KR20200086844A - Vacuum Insulation Panel Impregnated with Hollow Glass Microsphere into Glass-Fiber Core - Google Patents

Vacuum Insulation Panel Impregnated with Hollow Glass Microsphere into Glass-Fiber Core Download PDF

Info

Publication number
KR20200086844A
KR20200086844A KR1020190003130A KR20190003130A KR20200086844A KR 20200086844 A KR20200086844 A KR 20200086844A KR 1020190003130 A KR1020190003130 A KR 1020190003130A KR 20190003130 A KR20190003130 A KR 20190003130A KR 20200086844 A KR20200086844 A KR 20200086844A
Authority
KR
South Korea
Prior art keywords
core
hgm
panel
vacuum
glass fiber
Prior art date
Application number
KR1020190003130A
Other languages
Korean (ko)
Inventor
김준태
김진희
에드먼드 보아포 프레드
김상명
이종욱
김한봄
정성훈
Original Assignee
주식회사 벽산
공주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 벽산, 공주대학교 산학협력단 filed Critical 주식회사 벽산
Priority to KR1020190003130A priority Critical patent/KR20200086844A/en
Publication of KR20200086844A publication Critical patent/KR20200086844A/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Thermal Insulation (AREA)
  • Building Environments (AREA)

Abstract

The present invention provides a vacuum insulation panel for impregnating a glass fiber core with a hollow glass microsphere (HGM), which impregnates the glass fiber core which is an inner structure of the insulation panel with the HGM to efficiently improve insulation performance of the panel while maintaining inner pressure. To this end, the vacuum insulation panel for impregnating a glass fiber core with an HGM includes: a panel main body part having a core formed in a porous state to be formed in a decompressing state therein and an outer cover material surrounding an outer surface of the core to seal the same and compressing the core in a high vacuum state of being blocked from the outside; a getter part adsorbing remaining gas and moisture to maintain constant pressure in the panel main body part; and a plurality of HGM beads integrally coupled and formed into the core of the panel main body part and forming fine particles in a glass material which are hollow therein.

Description

글라스 화이버 심재에 HGM을 함침한 진공단열패널 {Vacuum Insulation Panel Impregnated with Hollow Glass Microsphere into Glass-Fiber Core}Vacuum Insulation Panel Impregnated with Hollow Glass Microsphere into Glass-Fiber Core}

본 발명은 글라스 화이버 심재에 HGM을 함침한 진공단열패널에 관한 것으로서, 더욱 상세하게는 단열패널의 내부 구성인 글라스 화이버 심재에 HGM(Hollow Glass Microsphere)을 첨가 함침하여 내부 압력을 유지하면서 패널의 단열성능을 효율적으로 개선하는 것이 가능한 글라스 화이버 심재에 HGM을 함침한 진공단열패널에 관한 것이다.The present invention relates to a vacuum insulating panel impregnated with HGM in a glass fiber core, and more specifically, insulating the panel while maintaining the internal pressure by impregnating a glass fiber core, which is an internal component of the insulating panel, with HGM (Hollow Glass Microsphere). It relates to a vacuum insulating panel impregnated with HGM in a glass fiber core capable of efficiently improving performance.

진공단열재는 통상적으로 VIP(Vacuum Insulation Panel)로 불려지며 [도 1]에 나타난 바와 같이, 단열성능을 극대화시키기 위해 단열재 내부를 1mbar 이하로 진공 처리하여 열전도율 값이 0.0045 W/mK 이하인 고성능 단열재로서, 열전도율이 0.031~0.045 W/mK인 기존의 일반적인 건물용 단열재보다 단열성능이 약 8배 이상 우수한 단열 판재이다.Vacuum insulation material is commonly called VIP (Vacuum Insulation Panel), and as shown in [Fig. 1], as a high-performance insulation material having a thermal conductivity value of 0.0045 W/mK or less by vacuuming the inside of the insulation material below 1 mbar to maximize insulation performance, It is a heat insulating plate that has about 8 times better heat insulation performance than the existing heat insulation materials for buildings with thermal conductivity of 0.031~0.045 W/mK.

이러한 진공단열재는 주로 가정용 냉동, 냉장기기 등 전자 제품에 한정적으로 사용되어 왔는데, 일본은 연간 수백만 패널로 국제 가전용 진공단열패널 시장의 50% 이상을 차지하고 있으며, 일본의 진공단열패널 시장은 빠르게 성장하고 있으나, 아직까지 건물을 위한 진공단열패널은 연구단계에서 머무르고 있으며 독일과 스위스 등 일부 유럽 국가에서 제한적으로 시장을 형성하고 있다. 일부 국가에서 진공단열패널 제품 및 제조와 관련된 기술을 보유하고 있으나, 진공단열패널의 진공 유지 및 결합부 열교 등의 문제점으로 인해 효율이 높은 단열소재임에도 불구하고 건물 적용은 아직 활성화되지 못하고 있는 실정이다.These vacuum insulation materials have been mainly used for electronic products such as household refrigeration and refrigeration equipment, and Japan has millions of panels per year, accounting for more than 50% of the vacuum insulation panel market for international home appliances, and the vacuum insulation panel market in Japan is growing rapidly. However, vacuum insulation panels for buildings are still in the research stage and have limited market in some European countries such as Germany and Switzerland. Although some countries have technologies related to products and manufacturing of vacuum insulating panels, the application of buildings has not yet been activated despite the high efficiency of insulating materials due to problems such as maintaining the vacuum of the insulating panels and thermal bridges of the joints. .

지난 2001년부터 2004년까지 스위스(EMPA), 프랑스(CSTB), 네덜란드(TU Delft), 독일(ZAE-Bayern) 등 유럽 국가를 중심으로 세계에너지기구(IEA) ECBCS Annex 39 'HiPTI-High Performance Thermal Insulation' 국제 공동 연구사업을 통해 건물을 위한 진공단열패널에 대해 연구가 수행되었다. 이 프로젝트를 통해 진공단열패널을 건물의 바닥, 지붕, 테라스, 비내력벽 샌드위치패널, 난간, 테라스, 조립식 외피 등 다양한 곳에 적용하는 방안을 위해 실제 건물에 진공단열패널을 적용한 사례를 대상으로 연구하였으며 건물 적용을 위한 진공단열패널의 문제점과 주의사항 등이 제시되었다.From 2001 to 2004, the European Energy Agency (IEA) ECBCS Annex 39'HiPTI-High Performance Thermal focused on European countries such as Switzerland (EMPA), France (CSTB), Netherlands (TU Delft), and Germany (ZAE-Bayern). Insulation' international joint research project has been conducted on vacuum insulation panels for buildings. Through this project, a study was conducted on the case of applying vacuum insulation panels to actual buildings to apply vacuum insulation panels to various places such as floors, roofs, terraces, non-bearing wall sandwich panels, railings, terraces, and prefabricated sheaths. Problems and precautions of vacuum insulation panels for application were presented.

진공단열패널은 일반적인 단열소재(material)가 아니라 진공단열패널의 심재, 코어백, 설치방식 등 재료 및 특성에 의한 건물 단열시스템으로 볼 수 있으며, 이러한 이유로 패널자체 또는 건물에서 설치방식에 따라 진공단열패널에서 열교가 발생되며 건물외피의 전체 열성능에 영향을 준다. 즉, [도 2]에 도시한 바와 같이, 진공단열패널이 적용된 건물외피의 단열성능은 패널과 패널 사이의 경계층, 스페이서 및 조이너 등 진공단열패널의 구성방식 및 기존 건물재료에 의한 설치방식에 따른 구조적 열교에 의해 달라진다. 특히, 진공단열패널 자체에서 코어백(core bag)을 감싸고 있는 재질 및 두께 그리고 진공단열패널의 두께에 따라 열교효과는 달라지며 단열성능에 영향을 준다. The vacuum insulation panel is not a general insulation material, but can be viewed as a building insulation system based on materials and characteristics such as the core material, core back, and installation method of the vacuum insulation panel. For this reason, the panel insulation or vacuum insulation depending on the installation method in the building A thermal bridge is generated from the panel and affects the overall thermal performance of the building envelope. That is, as shown in [Fig. 2], the insulation performance of the building envelope to which the vacuum insulation panel is applied depends on the configuration method of the vacuum insulation panel, such as the boundary layer between the panel and the panel, spacers and joiners, and the installation method using existing building materials. It depends on the structural thermal bridge. In particular, the thermal bridge effect varies depending on the material and thickness surrounding the core bag in the vacuum insulating panel itself and the thickness of the vacuum insulating panel, and affects the insulation performance.

진공단열패널은 제품화 측면에서 독일이 가장 활발하게 연구개발과 함께 상용화가 이루어졌고, 미국, 중국, 한국 등에서도 관련 제품을 시장에 소개하고 있다. 주요 진공단열패널의 상용화제품은 va-Q-tec, Porotherm 등 독일 제조사를 통해 보급되고 있으며 특히, 독일의 va-Q-tec의 진공단열패널은 진공단열패널로서는 최초로 독일건축기술연구소(DIBT)로부터 건축용 자재 승인을 획득하였다.In terms of commercialization, vacuum insulation panels are most actively commercialized in Germany with R&D, and the US, China, and Korea are introducing related products to the market. Commercialized products of major vacuum insulation panels are distributed through German manufacturers such as va-Q-tec and Porotherm. Especially, vacuum insulation panels of va-Q-tec in Germany are the first vacuum insulation panels from the German Institute of Architecture and Technology (DIBT). Acquired building material approval.

국내 산업체는 진공단열패널 내부에 사용하는 심재를 기준으로 흄드실리카를 사용하는 OCI 사, 글라스울을 사용한 KCC, LG하우시스 등이 현재 진공단열재를 연구개발하거나 상용화하여 국내외 시장 진출을 위한 건축용 진공단열재의 규격화 및 성능에 대한 검증이 필요한 단계라 할 수 있다. 그리고 독일, 스위스 등 유럽과 일본 등 국외에서 건축용 진공단열패널 개발 및 보급확산이 급격히 증가하고 있다.In domestic industry, OCI using fumed silica, KCC using glass wool, and LG Hausys, etc., based on the core material used inside the vacuum insulation panel, currently research and develop or commercialize vacuum insulation materials to build and vacuum domestic and foreign markets It can be said that the standardization of insulation and verification of performance are necessary. In addition, in Europe and Japan, such as Germany and Switzerland, the development and diffusion of vacuum panels for construction are rapidly increasing.

건물은 국제적으로 국가 온실가스 감축 및 저탄소 사회건설에 중요한 역할을 수행하며, 에너지 효율 향상 및 제로에너지 건물 보급을 위한 정책시행 등으로 진공단열패널과 같은 고효율 단열재의 건물 적용이 확대되고 있다. 이에 따라 진공기술을 건물에 사용하는 특수성을 고려하여 건물을 위한 진공단열패널 제품의 성능 및 검증에 대한 기술개발이 필요하다. Buildings play an important role in reducing national greenhouse gases and building low-carbon society internationally, and building applications of high-efficiency insulation materials such as vacuum insulation panels are expanding due to energy efficiency improvement and policy implementation for the distribution of zero-energy buildings. Accordingly, it is necessary to develop technology for the performance and verification of vacuum insulation panel products for buildings in consideration of the specificity of using vacuum technology for buildings.

최근 건물의 에너지효율 기준강화 및 그린리모델링, 제로에너지 건물의 보급에 따른 고효율 단열재에 대한 수요증대로 진공단열패널에 대한 기술개발이 활발하고 상품화가 이루어지고 있다. 따라서 제품의 성능 및 품질보증을 통한 관련 산업의 확대를 위해 건물용 진공단열패널을 위한 표준규격 제정이 국내외적으로 관심이 증대되고 있으며 이를 위해 진공단열패널의 건물적용을 위한 성능검증에 대한 연구가 활발히 이루어지고 있다. In recent years, as the demand for high-efficiency insulation materials has increased due to the strengthening of energy efficiency standards of buildings, green remodeling, and the spread of zero-energy buildings, technology development for vacuum insulation panels has been actively conducted and commercialized. Therefore, in order to expand the related industries through product performance and quality assurance, the establishment of standard standards for vacuum insulation panels for buildings has increased interest both at home and abroad, and for this, research on performance verification for building applications of vacuum insulation panels has been conducted. It is actively taking place.

현재, 진공단열패널의 관련 규격은 대표적으로 미국의 ASTM (C1484-10;Standard specification for VIPs) 규격이 있으며, 이 외 독일이나 일본에서는 DIN, JIS의 건축자재와 관련된 규격에 의해 진공단열패널을 적용하고 있다. ASTM의 C1484-10 규격은 기존의 진공단열재가 아닌 진공단열패널을 위한 별도의 규격이며, 진공단열패널의 물리적 및 기계적 특성의 시험방법에 대해 규정하고 있다. 이에 진공단열패널의 표준 유효 열저항 조건과 요구조건을 제시하고 있으며, 시험항목 및 방법에 대해 규정하고 있다. 한편, 지난 몇 년 진공단열패널의 건물적용을 위한 국제표준 제정에 대한 준비가 이루어지고 있으며, ISO TC163 하에서 현재 진공단열패널에 대한 국제 표준규격이 제정되고 있다.Currently, the relevant standard of vacuum insulation panel is American ASTM (C1484-10; Standard specification for VIPs) standard. In addition, in Germany and Japan, vacuum insulation panel is applied according to the standards related to building materials of DIN and JIS. Doing. ASTM's C1484-10 standard is a separate standard for vacuum insulated panels rather than existing vacuum insulators, and defines the test methods for physical and mechanical properties of vacuum insulated panels. Therefore, standard effective heat resistance conditions and requirements for vacuum insulation panels are presented, and test items and methods are specified. Meanwhile, preparations have been made for the establishment of international standards for the application of vacuum insulation panels in the past few years, and international standard standards for vacuum insulation panels have been established under ISO TC163.

한편, 현재 건축물 에너지 소비량 증가추세(연평균 2.6% 증가)가 지속될 경우 2030년 건물에너지 소비량이 전체에너지 소비의 34%로 확대될 추정되어 지속적인 건축물의 증가(2020년까지 500만 호 이상 증가 추정) 및 이에 따른 냉방과 가전부문의 소비 증가 (2020년에는 2000년 대비 1.8배 증가 추정)를 감안 해볼 때 건축물 에너지 소비량 저감에 대한 노력이 절실하게 필요한 실정이다.On the other hand, if the current trend of increase in building energy consumption (2.6% increase per year) continues, the building energy consumption in 2030 is estimated to increase to 34% of total energy consumption, and the continuous increase in buildings (estimated to increase more than 5 million by 2020) and Considering the increase in consumption in the cooling and home appliance sectors (an estimated 1.8x increase from 2000 in 2020), efforts to reduce energy consumption in buildings are urgently needed.

최근 국제적으로 제로에너지 및 그린리모델링 건물 등이 소개되고 있으며, 건물에서 에너지 소비를 최소화하고 에너지를 생산하여 건물 자체적으로 에너지를 자립하는 많은 노력들이 이루어지고 있다. 특히 건물에서 고성능 단열외피는 제로에너지 건물을 위해 가장 먼저 고려되어야 한다. 따라서 건물외피의 에너지손실을 최소화하기 위해 첨단 고성능 외피 단열기술이 요구되고 있다.Recently, zero energy and green remodeling buildings have been introduced internationally, and many efforts have been made to minimize energy consumption in the building and produce energy to make the building self-reliant. In particular, high-performance insulation jackets in buildings should be considered first for zero-energy buildings. Therefore, in order to minimize the energy loss of the building envelope, advanced high-performance envelope insulation technology is required.

국내 전체 에너지 소비량 중 주거, 상업용 건물부분이 차지하는 비율이 약 22.3%이며 이 비율은 점차 증가되는 추세이다. 이에 따라 정부에서는 건물의 외벽 단열기준을 강화시키는 노력을 기울이고 있다. 강화된 단열기준을 만족시키기 위해서는 단열두께의 증가는 불가피하고, 단열두께의 증가는 실내 점유공간의 감소를 가져오게 된다. 따라서 고성능의 단열재를 건물에 적용하는 것은 제로에너지 건물을 위해 좀 더 효과적인 방안이 될 수 있다. The share of residential and commercial buildings in the country's total energy consumption is about 22.3%, and this rate is gradually increasing. Accordingly, the government is making efforts to strengthen the standard for insulation of exterior walls of buildings. In order to satisfy the reinforced insulation standards, an increase in the insulation thickness is inevitable, and an increase in the insulation thickness leads to a decrease in the space occupied by the room. Therefore, applying high-performance insulation materials to buildings can be a more effective method for zero-energy buildings.

진공단열패널은 냉동기나 냉장고에 이미 오래전에 사용되었고 건물에 적용하기 시작한 것은 불과 몇 년 전 부터 시작되었다. 진공단열패널은 열교에 의한 손실을 감안하더라도 기존 단열재에 비하여 5∼8배 단열성능이 높아, [도 3]에 도시한 바와 같이, 얇은 단열층으로 고성능 단열외피로 적용이 가능하다. 또한 [도 4]에 나타난 바와 같이, 열전도율이 서로 다른 기존 단열재와 진공단열패널이 서로 다른 열관류율(U-value,(W m-2K-1)를 이루기 위해 요구되는 단열두께를 나타낸 그래프이다. 진공단열패널은 기존 ESP, rockwool, glass fiber 단열재보다 약 6배 더 얇은 두께로 0.1 ~ 0.2의 U-value 를 이룰 수 있다.Vacuum insulation panels have long been used in refrigerators and refrigerators, and their application in buildings began only a few years ago. The vacuum insulation panel has a high thermal insulation performance of 5 to 8 times as compared to the existing thermal insulation material, even considering the loss due to the thermal bridge, and as shown in [FIG. 3], it can be applied as a high-performance thermal insulation sheath with a thin insulation layer. In addition, as shown in Figure 4, a graph showing the insulation thickness required to achieve a different heat permeability (U-value, (W m-2K-1)) of the existing heat insulating material and the vacuum insulation panel having different thermal conductivity. The insulation panel is about 6 times thinner than the existing ESP, rockwool, and glass fiber insulation, and can achieve a U-value of 0.1 to 0.2.

상기와 같은 진공단열패널과 관련하여 개시되어 있었던 종래기술로써, 대한민국 등록특허공보 제753720호(2007.08.30.)에는 가스 배리어성을 갖는 외포재 내에 섬유 중합체로 이루어지는 심재를 수납한 진공 단열재이며, 상기 외포재의 내부에는 바인더를 포함하지 않는 직사각 형상의 섬유 중합체와, 바인더를 포함하지 않는 리드 형상의 섬유 중합체와, 상기 리드 형상의 섬유 중합체를 둘러싼 내포재를 구비하고, 상기 내포재를 포함하는 상기 외포재 내부는 감압되어 진공 상태로 되게 구성함에 따라 심재의 취급성 개선 및 비용을 저감시킬 수 있는 진공 단열재가 공지되어 있다.As a conventional technique disclosed in connection with the vacuum insulating panel as described above, Korean Patent Registration No. 753720 (2007.08.30.) is a vacuum insulation material containing a core material made of a fiber polymer in an outer shell material having gas barrier properties, The inside of the outer cover material is provided with a rectangular fiber polymer without a binder, a lead-shaped fiber polymer without a binder, and an inner wrapper surrounding the lead-shaped fiber polymer, wherein the inner wrapper includes the As the inside of the outer cover material is reduced in pressure and configured to be in a vacuum state, a vacuum insulation material is known that can improve the handleability of the core material and reduce the cost.

또한, 등록특허공보 제1820373호(2018.01.15.)에는 유리섬유, 그라스울, 폴리우레탄, 폴리프로필렌 및 폴리에스테르 중에서 선택된 1종 이상을 포함하는 심재; 상기 심재를 진공 팩킹(packing)하는 외피재; 및 상기 외피재 외부표면에 형성된 발포체;를 포함하며, 외피재의 실란층과 발포체의 접합부위가 열접착(Heat Seal) 및 화학적 결합되어, 외피재와 발포체가 일체화되게 구성함에 따라 시공성이 매우 우수하며 환경 호르몬 발생을 방지하고 내부 유효 사용공간을 증가시킬 수 있는 건축용 진공단열패널이 공지되어 있다.In addition, the registered patent publication No. 1820373 (2018.01.15.) includes a core material comprising at least one selected from glass fiber, glass wool, polyurethane, polypropylene and polyester; An outer covering material for vacuum-packing the core material; And a foam formed on the outer surface of the outer covering material, and the bonding portion between the silane layer and the foam of the outer covering material is heat-sealed and chemically bonded, and thus the workability is very excellent as the outer material and the foam are configured to be integrated. Construction vacuum insulation panels are known that can prevent the generation of environmental hormones and increase the effective space inside.

그러나 상기한 종래기술의 경우 시간이 지남에 따라 단열패널 내 내부 압력이 계속해서 상승하기 때문에 열전도율이 증가하게 되고 결국 장기성능이 감소하게 된다는 문제가 있었다.However, in the case of the prior art described above, since the internal pressure in the insulating panel continues to rise over time, there is a problem that the thermal conductivity increases and eventually the long-term performance decreases.

나아가 종래에는 진공단열패널에 글라스 화이버를 심재로 사용하는 경우 다른 심재가 적용된 진공단열패널에 비해 초기 낮은 열전도율을 가지기는 하지만 시간이 지나면서 내부 압력이 증가하게 되고, 이에 따른 열전도율의 증가 및 단열성능의 저하는 다른 심재로 구성된 진공단열패널 보다 크다는 문제가 있었다.Furthermore, in the prior art, when a glass fiber is used as a core material for a vacuum insulation panel, the internal pressure increases over time, although the initial thermal conductivity is lower than that of a vacuum insulation panel to which other core materials are applied, resulting in an increase in thermal conductivity and thermal insulation performance. There was a problem that the drop was larger than that of a vacuum insulating panel composed of other core materials.

이에 따라 내부에 글라스 화이버를 심재로 적용한 진공단열패널의 열전도율에 대하여 시간이 지남에 따른 단열성능 저감을 개선하면서 장기성능을 확보하기 위한 연구개발이 요구되고 있는 실정이다.Accordingly, there is a need for research and development to secure long-term performance while improving insulation performance reduction over time with respect to thermal conductivity of a vacuum insulating panel in which a glass fiber is applied as a core material.

KR 등록특허공보 제10-0753720호(2007.08.30.)KR Registered Patent Publication No. 10-0753720 (2007.08.30.) KR 등록특허공보 제10-1820373호(2018.01.15.)KR Registered Patent Publication No. 10-1820373 (2018.01.15.)

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 진공단열패널의 심재에 글라스 화이버를 적용하면서 심재 내 구슬형태의 HGM(Hollow Glass Microsphere)첨가제를 함침하여 구성하므로 진공단열패널에 시간이 지남에 따른 열전도율의 증가를 최소화함과 동시에 단열성능저하를 최소화할 수 있는 글라스 화이버 심재에 HGM을 함침한 진공단열패널을 제공하는데, 그 목적이 있다.The present invention is to solve the problems as described above, while applying a glass fiber to the core of a vacuum insulating panel, and impregnated with a HGM (Hollow Glass Microsphere) additive in the form of a bead in the core material, as the vacuum insulating panel passes over time An object of the present invention is to provide a vacuum insulating panel impregnated with HGM in a glass fiber core that can minimize an increase in thermal conductivity and minimize a decrease in thermal insulation performance.

본 발명이 제안하는 글라스 화이버 심재에 HGM을 함침한 진공단열패널은 내부에 감압상태를 이루도록 다공성으로 형성하는 코어심재와, 상기 코어심재의 외면을 감싸 밀봉하되 상기 코어심재를 외부와는 차단된 고진공상태로 압축하는 외피재를 구비하는 패널본체부와; 상기 패널본체부 내 일정한 압력을 유지하도록 잔류하는 기체 및 수분을 흡착하는 게터부와; 상기 패널본체부의 코어심재 내 일체로 결합 형성하고 속이 빈 글라스 재질의 미세입자를 이루는 복수의 HGM비드;를 포함하여 이루어진다.The vacuum insulating panel impregnated with HGM in the glass fiber core material proposed by the present invention is a core core material that is formed to be porous to form a depressurized state inside, and is sealed by wrapping the outer surface of the core core material and sealing the core core material but being blocked from the outside. A panel body part having an outer covering material compressed in a state; A getter unit that adsorbs residual gas and moisture to maintain a constant pressure in the panel body unit; And a plurality of HGM beads which are integrally formed in the core core of the panel body part and constitute fine particles of a hollow glass material.

상기 패널본체부의 코어심재는 초기 낮은 열전도율을 갖는 글라스 화이버(Glass Fiber)로 이루어지고, 상기 패널본체부의 외피재는 상기 코어심재의 외면에 2중 복합형태를 이루며 알루미늄 포일 및 적층필름이 순차적으로 적층 구성한다.The core core material of the panel body part is made of glass fiber having an initial low thermal conductivity, and the shell material of the panel body part forms a double composite shape on the outer surface of the core core material, and aluminum foil and laminated film are sequentially stacked. do.

상기 HGM비드는, 직경 0.1~30㎛의 미립자로 이루어지고, 상기 HGM비드는 상기 코어심재 상에 함침한 후 열과 압력을 가해 결합 형성한다.The HGM beads are made of fine particles having a diameter of 0.1 to 30 μm, and the HGM beads are formed by impregnation on the core core, followed by heat and pressure.

본 발명에 따른 글라스 화이버 심재에 HGM을 함침한 진공단열패널에 의하면 진공상태로 압축된 패널본체부의 코어심재에 HGM비드를 함침한 후 열과 압력에 의해 결합하는 구조로 구성하므로, 시간이 지남에 따른 진공상태의 내부 압력을 유지하면서 열전도율의 증가현상을 감소시키고, 제품의 단열성능을 지속적으로 유지하며 우수한 장기성능을 확보할 수 있는 효과를 얻는다.According to the vacuum insulating panel impregnated with HGM in the glass fiber core material according to the present invention, it is composed of a structure that is impregnated with heat and pressure after impregnating HGM beads in the core core material of the panel body portion compressed in a vacuum state. While maintaining the internal pressure in the vacuum state, the increase in thermal conductivity is reduced, and the thermal insulation performance of the product is continuously maintained, and the effect of securing excellent long-term performance is obtained.

도 1은 일반적인 진공단열패널의 개념도 및 세부 구성요소를 나타낸 도면.
도 2는 일반적인 진공단열패널의 건물설치방식에 따른 열교 2차원 해석결과를 예시적으로 나타내는 사진.
도 3은 국외 상용화된 VIPs(좌)와 글라스울과 진공단열패널 비교(우) 사진.
도 4는 동일 열관류율을 위한 단열재의 열전도율에 따른 그래프.
도 5는 본 발명에 따른 일실시예를 개략적으로 나타내는 단면도.
도 6은 본 발명에 따른 일실시예에서 코어심재 및 HGM비드를 확대한 사진.
1 is a view showing a conceptual diagram and detailed components of a general vacuum insulation panel.
Figure 2 is a photograph showing an example of a two-dimensional analysis of the thermal bridge according to the installation method of a typical vacuum insulation panel.
Figure 3 is a picture of a commercially available VIPs (left) and glass wool and vacuum insulation panels (right).
Figure 4 is a graph according to the thermal conductivity of the heat insulating material for the same heat transmission rate.
Figure 5 is a cross-sectional view schematically showing an embodiment according to the present invention.
Figure 6 is an enlarged picture of the core core and HGM beads in one embodiment according to the present invention.

본 발명은 내부에 감압상태를 이루도록 다공성으로 형성하는 코어심재와, 상기 코어심재의 외면을 감싸 밀봉하되 상기 코어심재를 외부와는 차단된 고진공상태로 압축하는 외피재를 구비하는 패널본체부와; 상기 패널본체부 내 일정한 압력을 유지하도록 잔류하는 기체 및 수분을 흡착하는 게터부와; 상기 패널본체부의 코어심재 내 일체로 결합 형성하고 속이 빈 글라스 재질의 미세입자를 이루는 복수의 HGM비드;를 포함하는 글라스 화이버 심재에 HGM을 함침한 진공단열패널을 기술구성의 특징으로 한다.The present invention is a panel body portion having a core material formed to be porous to form a depressurized state therein, and a shell material surrounding the outer surface of the core material and sealing, but compressing the core material in a high vacuum state blocked from the outside; A getter unit that adsorbs residual gas and moisture to maintain a constant pressure in the panel body unit; A plurality of HGM beads that are integrally formed in the core core of the panel body part and constitute fine particles of a hollow glass material; a vacuum insulating panel impregnated with HGM in a glass fiber core comprising a feature of the technology.

다음으로 본 발명에 따른 글라스 화이버 심재에 HGM을 함침한 진공단열패널의 바람직한 실시예를 도면을 참조하여 상세하게 설명한다.Next, a preferred embodiment of a vacuum insulating panel impregnated with HGM in a glass fiber core according to the present invention will be described in detail with reference to the drawings.

먼저 본 발명에 따른 글라스 화이버 심재에 HGM을 함침한 진공단열패널(100)의 일실시예는 도 5에 나타낸 바와 같이, 패널본체부(110)와, 게터부(120) 및 HGM비드(130)를 포함하여 이루어진다.First, an embodiment of the vacuum insulating panel 100 impregnated with HGM in the glass fiber core according to the present invention, as shown in FIG. 5, the panel body portion 110, the getter portion 120 and the HGM bead 130 It is made including.

상기 패널본체부(110)는 내부 단열을 위한 구성인 코어심재(111)와 함께 외부 단열을 위한 구성인 외피재(113)를 구비토록 구성한다.The panel main body 110 is configured to include a core core 111 that is a component for internal insulation, and a shell material 113 that is a component for external insulation.

상기 코어심재(111)는 진공단열패널(100)의 전체적인 형상을 이루도록 직육면체의 형상으로 구성하고, 내부 감압상태를 이루게 형성한다.The core core 111 is formed in the shape of a rectangular parallelepiped to form the overall shape of the vacuum insulating panel 100, and is formed to form an internal depressurized state.

상기에서 코어심재(111)는 전체적인 직육면체의 형상으로 정형화하면서 크기 및 부피를 줄이기 위한 전처리 공정(예를 들면, 프레스(press) 또는 니들펀치(needle punch) 공법 등)을 거쳐 형성한다.In the above, the core core 111 is formed through a pre-treatment process (for example, a press or needle punch method) to reduce the size and volume while shaping the shape of the overall rectangular parallelepiped.

상기 코어심재(111)는 다공성 재질을 사용하여 구성하되, 초기 낮은 열전도율을 갖는 글라스 화이버(Glass Fiber)를 사용하여 코어심재(111)를 구성한다.The core core 111 is constructed using a porous material, but constitutes the core core 111 using a glass fiber having a low initial thermal conductivity.

상기 코어심재(111)로 글라스 화이버를 사용하여 구성하므로, 초기 낮은 열전도율을 조성하며, 시간이 지나면서 나타나는 열전도율 증가 및 단열성능 저하 현상을 상기 HGM비드(130)에 의해 보강하는 것이 가능하다.Since the core core 111 is constructed using a glass fiber, it is possible to create an initial low thermal conductivity, and reinforce the thermal conductivity increase and thermal insulation performance deterioration caused by the HGM beads 130 over time.

상기 외피재(113)는 상기 코어심재(111)의 외면을 감싸 외부로부터 밀봉시키면서 외부 단열기능을 발휘하는 역할을 수행한다.The outer cover material 113 wraps the outer surface of the core core 111 and seals it from the outside while exerting an external heat insulating function.

상기 외피재(113)는 상기 코어심재(111)를 외부로부터 차단한 고진공상태를 이루게 압축 형성한다. 즉, 상기 외피재(113)는 상기 코어심재(111)를 밀봉한 후 내부에 진공상태로 유지 압축하므로, 내부 온도, 외부 공기 및 수분이 내부로 유입되지 않게 투습성 및 투기성을 차단한다.The shell material 113 is compressed to form a high vacuum state in which the core core 111 is blocked from the outside. That is, since the outer shell material 113 seals and compresses the core core 111 in a vacuum state therein, it blocks moisture permeability and air permeability so that internal temperature, external air, and moisture do not flow inside.

상기에서 코어심재(111)를 향한 상기 외피재(113)의 내부 진공도는 10-5~10-2 Torr를 이루게 구성한다.In the above, the inner vacuum degree of the sheathing material 113 toward the core core 111 is configured to form 10 -5 to 10 -2 Torr.

상기 외피재(113)는 상기 코어심재(111)의 외면에 2중 복합형태를 이루며 순차적으로 적층 구성하는 구조로서, 상기 코어심재(111)의 외면에 직접적으로 접하게 감싸는 알루미늄 포일(113a)과 함께 상기 알루미늄 포일(113a)을 재차 감싸는 적층필름(113b)을 구성한다.The outer shell material 113 is a structure in which the core core material 111 is formed in a double-complex form on the outer surface and sequentially stacked, and the aluminum foil 113a is wrapped in direct contact with the outer surface of the core core material 111. The laminated film (113b) to wrap the aluminum foil (113a) again constitutes.

상기에서 알루미늄 포일(113a)과 적층필름(113b)은 각각 순차적으로 열 압착하여 상기 코어심재(111) 상에 일체를 이룬다.In the above, the aluminum foil 113a and the laminated film 113b are sequentially heat-pressed, respectively, to form an integral part on the core core 111.

상기 게터부(120)는 상기 패널본체부(110) 내 일정한 압력을 유지할 수 있게 상기 패널본체부(110)의 진공상태인 내부에 잔류하는 기체 및 수분을 흡착한다.The getter part 120 adsorbs gas and moisture remaining inside the vacuum state of the panel body part 110 so as to maintain a constant pressure in the panel body part 110.

상기 게터부(120)는 상기 코어심재(111) 내 삽입 위치하고 블록 형태의 직육면체 형상을 이룬다.The getter part 120 is inserted into the core core 111 and forms a block-like cuboid shape.

상기 게터부(120)로는 흡착성능을 발휘할 수 있는 산화칼슘(CaO) 및 제올라이트(zeolite)를 사용하여 구성하는 것이 가능하다. 또한, 상기 게터부(120)에는 산소, 수소, 질소, 이산화탄소 및 수증기를 흡수하기 위한 BaLi, CoO, CaO 중 적어도 어느 하나를 포함하여 구성하는 것도 가능하다.The getter unit 120 may be configured using calcium oxide (CaO) and zeolite, which can exhibit adsorption performance. Also, the getter unit 120 may include at least one of BaLi, CoO, and CaO for absorbing oxygen, hydrogen, nitrogen, carbon dioxide, and water vapor.

상기 HGM비드(130)는 진공상태인 상기 코어심재(111)와 함께 단열성능을 유지시키는 기능을 수행한다.The HGM beads 130 perform a function of maintaining thermal insulation performance together with the core core 111 in a vacuum state.

상기 HGM비드(130)는 내부가 속이 빈 버블 형상을 이루며, 글라스 재질을 사용하여 구성한다.The HGM bead 130 forms a hollow bubble shape and is constructed using a glass material.

상기 HGM비드(130)에는 속이 빈 내부 공간에 공기가 갇혀 있음에 따라 압력으로 작용하지 않으므로, 진공단열패널(100) 내 포함되는 HGM비드(130)의 양만큼 온도가 올라가도 전체적인 부피 및 내부압력상승의 영향이 덜 받는 것이 가능하다.Since the HGM beads 130 do not act as pressure as the air is trapped in the hollow interior space, the overall volume and internal pressure rise even when the temperature increases by the amount of the HGM beads 130 included in the vacuum insulating panel 100. It is possible to be less affected.

상기 HGM비드(130)는 미세입자를 이루되 직경 0.1~30㎛의 미립자로 형성한다. 보다 구체적으로 설명하면, 상기 HGM비드(130)는 0.1~1.0㎛의 나노입자와 1.0~30㎛의 미소입자를 혼합 적용하여 구성한다.The HGM beads 130 are formed of fine particles, but are formed of fine particles having a diameter of 0.1 to 30 μm. In more detail, the HGM beads 130 are constructed by mixing nanoparticles of 0.1 to 1.0 μm and microparticles of 1.0 to 30 μm.

상기에서 HGM비드(130)로는 나노입자의 HGM비드(130)와 미소입자의 HGM비드(130)를 2~4:6~8의 비율로 적용하여 상기 코어심재(111) 상에 고른 분포도를 갖게 구성한다.In the above, as HGM beads 130, nanoparticles of HGM beads 130 and microparticles of HGM beads 130 are applied at a ratio of 2 to 4:6 to 8 to have a uniform distribution on the core core 111. Make up.

상기 HGM비드(130)는 도 6에 나타낸 바와 같이, 상기 패널본체부(110)의 코어심재(111) 내 일체로 결합 형성한다.6, the HGM beads 130 are integrally formed in the core core 111 of the panel main body 110. As shown in FIG.

상기 HGM비드(130)는 상기 코어심재(111) 상에 일체화하여 구성하되, 상기 코어심재(111) 상에 상기 HGM비드(130)를 함침한 후 열과 압력을 가해 상호 결합한 구조를 이루도록 형성한다.The HGM beads 130 are integrally formed on the core core 111, but are formed by impregnating the HGM beads 130 on the core core 111 and applying heat and pressure to form a mutually coupled structure.

이하에서는 본 발명에 따른 실시예 및 비교예에 의하여 상세하게 설명한다.Hereinafter will be described in detail by examples and comparative examples according to the present invention.

[가속노화 전후에 따른 진공단열패널의 열전도율 평가][Evaluation of thermal conductivity of vacuum insulation panels before and after accelerated aging]

진공단열패널(100)의 최적 설계 및 열전도율을 비교 평가하기 위해, 패널본체부(110) 중 코어심재(111)를 단위면적당 중량 50 g/㎡ 및 두께 5㎜인 시트 형태로 직조 성형한 후 외피재(113)로 진공 압축하였으며, 이때 코어심재(111) 내 전체 중 대략 10%의 HGM비드(130)를 함침한 후 열과 압력을 가해 결합한 진공단열패널(실시예 1)을 제작하였다.In order to compare and evaluate the optimum design and thermal conductivity of the vacuum insulating panel 100, the core core 111 of the panel body portion 110 is woven into a sheet having a weight of 50 g/m 2 and a thickness of 5 mm, and then covered with a shell. Vacuum compression was performed with ash 113, and at this time, about 10% of the total HGM beads 130 in the core core 111 were impregnated, and then heat and pressure were applied to produce a vacuum insulation panel (Example 1).

반면, 상기한 패널본체부(110)의 코어심재(111) 및 외피재(113)로 구성된 진공단열패널(100)을 제작하되, 진공단열패널(100)의 코어심재(111) 내 HGM비드(130)를 결합하지 않은 진공단열패널(비교예 1)을 제작하였다.On the other hand, to prepare a vacuum insulating panel 100 consisting of the core core 111 and the outer shell material 113 of the panel body portion 110, the HGM beads (in the core core 111 of the vacuum insulating panel 100) ( 130) was prepared without a vacuum insulation panel (Comparative Example 1).

상기에서 제작된 실시예 1 및 비교예 1의 진공단열패널은 모두 8일 동안 80℃의 온도조건에 방치한 후 가속노화 실험을 진행하였으며, 각각 가속노화 전후의 열전도율을 측정하여 진공단열패널의 성능 저하를 비교 분석하였고, 그 결과를 하기 표 1에 나타내었다.The vacuum insulating panels of Example 1 and Comparative Example 1 prepared above were all subjected to an accelerated aging experiment after being left at a temperature condition of 80° C. for 8 days, and the performance of the vacuum insulating panels was measured by measuring the thermal conductivity before and after each accelerated aging. The degradation was compared and analyzed, and the results are shown in Table 1 below.

% of additives in
core materials
% of additives in
core materials
Initial thermal
conductivity (W/mK)
Initial thermal
conductivity (W/mK)
Aging thermal
conductivity (W/mK)
Aging thermal
conductivity (W/mK)
실시예 1Example 1 10%10% 0.0020.002 0.00310.0031 비교예 1Comparative Example 1 -- 0.0020.002 0.00520.0052

상기와 같이 가속노화실험 전/후 열전도율을 측정해본 결과, 실시예 1 및 비교예 1에서의 열전도율은 모두 실험전보다 실험후 증가한 것을 확인할 수 있으며, 진공단열패널의 코어심재 내 HGM비드가 결합된 실시예 1의 열전도율(0.0031)이 HGM비드를 결합하지 않은 비교예 1의 열전도율(0.0052)에 비해 낮아 실시예 1의 가속노화에 따른 열전도율 상승이 더 낮으므로, 본 발명의 진공단열패널에서 시간이 지남에 따른 열전도율 상승이 적어 진공단열패널 장기성능에 유리한 것으로 분석되었다.As a result of measuring the thermal conductivity before and after the accelerated aging experiment as described above, it can be seen that both the thermal conductivity in Example 1 and Comparative Example 1 increased after the experiment than before, and the HGM beads in the core core of the vacuum insulation panel were combined. Since the thermal conductivity of Example 1 is lower than the thermal conductivity (0.0052) of Comparative Example 1 in which HGM beads are not combined, the increase in thermal conductivity due to accelerated aging of Example 1 is lower, so the time in the vacuum insulating panel of the present invention has passed. It was analyzed that the increase in thermal conductivity is small due to the long-term performance of the vacuum insulation panel.

즉 상기와 같이 구성되는 본 발명에 따른 글라스 화이버 심재에 HGM을 함침한 진공단열패널에 의하면 진공상태로 압축된 패널본체부의 코어심재에 HGM비드를 함침한 후 열과 압력에 의해 결합하는 구조로 구성하므로, 시간이 지남에 따른 진공상태의 내부 압력을 유지하면서 열전도율의 증가현상을 감소시키고, 제품의 단열성능을 지속적으로 유지하며 우수한 장기성능을 확보하는 것이 가능하다.That is, according to the vacuum insulating panel impregnated with HGM in the glass fiber core material according to the present invention configured as described above, the core material of the panel body compressed in a vacuum state is impregnated with HGM beads, and is configured to be combined by heat and pressure. , It is possible to reduce the increase in thermal conductivity while maintaining the internal pressure in a vacuum over time, to maintain the thermal insulation performance of the product, and to secure excellent long-term performance.

상기에서는 본 발명에 따른 글라스 화이버 심재에 HGM을 함침한 진공단열패널의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 명세서 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고, 이 또한 본 발명의 범위에 속한다.In the above, a preferred embodiment of a vacuum insulating panel impregnated with HGM in a glass fiber core according to the present invention has been described, but the present invention is not limited to this, and various aspects within the scope of the claims and the specification of the invention and the accompanying drawings. It is possible to carry out by modifying to, this also falls within the scope of the present invention.

100 : 진공단열패널 110 : 패널본체부
111 : 코어심재 113 : 외피재
113a : 알루미늄 포일 113b : 적층필름
120 : 게터부 130 : HGM비드
100: vacuum insulation panel 110: panel body
111: core core 113: outer shell material
113a: aluminum foil 113b: laminated film
120: getter unit 130: HGM bead

Claims (4)

내부에 감압상태를 이루도록 다공성으로 형성하는 코어심재와, 상기 코어심재의 외면을 감싸 밀봉하되 상기 코어심재를 외부와는 차단된 고진공상태로 압축하는 외피재를 구비하는 패널본체부와;
상기 패널본체부 내 일정한 압력을 유지하도록 잔류하는 기체 및 수분을 흡착하는 게터부와;
상기 패널본체부의 코어심재 내 일체로 결합 형성하고 속이 빈 글라스 재질의 미세입자를 이루는 복수의 HGM비드;를 포함하여 이루어지는 글라스 화이버 심재에 HGM을 함침한 진공단열패널.
A panel main body having a core core formed porous to form a depressurized state therein, and an outer shell material surrounding the outer surface of the core core and sealing the core core material in a high vacuum state blocked from the outside;
A getter unit that adsorbs residual gas and moisture to maintain a constant pressure in the panel body unit;
A vacuum insulating panel impregnated with HGM in a glass fiber core comprising; a plurality of HGM beads forming integrally formed inside the core core of the panel body portion and forming fine particles of a hollow glass material.
청구항 1에 있어서,
상기 패널본체부의 코어심재는, 초기 낮은 열전도율을 갖는 글라스 화이버(Glass Fiber)로 이루어지는 것을 특징으로 하는 글라스 화이버 심재에 HGM을 함침한 진공단열패널.
The method according to claim 1,
The core core material of the panel body portion, a vacuum insulating panel impregnated with HGM in a glass fiber core material, characterized in that consisting of a glass fiber (Glass Fiber) having an initial low thermal conductivity.
청구항 1에 있어서,
상기 패널본체부의 외피재는, 상기 코어심재의 외면에 2중 복합형태를 이루며 알루미늄 포일 및 적층필름이 순차적으로 적층 구성하는 글라스 화이버 심재에 HGM을 함침한 진공단열패널.
The method according to claim 1,
The outer shell material of the panel main body is a vacuum insulation panel in which HGM is impregnated into a glass fiber core material that is formed in a double-composite shape on the outer surface of the core core material, and that aluminum foil and laminated film are sequentially laminated.
청구항 1에 있어서,
상기 HGM비드는, 직경 0.1~30㎛의 미립자로 이루어지고,
상기 HGM비드는 상기 코어심재 상에 함침한 후 열과 압력을 가해 결합 형성하는 것을 특징으로 하는 글라스 화이버 심재에 HGM을 함침한 진공단열패널.
The method according to claim 1,
The HGM beads are made of fine particles having a diameter of 0.1 to 30 μm,
The HGM beads are impregnated on the core core, and then heat and pressure are applied to form a bond.
KR1020190003130A 2019-01-10 2019-01-10 Vacuum Insulation Panel Impregnated with Hollow Glass Microsphere into Glass-Fiber Core KR20200086844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190003130A KR20200086844A (en) 2019-01-10 2019-01-10 Vacuum Insulation Panel Impregnated with Hollow Glass Microsphere into Glass-Fiber Core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190003130A KR20200086844A (en) 2019-01-10 2019-01-10 Vacuum Insulation Panel Impregnated with Hollow Glass Microsphere into Glass-Fiber Core

Publications (1)

Publication Number Publication Date
KR20200086844A true KR20200086844A (en) 2020-07-20

Family

ID=71831890

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190003130A KR20200086844A (en) 2019-01-10 2019-01-10 Vacuum Insulation Panel Impregnated with Hollow Glass Microsphere into Glass-Fiber Core

Country Status (1)

Country Link
KR (1) KR20200086844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112609851A (en) * 2020-12-08 2021-04-06 王志文 Foamed concrete insulation board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753720B1 (en) 2005-07-25 2007-08-30 히타치 어플라이언스 가부시키가이샤 Vacuum Heat Insulating Material And Manufacturing Method Thereof
KR101820373B1 (en) 2016-06-29 2018-01-19 삼아알미늄 (주) Outer packaging materials for vacuum insulation panel, Vacuum insulation panel using the same, and Manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753720B1 (en) 2005-07-25 2007-08-30 히타치 어플라이언스 가부시키가이샤 Vacuum Heat Insulating Material And Manufacturing Method Thereof
KR101820373B1 (en) 2016-06-29 2018-01-19 삼아알미늄 (주) Outer packaging materials for vacuum insulation panel, Vacuum insulation panel using the same, and Manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112609851A (en) * 2020-12-08 2021-04-06 王志文 Foamed concrete insulation board
CN112609851B (en) * 2020-12-08 2023-01-20 王志文 Foamed concrete insulation board

Similar Documents

Publication Publication Date Title
KR101821473B1 (en) Method for Manufacturing Vacuum Insulation Panels
US9598857B2 (en) Thermal insulation products for insulating buildings and other enclosed environments
US8765247B2 (en) Vacuum insulation panel
CA2539448C (en) Vacuum heat insulator, manufacturing method of the same, hot-insulation cold-insulation apparatus having the same, and heat insulation board
US20120009376A1 (en) Vacuum Insulation Panel, Insulated Masonry Structure Comprising Same, And Method Of Construction
CN101526165B (en) PU vacuum insulation panel and preparation method thereof
MXPA01009946A (en) Vacuum insulation panels.
KR101202503B1 (en) Core material for vacuum insulation pannel and method for fabricating the same
JP6762969B2 (en) Film-coated vacuum insulation panel
KR101572823B1 (en) vacuum insulation panel
Peng et al. Structure, mechanism, and application of vacuum insulation panels in Chinese buildings
KR20200086844A (en) Vacuum Insulation Panel Impregnated with Hollow Glass Microsphere into Glass-Fiber Core
JP2004011709A (en) Vacuum heat insulating material, its manufacturing method
KR101560125B1 (en) Method for manufacturing insulation box improved insulation performance and insulation box for the same
JPH0763469A (en) Vacuum heat insulating member
CN101122359A (en) Vacuum insulation panel and method of preparing the same
CA2897065C (en) Thermal insulation products and production of thermal insulation products
KR101345275B1 (en) Core material for vacuum insulator using fumed silica with high purity and vacuum insulator using the same
KR101477343B1 (en) Method for manufacturing vacuum insulation panel and vacuum insulation panel
JP2012021288A (en) Member for building and building structure
CA1290677C (en) Insulating panels containing insulating powders and insulating gases
Liu Benefits of vacuum insulation panels in building envelopes for warm-keeping
CN110892187B (en) Vacuum heat insulator, heat insulating box, and method for manufacturing vacuum heat insulator
JPH11130888A (en) Vacuum thermal insulator, thermally insulated housing, thermally insulated panel and production of vacuum thermal insulator
KR20230064103A (en) How to manufacture an insulation packaging box and an insulation packaging box manufactured therethrough.

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2021101000230; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20210127

Effective date: 20211130