(2''-O-feruloyl)-glucoside); 피크 6: 아피제닌 8-C-(2''-O-페룰로일)-글루코시드(Apigenin 8-C-(2''-O-feruloyl)-glucoside); 피크 7: 루테올린 (Luteolin).
도 9는 양액 농도 1,000 ppm의 조건 및 발광다이오드 적색광, 녹색광, 청색광 또는 백색광의 광도 비율 조건에 따라 배양한 개구리밥의 성분을 분석한 UV 크로마토그램을 나타낸 도이다.
도 10은 양액 농도 1,000 ppm의 조건 및 발광다이오드 적색광, 녹색광, 청색광 또는 백색광의 광도 비율 조건에 따라 배양한 개구리밥의 성분을 분석한 UPLC-PDA-QTof-MS(ultra performance liquid chromatography-photodiode detector-quadrupole/time of flight-mass spectrometry) 크로마토그램을 나타낸 도이다.
도 11은 양액 농도 1,000 ppm의 조건 및 발광다이오드 적색광, 녹색광, 청색광 또는 백색광의 광도 비율 조건에 따라 배양한 개구리밥의 대사산물 함량을 나타낸 도이다
- W9R1: 백색광:적색광의 광도 비율=9:1; White: 백색광; W3R1: 백색광:적색광의 광도 비율=3:1; R8G4B5: 적색광:녹색광:청색광의 광도 비율=8:4:5; R6B4: 적색광:청색광의 광도 비율=6:4).
- Per weight: 동일한 무게(100 mg)에 포함된 대사산물 함량; X Dry weight: 생산된 총 개구리밥의 건물중에 포함된 총 대사산물 함량.
1 is a view showing the appearance of duckweed cultured according to the concentration conditions of the nutrient solution and the light-emitting diode red light, green light or blue light ratio conditions.
(R: red light (660 nm); G: green light (525 nm); B: blue light (450 nm); Solar: sunlight; Tap: tap water (control).
FIG. 2 is a diagram showing the results of fresh weight and dry weight of duckweed cultured according to the concentration conditions of the nutrient solution and the light ratio of the light emitting diode red light, green light or blue light.
-Fw-con: weight of control group; Fw-500: Live weight of nutrient solution 500 ppm treated group; Fw-1000: Live weight of the nutrient solution 1,000 ppm treatment group; Fw-2000: Live weight of nutrient solution 2,000 ppm treated group;
-Dw-con: In the control building; Dw-500: nutrient solution 500 ppm of treatment group among buildings; Dw-1000: Among the buildings of the nutrient solution 1000 ppm treatment group; Dw-2000: Among the buildings of the nutrient solution 2000 ppm treatment group;
-con: sunlight; R8G2: luminous intensity ratio of red light:green light=8:2; R6B4: red light: blue light ratio = 6:4; R8B2: red light: blue light ratio = 8:2; R6G2B2: red light: green light: blue light intensity ratio = 6:2:2;
-a, b, c and d: Duncan's multiple test results using SAS statistics program.
3 is a view showing the results of the number of fronds of duckweed cultured according to the concentration conditions of the nutrient solution and the light-emitting diode red light, green light or blue light ratio conditions.
-control: sunlight; R8G2: luminous intensity ratio of red light:green light=8:2; R6B4: red light: blue light ratio = 6:4; R8B2: red light: blue light ratio = 8:2; R6G2B2: red light: green light: blue light intensity ratio = 6:2:2;
-a, b, c and d: Duncan's multiple test results using SAS statistics program.
4 is a diagram showing the results of the number of fronds of duckweed cultured according to the concentration conditions of the nutrient solution and the luminous diode red light, green light or blue light ratio conditions.
-control: sunlight; R8G2: luminous intensity ratio of red light:green light=8:2; R6B4: red light: blue light ratio = 6:4; R8B2: red light: blue light ratio = 8:2; R6G2B2: red light: green light: blue light intensity ratio = 6:2:2;
-a, b, c and d: Duncan's multiple test results using SAS statistics program.
5 is a diagram showing the results of live weight of duckweed cultured under conditions of nutrient solution concentration of 1,000 ppm and light emitting diode red light, green light and blue light ratio.
-R8G4B5: red light: green light: blue light ratio ratio = 8:4:5; R7G4B6: ratio of luminous intensity of red light: green light: blue light = 7:4:6; R6G4B7: red light: green light: blue light ratio ratio = 6:4:7; R5G4B8: red light:green light:blue light ratio =5:4:8).
FIG. 6 is a diagram showing the metabolite content of duckweed cultured according to conditions of nutrient solution concentration of 1,000 ppm and light emitting diodes of red light, green light and blue light.
-Per weight: the content of metabolites in the same weight; X Fresh weight: the total metabolites content in the body of total duckweed produced;
-R8G4B5: red light: green light: blue light ratio ratio = 8:4:5; R7G4B6: ratio of luminous intensity of red light: green light: blue light = 7:4:6; R6G4B7: red light: green light: blue light ratio ratio = 6:4:7; R5G4B8: red light:green light:blue light ratio =5:4:8).
Figure 7 is a diagram showing the results of living and building of duckweed cultured under conditions of nutrient solution concentration of 1,000 ppm and light emitting diode red light, green light, blue light or white light.
-W9R1: luminous intensity ratio of white light:red light=9:1; White: White light; W3R1: White light:Red light intensity ratio = 3:1; R8G4B5: red light:green light:blue light ratio =8:4:5; R6B4: Red light: blue light ratio = 6:4).
-a, b and c: Duncan's multiple test results using SAS statistics program.
FIG. 8 is a diagram showing a CAD (Charged Aerosol Detector) chromatogram analyzing the components of duckweed cultured according to conditions of nutrient solution concentration of 1,000 ppm and light emitting diode red light, green light, blue light or white light.
-Standard: Analysis results of duckweed grown outdoors; Peak 1: Luteolin 8-C-glucoside; Peak 2: Apigenin 6-C-glucoside; Peak 3: Luteolin 7-O-glucoside; Peak 4: Apigenin 7-O-glucoside; Peak 5: Luteolin 8-C-(2''-O-feruloyl)-glucoside; Luteolin 8-C-(2''-O-feruloyl)-glucoside; Peak 6: Apigenin 8-C-(2''-O-feruloyl)-glucoside (Apigenin 8-C-(2''-O-feruloyl)-glucoside); Peak 7: Luteolin.
9 is a diagram showing a UV chromatogram analyzing the components of duckweed cultured according to conditions of a nutrient solution concentration of 1,000 ppm and light-emitting diode red light, green light, blue light or white light.
10 is an UPLC-PDA-QTof-MS (ultra performance liquid chromatography-photodiode detector-quadrupole) analyzing the composition of duckweed cultured according to conditions of nutrient solution concentration 1,000 ppm and light emitting diode red light, green light, blue light or white light. /time of flight-mass spectrometry).
11 is a diagram showing the metabolite content of duckweed cultured under conditions of nutrient solution concentration of 1,000 ppm and light-emitting diode red light, green light, blue light or white light.
-W9R1: luminous intensity ratio of white light:red light=9:1; White: White light; W3R1: White light:Red light intensity ratio = 3:1; R8G4B5: red light:green light:blue light ratio =8:4:5; R6B4: Red light: blue light ratio = 6:4).
-Per weight: the content of metabolites contained in the same weight (100 mg); X Dry weight: Total metabolite content in the building of the total duckweed produced.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 1) 개구리밥(Spirodela polyrhiza (L.) Schleid)의 유묘를 양액에 치상하는 단계; 및 2) 상기 단계 1)의 양액에 치상된 개구리밥의 유묘를 발광다이오드(light emitting diode; LED) 광 조건하에서 배양하는 단계를 포함하는 개구리밥의 생육 및 대사산물의 함량을 증진시키는 방법을 제공한다: The present invention is 1) duckweed ( Spirodela seeding the seedlings of polyrhiza (L.) Schleid ) in nutrient solution; And 2) culturing the seedlings of the duckweed dentured in the nutrient solution of step 1) under light-emitting diode (LED) light conditions to provide a method for enhancing the growth and metabolite content of duckweed.

상기 단계 1)의 양액은 질소, 인산 및 칼륨이 각각 10 내지 30%로 포함된 것일 수 있다. 구체적으로, 상기 단계 1)의 양액은 질소, 인산 및 칼륨이 각각 10 내지 25%, 15 내지 30%, 15 내지 25%, 또는 17 내지 23%로 포함된 것일 수 있다. 본 발명의 일 실시예에 의하면, 양액은 질소, 인산 및 칼륨이 각각 20%로 포함된 것일 수 있다. The nutrient solution of step 1) may contain nitrogen, phosphoric acid and potassium at 10 to 30%, respectively. Specifically, the nutrient solution of step 1) may include nitrogen, phosphoric acid and potassium in 10 to 25%, 15 to 30%, 15 to 25%, or 17 to 23%, respectively. According to an embodiment of the present invention, the nutrient solution may include nitrogen, phosphoric acid, and potassium in 20%, respectively.

상술한 바와 같이 질소, 인산 및 칼륨이 포함된 양액의 농도는 800 내지 2,200 ppm일 수 있다. 구체적으로, 양액의 농도는 800 내지 2,000 ppm, 800 내지 1,800 ppm, 800 내지 1,600 ppm, 800 내지 1,400 ppm, 또는 800 내지 1,200 ppm 일 수 있다. 본 발명의 일 실시예에 의하면, 양액의 농도는 1,000 ppm일 수 있다. As described above, the concentration of the nutrient solution containing nitrogen, phosphoric acid and potassium may be 800 to 2,200 ppm. Specifically, the concentration of the nutrient solution may be 800 to 2,000 ppm, 800 to 1,800 ppm, 800 to 1,600 ppm, 800 to 1,400 ppm, or 800 to 1,200 ppm. According to an embodiment of the present invention, the concentration of the nutrient solution may be 1,000 ppm.

상기 단계 2)의 발광다이오드 광 조건은 적색광, 녹색광, 청색광 및 백색광으로 이루어진 군으로부터 선택된 둘 이상을 혼합 처리하는 것일 수 있다. The light condition of the light emitting diode of step 2) may be a mixture treatment of two or more selected from the group consisting of red light, green light, blue light and white light.

구체적으로, 상기 단계 2)의 발광다이오드 광 조건은 적색광:청색광의 광도 비율이 5 내지 9 : 1 내지 5일 수 있고, 더 구체적으로 적색광:청색광의 광도 비율이 6 내지 9 : 1 내지 5, 6 내지 9 : 1 내지 4, 7 내지 9 : 1 내지 5, 7 내지 9 : 1 내지 4, 또는 7 내지 9 : 1 내지 3 일 수 있다. 본 발명의 일 실시예에 의하면, 상기 단계 2)의 발광다이오드 광 조건은 적색광:청색광의 광도 비율이 8:2일 수 있다. Specifically, the light condition of the light emitting diode of the step 2) may be a red light: blue light ratio of 5 to 9: 1 to 5, and more specifically, a red light: blue light ratio of 6 to 9: 1 to 5, 6 It may be 9 to 1 to 4, 7 to 9: 1 to 5, 7 to 9: 1 to 4, or 7 to 9: 1 to 3. According to an embodiment of the present invention, the light condition of the light emitting diode of step 2) may be 8:2 with a red light:blue light ratio.

또한, 상기 단계 2)의 발광다이오드 광 조건은 적색광:녹색광:청색광의 광도 비율이 4 내지 9 : 3 내지 5 : 4 내지 9일 수 있고, 더 구체적으로 적색광:녹색광:청색광의 광도 비율이 5 내지 9 : 3 내지 5 : 4 내지 9, 5 내지 9 : 3 내지 5 : 4 내지 8, 5 내지 9 : 3 내지 5 : 4 내지 7, 5 내지 9 : 3 내지 5 : 4 내지 6, 6 내지 9 : 3 내지 5 : 4 내지 7, 6 내지 9 : 3 내지 5 : 4 내지 6, 7 내지 9 : 3 내지 5 : 4 내지 7, 또는 7 내지 9 : 3 내지 5 : 4 내지 6일 수 있다. 본 발명의 일 실시예에 의하면, 상기 단계 2)의 발광다이오드 광 조건은 적색광:녹색광:청색광의 광도 비율이 8:4:5일 수 있다. In addition, the light condition of the light emitting diode of the step 2) may be a red light: green light: blue light ratio of 4 to 9: 3 to 5: 4 to 9, and more specifically, the red light: green light: blue light has a light ratio of 5 to 9: 3 to 5: 4 to 9, 5 to 9: 3 to 5: 4 to 8, 5 to 9: 3 to 5: 4 to 7, 5 to 9: 3 to 5: 4 to 6, 6 to 9: It may be 3 to 5: 4 to 7, 6 to 9: 3 to 5: 4 to 6, 7 to 9: 3 to 5: 4 to 7, or 7 to 9: 3 to 5: 4 to 6. According to an embodiment of the present invention, the light condition of the light emitting diode of step 2) may be 8:4:5 in the ratio of red light: green light: blue light.

또한, 상기 단계 2)의 발광다이오드 광 조건은 백색광:적색광의 광도 비율이 2 내지 10 : 1일 수 있고, 더 구체적으로 백색광:적색광의 광도 비율이 3 내지 10 : 1, 4 내지 10 : 1, 5 내지 10 : 1, 6 내지 10 : 1, 7 내지 10 : 1, 또는 8 내지 10 : 1일 수 있다. 본 발명의 일 실시예에 의하면, 상기 단계 2)의 발광다이오드 광 조건은 백색광:적색광의 광도 비율이 9:1일 수 있다. In addition, the light condition of the light emitting diode of the step 2) may be a white light: red light ratio of 2 to 10: 1, more specifically white light: red light ratio of 3 to 10: 1, 4 to 10: 1, It may be 5 to 10:1, 6 to 10:1, 7 to 10:1, or 8 to 10:1. According to an embodiment of the present invention, the light condition of the light emitting diode of step 2) may be in a ratio of white light:red light of 9:1.

상기 적색광은 640 내지 680 nm, 650 내지 680 nm, 655 내지 680 nm, 640 내지 670 nm, 640 내지 665 nm, 650 내지 670 nm, 또는 655 내지 665 nm의 파장일 수 있다. The red light may have a wavelength of 640 to 680 nm, 650 to 680 nm, 655 to 680 nm, 640 to 670 nm, 640 to 665 nm, 650 to 670 nm, or 655 to 665 nm.

상기 녹색광은 505 내지 545 nm, 515 내지 545 nm, 520 내지 545 nm, 505 내지 535 nm, 505 내지 530 nm, 515 내지 535 nm, 또는 520 내지 530 nm의 파장일 수 있다. The green light may have a wavelength of 505 to 545 nm, 515 to 545 nm, 520 to 545 nm, 505 to 535 nm, 505 to 530 nm, 515 to 535 nm, or 520 to 530 nm.

상기 청색광은 430 내지 470 nm, 440 내지 470 nm, 445 내지 470 nm, 430 내지 460 nm, 430 내지 455 nm, 440 내지 460 nm, 또는 445 내지 455 nm의 파장일 수 있다. The blue light may have a wavelength of 430 to 470 nm, 440 to 470 nm, 445 to 470 nm, 430 to 460 nm, 430 to 455 nm, 440 to 460 nm, or 445 to 455 nm.

또한, 상기 단계 1)의 발광다이오드 광 조건은 광도가 600 내지 700 mol·m-2·s-1일 수 있다. 구체적으로, 광도는 620 내지 700 mol·m-2·s-1, 640 내지 700 mol·m-2·s-1, 650 내지 700 mol·m-2·s-1, 650 내지 690 mol·m-2·s-1, 또는 660 내지 680 mol·m-2·s-1일 수 있다. In addition, the light condition of the light emitting diode of step 1) may be 600 to 700 mol·m -2 ·s -1 . Specifically, the light intensity is 620 to 700 mol·m -2 · s -1 , 640 to 700 mol·m -2 · s -1 , 650 to 700 mol·m -2 · s -1 , 650 to 690 mol·m It may be -2 ·s -1 , or 660 to 680 mol·m -2 ·s -1 .

상기 단계 2)의 배양은 밀폐형 식물생산 시스템(closed-type plant production system)에서 이루어지는 것일 수 있다. The culture of step 2) may be performed in a closed-type plant production system.

또한, 상기 단계 2)의 배양은 22 내지 32℃의 온도, 30 내지 70%의 상대습도 및 700 내지 1,500 ppm의 이산화탄소(CO2) 농도에서 이루어지는 것일 수 있다. In addition, the culture of step 2) may be made at a temperature of 22 to 32° C., a relative humidity of 30 to 70% and a carbon dioxide (CO 2 ) concentration of 700 to 1,500 ppm.

또한, 상기 단계 2)의 배양은 7 내지 15일 동안 이루어지는 것일 수 있고, 구체적으로 8 내지 15일, 9 내지 15일, 7 내지 14일, 7 내지 13일, 8 내지 14일, 또는 9 내지 13일일 수 있다. In addition, the culture of step 2) may be performed for 7 to 15 days, specifically 8 to 15 days, 9 to 15 days, 7 to 14 days, 7 to 13 days, 8 to 14 days, or 9 to 13 days It can be one day.

본 발명의 구체적인 실시예에서, 본 발명자들은 양액의 농도 조건(0, 500, 1000 또는 2000 ppm)과 발광다이오드 적색광, 녹색광 또는 청색광의 광도 비율 조건(적색광:녹색광=8:2; 적색광:청색광=6:4; 적색광:청색광=8:2; 적색광:녹색광:청색광=6:2:2)을 다르게 하여 개구리밥을 배양한 결과, 개구리밥의 생체중(fresh weight)과 건물중(dry weight)이 양액 농도 1,000 및 2,000 ppm 조건에서 증가하고(도 2 참조), 엽상체의 수가 1,000 ppm에서 가장 많이 증가하였음을 확인하였다(도 1 및 도 3 참조). 또한, 개구리밥의 생체중은 8:2 비율의 적색광과 청색광을 처리할 경우 양액 농도에 관계없이 우수한 경향을 보였으며, 건물중은 8:2 비율의 적색광과 청색광을 처리할 경우 1,000 ppm의 양액 농도에서 가장 높음을 확인하였다 (도 2 참조). 엽상체 수는 8:2 및 6:4 비율의 적색광과 청색광을 처리할 경우 증가하는 것으로 나타나 (도 1 및 도 4 참조), 개구리밥의 생육은 발광다이오드의 적색광의 비율이 증가할수록 증진되며, 적정 양액의 농도는 1,000 ppm임을 확인하였다. In a specific embodiment of the present invention, the present inventors have a concentration condition (0, 500, 1000 or 2000 ppm) of nutrient solution and a light emitting diode red light, green light or blue light ratio condition (red light: green light = 8:2; red light: blue light = 6:4; red light:blue light=8:2; red light:green light:blue light=6:2:2) As a result of cultivating duckweed, the fresh weight and dry weight of the duckweed are nutrient concentration. It was confirmed that the concentration increased at 1,000 and 2,000 ppm (see FIG. 2 ), and the number of fronds increased most at 1,000 ppm (see FIGS. 1 and 3 ). In addition, the body weight of duckweed showed excellent tendency regardless of the concentration of nutrient solution when treated with 8:2 ratio of red light and blue light, and in the building, when treated with 8:2 ratio of red light and blue light, the concentration of 1,000 ppm of nutrient solution was observed. It was confirmed to be the highest (see FIG. 2). The number of fronds appears to increase when treated with 8:2 and 6:4 ratios of red and blue light (see FIGS. 1 and 4), and the growth of duckweed is enhanced as the ratio of red light in the light emitting diode increases, and an appropriate nutrient solution The concentration of was confirmed to be 1,000 ppm.

또한, 본 발명자들은 양액 농도 1,000 ppm의 조건과 발광다이오드 적색광, 녹색광 및 청색광의 광도 비율 조건(적색광:녹색광:청색광=8:4:5; 적색광:녹색광:청색광=7:4:6; 적색광:녹색광:청색광=6:4:7; 적색광:녹색광:청색광=5:4:8)을 다르게 하여 개구리밥을 배양한 결과, 적색광:녹색광:청색광의 비율이 8:4:5일 때 개구리밥의 생체중이 가장 많이 증가하고 (도 5 참조) 대사산물의 함량이 가장 크게 증가하므로 (도 6 참조), 양액 1,000 ppm 농도 및 8:4:5 비율의 적색광:녹색광:청색광 광질 조건에서 개구리밥의 생육 및 대사산물 함량이 효과적으로 증진됨을 확인하였다. In addition, the present inventors have a condition of nutrient solution concentration of 1,000 ppm and light emitting diode red light, green light and blue light ratio conditions (red light: green light: blue light = 8:4:5; red light: green light: blue light = 7:4:6; red light: Green light: blue light = 6:4:7; red light: green light: blue light = 5:4:8) differently, the result of cultivation of duckweed, the red light: green light: blue light ratio is 8:4:5 The most increased (see Fig. 5) and the content of the metabolites increases the most (see Fig. 6), so the growth and metabolites of duckweed in conditions of red light:green light:blue light and blue light at 1,000 ppm concentration and 8:4:5 ratio It was confirmed that the content was effectively enhanced.

또한, 본 발명자들은 양액 농도 1,000 ppm의 조건과 발광다이오드 적색광, 녹색광, 청색광 또는 백색광의 광도 비율 조건(백색광:적색광=9:1; 백색광; 백색광:적색광=3:1; 적색광:녹색광:청색광=8:4:5; 적색광:청색광=6:4))을 다르게 하여 개구리밥을 배양한 결과, 백색광과 적색광을 복합 처리할 때 생체중 및 건물중이 증가하고 (도 7 참조) 대사산물의 함량이 증가하므로 (도 11 참조), 양액 1,000 ppm 농도 및 3 내지 9:1 비율의 백색광:적색광 광질 조건에서 개구리밥의 생육 및 대사산물 함량이 효과적으로 증진됨을 확인하였다. In addition, the present inventors nutrient solution concentration conditions of 1,000 ppm and the light emitting diode red light, green light, blue light or white light luminous ratio conditions (white light: red light = 9: 1; white light; white light: red light = 3: 1; red light: green light: blue light = 8:4:5; red light:blue light=6:4)), and as a result of cultivation of duckweed, when combined with white light and red light, the body weight and building weight increased (see Fig. 7) and the content of metabolites increased. Therefore, (see FIG. 11), it was confirmed that the growth and metabolite content of the duckweed are effectively enhanced in the condition of 1,000 ppm nutrient solution and 3 to 9:1 ratio of white light: red light.

따라서, 상기 방법은 개구리밥의 생체중, 건물중 및 엽상체 수를 증가시키고 대사산물의 함량을 증가시키므로, 개구리밥의 대량 증식 및 대사산물 함량이 증진된 개구리밥을 생산하는 데 유용하게 이용될 수 있다. Therefore, the above method can be usefully used to produce duckweed with a large amount of metabolites and a large amount of metabolites, since it increases the number of metabolites and increases the number of live weights, building weights, and fronds.

이하, 본 발명을 하기 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의하여 한정되는 것은 아니다.However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited by the following examples.

<< 실시예Example 1> 개구리밥의 배양 1> Culture of duckweed

9개의 사각형 박스(가로 18cm×세로 23cm×높이 9cm)에 약 5 cm 높이로 수돗물을 넣은 후, 개구리밥(Spirodela polyrhiza (L.) Schleid .)을 이식하고, 19일 후 엽상체의 크기가 비슷하고 3개의 엽상체를 가진 개체를 선발하여 하기 실험의 재료로 사용하였다. After adding tap water to a height of about 5 cm in 9 square boxes (18 cm x 23 cm x 9 cm), the rice balls (Spirodela polyrhiza (L.) Schleid .) Was transplanted, and after 19 days, individuals with similar frond size and three fronds were selected and used as materials for the following experiment.

<< 실시예Example 2> 2> 양액Nutrient solution 농도 및 Concentration and 광질Mineral 조건을 달리한 개구리밥의 배양 Cultivation of duckweed with different conditions

양액 농도 및 광질 조건에 따른 개구리밥 생육 증진 효과를 확인하기 위해, 수용성 비료의 처리 농도와 광질 처리 조건을 달리하여 개구리밥을 배양하였다. In order to confirm the effect of promoting the growth of duckweed according to the nutrient concentration and light quality conditions, the frog rice was cultured by varying the treatment concentration of the water-soluble fertilizer and the light treatment condition.

먼저, 질소, 인산 및 칼륨이 각각 20%씩 포함된 수용성 비료(Multifeed 20-20-20 with micronutrient, Haifa Chemical, Haifa, Israel)를 500, 1000 및 2000 ppm 농도로 제조하여 양액으로 사용하였다. 제조한 각 양액을 페트리 디쉬에 100 mL 씩 넣고 실시예 1에서 선발한 개구리밥을 10개씩 치상한 후, 이를 밀폐형 식물생산 시스템 (온도 27.4±2.2℃, 상대습도 51.6±16.1%, CO2 1158.9±336.2 ppm) 에 두어 발광다이오드(LED) 하에서 배양하였다. 발광다이오드 조건은 총 4가지 조건으로, 적색광(660 nm), 청색광(450 nm), 녹색광(525 nm)의 발광다이오드 광원을 이용하여, 8:2 광도 비율의 적색광:녹색광(R8G2), 6:4 광도 비율의 적색광:청색광(R6B4), 8:2 광도 비율의 적색광:청색광(R8B2), 6:2:2 광도 비율의 적색광:녹색광:청색광 조건을 만들었다. 광도는 LED용 퀀텀 센서(MQ-500, Apogee Inst. Logan, UT, USA)를 이용하여 개구리밥 엽상체 표면의 광도를 669.6±2 μmol·m-2·s-1로 균일하게 해주었고, 광주기는 16/8h(light/dark)로 설정하였다. 대조군은 수돗물(양액 0 ppm)이 담긴 페트리디쉬을 이용하고, 유리 온실(온도 31.2±4.2℃, 상대습도 59.0±14%, CO2 448.5±48.7 ppm)에서 태양광(Solar)을 받게 두었다. First, water, water, and fertilizers containing 20% of nitrogen, phosphoric acid, and potassium, respectively (Multifeed 20-20-20 with micronutrient, Haifa Chemical, Haifa, Israel) were prepared at 500, 1000, and 2000 ppm concentrations, and used as a nutrient solution. Each prepared nutrient solution was put into a petri dish 100 mL each, and 10 pieces of duckweed selected in Example 1 were dentured, and this was sealed plant production system (temperature 27.4±2.2°C, relative humidity 51.6±16.1%, CO 2 1158.9±336.2 ppm) and cultured under a light emitting diode (LED). Light-emitting diode conditions are a total of four conditions, using a light-emitting diode light source of red light (660 nm), blue light (450 nm), and green light (525 nm), the ratio of red light: green light (R8G2), 6: at a ratio of 8:2 light intensity. Red light:blue light (R6B4) at a ratio of 4 light intensity, red light:blue light (R8B2) at a ratio of 8:2 light intensity, and red light:green light:blue light at a 6:2:2 light intensity ratio were created. The luminous intensity was uniformly adjusted to 669.6±2 μmol·m -2 ·s -1 on the surface of the frond of the duckweed using the LED quantum sensor (MQ-500, Apogee Inst. Logan, UT, USA). It was set to /8h (light/dark). As a control group, a petri dish containing tap water (0 ppm of nutrient solution) was used, and solar light was placed in a glass greenhouse (temperature 31.2±4.2° C., relative humidity 59.0±14%, CO 2 448.5±48.7 ppm).

밀폐형 식물생산 시스템 내부의 조건을 측정하기 위해, 온도·습도·CO2 센서(SH-VT250, SOHA Tech, Seoul, Korea)와 CO2센서(GMP222, Vaisala Co., Helsinki, Finland)를 data logger(CR1000, Campbell Scientific, Logan, UT, USA)에 연결하여 연속적으로 내부 조건을 기록하였고, 유리 온실의 내부 조건을 측정하기 위해, 온도·습도·CO2 센서(SH-VT250, SOHA Tech)를 이용하였다. In order to measure the conditions inside the closed plant production system, temperature, humidity, and CO 2 sensors (SH-VT250, SOHA Tech, Seoul, Korea) and CO 2 sensors (GMP222, Vaisala Co., Helsinki, Finland) are used as data loggers ( CR1000, Campbell Scientific, Logan, UT, USA) to continuously record the internal conditions, and to measure the internal conditions of the glass greenhouse, a temperature, humidity, and CO 2 sensor (SH-VT250, SOHA Tech) was used. .

<< 실험예Experimental Example 1> 개구리밥 생육 증진에 효과적인 1> Effective for promoting the growth of duckweed 양액Nutrient solution 농도 및 광 조건 확인 Check density and light conditions

실시예 2에 따라 양액 농도 및 광질 조건에 달리한 개구리밥의 생육 정도를 평가하였다. 생육 정도는 개구리밥의 생체중(fresh weight), 건물중(dry weight), 엽상체 수를 대상으로 하여 평가하였다. According to Example 2, the growth rate of duckweed with different nutrient concentration and light quality was evaluated. The degree of growth was evaluated using fresh weight, dry weight, and number of fronds of duckweed.

<1-1> <1-1> 생체중Live weight (fresh weight) 및 (fresh weight) and 건물중Building (dry weight)(dry weight)

개구리밥의 생체중은 건조과정을 거치지 않은 개구리밥의 무게를 말하며, 건물중은 온도 15℃, 습도 10%에서 건조하여 얻은 개구리밥의 무게를 말한다. 각 조건에서 배양한 개구리밥의 생체중과 건물중을 측정하였다. The weight of the duckweed refers to the weight of the duckweed that has not been dried, and the weight of the duckweed obtained by drying at a temperature of 15℃ and humidity of 10%. The live weight and building weight of the duckweed cultured under each condition were measured.

그 결과, 양액 처리된 실험군은 수돗물 조건에서 배양된 대조군보다 생체중과 건물중 모두 증가하였으며, 500 ppm 조건보다 1,000 ppm 또는 2,000 ppm 조건의 양액에서 배양한 개구리밥의 생체중과 건물중이 더 높게 나타났다 (도 2). 또한, 발광다이오드 처리된 실험군도 태양광 조건의 대조군보다 생체중과 건물중 모두 증가하였다. 생체중의 경우 8:2 비율의 적색광:청색광 조건에서 양액 농도에 관계없이 우수한 경향을 보였으며, 건물중의 경우 8:2 비율의 적색광:청색광 조건에서 양액 농도 1,000 ppm일 때 가장 높은 것으로 나타났다. 그 외 조건의 실험군 사이에서는 유의적인 차이가 없는 것으로 나타났다. As a result, in the experimental group treated with nutrient solution, both the live weight and the building weight increased than the control group cultured under the tap water condition, and the live weight and the building weight of the duckweed cultured in the nutrient solution under 1,000 ppm or 2,000 ppm conditions were higher than in the 500 ppm condition (Fig. 2). In addition, the experimental group treated with the light-emitting diode also increased in both live weight and building weight than the control group under the sunlight condition. In the case of living weight, the ratio of red light:blue light in the ratio of 8:2 was excellent regardless of the concentration of nutrient solution, and in the case of building, it was the highest when the concentration of nutrient solution was 1,000 ppm in the condition of red light:blue light in the ratio of 8:2. There was no significant difference between the experimental groups under other conditions.

<1-2> 엽상체 수<1-2> Number of fronds

각 조건에서 배양한 개구리밥의 엽상체 수를 측정하였다. The number of fronds of duckweed cultured in each condition was measured.

양액 농도에 따른 개구리밥 엽상체 수를 확인한 결과, 양액 처리된 실험군은 수돗물 조건에서 배양된 대조군보다 개구리밥의 엽상체 수가 증가한 것으로 나타났으며, 특히 양액 1,000 ppm 조건에서 자란 개구리밥의 엽상체 수가 크게 증가하였음을 확인하였다 (도 1 및 도 3). 또한, 광질 조건에 따른 개구리밥의 엽상체 수를 확인한 결과, 발광다이오드 처리된 실험군은 태양광 조건의 대조군보다 엽상체 수가 증가하였으며, 8:2 및 6:4 비율의 적색광:청색광 조건은 다른 광질 조건에 비해 엽상체 수 증가에 효과적인 것으로 나타났다 (도 1 및 도 4). As a result of confirming the number of foliar bodies according to the concentration of nutrient solution, the experimental group treated with nutrient solution showed that the number of foliar bodies of duckweed increased than that of the control group cultured under tap water conditions. (Figures 1 and 3). In addition, as a result of confirming the number of fronds of duckweed according to the light quality conditions, the experimental group treated with light-emitting diodes increased the number of fronds than the control of the sunlight condition, and the ratio of red light:blue light in the ratio of 8:2 and 6:4 compared to other light conditions. It was shown to be effective in increasing the number of fronds (FIGS. 1 and 4 ).

상기 결과를 통해, 개구리밥의 생육은 발광다이오드의 적색광의 비율이 증가할수록 증진되며, 적정 양액 농도는 1,000 ppm 임을 확인하였다.Through the above results, it was confirmed that the growth of duckweed is enhanced as the proportion of red light in the light emitting diode increases, and the proper nutrient concentration is 1,000 ppm.

<< 실시예Example 3> 3> 적색광Red light , , 청색광Blue light And 녹색광의Green 비율을 달리한 개구리밥의 배양 Cultivation of different proportions of duckweed

적색광, 청색광, 녹색광 3가지 광의 광도 비율에 따른 개구리밥 생육 증진 효과를 확인하고자 하였다. The purpose of this study was to confirm the effect of promoting the growth of duckweed according to the ratio of the luminous intensity of the red light, blue light, and green light.

개구리밥 유묘 3개(0.0125 g)씩 1,000 ppm의 양액이 담긴 페트리 디쉬에 치상하고, 적색광, 녹색광, 청색광의 광도 비율을 각각 8:4:5, 7:4:6, 6:4:7 및 5:4:8으로 한 광조건 하에서 개구리밥을 12일 동안 배양한 점을 제외하고, 실시예 2와 동일한 방법으로 개구리밥을 배양하였다. Three duckweed seedlings (0.0125 g) are placed in a petri dish containing 1,000 ppm of nutrient solution, and the ratio of luminosity of red light, green light, and blue light is 8:4:5, 7:4:6, 6:4:7, and 5, respectively. The frog rice was cultured in the same manner as in Example 2, except that the frog rice was cultured for 12 days under the light condition of :4:8.

<< 실험예Experimental Example 2> 개구리밥 생육 증진에 효과적인 광질 조건( 2> Photonic conditions effective for promoting the growth of duckweed ( 적색광Red light , , 청색광Blue light And 녹색광Green light ) 확인) Confirm

실시예 3에 따라 적색광, 청색광, 녹색광 3가지 광의 광도 비율을 달리하여 배양한 개구리밥의 생육 정도를 평가하였다. 생육 정도는 개구리밥의 생체중(fresh weight), 개구리밥의 대사산물(metabolite)의 함량으로 평가하였다. According to Example 3, the growth ratio of the cultivated duckweed was evaluated by varying the luminous intensity ratios of three types of red light, blue light, and green light. The degree of growth was evaluated by the fresh weight of duckweed and the content of metabolite of duckweed.

<2-1> <2-1> 생체중Live weight (fresh weight)(fresh weight)

개구리밥의 생체중을 배양 0, 4, 6, 8, 10 및 12일 차에 측정하였다. The live weight of duckweed was measured on days 0, 4, 6, 8, 10 and 12 of culture.

그 결과, 실험예 1의 결과와 같은 경향으로 적색광의 비율이 높은 8:4:5의 적색광:녹색광:청색광 조건에서 개구리밥의 생체중이 가장 높았으며, 배양 12일차에 생체중의 무게는 약 15.4 g으로 배양 0일 차 개구리밥의 무게(0.0125 g)에 비해 약 1232배 증가하였다 (도 5). As a result, in the same tendency as in the result of Experimental Example 1, in the red light:green light:blue light condition of 8:4:5 where the ratio of red light is high, the body weight of duckweed was the highest under the conditions of 12 days of culture, and the weight of the live weight was about 15.4 g on the 12th day of culture. On day 0 of culture, the weight of duckweed was increased by about 1232 times (0.0125 g) (Fig. 5).

<2-2> <2-2> 대사산물의Metabolite 함량 content

개구리밥의 대사산물을 측정하기 위해 개구리밥 추출물을 제조하고 고성능 액체크로마토그래피(ultra performance liquid chromatography, UPLC)를 이용하여 대사산물의 함량을 측정하였다. To measure the metabolites of duckweed, an extract of duckweed was prepared and the content of metabolites was measured using ultra performance liquid chromatography (UPLC).

구체적으로, 배양한 각 개구리밥을 음건하여 수분을 제거하고, 개구리밥 건조 중량 100 mg에 80% 메탄올 4 mL을 가하고 15분 동안 초음파 파쇄기를 이용하여 상온에서 3회 반복 추출하였다. 추출물을 0.25 mm 멤브레인 필터로 1회 여과하고 감압 농축하여 개구리밥 메탄올 추출물(15.3~18.6 mg)을 수득하였다. 수득한 메탄올 추출물의 성분을 고성능 액체크로마토그래피(ultra performance liquid chromatography, UPLC)로 분석하였다. 구체적으로, 개구리밥 추출물을 UPLC용 0.25 mm 멤브레인 필터로 1회 여과한 후 UPLC 기기(Waters UPLC-QTOF-MS)에 컬럼(Waters BEH C18 column, 2.1 ×100 mm, 1.7 ㎛)을 장착한 후 여과된 각각의 분획물을 2 ㎕ 양으로 로딩하였다. 이때, 용매로는 아세토니트릴 + 0.1% 포름산/물 + 0.1% 포름산을 사용하고, 용리 속도는 0.4 ㎖/분으로 하였다. 이동상의 그래디언트(gradient)는 하기 [표 1]과 같이 하여 분석을 수행하였다. 이때, 검출기로 UV, CAD(Charged Aerosol Detector), MS(Mass Spectrometry)를 이용하여 UPLC로부터 분리되어진 대사산물들을 크로마토그래피 형식으로 각 대사산물의 분리도를 확인하고, 각 대사산물의 함량을 계산하였다. Specifically, each cultured duckweed was shaded to remove moisture, and 4 mL of 80% methanol was added to 100 mg of dry weight of the duckweed and repeatedly extracted three times at room temperature using an ultrasonic crusher for 15 minutes. The extract was filtered once with a 0.25 mm membrane filter and concentrated under reduced pressure to obtain duckweed methanol extract (15.3 to 18.6 mg). The components of the obtained methanol extract were analyzed by ultra performance liquid chromatography (UPLC). Specifically, the duckweed extract was filtered once with a 0.25 mm membrane filter for UPLC and then filtered after mounting a column (Waters BEH C18 column, 2.1 × 100 mm, 1.7 μm) on a UPLC device (Waters UPLC-QTOF-MS). Each fraction was loaded in an amount of 2 μl. At this time, acetonitrile + 0.1% formic acid/water + 0.1% formic acid was used as the solvent, and the elution rate was 0.4 ml/min. The gradient of the mobile phase was performed as shown in Table 1 below. At this time, using a UV, CAD (Charged Aerosol Detector), MS (Mass Spectrometry) as a detector, the metabolites separated from the UPLC were chromatographed to confirm the degree of separation of each metabolite, and the content of each metabolite was calculated.

그 결과, 동일한 무게의 개구리밥에 포함된 대사산물의 함량(per weight)은 광질 조건에 따라 유의적인 차이가 없었으나, 생산된 총 개구리밥의 생체중에 포함된 총 대사산물의 함량(x fresh weight)은 적색광의 비율이 높은 적색광:녹색광:청색광의 비율이 8:4:5인 조건에서 가장 높은 것으로 나타났다 (도 6). As a result, there was no significant difference in the per weight of metabolites contained in the same weight of duckweed, but the content of the total metabolites (x fresh weight) in the body of the total amount of produced duckweed It was found that the ratio of red light:green light:blue light with a high ratio of red light was the highest in the condition of 8:4:5 (Fig. 6).

상기 결과를 통해, 개구리밥의 유묘를 양액 1,000 ppm 농도에 치상하고 8:4:5 비율의 적색광:청색광:녹색광을 처리하여 개구리밥을 배양할 때, 생육 및 대사산물의 증진이 가장 두드러짐을 확인하였다. Through the above results, when seedlings of duckweed were dentured at a concentration of 1,000 ppm of nutrient solution and treated with red light:blue light:green light in a ratio of 8:4:5, it was confirmed that growth and metabolites were most prominent when cultivated duckweed.

시간(min) Time(min) 용리 속도 (mL/min) Elution rate (mL/min) %A%A %B%B 0.000.00 0.4000.400 9595 55 0.730.73 0.4000.400 9595 55 10.1110.11 0.4000.400 5050 5050 13.3213.32 0.4000.400 00 100100 12.1912.19 0.4000.400 00 100100 12.4012.40 0.4000.400 9595 55 14.2814.28 0.4000.400 9595 55

(A: 아세토니트릴 + 0.1% 포름산; B: 물 + 0.1% 포름산) (A: acetonitrile + 0.1% formic acid; B: water + 0.1% formic acid)

<< 실시예Example 4> 백색광 및 4> White light and 적색광의Red 비율을 달리한 개구리밥의 배양 Cultivation of different proportions of duckweed

개구리밥의 경제적인 재배방법을 모색하기 위해, 시판 중인 백색광의 발광다이오드를 기본광으로 이용하고, 적색광을 보조광으로 이용할 때의 개구리밥의 생육 증진 효과가 나타나는지 확인하고자 하였다. In order to find an economic cultivation method for duck rice, we tried to confirm whether the commercial white light-emitting diode is used as the primary light and the growth effect of the frog rice when red light is used as the auxiliary light.

구체적으로 백색광과 적색광의 광도 비율이 각각 9:1 및 3:1인 광질 조건 하에서 개구리 밥을 배양한 점을 제외하고, 실시예 3-1과 동일한 방법으로 개구리밥을 10일 동안 배양하였다. 대조군으로 실험예 1 및 실험예 2에서 개구리밥 생산 증대에 효과적이었던 광질 조건인 8:4:5의 적색광:녹색광:청색광 조건(R8G4B5), 6:4의 적색광:청색광 조건(R6B4) 및 백색광 단독 조건(White) 하에서 개구리밥을 이용하였다. Specifically, frog rice was cultured for 10 days in the same manner as in Example 3-1, except that the frog rice was cultured under light conditions in which the luminosity ratios of white light and red light were 9:1 and 3:1, respectively. As a control, the light conditions that were effective in increasing the production of duckweed in Experimental Examples 1 and 2 were 8:4:5 red light: green light: blue light condition (R8G4B5), 6:4 red light: blue light condition (R6B4) and white light alone conditions. Duckweed was used under (White).

<< 실험예Experimental Example 3> 개구리밥 생육 증진에 효과적인 광 조건(백색광 및 3> Effective light conditions (white light and 적색광Red light ) 확인) Confirm

실시예 4에 따라 백색광 및 적색광의 비율을 달리하여 배양한 개구리밥의 생육 정도를 평가하였다. 생육 정도는 개구리밥의 생체중(fresh weight), 건물중(dry weight), 개구리밥의 대사산물(metabolite)의 함량을 대상으로 평가하였다. According to Example 4, the growth rate of the duckweed cultured by varying the ratio of white light and red light was evaluated. The degree of growth was evaluated for fresh weight, dry weight, and metabolite content of duckweed.

<3-1> <3-1> 생체중Live weight (fresh weight) 및 (fresh weight) and 건물중Building (dry weight)(dry weight)

각 조건에서 배양한 개구리밥의 생체중과 건물중을 측정하였다. The live weight and building weight of the duckweed cultured under each condition were measured.

생체중 측정 결과, 백색광과 적색광을 9:1로 처리한 경우 생체중 증가율이 672%, 백색광과 적색광을 3:1로 처리한 경우 생체중 증가율이 612%인 것으로 나타나, 실험예 2에서 확인한 적색광:녹색광:청색광=8:4:5의 조건과 백색광 단독 처리 조건보다 백색광과 적색광을 복합 처리하는 것이 개구리밥 생육 증진에 효과적임을 확인하였다. 건물중 측정 결과에서도, 백색광과 적색광을 9:1로 처리한 경우 건물중량(2.06 g)이 가장 높은 것으로 나타났다 (도 7). As a result of measuring the live weight, when the white light and the red light were treated at 9:1, the increase in the live weight was 672%, and when the white light and the red light were treated at 3:1, the increase in the live weight was found to be 612%. It was confirmed that the combination of white light and red light was more effective in promoting the growth of duckweed than the condition of blue light = 8:4:5 and white light alone. Even in the measurement result among buildings, the weight of the building (2.06 g) was highest when white light and red light were treated at 9:1 (Fig. 7).

<3-2> <3-2> 대사산물의Metabolite 함량 content

실험예 2-2와 동일한 방법으로 실시예 4에서 배양한 각 개구리밥의 대사산물 함량을 측정하였다. In the same manner as in Experimental Example 2-2, the metabolite content of each duckweed cultured in Example 4 was measured.

구체적으로 UPLC를 이용하여 대사산물의 분리도를 확인하고 (도 8 내지 도 10) 크로마토그래피에서 확인된 피크(peak)에 해당하는 성분을 하기 [표 2]에 나타내었으며, 자연조건에서 재배된 개구리밥과 발광다이오드를 이용한 밀폐형 시스템에서 재배된 개구리밥의 대사물질 함량을 비교하고, 발광다이오드 비율에 따른 대사산물에 대한 상대 함량(area %)을 분석하였다. Specifically, the separation degree of metabolites was confirmed by using UPLC (FIGS. 8 to 10), and the components corresponding to the peaks confirmed by chromatography are shown in [Table 2]. The metabolite content of duckweed cultivated in a closed system using light-emitting diodes was compared, and the relative content (area %) for metabolites according to the light-emitting diode ratio was analyzed.

그 결과, 백색광:적색광의 비율이 3 내지 9:1일 때 개구리밥의 증식율이 가장 높게 나타났으며, 발광다이오드 조건을 달리하여 배양한 개구리밥의 대사산물은 자연 상태에서 재배된 개구리밥(표준품)의 대사산물과 동일한 주요 대사산물이 생산되었음을 확인하였다 (표 3). 표 3의 결과를 토대로 발광다이오드 조건에 따른 대사산물의 상대 함량을 분석한 결과, 동일한 무게의 개구리밥에 포함된 대사산물의 함량(per weight)은 3:1의 백색광:적색광 조건에서 약 18.5%로 가장 높았고, 실험예 2에서 확인한 적색광:녹색광:청색광=8:4:5의 조건에서의 대사산물의 함량이 가장 낮았으며, 생산된 총 개구리밥의 건물중에 포함된 총 대사산물의 함량(x dry weight)은 9:1의 백색광:적색광 조건에서 가장 높았다 (도 11). As a result, when the ratio of white light:red light was 3 to 9:1, the proliferation rate of duckweed was the highest, and the metabolites of duckweed cultured under different light-emitting diode conditions were metabolites of duckweed (standard product) grown in the natural state. It was confirmed that the same major metabolite as the product was produced (Table 3). Based on the results in Table 3, as a result of analyzing the relative content of metabolites according to the light-emitting diode conditions, the content (per weight) of metabolites contained in duckweed of the same weight is about 18.5% in white light:red light condition of 3:1 The highest, the red light:green light:blue light=8:4:5 confirmed in Experimental Example 2 had the lowest content of metabolites, and the total amount of metabolites contained in the building of the total duckweed produced (x dry weight) ) Was highest in the 9:1 white light:red light condition (Fig. 11).

상기 결과를 통해, 개구리밥의 유묘를 양액 1,000 ppm 농도에 치상하고 3:1 내지 9:1 비율의 백색광:적색광을 처리하여 개구리밥을 배양할 때, 생육 및 대사산물의 증진이 가장 두드러짐을 확인하였다. Through the above results, when the seedlings of duckweed were dentured at a concentration of 1,000 ppm of nutrient solution and treated with white light:red light in a ratio of 3:1 to 9:1, it was confirmed that the growth and metabolites were most prominent when cultivated duckweed.

PeakPeak [M-H]- [MH] - UV(nm)UV (nm) MS/MSMS/MS 분자식Molecular formula 화합물명Compound name 1One 447.0947447.0947 210, 349210, 349 327, 297327, 297 C21H20O11 C 21 H 20 O 11 루테올린 8-C-글루코시드
(Luteolin 8-C-glucoside)
Luteolin 8-C-glucoside
(Luteolin 8-C-glucoside)
22 431.1017431.1017 215, 337215, 337 311, 283, 117311, 283, 117 C21H20O10 C 21 H 20 O 10 아피제닌 6-C-글루코시드
(Apigenin 6-C-glucoside)
Apigenin 6-C-glucoside
(Apigenin 6-C-glucoside)
33 447.0969447.0969 206, 347206, 347 285, 256285, 256 C21H20O11 C 21 H 20 O 11 루테올린 7-O-글루코시드
(Luteolin 7-O-glucoside)
Luteolin 7-O-glucoside
(Luteolin 7-O-glucoside)
44 431.1021431.1021 208, 338208, 338 268, 240268, 240 C21H20O10 C 21 H 20 O 10 아피제닌 7-O-글루코시드
(Apigenin 7-O-glucoside)
Apigenin 7-O-glucoside
(Apigenin 7-O-glucoside)
55 623.1391623.1391 216, 334216, 334 447, 429, 327, 309, 297447, 429, 327, 309, 297 C31H28O14 C 31 H 28 O 14 루테올린 8-C-(2''-O-페룰로일)-글루코시드
(Luteolin 8-C-(2''-O-feruloyl)-glucoside)
Luteolin 8-C-(2''-O-feruloyl)-glucoside
(Luteolin 8-C-(2''-O-feruloyl)-glucoside)
66 607.1483607.1483 216, 330216, 330 413, 311, 293, 283413, 311, 293, 283 C31H28O13 C 31 H 28 O 13 아피제닌 8-C-(2''-O-페룰로일)-글루코시드
(Apigenin 8-C-(2''-O-feruloyl)-glucoside)
Apigenin 8-C-(2''-O-feruloyl)-glucoside
(Apigenin 8-C-(2''-O-feruloyl)-glucoside)
77 285.0430285.0430 207, 348207, 348 151, 133151, 133 C15H10O6 C 15 H 10 O 6 루테올린 (Luteolin)Luteolin

시료sample 증식율
(배)
Proliferation rate
(ship)
비율ratio peak 1peak 1 peak 2peak 2 peak 3peak 3 peak 4peak 4 peak 5peak 5 peak 6peak 6 peak 7peak 7
W9R1W9R1 6.736.73 1.301.30 12649591264959 628119628119 445281445281 352172352172 5568955689 1021910219 4326643266 WhiteWhite 5.165.16 1.001.00 726362726362 468712468712 779204779204 320944320944 3547635476 93269326 3899338993 W3R1W3R1 6.126.12 1.191.19 10308111030811 555898555898 12249331224933 395329395329 4935249352 53645364 4680646806 R8G4B5R8G4B5 5.675.67 1.101.10 11616301161630 563693563693 13320411332041 343156343156 4873348733 89678967 4281642816 R6B4R6B4 3.803.80 0.750.75 777097777097 402522402522 870686870686 256779256779 3293132931 46084608 2648426484

Claims (9)

1) 개구리밥(Spirodela polyrhiza (L.) Schleid)의 유묘를 양액에 치상하는 단계; 및
2) 상기 단계 1)의 양액에 치상된 개구리밥의 유묘를 발광다이오드(light emitting diode; LED) 광 조건하에서 배양하는 단계를 포함하는 개구리밥의 생육 및 대사산물의 함량을 증진시키는 방법.
1) Spirodela polyrhiza (L.) Schleid ) to the seedling of the seedling; And
2) A method for enhancing the growth and content of metabolites of duckweed comprising culturing seedlings of duckweed dentured in the nutrient solution of step 1) under light emitting diode (LED) light conditions.
제1항에 있어서,
상기 단계 1)의 양액은 질소, 인산 및 칼륨이 각각 10 내지 30%로 포함된 것인, 개구리밥의 생육 및 대사산물의 함량을 증진시키는 방법.
According to claim 1,
The nutrient solution of step 1) is nitrogen, phosphoric acid, and potassium, respectively, containing 10 to 30% of the method for enhancing the growth and content of metabolites of duckweed.
제2항에 있어서,
상기 양액의 농도는 800 내지 2,200 ppm인, 개구리밥의 생육 및 대사산물의 함량을 증진시키는 방법.
According to claim 2,
The concentration of the nutrient solution is 800 to 2,200 ppm, a method for enhancing the growth and content of metabolites of duckweed.
제1항에 있어서,
상기 단계 2)의 발광다이오드 광 조건은 적색광:청색광의 광도 비율이 5 내지 9 : 1 내지 5인, 개구리밥의 생육 및 대사산물의 함량을 증진시키는 방법.
According to claim 1,
The light-emitting diode light condition of the step 2) is a method of enhancing the growth and content of metabolites of duckweed, wherein the luminous intensity ratio of red light:blue light is 5 to 9:1 to 5.
제1항에 있어서,
상기 단계 2)의 발광다이오드 광 조건은 적색광:녹색광:청색광의 광도 비율이 4 내지 9 : 3 내지 5 : 4 내지 9인, 개구리밥의 생육 및 대사산물의 함량을 증진시키는 방법.
According to claim 1,
The light-emitting diode light condition of the step 2) is a method of enhancing the growth and content of metabolites of duckweed, wherein the light intensity ratio of red light:green light:blue light is 4-9:3-5:4-9.
제1항에 있어서,
상기 단계 2)의 발광다이오드 광 조건은 백색광:적색광의 광도 비율이 2 내지 10 : 1인, 개구리밥의 생육 및 대사산물의 함량을 증진시키는 방법.
According to claim 1,
The light-emitting diode light condition of the step 2) is a method of enhancing the growth and content of metabolites of duckweed, wherein the light intensity ratio of white light:red light is 2 to 10:1.
제1항에 있어서,
상기 단계 2)의 배양은 밀폐형 식물생산 시스템(closed-type plant production system)에서 이루어지는 것인, 개구리밥의 생육 및 대사산물의 함량을 증진시키는 방법.
According to claim 1,
The culture of step 2) is performed in a closed-type plant production system, a method of promoting the growth and content of metabolites of duckweed.
제1항에 있어서,
상기 단계 2)의 배양은 22 내지 32℃의 온도, 30 내지 70%의 상대습도 및 700 내지 1,500 ppm의 이산화탄소(CO2) 농도에서 이루어지는 것인, 개구리밥의 생육 및 대사산물의 함량을 증진시키는 방법.
According to claim 1,
The culture of step 2) is carried out at a temperature of 22 to 32° C., a relative humidity of 30 to 70% and a carbon dioxide (CO 2 ) concentration of 700 to 1,500 ppm. .
제1항에 있어서,
상기 단계 2)의 배양은 7 내지 15일 동안 이루어지는 것인, 개구리밥의 생육 및 대사산물의 함량을 증진시키는 방법.
According to claim 1,
The culture of step 2) is performed for 7 to 15 days, a method for enhancing the growth and content of metabolites of duckweed.
KR1020190006366A 2019-01-17 2019-01-17 Method for increasing growth and metabolite contents of pirodela polyrhiza (L.) Schleid KR102199401B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190006366A KR102199401B1 (en) 2019-01-17 2019-01-17 Method for increasing growth and metabolite contents of pirodela polyrhiza (L.) Schleid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190006366A KR102199401B1 (en) 2019-01-17 2019-01-17 Method for increasing growth and metabolite contents of pirodela polyrhiza (L.) Schleid

Publications (2)

Publication Number Publication Date
KR20200089523A true KR20200089523A (en) 2020-07-27
KR102199401B1 KR102199401B1 (en) 2021-01-07

Family

ID=71894134

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190006366A KR102199401B1 (en) 2019-01-17 2019-01-17 Method for increasing growth and metabolite contents of pirodela polyrhiza (L.) Schleid

Country Status (1)

Country Link
KR (1) KR102199401B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422996B1 (en) * 2013-03-21 2014-07-24 김동열 The apparatus for water culture and the system for water culture thereof
KR20180007546A (en) * 2016-07-13 2018-01-23 한국과학기술연구원 Culturing method of Agastache rugosa

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422996B1 (en) * 2013-03-21 2014-07-24 김동열 The apparatus for water culture and the system for water culture thereof
KR20180007546A (en) * 2016-07-13 2018-01-23 한국과학기술연구원 Culturing method of Agastache rugosa

Also Published As

Publication number Publication date
KR102199401B1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
Rizwan et al. Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress
Netzer et al. Phosphorus-nutrition of European beech (Fagus sylvatica L.) during annual growth depends on tree age and P-availability in the soil
Biasi et al. Direct experimental evidence for the contribution of lime to CO2 release from managed peat soil
Assaha et al. Triveni enterprises
He et al. Effect of aluminum toxicity and phosphorus deficiency on the growth and photosynthesis of oil tea (Camellia oleifera Abel.) seedlings in acidic red soils
Guan et al. Effects of five years’ nitrogen deposition on soil properties and plant growth in a salinized reed wetland of the Yellow River Delta
Frosi et al. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest
Zhou et al. Divergence in physiological responses between cyanobacterial and lichen crusts to a gradient of simulated nitrogen deposition
Fu et al. Allelopathic effects of phenolic acids on seedling growth and photosynthesis in Rhododendron delavayi Franch.
HAJIBOLAND et al. Effect of Se application on photosynthesis, osmolytes and water relations in two durum wheat (Triticum durum L.) genotypes under drought stress
Li et al. Use of fluorescence-based sensors to determine the nitrogen status of paddy rice
Ritchie Photosynthesis in the blue water lily (Nymphaea caerulea Saligny) using pulse amplitude modulation fluorometry
Mao et al. Dynamic characteristics of soil properties in a Robinia pseudoacacia vegetation and coastal eco-restoration
IMAI et al. Effect of Carbon Dioxide Concentration on Growth and Dry Matter Production of Crop Plants: VII. Influence of light intensity and temperature on the effect or carbon dioxide-enrichment in some C3-and C4-species
Zúñiga-Feest et al. Gevuina avellana and Lomatia dentata, two Proteaceae species from evergreen temperate forests of South America exhibit contrasting physiological responses under nutrient deprivation
Altaf et al. Foliar humic acid and salicylic acid application stimulates physiological responses and antioxidant systems to improve maize yield under water limitations
KR102199401B1 (en) Method for increasing growth and metabolite contents of pirodela polyrhiza (L.) Schleid
Song et al. Short-term effect of nitrogen addition on litter and soil properties in Calamagrostis angustifolia freshwater marshes of Northeast China
Zrig et al. Differential response of two almond rootstocks to chloride salt mixtures in the growing medium
Robati et al. Effect of green compost processed organic fertilizer and Chlorella microalgae solution on growth, antioxidant and phenolic content of Tropaeolum majus under drought stress
Fathurrahman et al. Growth improvement of rain tree (Albizia saman Jacq. Merr) seedlings under elevated concentration of carbon dioxide (CO2)
Cho et al. Growing density and cavity volume of container influence major temperate broad-leaved tree species of physiological characteristics in nursery stage
Schmitzer et al. Substrate pH level effects on anthocyanins and selected phenolics in Rosa× hybrida L.'KORcrisett'
Koga et al. Model examination for the effect of treading stress on young green barley (Hordeum vulgare)
MacAlister et al. Stress tolerant traits and root proliferation of Aspalathus linearis (Burm. f.) R. Dahlgren grown under differing moisture regimes and exposed to drought

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant