JP2012021288A - Member for building and building structure - Google Patents

Member for building and building structure Download PDF

Info

Publication number
JP2012021288A
JP2012021288A JP2010158478A JP2010158478A JP2012021288A JP 2012021288 A JP2012021288 A JP 2012021288A JP 2010158478 A JP2010158478 A JP 2010158478A JP 2010158478 A JP2010158478 A JP 2010158478A JP 2012021288 A JP2012021288 A JP 2012021288A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
vacuum
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010158478A
Other languages
Japanese (ja)
Inventor
Hiroyuki Akata
広幸 赤田
Hisao Yokokura
久男 横倉
Daigoro Kamoto
大五郎 嘉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010158478A priority Critical patent/JP2012021288A/en
Publication of JP2012021288A publication Critical patent/JP2012021288A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adiabatic wall to which a vacuum heat insulation material is applied, and which is excellent in a heat insulation performance, has long-term performance stability, is easily constructed at a low cost, and is excellent in recyclability as well.SOLUTION: The member for building comprises a heat insulation panel for which a vacuum heat insulation material and a protective material are combined, and the vacuum heat insulation material includes a core material of glass wool, a getter agent, and a gas-barrier external wrapping material for storing the core material and the getter agent. In the vacuum heat insulation material for which the inside of the external wrapping material is vacuum-sealed, the protective material of a thickness equal to or more than that of a flat part at a bend part of the vacuum heat insulation material is provided.

Description

本発明は、断熱性を有する建築用部材および建築構造物に関する。   The present invention relates to a building member and a building structure having heat insulation properties.

地球温暖化を防止するため、家電製品や産業機器並びに住宅等の建築構造物の省エネルギー化対策として、近年では特に建築物に対する高断熱化が求められている。その際、断熱層の厚さを厚くして建築用部材の断熱パネルの性能向上を図ろうとすると、設置スペースの確保や施工方法の問題が生じてくる。そこで、グラスウールや樹脂フォームに比べ断熱性能に優れた真空断熱材を用いた断熱パネルが提案されている。真空断熱材はガスバリア性を有する外包材中に断熱性に優れた芯材を入れ、内部を真空にすることで作製される。   In order to prevent global warming, as a measure for energy saving of building structures such as home appliances, industrial equipment and houses, in recent years, particularly high heat insulation for buildings has been demanded. At that time, if it is attempted to improve the performance of the heat insulating panel of the building member by increasing the thickness of the heat insulating layer, problems of securing the installation space and the construction method arise. In view of this, a heat insulating panel using a vacuum heat insulating material superior in heat insulating performance compared with glass wool or resin foam has been proposed. A vacuum heat insulating material is produced by putting a core material excellent in heat insulating properties into an outer packaging material having gas barrier properties and evacuating the inside.

従来の真空断熱材を用いた断熱素材として、特許文献1では真空断熱材をカバー部材で包んだ断熱素材が示されており、カバー部材として軟質発泡樹脂、繊維状、エラストマーなどが挙げられている。真空断熱材を軟状のカバー部材で包むと衝撃や摩擦などによりラミネートフィルム(外包材)に傷が付き難くなるので、真空断熱材の破袋を防止することができ、断熱性能の長期信頼性が向上する。   As a heat insulating material using a conventional vacuum heat insulating material, Patent Document 1 discloses a heat insulating material in which a vacuum heat insulating material is wrapped with a cover member, and examples of the cover member include soft foam resin, fibrous material, and elastomer. . Wrapping the vacuum insulation material with a soft cover member makes it difficult to damage the laminate film (outer packaging material) due to impact, friction, etc., so it is possible to prevent the vacuum insulation material from being broken, and long-term reliability of insulation performance Will improve.

また、従来の真空断熱材を適用した建築物の断熱壁として、特許文献2では、真空断熱材を使用した断熱モジュールとそれを適用した断熱壁が示されている。図6は、特許文献2に記載された建築物の壁の断面図を示す。断熱モジュール23は、四角形の板状体である真空断熱材21と真空断熱材の各辺に取り付けられたフレーム24を有し、フレーム24の外周に連結用の結合部25が設けられている。断熱モジュール23は、内壁22と外壁27の間に設けられた柱28によって支持され、柱28の両側面には断熱モジュール23の結合部25を受け入れ断熱モジュール23を支持する溝26が設けられている。このように、真空断熱材21を断熱モジュール化することにより、真空断熱材21の壁への施工を容易にし、壁を厚くすることなく断熱性に優れた建築物の壁を構成している。   Moreover, as a heat insulation wall of the building which applied the conventional vacuum heat insulating material, in patent document 2, the heat insulation module using a vacuum heat insulating material and the heat insulating wall to which it is applied are shown. FIG. 6 shows a cross-sectional view of a wall of a building described in Patent Document 2. The heat insulation module 23 includes a vacuum heat insulating material 21 that is a rectangular plate-like body and a frame 24 attached to each side of the vacuum heat insulating material, and a connecting portion 25 for connection is provided on the outer periphery of the frame 24. The heat insulation module 23 is supported by pillars 28 provided between the inner wall 22 and the outer wall 27, and grooves 26 for receiving the coupling portions 25 of the heat insulation modules 23 and supporting the heat insulation modules 23 are provided on both side surfaces of the pillars 28. Yes. Thus, by making the vacuum heat insulating material 21 into a heat insulating module, the construction of the vacuum heat insulating material 21 on the wall is facilitated, and the wall of the building having excellent heat insulating properties is formed without increasing the wall thickness.

また、特許文献3では、隣接する真空断熱材を封止用のミミ部で重ね合わせた状態で、壁部を通過しようとする水蒸気の流れの上流側に真空断熱材を配置した断熱壁が示されている。図7は、特許文献3に記載された建築物の壁の断面図を示す。隣接する真空断熱材31同士は、周縁のミミ部36を重ね合わせた状態で、図7の下方から上方に壁部を通過しようとする水蒸気の流れの上流側の内壁32に接する位置に配置されている。ミミ部36は柱34の位置に配置され、真空断熱材31と柱34に囲まれた空間内には繊維系または発泡樹脂系の断熱材33が充填されている。このように配置することにより、断熱材33の内部に結露を生じることなく、断熱性の低下や断熱材の耐久性低下を防止している。   Further, Patent Document 3 shows a heat insulating wall in which a vacuum heat insulating material is arranged on the upstream side of a flow of water vapor that is going to pass through a wall portion in a state where adjacent vacuum heat insulating materials are overlapped by a sealing portion. Has been. FIG. 7 shows a cross-sectional view of a wall of a building described in Patent Document 3. The adjacent vacuum heat insulating materials 31 are arranged at a position in contact with the inner wall 32 on the upstream side of the flow of water vapor that attempts to pass through the wall portion from the lower side to the upper side in FIG. ing. The mimetic portion 36 is disposed at the position of the column 34, and a space surrounded by the vacuum heat insulating material 31 and the column 34 is filled with a fiber-based or foamed resin-based heat insulating material 33. By arrange | positioning in this way, the heat insulation fall and the durability fall of a heat insulating material are prevented, without producing dew condensation inside the heat insulating material 33.

また、特許文献4では、真空断熱材のヒレ状の周縁部を折り曲げて柱側面に接するように配置する固定方法が示されている。図8は、特許文献4に記載された従来の建築物の壁の断面図を示す。40は断熱材、42は通気層、43は外装材、45は内装材である。真空断熱材41は、断熱性を持たないヒレ状の周縁部46を折り曲げて柱44の側面に接するように設置されている。真空断熱材41を柱44との間に発生する摩擦によって保持させて固定するので、真空断熱材41を柱44の間に押し込むという簡単な施工にて、真空断熱材を柱間に固定している。   Patent Document 4 discloses a fixing method in which a fin-shaped peripheral portion of a vacuum heat insulating material is bent and arranged so as to be in contact with a column side surface. FIG. 8 shows a cross-sectional view of a wall of a conventional building described in Patent Document 4. As shown in FIG. Reference numeral 40 is a heat insulating material, 42 is a ventilation layer, 43 is an exterior material, and 45 is an interior material. The vacuum heat insulating material 41 is installed so as to be in contact with the side surface of the column 44 by bending a fin-shaped peripheral edge portion 46 having no heat insulating properties. Since the vacuum heat insulating material 41 is held and fixed by the friction generated between the columns 44, the vacuum heat insulating material 41 is fixed between the columns by a simple construction of pushing the vacuum heat insulating material 41 between the columns 44. Yes.

特開2006−76100号公報JP 2006-76100 A 特開2003−27622号公報JP 2003-27622 A 特開2008−255733号公報JP 2008-255733 A 特開2008−261221号公報JP 2008-261221 A

特許文献1では、真空断熱材を軟質発泡樹脂、繊維状、エラストマーなどのカバー部材で包んでおり、主な用途として布団・マット等身体に接触する用途を想定したもので、建築物への直接適用は困難である。さらに断熱素材を曲げる場合は芯材のない部分を設ける必要があるが、芯材のない部分では真空断熱効果は発揮されず全体としての断熱性能が低下する。   In Patent Document 1, the vacuum heat insulating material is wrapped with a cover member such as a soft foam resin, a fiber, or an elastomer. As a main application, it is assumed that the body is in contact with a body such as a futon or mat. Application is difficult. Further, when the heat insulating material is bent, it is necessary to provide a portion without the core material, but the vacuum heat insulating effect is not exhibited in the portion without the core material, and the heat insulating performance as a whole is lowered.

特許文献2に示す断熱壁では、連結用部品を使用するため高コスト化する。また、柱にモジュールのフレーム連結部を受け入れるための溝を設ける必要があるため、施工に手間がかかる。   In the heat insulation wall shown in Patent Document 2, the use of connecting parts increases the cost. Moreover, since it is necessary to provide the pillar with a groove for receiving the frame connecting portion of the module, it takes time for construction.

特許文献3のように、隣接する真空断熱材をミミ部同士で重ね合わせた状態で配置した断熱壁では、真空断熱材の芯材が入っている部分が柱の側面部分を覆っていないため、柱の側面部分からの熱漏洩を充分抑止できない。   As in Patent Document 3, in the heat insulating wall arranged in a state where the adjacent vacuum heat insulating materials are overlapped with each other, the portion containing the core material of the vacuum heat insulating material does not cover the side surface portion of the column. Heat leakage from the side of the column cannot be sufficiently prevented.

特許文献4のように、真空断熱材のヒレ状の周縁部を折り曲げて柱側面に接するように配置する断熱壁では、真空断熱材の芯材が入っている部分が柱の側面部分を覆っていないため、柱の側面部分における熱漏洩を充分抑止できない。   As in Patent Document 4, in a heat insulating wall that is arranged so as to be in contact with the column side surface by bending the fin-shaped peripheral portion of the vacuum heat insulating material, the portion containing the core material of the vacuum heat insulating material covers the side surface portion of the column. Therefore, it is not possible to sufficiently prevent heat leakage at the side portion of the column.

本発明は、上記従来技術の問題点に鑑みてなされたもので、断熱性能に優れ、かつ長期的な性能安定性を有し、安価で容易に施工でき、なおかつリサイクル性にも優れた真空断熱材を適用した建築用部材のよい建築構造物の提供を目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and has excellent heat insulation performance, long-term performance stability, low-cost and easy construction, and excellent recyclability. An object is to provide a building structure having a good building material to which the material is applied.

本発明は、真空断熱材および該真空断熱材外周を被覆した保護材を有する断熱パネルを備えた建築用部材であって、前記真空断熱材は芯材と、ゲッター剤と、前記芯材および前記ゲッター剤を収納するガスバリア性の外包材とを備え、該外包材の内部を真空封止した真空断熱材において、前記真空断熱材の屈曲部では真空断熱材の平坦部以上の厚さの保護材を有することを特徴とする。   The present invention is a building member comprising a heat insulating panel having a vacuum heat insulating material and a protective material covering the outer periphery of the vacuum heat insulating material, wherein the vacuum heat insulating material is a core material, a getter agent, the core material and the core A vacuum insulating material having a gas barrier outer packaging material that contains a getter agent and vacuum-sealing the inside of the outer packaging material, and a protective material having a thickness equal to or greater than a flat portion of the vacuum heat insulating material at the bent portion of the vacuum heat insulating material It is characterized by having.

また、建築用部材において、前記真空断熱材の芯材はグラスウールからなることを特徴とする。   In the building member, the core of the vacuum heat insulating material is made of glass wool.

また、建築用部材において、前記真空断熱材の平坦部における保護材の厚さを、1.0mm以上2.00mm以下としたことを特徴とする。   In the building member, the thickness of the protective material in the flat portion of the vacuum heat insulating material is 1.0 mm or more and 2.00 mm or less.

また、建築用部材において、前記真空断熱材の屈曲部における保護材の厚さを、2.0mm以上8.0mm以下としたことを特徴とする。   In the building member, the thickness of the protective material at the bent portion of the vacuum heat insulating material is 2.0 mm or more and 8.0 mm or less.

また、建築用部材において、前記真空断熱材を覆う保護材として、圧縮永久歪み(70℃、22h)が54%以下およびメルトマスフローレート(以下MFRと略記) (230℃、49N)が3g/10分以上の高分子材料を用いることを特徴とする。   Further, in a building member, as a protective material covering the vacuum heat insulating material, compression set (70 ° C., 22 h) is 54% or less and melt mass flow rate (hereinafter abbreviated as MFR) (230 ° C., 49 N) is 3 g / 10 It is characterized by using a polymer material of more than min.

また、建築用部材において、前記真空断熱材を保護材で被覆した断熱パネルの熱伝導率が10mW・m-1・K-1以下であることを特徴とする。 In the building member, the heat conductivity of the heat insulating panel in which the vacuum heat insulating material is covered with a protective material is 10 mW · m −1 · K −1 or less.

また、建築用部材において、前記保護材がスチレン系熱可塑性エラストマーまたはオレフィン系熱可塑性エラストマーのいずれか一方を含むことを特徴とする。   In the building member, the protective material includes any one of a styrene-based thermoplastic elastomer or an olefin-based thermoplastic elastomer.

また、建築用部材において、該建築用部材は釘打ち可能部を有することを特徴とする。   In the building member, the building member has a nailable portion.

また、建築用部材において、該建築用部材は建築物の少なくとも内壁と隣接する2本の支持材に囲まれた空間内で前記支持材の側面および前記内壁面を被覆するように配置されたことを特徴とする。   Further, in the building member, the building member is disposed so as to cover the side surface of the support material and the inner wall surface in a space surrounded by two support materials adjacent to at least the inner wall of the building. It is characterized by.

さらに、上記建築用部材を住宅等の断熱施工面に備えたことを特徴とする。   Furthermore, the construction member is provided on a heat insulating construction surface of a house or the like.

本発明によれば、真空断熱材の外周に保護材を設け輸送時等の真空断熱材の外包材の損傷を防ぐとともに、真空断熱材の屈曲部に他の平坦部よりも厚く保護材を配しているため屈曲部での性能劣化が少ない。   According to the present invention, a protective material is provided on the outer periphery of the vacuum heat insulating material to prevent damage to the outer packaging material of the vacuum heat insulating material during transportation and the like, and the protective material is disposed thicker than the other flat portions at the bent portion of the vacuum heat insulating material. Therefore, there is little performance degradation at the bent part.

また、真空断熱材の表面に室温で弾性を有する層が存在することにより、内壁と隣接する2本の支持材に囲まれた空間内に容易に周囲と隙間無く施工することができ、熱漏洩・湿気の移動を防止することができ、保護材の形状復元力により真空断熱材と周囲の壁面などとの間に摩擦力が生じ、施工後の位置ずれも防止される。   In addition, the presence of a layer having elasticity at room temperature on the surface of the vacuum heat insulating material allows it to be easily installed in the space surrounded by the two supporting materials adjacent to the inner wall without any gaps between them, and heat leakage -Moisture movement can be prevented, and the shape restoring force of the protective material generates a frictional force between the vacuum heat insulating material and the surrounding wall surface, preventing positional displacement after construction.

さらに、建築物を解体する際、真空断熱材の保護材を容易にリサイクルできるため、廃棄物の減量化・資源の再利用にも貢献する。   In addition, when dismantling the building, the vacuum insulation material can be easily recycled, contributing to the reduction of waste and the reuse of resources.

本発明の断熱パネル屈曲部の断面図である。It is sectional drawing of the heat insulation panel bending part of this invention. 本発明の実施例1を示す建築物の断熱施工面の断面図である。It is sectional drawing of the heat insulation construction surface of the building which shows Example 1 of this invention. 本発明の断熱パネルの端部断面を拡大した模式図である。It is the schematic diagram which expanded the edge part cross section of the heat insulation panel of this invention. 本発明の実施例26を示す建築構造物の垂直断面図である。It is a vertical sectional view of a building structure showing Example 26 of the present invention. 本発明の実施例と比較例を示す説明図であるIt is explanatory drawing which shows the Example and comparative example of this invention. 従来例における建築物の壁の水平断面図である。It is a horizontal sectional view of the wall of the building in a conventional example. 従来例における建築物の壁の水平断面図である。It is a horizontal sectional view of the wall of the building in a conventional example. 従来例における建築物の壁の水平断面図である。It is a horizontal sectional view of the wall of the building in a conventional example.

以下、本発明の実施形態について詳細に説明する。本発明の真空断熱材は、外周を保護材が覆っており、その保護材の厚さが真空断熱材の屈曲部においては平坦部以上の厚さとなっていることを特徴とする。
〔芯材〕
まず、真空断熱材の芯材は内外の気圧差による圧縮力に耐えその形状を保持するスペーサの機能を持ち、圧縮力を受けても内部に充分な空隙を確保できるグラスウールの芯材が好ましく、熱伝導率が約2.0mW・m-1・K-1程と優れた真空断熱材である。真空断熱材は初期の熱伝導率が非常に優れる。
Hereinafter, embodiments of the present invention will be described in detail. The vacuum heat insulating material of the present invention is characterized in that the outer periphery is covered with a protective material, and the thickness of the protective material is equal to or greater than the flat portion at the bent portion of the vacuum heat insulating material.
[Core]
First, the core material of the vacuum heat insulating material has a function of a spacer that can withstand the compressive force due to the pressure difference between the inside and outside, and retains its shape, and is preferably a glass wool core material that can secure a sufficient void inside even when subjected to the compressive force. It is an excellent vacuum heat insulating material with a thermal conductivity of about 2.0 mW · m −1 · K −1 . The vacuum heat insulating material has an excellent initial thermal conductivity.

ウレタン発泡体等の従来用いられている断熱材では熱伝導率が約20mW・m-1・K-1以上と高く、真空断熱材に比べ約10倍以上断熱性能が劣る。 Conventional heat insulating materials such as urethane foam have a high thermal conductivity of about 20 mW · m −1 · K −1 or more, and the heat insulation performance is inferior to about 10 times or more compared to vacuum heat insulating materials.

真空断熱材の芯材は、内外の気圧差による圧縮応力下でも内部に充分な空隙が確保され熱伝導率を低減できる平均繊維径が約3〜6μmのグラスウールを用い、約250℃の乾燥熱処理で吸着水分を除去したものが好ましい。これに対し、グラスウールの繊維径が大きいと繊維の接触が点接触から線接触に近くなり、接触面積の増大により熱伝導率が高くなるので好ましくない。また、繊維径が極細になると取扱いが不便となるうえに、グラスウールが非常に高価となるので好ましくない。グラスウールに関してはこの他、アウトガスの発生により内部の真空度が低下し熱伝導率が高くなるのを避けるため、バインダー等を含まないものが好ましい。なお、平均繊維径の測定については、走査型電子顕微鏡を用い視野内に約10本の繊維を含む倍率下で繊維直径を測定し平均値を求めた。
〔外包材〕
外包材のラミネートフィルムを透過あるいは溶着部から浸入するガスや真空断熱材の内部に付着する水分等により、真空度が徐々に低下して断熱性能もそれにつれて低下するためにハイバリア性の外包材を用いることが好ましい。冷蔵庫等では、省エネルギー化のために真空断熱材が多く用いられており、真空断熱材の長期信頼性は、約10〜15年を想定した劣化試験を行なっているが、時間的に制約があるため電気部品の寿命を推定するアレニウスプロットを用いて評価している。
The core material of the vacuum insulation material uses glass wool with an average fiber diameter of about 3-6μm that can secure sufficient voids inside and reduce thermal conductivity even under compressive stress due to atmospheric pressure inside and outside, and dry heat treatment at about 250 ° C And from which the adsorbed moisture has been removed. On the other hand, if the fiber diameter of glass wool is large, the contact of the fiber is close to the point contact to the line contact, and the thermal conductivity is increased by increasing the contact area, which is not preferable. Further, when the fiber diameter is extremely small, handling becomes inconvenient and glass wool becomes very expensive. In addition, glass wool preferably does not contain a binder or the like in order to avoid a decrease in internal vacuum due to outgassing and an increase in thermal conductivity. In addition, about the measurement of an average fiber diameter, the fiber diameter was measured under the magnification which contains about 10 fibers in a visual field using the scanning electron microscope, and the average value was calculated | required.
[Outer packaging materials]
Because of the gas that permeates through the laminated film of the outer packaging material or the moisture that adheres to the inside of the vacuum heat insulating material, etc., the degree of vacuum gradually decreases and the heat insulating performance also decreases accordingly. It is preferable to use it. In refrigerators, etc., vacuum insulation materials are often used to save energy, and the long-term reliability of vacuum insulation materials is subject to deterioration tests assuming about 10 to 15 years, but there are time constraints. For this reason, evaluation is performed using an Arrhenius plot that estimates the lifetime of electrical components.

また、ハイバリア性を有する外包材としては、内部に気密部を設け芯材を覆うため、減圧封止で芯材の形状を反映する材質が好ましい。このような外包材として、最内層に熱溶着層を有し、中間層にガスバリア層としてのアルミニウム箔またはアルミニウム蒸着層を有し、最外層に表面保護層を有するラミネートフィルムが適用できる。但し、アルミニウム箔やアルミニウム蒸着層は熱の良導体であるため、ヒートブリッジによる断熱性能の低下を抑制するために厚さを6μm以下とすることが好ましい。   Further, as the outer packaging material having high barrier properties, a material that reflects the shape of the core material by pressure reduction sealing is preferable because an airtight portion is provided inside and the core material is covered. As such an outer packaging material, a laminate film having a heat welding layer as an innermost layer, an aluminum foil or an aluminum vapor deposition layer as a gas barrier layer as an intermediate layer, and a surface protective layer as an outermost layer can be applied. However, since the aluminum foil and the aluminum vapor deposition layer are good conductors of heat, the thickness is preferably 6 μm or less in order to suppress a decrease in heat insulation performance due to the heat bridge.

以上を踏まえ、具体例として最内層に高密度ポリエチレンや直鎖状低密度ポリエチレン、高密度ポリプロピレン等のフィルム、中間層にアルミニウム蒸着層を有するエチレン−ビニルアルコール共重合体フィルム、最外層に耐突き刺し性に優れたポリアミドフィルムを用いたプラスチックラミネートフィルムが挙げられる。
〔ゲッター剤〕
また、真空断熱材内部の真空度の維持のためゲッター剤を使用した。ゲッター剤は二酸化炭素、酸素、窒素等のガス、水蒸気を吸収するものであれば良く、具体的にはドーソナイト、ハイドロタルサイト、金属水酸化物、モレキュラーシーブス、シリカゲル、酸化カルシウム、ゼオライト、疎水性ゼオライト、活性炭等が利用できる。
Based on the above, specific examples include high-density polyethylene, linear low-density polyethylene, and high-density polypropylene as the innermost layer, an ethylene-vinyl alcohol copolymer film having an aluminum vapor-deposited intermediate layer, and a puncture-resistant outermost layer. Examples thereof include a plastic laminate film using a polyamide film having excellent properties.
[Getter agent]
In addition, a getter agent was used to maintain the degree of vacuum inside the vacuum heat insulating material. The getter agent only needs to absorb gas such as carbon dioxide, oxygen, nitrogen, and water vapor, and specifically, dosonite, hydrotalcite, metal hydroxide, molecular sieves, silica gel, calcium oxide, zeolite, hydrophobic Zeolite, activated carbon, etc. can be used.

次に、真空断熱材は作製直後には平板形状を有しており、必要に応じて一部屈曲させて使用する場合があるが、屈曲部においては内周側に圧縮応力、外周側に引張応力が働き、特に外周側で過大な引張応力が作用すると、内部の芯材の断裂や外周側の外包材の破袋が生じ断熱性能の低下につながる。
〔保護材〕
本発明ではこの屈曲部により厚く保護材を配することにより、屈曲部の耐久性・性能安定性を向上させることができる。本発明の真空断熱材外周に位置する保護材の厚さは、保護材も含めた断熱パネルの熱伝導率を低減するため平坦部では2mm以下が好適である。保護材の厚さが薄いほど断熱パネル全体の熱伝導率が低下するが、保護材の厚さが薄すぎると保護材としての機能を充分果たさなくなるため、平坦部保護材の厚さは1mm以上2mm以下であればさらに好ましい。
Next, the vacuum heat insulating material has a flat plate shape immediately after fabrication, and may be used with a part of it being bent as necessary. However, at the bent part, compressive stress is applied to the inner peripheral side and tensile is applied to the outer peripheral side. When stress acts, and excessive tensile stress acts on the outer peripheral side in particular, the inner core material is torn and the outer packaging material on the outer peripheral side is broken, leading to a decrease in heat insulation performance.
〔Protective layer〕
In the present invention, the durability and performance stability of the bent portion can be improved by providing a thick protective material at the bent portion. The thickness of the protective material located on the outer periphery of the vacuum heat insulating material of the present invention is preferably 2 mm or less in the flat portion in order to reduce the thermal conductivity of the heat insulating panel including the protective material. The thinner the protective material is, the lower the thermal conductivity of the entire insulation panel is. However, if the protective material is too thin, it will not perform its function as a protective material. More preferably, it is 2 mm or less.

屈曲部については平坦部以上の保護性能を発揮させるため2mm厚さ以上が好適である。但し、厚すぎると施工の際に断熱パネルの設置面からの浮き上がりが生じやすくなるため、最大でも8mm以下であればさらに好ましい。   The bent portion preferably has a thickness of 2 mm or more in order to exhibit protection performance higher than that of the flat portion. However, if it is too thick, it tends to be lifted from the installation surface of the heat insulation panel during construction.

本発明の保護材は圧縮永久歪み(70℃、22時間)が54%以下であることを特徴とする。保護材として室温で弾性を有する層を設けているため、仮に断熱パネルの外部から硬い鋭利な物体が押し当てられても、保護材の無い場合に比べて真空断熱材の真空が破られる危険性が低下し、耐久性・性能安定性を向上させることができる。   The protective material of the present invention has a compression set (70 ° C., 22 hours) of 54% or less. Since a layer having elasticity at room temperature is provided as a protective material, there is a risk that even if a hard, sharp object is pressed from the outside of the thermal insulation panel, the vacuum of the vacuum thermal insulation material is broken compared to the case without the protective material As a result, the durability and performance stability can be improved.

また同時に、この保護材はMFR(230℃、49N)が3g/10分以上であることを特徴とする。加熱により保護材が流動性を有するため、前記屈曲部により厚く保護材を容易に配することが可能である。また住宅解体時などには、本発明の断熱パネルを加熱することにより軟化した保護材を容易にリサイクルでき、廃棄物の減量化と再利用に貢献する。   At the same time, this protective material is characterized in that MFR (230 ° C., 49 N) is 3 g / 10 min or more. Since the protective material has fluidity by heating, it is possible to easily dispose the protective material thicker by the bent portion. Further, when the house is demolished, the protective material softened by heating the heat insulating panel of the present invention can be easily recycled, which contributes to the reduction and reuse of waste.

本発明の真空断熱材外周に位置する保護材としては、スチレン系樹脂、オレフィン系樹脂などを用いることができる。建材用としては、これら耐候性、耐水性などに優れたスチレン系樹脂(ポリスチレン−ポリエチレン・ポリブチレン−ポリスチレン系)やオレフィン系樹脂が好適である。   As the protective material located on the outer periphery of the vacuum heat insulating material of the present invention, a styrene resin, an olefin resin, or the like can be used. For building materials, styrene-based resins (polystyrene-polyethylene / polybutylene-polystyrene-based) and olefin resins having excellent weather resistance and water resistance are suitable.

本発明の真空断熱材外周に位置する保護材には発泡処理を施しても良い。保護材内部に気泡が無い場合に比べて保護材の熱伝導率が低下するため、保護材も含めた断熱パネルの熱伝導率を低減でき好適である。
〔施工〕
本発明の真空断熱材は、建築物の内壁と隣接する2本の支持材に囲まれた空間内で、支持材の側面と内壁面を被覆するように設置される。もし、支持材の側面が真空断熱材で被覆されていない場合は、支持材の側面から建築物の外部へ熱が漏洩することになる。
You may perform a foaming process to the protective material located in the vacuum heat insulating material outer periphery of this invention. Since the thermal conductivity of the protective material is lower than when no bubbles are present inside the protective material, the thermal conductivity of the heat insulating panel including the protective material can be reduced, which is preferable.
[Construction]
The vacuum heat insulating material of the present invention is installed so as to cover the side surface and the inner wall surface of the support material in a space surrounded by two support materials adjacent to the inner wall of the building. If the side surface of the support material is not covered with the vacuum heat insulating material, heat leaks from the side surface of the support material to the outside of the building.

一方、本発明においては、真空断熱材が内壁面だけでなく支持材の側面も覆うため、支持材の側面部分における熱漏洩を抑止することができる。この場合、断熱パネルの屈曲部には曲げ歪みが生じる。過大な曲げ歪みは断熱パネルの性能の低下に繋がるおそれがあるため好ましくない。曲げ歪みは曲率半径が小さいほど、また断熱パネル内部の真空断熱材の芯材の厚さが厚いほど大きくなる。このため、曲げ歪みが断熱パネルの性能低下に繋がらぬよう、屈曲部の曲率半径は10mm以上であることが好ましい。また、断熱パネル内部の真空断熱材の芯材の厚さは10mm以下であることが好ましい。但し、真空断熱材はその内部を減圧空間とすることにより高い断熱性能を実現しているため、ある程度の厚さが必要とされる。このため、真空断熱材の芯材の厚さは8mm以上10mm以下であればさらに好ましい。   On the other hand, in the present invention, since the vacuum heat insulating material covers not only the inner wall surface but also the side surface of the support material, heat leakage at the side surface portion of the support material can be suppressed. In this case, bending distortion occurs in the bent portion of the heat insulating panel. Excessive bending strain is not preferable because it may lead to a decrease in performance of the heat insulating panel. The bending strain increases as the radius of curvature decreases and as the thickness of the core of the vacuum heat insulating material inside the heat insulating panel increases. For this reason, it is preferable that the curvature radius of a bending part is 10 mm or more so that a bending distortion may not lead to the performance fall of a heat insulation panel. Further, the thickness of the core of the vacuum heat insulating material inside the heat insulating panel is preferably 10 mm or less. However, since the vacuum heat insulating material realizes high heat insulating performance by making the inside a decompressed space, a certain amount of thickness is required. For this reason, the thickness of the core material of the vacuum heat insulating material is more preferably 8 mm or more and 10 mm or less.

本発明の断熱パネルの内壁・外装材との位置関係については、内壁側を被覆するのが好ましい。真空断熱材と内壁側との間に空間が存在すると、例えば、冬季に室内を暖房している場合、室内の温度上昇が内壁を伝わって内壁に接する空間内の空気を暖め、暖められた空気は軽くなり内壁面に沿って上昇する空気の流れが生じる。この際に、床下の冷たい空気が内壁と断熱パネルの間の空間に吸い込まれ、内壁を冷却することになる。結果的に、室内の暖房の熱がこの空間内の空気の流れによって建築物の外へ逃げてしまう。これを防ぐために断熱パネルは内壁側を被覆するように施工する。   About the positional relationship with the inner wall and exterior material of the heat insulation panel of this invention, it is preferable to coat | cover the inner wall side. If there is a space between the vacuum heat insulating material and the inner wall side, for example, when the room is heated in winter, the temperature rise in the room is transmitted through the inner wall and warms the air in the space that touches the inner wall. Becomes lighter and an air flow rising along the inner wall surface is generated. At this time, the cold air under the floor is sucked into the space between the inner wall and the heat insulating panel to cool the inner wall. As a result, the heat of the indoor heating escapes from the building due to the flow of air in the space. In order to prevent this, the heat insulation panel is constructed so as to cover the inner wall side.

本発明の真空断熱材の外周の保護材は前述のとおり室温で弾性を有するため、断熱パネルの外寸法を設置場所の寸法より少し大きくすることにより、施工の際に圧縮変形した断熱パネルの表面保護材に形状復元力が生じる。これにより、断熱パネルの表面と、その周囲の内壁の面、支持材の側面との間に摩擦力が生じるので、断熱パネルを容易に固定でき、施工後の位置ずれを防止することができる。なお、さらに強固に断熱パネルを固定するために、その周囲の内壁の面、支持材の側面などとの間を接着剤や粘着テープなどで接着してもよい。この時、断熱パネルの表面と、その周囲の内壁の面、支持材の側面が隙間なく接する。これにより、熱漏洩を抑止し、さらに壁・床などを通過しようとする水蒸気・湿気の移動を抑止し、壁内などの結露を防止することができる。   Since the protective material on the outer periphery of the vacuum heat insulating material of the present invention has elasticity at room temperature as described above, the surface of the heat insulating panel that is compressed and deformed during construction by making the outer size of the heat insulating panel slightly larger than the size of the installation place. A shape restoring force is generated in the protective material. Thereby, since a frictional force arises between the surface of the heat insulation panel, the surface of the surrounding inner wall, and the side surface of a support material, a heat insulation panel can be fixed easily and the position shift after construction can be prevented. In addition, in order to fix the heat insulation panel more firmly, the surface of the surrounding inner wall, the side surface of the support member, or the like may be bonded with an adhesive or an adhesive tape. At this time, the surface of the heat insulating panel, the surface of the surrounding inner wall, and the side surface of the support material are in contact with each other without a gap. As a result, heat leakage is suppressed, and movement of water vapor / humidity that attempts to pass through the walls / floors, etc., can be suppressed, and condensation inside the walls can be prevented.

本発明の断熱パネルより外装材側の空間には、耐震補強用の筋交いや水道管などが通る場合があり、また、大雨の後などに壁内などに水が浸入した場合、通気性の良い方が速やかに乾燥し、結露やカビの発生防止につながるので断熱材などを充填しない方が好ましい。   In the space on the exterior material side of the heat insulating panel of the present invention, there are cases where bracing for seismic reinforcement or water pipes may pass, and when water infiltrates into the wall etc. after heavy rain etc., the air permeability is good It is preferable not to fill with a heat insulating material or the like, since it dries more quickly and leads to prevention of condensation and mold.

本発明の真空断熱材の外周を保護材で覆う際には、真空断熱材より一回り大きい前記保護材のシート2枚で真空断熱材を挟み、保護材周縁部をヒートシールすることが好ましい。またこの際に、真空断熱材の芯材部を封止するために形成される周縁部は折り返しておくことが好ましい。周縁部を折り返さぬまま表面保護層を形成すると、断熱パネルの端部が真空断熱効果の乏しい部位となり、ここから熱漏洩するため好ましくない。   When the outer periphery of the vacuum heat insulating material of the present invention is covered with a protective material, it is preferable that the vacuum heat insulating material is sandwiched between two sheets of the protective material that is slightly larger than the vacuum heat insulating material and the peripheral edge of the protective material is heat sealed. At this time, it is preferable that the peripheral edge portion formed for sealing the core portion of the vacuum heat insulating material is folded. If the surface protective layer is formed without folding the peripheral edge portion, the end portion of the heat insulating panel becomes a portion having a poor vacuum heat insulating effect, and heat leaks from here.

以下、本発明による実施例について説明する。なお、この実施例によって本発明が限定されるものではない。   Examples of the present invention will be described below. In addition, this invention is not limited by this Example.

図1は実施例1の断熱パネルの屈曲部を示す断面図であり、図2は建築用部材を示す建築物の壁の水平断面図である。   FIG. 1 is a cross-sectional view showing a bent portion of a heat insulating panel of Example 1, and FIG. 2 is a horizontal cross-sectional view of a building wall showing a building member.

図1において、真空断熱材1は芯材7と、これを真空外包する外包材8からなり、その外側に保護材9を設けている。真空断熱材1の屈曲部Bには平坦部Fより厚い保護材9を設けている。図2において、実施例1の建築用部材は、表面を保護材9で覆った可撓性を有する断熱パネル5に2か所の屈曲部Bを設け、前記屈曲部Bに平坦部F以上の厚さに保護材9を配し、内壁2と隣接する2本の支持材4の対向する側面を被覆するように施工している。断熱パネル5は可撓性を有するため、図2に示すように当該部位に「コ」の字型に曲げて設置することが可能である。   In FIG. 1, the vacuum heat insulating material 1 includes a core material 7 and an outer packaging material 8 that encloses the core material 7 in a vacuum. A protective material 9 thicker than the flat portion F is provided at the bent portion B of the vacuum heat insulating material 1. In FIG. 2, the building member of Example 1 is provided with two bent portions B on a flexible heat insulating panel 5 whose surface is covered with a protective material 9, and the bent portion B has a flat portion F or more. The protective material 9 is arranged in thickness, and it is constructed so as to cover the opposing side surfaces of the two support materials 4 adjacent to the inner wall 2. Since the heat insulation panel 5 has flexibility, it can be bent and installed in the "U" shape at the site as shown in FIG.

実施例1の真空断熱材は以下のように作製した。まず、真空断熱材の芯材として、平均繊維径4.3μmの結合剤を含まないグラスウール中に、大きさ450mm×350mm、厚さ30μmのアルミニウム製フィルムを挟み、更に250℃で1時間の乾燥熱処理を行なって作製した。その後、ラミネートフィルムからなる外包材として熱溶着層の高密度ポリエチレンとエチレン−ビニルアルコール共重合体とアルミ箔(約6μm)とナイロンおよびポリエチレンテレフタレートからなる外包材中に前記グラスウールとガスを吸着するゲッター剤(モレキュラ−シ−ブス13X)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱材の内部圧力が1.5Paになるまで排気した後、外包材の端部をヒートシールで封止した。真空断熱材の大きさは500mm×400mm×10mmで、熱伝導率を測定したところ、1.8mW・m-1・K-1であった。 The vacuum heat insulating material of Example 1 was produced as follows. First, as a vacuum insulation core material, an aluminum film with a size of 450 mm x 350 mm and a thickness of 30 μm is sandwiched in glass wool that does not contain a binder with an average fiber diameter of 4.3 μm, followed by a dry heat treatment at 250 ° C. for 1 hour. It was made by performing. Then, the getter that adsorbs the glass wool and gas in the outer packaging material made of high-density polyethylene, ethylene-vinyl alcohol copolymer, aluminum foil (about 6 μm), nylon, and polyethylene terephthalate as the outer packaging material made of laminate film. Packing agent (Molecular Sieve 13X), evacuating until 10 minutes with the rotary pump of the vacuum packaging machine, 10 minutes with the diffusion pump, and the internal pressure of the vacuum insulation becomes 1.5 Pa, then the end of the outer packaging material Sealed with heat seal. The size of the vacuum heat insulating material was 500 mm × 400 mm × 10 mm, and when the thermal conductivity was measured, it was 1.8 mW · m −1 · K −1 .

この真空断熱材の外周に保護材層を形成した。真空断熱材の周縁封止部を折り返した後、圧縮永久歪み(70℃、22h)が43%、MFR(190℃、21.18N)が3g/10分の住友化学工業(株)製エスポレックスSBスチレン系熱可塑性エラストマーに発泡処理を施した厚さ1mmの保護材シート2枚の間に真空断熱材を挟み、保護材シート周縁部をヒートシールして保護層を形成し、熱伝導率を調べたところ7.3mW・m-1・K-1であった。 A protective material layer was formed on the outer periphery of the vacuum heat insulating material. Espolex SB manufactured by Sumitomo Chemical Co., Ltd. after folding the peripheral sealing part of the vacuum insulation material, 43% compression set (70 ° C, 22h), 3g / 10% MFR (190 ° C, 21.18N) A vacuum insulation material is sandwiched between two 1mm thick protective material sheets, which are foamed styrene thermoplastic elastomer, and the protective material sheet is heat sealed to form a protective layer, and the thermal conductivity is examined. As a result, it was 7.3 mW · m −1 · K −1 .

この保護材付き真空断熱材を図2のような模擬施工形状に成形した。屈曲部となる板状の真空断熱材の長さ約400mmの辺から平行に100mm内側へ移動した線上に、加熱して溶融状態となった前記住友化学工業(株)製エスポレックスSBスチレン系熱可塑性エラストマーを塗布して屈曲部の保護材厚さを片面4mm程度とした。室温付近まで空冷した後屈曲予定部にφ20mmの丸棒を当て、曲げ試験機を用いて10mm/minで90度に曲げ、断面が「コ」の字型になるように成形した。この真空断熱材を60℃の高温槽に入れ30日間放置した後、熱伝導率を調べたところ8.3mW・m-1・K-1であった。劣化試験によっても熱伝導率の増加の少ない建築用部材であった。 This vacuum insulating material with a protective material was molded into a simulated construction shape as shown in FIG. The Espolex SB styrene-based heat produced by Sumitomo Chemical Co., Ltd., which was heated and melted on a line that moved inward from the side of about 400 mm in length to the side of the plate-like vacuum heat insulating material that became the bent part, 100 mm inward A plastic elastomer was applied to make the protective material thickness of the bent part about 4 mm on one side. After air cooling to near room temperature, a φ20mm round bar was applied to the planned bending portion, bent at 90 ° at 10mm / min using a bending tester, and molded so that the cross-section became a “U” shape. This vacuum heat insulating material was placed in a high temperature bath at 60 ° C. and left for 30 days, and then the thermal conductivity was examined. As a result, it was 8.3 mW · m −1 · K −1 . It was a building member with little increase in thermal conductivity even in the deterioration test.

作製した保護材付き真空断熱材を、木造住宅の壁を模擬した木枠に取り付けた。木枠は400mm×400mm×1mmの木板2枚の間に50mm×400mm×厚さ100mmの木材角柱2本を平行に挟んで接着したもので、内部に300mm×400mm×100mmの空洞部分を有する。この空洞部分に図2と同様の断面構造となるように前記保護材付き真空断熱材を設置して、木枠の側面部分には熱漏洩を防ぐため、別に作製した熱伝導率2.0mW・m-1・K-1の真空断熱材4枚を隙間の無いように貼りつけて測定用の試料とした。 The produced vacuum heat insulating material with protective material was attached to a wooden frame simulating a wall of a wooden house. The wooden frame is made by bonding two wooden prisms of 50mm x 400mm x 100mm thickness between two wooden boards of 400mm x 400mm x 1mm in parallel, and has a hollow part of 300mm x 400mm x 100mm inside. In order to prevent heat leakage in the side part of the wooden frame by installing the vacuum heat insulating material with the protective material so that it has the same cross-sectional structure as FIG. 2 in this hollow part, a thermal conductivity of 2.0 mW · m separately prepared Samples for measurement were prepared by pasting 4 pieces of -1 · K -1 vacuum insulation materials without any gaps.

前記試料を熱流計に取り付け、住宅では内壁に相当する側を30℃、外壁に相当する側を10℃に設定し、熱貫流量を測定したところ1.4Wであり、断熱性に優れた建築用部材であった。
なお、図5に記載の、熱伝導率および熱貫流量は英弘精機(株)製AUTO-Λ・HC−071型(熱流計法、平均温度10℃)を用いて評価した。
The above sample was attached to a heat flow meter, and in a house, the side corresponding to the inner wall was set to 30 ° C, the side corresponding to the outer wall was set to 10 ° C, and the heat flow rate was measured. It was a member.
The thermal conductivity and heat flow rate shown in FIG. 5 were evaluated using an AUTO-Λ / HC-071 type (heat flow meter method, average temperature 10 ° C.) manufactured by Eihiro Seiki Co., Ltd.

実施例2の真空断熱材は以下のように作製した。まず、真空断熱材の芯材として、平均繊維径4.5μmの結合剤を含まないグラスウール中に、大きさ450mm×350mm、厚さ30μmのアルミニウム製フィルムを挟み、更に250℃で1時間の乾燥熱処理を行なって作製した。その後、実施例1と同様にラミネートフィルムを用い真空断熱材を作製した。真空断熱材の大きさは500mm×400mm×10mmで、熱伝導率を測定したところ、2.0mW・m-1・K-1であった。 The vacuum heat insulating material of Example 2 was produced as follows. First, as a vacuum insulation core material, an aluminum film with a size of 450 mm x 350 mm and a thickness of 30 μm is sandwiched in glass wool that does not contain a binder with an average fiber diameter of 4.5 μm, followed by a dry heat treatment at 250 ° C. for 1 hour. It was made by performing. Then, the vacuum heat insulating material was produced using the laminate film similarly to Example 1. FIG. The size of the vacuum heat insulating material was 500 mm × 400 mm × 10 mm, and the thermal conductivity was measured and found to be 2.0 mW · m −1 · K −1 .

この真空断熱材の外周に保護層を形成した。真空断熱材の周縁封止部を折り返した後、圧縮永久歪み(70℃、22h)が35%、MFR(220℃、98N)が50g/10分の住友化学工業(株)製エスポレックスTPEオレフィン系熱可塑性エラストマーに発泡処理を施した厚さ1mmの保護材シート2枚の間に真空断熱材を挟み、保護材シート周縁部をヒートシールして保護層を形成し、熱伝導率を調べたところ8.8mW・m-1・K-1であった。 A protective layer was formed on the outer periphery of the vacuum heat insulating material. After folding the peripheral sealing part of the vacuum heat insulating material, 35% compression set (70 ° C, 22h), 50g / 10 min MFR (220 ° C, 98N), Espolex TPE olefin manufactured by Sumitomo Chemical Co., Ltd. A thermal insulation was formed by sandwiching a vacuum heat insulating material between two 1 mm thick protective material sheets, which were foamed from a thermoplastic elastomer, and heat-sealing the periphery of the protective material sheet to form a protective layer. However, it was 8.8 mW · m −1 · K −1 .

この保護材付き真空断熱材を模擬施工形状に成形した。屈曲部となる板状の真空断熱材の長さ約400mmの辺から平行に100mm内側へ移動した線上に、加熱して溶融状態となった前記住友化学工業(株)製エスポレックスTPEオレフィン系熱可塑性エラストマーを塗布して屈曲部の保護材厚さを片面4mm程度とした。室温付近まで空冷した後屈曲予定部にφ20mmの丸棒を当て、曲げ試験機を用いて10mm/minで90度に曲げ、断面が『コ』の字型になるように成形した。この真空断熱材を60℃の高温槽に入れ30日間放置した後、熱伝導率を調べたところ9.8mW・m-1・K-1であった。劣化試験によっても熱伝導率の増加の少ない建築用部材であった。 This vacuum heat insulating material with a protective material was molded into a simulated construction shape. The espolex TPE olefin-based heat produced by Sumitomo Chemical Co., Ltd., which was heated and melted on a line that moved inward from the side of approximately 400 mm in length to the inside of the plate-shaped vacuum heat insulating material that becomes the bent part, 100 mm inward A plastic elastomer was applied to make the protective material thickness of the bent part about 4 mm on one side. After air cooling to near room temperature, a φ20mm round bar was applied to the planned bending part, and it was bent at 90 ° at 10mm / min using a bending tester, so that the cross section was shaped like a “U”. This vacuum heat insulating material was placed in a high-temperature bath at 60 ° C. and left for 30 days, and the thermal conductivity was examined. As a result, it was 9.8 mW · m −1 · K −1 . It was a building member with little increase in thermal conductivity even in the deterioration test.

作製した保護材付き真空断熱材を、実施例1と同様に木造住宅の壁を模擬した木枠に取り付け、測定用の試料とした。この試料を熱流計に取り付け、住宅では内壁に相当する側を30℃、外壁に相当する側を10℃に設定し、熱貫流量を測定したところ1.4Wであり、断熱性に優れた建築用部材であった。   The produced vacuum heat insulating material with a protective material was attached to a wooden frame simulating a wall of a wooden house in the same manner as in Example 1, and used as a measurement sample. This sample is attached to a heat flow meter. In a house, the side corresponding to the inner wall is set to 30 ° C, the side corresponding to the outer wall is set to 10 ° C, and the heat flow rate is measured to be 1.4 W. It was a member.

実施例3の真空断熱材は以下のように作製した。まず、真空断熱材の芯材として、平均繊維径4.3μmの結合剤を含まないグラスウール中に、大きさ450mm×350mm、厚さ30μmのアルミニウム製フィルムを挟み、更に250℃で1時間の乾燥熱処理を行なって作製した。その後、ラミネートフィルムからなる外包材として熱溶着層の高密度ポリエチレンとアルミ蒸着(約50nm)を行なったエチレン−ビニルアルコール共重合体とアルミ蒸着を行なったポリエチレンテレフタレートとナイロンからなる外包材中に前記グラスウールとガスを吸着するゲッター剤(モレキュラ−シ−ブス13X)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱材の内部圧力が1.5Paになるまで排気した後、外包材の端部をヒートシールで封止した。真空断熱材の大きさは500mm×400mm×10mmで、熱伝導率を測定したところ、1.7mW・m-1・K-1であった。 The vacuum heat insulating material of Example 3 was produced as follows. First, as a vacuum insulation core material, an aluminum film with a size of 450 mm x 350 mm and a thickness of 30 μm is sandwiched in glass wool that does not contain a binder with an average fiber diameter of 4.3 μm, followed by a dry heat treatment at 250 ° C. for 1 hour. It was made by performing. Thereafter, in the outer packaging material consisting of a laminate film, a high-density polyethylene of a heat-welded layer, an ethylene-vinyl alcohol copolymer subjected to aluminum deposition (about 50 nm), and an outer packaging material composed of polyethylene terephthalate and nylon subjected to aluminum deposition. Filled with glass wool and gas adsorbing getter agent (Molecular Sieves 13X), exhausted until 10 minutes with rotary pump of vacuum packaging machine, 10 minutes with diffusion pump, and internal pressure of vacuum insulation becomes 1.5 Pa The end of the outer packaging material was sealed with heat seal. The size of the vacuum heat insulating material was 500 mm × 400 mm × 10 mm, and the thermal conductivity was measured to be 1.7 mW · m −1 · K −1 .

この真空断熱材の外周に実施例1と同様に保護層を形成し、熱伝導率を調べたところ7.2mW・m-1・K-1であった。さらにこの保護材付き真空断熱材を実施例1と同様に模擬施工形状に成形した。この真空断熱材を60℃の高温槽に入れ30日間放置した後、熱伝導率を調べたところ8.2mW・m-1・K-1であった。劣化試験によっても熱伝導率の増加の少ない建築用部材であった。 A protective layer was formed on the outer periphery of the vacuum heat insulating material in the same manner as in Example 1, and the thermal conductivity was examined. The result was 7.2 mW · m −1 · K −1 . Furthermore, this vacuum heat insulating material with a protective material was molded into a simulated construction shape in the same manner as in Example 1. This vacuum heat insulating material was placed in a high-temperature bath at 60 ° C. and left for 30 days, and the thermal conductivity was examined. As a result, it was 8.2 mW · m −1 · K −1 . It was a building member with little increase in thermal conductivity even in the deterioration test.

作製した保護材付き真空断熱材を、実施例1と同様に木造住宅の壁を模擬した木枠に取り付け、測定用の試料とした。この試料を熱流計に取り付け、住宅では内壁に相当する側を30℃、外壁に相当する側を10℃に設定し、熱貫流量を測定したところ1.4Wであり、断熱性に優れた建築用部材であった。   The produced vacuum heat insulating material with a protective material was attached to a wooden frame simulating a wall of a wooden house in the same manner as in Example 1, and used as a measurement sample. This sample is attached to a heat flow meter. In a house, the side corresponding to the inner wall is set to 30 ° C, the side corresponding to the outer wall is set to 10 ° C, and the heat flow rate is measured to be 1.4 W. It was a member.

実施例4の真空断熱材は以下のように作製した。まず、真空断熱材の芯材として、平均繊維径4.5μmの結合剤を含まないグラスウール中に、大きさ450mm×350mm、厚さ30μmのアルミニウム製フィルムを挟み、更に250℃で1時間の乾燥熱処理を行なって作製した。その後、実施例3と同様にラミネートフィルムを用い真空断熱材を作製した。真空断熱材の大きさは500mm×400mm×10mmで、熱伝導率を測定したところ、1.9mW・m-1・K-1であった。 The vacuum heat insulating material of Example 4 was produced as follows. First, as a vacuum insulation core material, an aluminum film with a size of 450 mm x 350 mm and a thickness of 30 μm is sandwiched in glass wool that does not contain a binder with an average fiber diameter of 4.5 μm, followed by a dry heat treatment at 250 ° C. for 1 hour. It was made by performing. Then, the vacuum heat insulating material was produced using the laminate film similarly to Example 3. The size of the vacuum heat insulating material was 500 mm × 400 mm × 10 mm, and the thermal conductivity was measured and found to be 1.9 mW · m −1 · K −1 .

この真空断熱材の外周に実施例2と同様に保護層を形成し、熱伝導率を調べたところ8.7mW・m-1・K-1であった。さらにこの保護材付き真空断熱材を実施例2と同様に模擬施工形状に成形した。この真空断熱材を60℃の高温槽に入れ30日間放置した後、熱伝導率を調べたところ9.7mW・m-1・K-1であった。劣化試験によっても熱伝導率の増加の少ない建築用部材であった。 A protective layer was formed on the outer periphery of the vacuum heat insulating material in the same manner as in Example 2, and the thermal conductivity was examined. The result was 8.7 mW · m −1 · K −1 . Furthermore, this vacuum heat insulating material with a protective material was molded into a simulated construction shape in the same manner as in Example 2. This vacuum heat insulating material was placed in a high temperature bath at 60 ° C. and left for 30 days, and then the thermal conductivity was examined. The result was 9.7 mW · m −1 · K −1 . It was a building member with little increase in thermal conductivity even in the deterioration test.

作製した保護材付き真空断熱材を、実施例1と同様に木造住宅の壁を模擬した木枠に取り付け、測定用の試料とした。この試料を熱流計に取り付け、住宅では内壁に相当する側を30℃、外壁に相当する側を10℃に設定し、熱貫流量を測定したところ1.4Wであり、断熱性に優れた建築用部材であった。   The produced vacuum heat insulating material with a protective material was attached to a wooden frame simulating a wall of a wooden house in the same manner as in Example 1, and used as a measurement sample. This sample is attached to a heat flow meter. In a house, the side corresponding to the inner wall is set to 30 ° C, the side corresponding to the outer wall is set to 10 ° C, and the heat flow rate is measured to be 1.4 W. It was a member.

実施例5の真空断熱材は以下のように作製した。まず、真空断熱材の芯材として、平均繊維径4.4μmの結合剤を含まないグラスウール中に、大きさ450mm×350mm、厚さ30μmのアルミニウム製フィルムを挟み、更に250℃で1時間の乾燥熱処理を行なって作製した。その後、ラミネートフィルムからなる外包材として熱溶着層の高密度ポリエチレンとアルミ蒸着(約50nm)を行なったエチレン−ビニルアルコール共重合体とアルミ蒸着を行なったポリエチレンテレフタレートとナイロンからなる外包材中に前記グラスウールとガスを吸着するゲッター剤(モレキュラ−シ−ブス13X)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱材の内部圧力が1.5Paになるまで排気した後、外包材の端部をヒートシールで封止した。真空断熱材の大きさは500mm×400mm×10mmで、熱伝導率を測定したところ、1.8mW・m-1・K-1であった。 The vacuum heat insulating material of Example 5 was produced as follows. First, as a vacuum insulation core material, an aluminum film with a size of 450 mm x 350 mm and a thickness of 30 μm is sandwiched in glass wool that does not contain a binder with an average fiber diameter of 4.4 μm, followed by a dry heat treatment at 250 ° C. for 1 hour. It was made by performing. Thereafter, in the outer packaging material consisting of a laminate film, a high-density polyethylene of a heat-welded layer, an ethylene-vinyl alcohol copolymer subjected to aluminum deposition (about 50 nm), and an outer packaging material composed of polyethylene terephthalate and nylon subjected to aluminum deposition. Filled with glass wool and gas adsorbing getter agent (Molecular Sieves 13X), exhausted until 10 minutes with rotary pump of vacuum packaging machine, 10 minutes with diffusion pump, and internal pressure of vacuum insulation becomes 1.5 Pa The end of the outer packaging material was sealed with heat seal. The size of the vacuum heat insulating material was 500 mm × 400 mm × 10 mm, and when the thermal conductivity was measured, it was 1.8 mW · m −1 · K −1 .

この真空断熱材の外周に保護層を形成した。真空断熱材の周縁封止部を折り返した後、圧縮永久歪み(70℃、22h)が35%、MFR(220℃、98N)が50g/10分の住友化学工業(株)製エスポレックスTPEオレフィン系熱可塑性エラストマーに発泡処理を施した厚さ1mmの保護材シート2枚の間に真空断熱材を挟み、保護材シート周縁部をヒートシールして保護層を形成し、熱伝導率を調べたところ8.6mW・m-1・K-1であった。 A protective layer was formed on the outer periphery of the vacuum heat insulating material. After folding the peripheral sealing part of the vacuum heat insulating material, 35% compression set (70 ° C, 22h), 50g / 10 min MFR (220 ° C, 98N), Espolex TPE olefin manufactured by Sumitomo Chemical Co., Ltd. A thermal insulation was formed by sandwiching a vacuum heat insulating material between two 1 mm thick protective material sheets, which were foamed from a thermoplastic elastomer, and heat-sealing the periphery of the protective material sheet to form a protective layer. However, it was 8.6 mW · m −1 · K −1 .

この保護材付き真空断熱材を、屈曲部の曲げ角度が90度以上となるように成形した。屈曲部となる板状の真空断熱材の長さ約400mmの辺から平行に100mm内側へ移動した線上に、加熱して溶融状態となった前記住友化学工業(株)製エスポレックスTPEオレフィン系熱可塑性エラストマーを塗布して屈曲部の保護材厚さを片面4mm程度とした。室温付近まで空冷した後屈曲予定部にφ20mmの丸棒を当て、曲げ試験機を用いて10mm/minで初期状態から135度曲げ、成す角45度になるように成形した。この真空断熱材を60℃の高温槽に入れ30日間放置した後、熱伝導率を調べたところ9.8mW・m-1・K-1であった。劣化試験によっても熱伝導率の増加の少ない建築用部材であった。
[比較例1]
This vacuum heat insulating material with a protective material was molded so that the bending angle of the bent portion was 90 degrees or more. The espolex TPE olefin-based heat produced by Sumitomo Chemical Co., Ltd., which was heated and melted on a line that moved inward from the side of approximately 400 mm in length to the inside of the plate-shaped vacuum heat insulating material that becomes the bent part, 100 mm inward A plastic elastomer was applied to make the protective material thickness of the bent part about 4 mm on one side. After air cooling to near room temperature, a φ20mm round bar was applied to the planned bending part, and it was bent to 135 degrees from the initial state at 10 mm / min using a bending tester, and formed into an angle of 45 degrees. This vacuum heat insulating material was placed in a high-temperature bath at 60 ° C. and left for 30 days, and the thermal conductivity was examined. As a result, it was 9.8 mW · m −1 · K −1 . It was a building member with little increase in thermal conductivity even in the deterioration test.
[Comparative Example 1]

本発明の比較例として、外周を保護材で覆った真空断熱材を内壁面のみを被覆するように施工した断熱施工面の模擬試料を作製し、熱貫流量を測定した。   As a comparative example of the present invention, a simulation sample of a heat insulation construction surface was prepared by applying a vacuum heat insulating material whose outer periphery was covered with a protective material so as to cover only the inner wall surface, and the heat penetration flow rate was measured.

比較例1の真空断熱材は以下のように作製した。まず、真空断熱材の芯材として、平均繊維径4.4μmの結合剤を含まないグラスウール中に、大きさ250mm×350mm、厚さ30μmのアルミニウム製フィルムを挟み、更に250℃で1時間の乾燥熱処理を行なって作製した。その後、ラミネートフィルムからなる外包材として熱溶着層の高密度ポリエチレンとアルミ蒸着(約50nm)を行なったエチレン−ビニルアルコール共重合体とアルミ蒸着を行なったポリエチレンテレフタレートとナイロンからなる外包材中に前記グラスウールとガスを吸着するゲッター剤(モレキュラ−シ−ブス13X)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱材の内部圧力が1.5Paになるまで排気した後、外包材の端部をヒートシールで封止した。真空断熱材の大きさは300mm×400mm×10mmで、熱伝導率を測定したところ、1.8mW・m-1・K-1であった。 The vacuum heat insulating material of the comparative example 1 was produced as follows. First, as a vacuum insulation core material, an aluminum film with a size of 250 mm x 350 mm and a thickness of 30 μm is sandwiched in glass wool that does not contain a binder with an average fiber diameter of 4.4 μm, followed by a dry heat treatment at 250 ° C. for 1 hour. It was made by performing. Thereafter, in the outer packaging material consisting of a laminate film, a high-density polyethylene of a heat-welded layer, an ethylene-vinyl alcohol copolymer subjected to aluminum deposition (about 50 nm), and an outer packaging material composed of polyethylene terephthalate and nylon subjected to aluminum deposition. Filled with glass wool and gas adsorbing getter agent (Molecular Sieves 13X), exhausted until 10 minutes with rotary pump of vacuum packaging machine, 10 minutes with diffusion pump, and internal pressure of vacuum insulation becomes 1.5 Pa The end of the outer packaging material was sealed with heat seal. The size of the vacuum heat insulating material was 300 mm × 400 mm × 10 mm, and when the thermal conductivity was measured, it was 1.8 mW · m −1 · K −1 .

この真空断熱材の外周に保護層を形成した。真空断熱材の周縁封止部を折り返した後、圧縮永久歪み(70℃、22h)が43%、MFR(190℃、21.18N)が3g/10分の住友化学工業(株)製エスポレックスSBスチレン系熱可塑性エラストマーに発泡処理を施した厚さ1mmの保護材シート2枚の間に真空断熱材を挟み、保護材シート周縁部をヒートシールして保護層を形成し、熱伝導率を調べたところ7.3 mW・m-1・K-1であった。さらにこの保護材付き真空断熱材を60℃の高温槽に入れ30日間放置した後、熱伝導率を調べたところ8.3mW・m-1・K-1であった。劣化試験によっても熱伝導率の増加の少ない建築用部材であった。 A protective layer was formed on the outer periphery of the vacuum heat insulating material. Espolex SB manufactured by Sumitomo Chemical Co., Ltd. after folding the peripheral sealing part of the vacuum insulation material, 43% compression set (70 ° C, 22h), 3g / 10% MFR (190 ° C, 21.18N) A vacuum insulation material is sandwiched between two 1mm thick protective material sheets, which are foamed styrene thermoplastic elastomer, and the protective material sheet is heat sealed to form a protective layer, and the thermal conductivity is examined. As a result, it was 7.3 mW · m −1 · K −1 . Furthermore, this vacuum heat insulating material with a protective material was placed in a high-temperature bath at 60 ° C. and left for 30 days, and the thermal conductivity was examined. As a result, it was 8.3 mW · m −1 · K −1 . It was a building member with little increase in thermal conductivity even in the deterioration test.

作製した保護材付き真空断熱材を、木造住宅の壁を模擬した木枠に取り付けた。木枠は400mm×400mm×1mmの木板2枚の間に50mm×400mm×厚さ100mmの木材角柱2本を平行に挟んで接着したもので、内部に300mm×400mm×100mmの空洞部分を有する。この空洞部分に図2と同様の断面構造となるように前記保護材付き真空断熱材を設置して、木枠の側面部分には熱漏洩を防ぐため、別に作製した熱伝導率2.0mW・m-1・K-1の真空断熱材4枚を隙間の無いように貼りつけて測定用の試料とした。 The produced vacuum heat insulating material with protective material was attached to a wooden frame simulating a wall of a wooden house. The wooden frame is made by bonding two wooden prisms of 50mm x 400mm x 100mm thickness between two wooden boards of 400mm x 400mm x 1mm in parallel, and has a hollow part of 300mm x 400mm x 100mm inside. In order to prevent heat leakage in the side part of the wooden frame by installing the vacuum heat insulating material with the protective material so that it has the same cross-sectional structure as FIG. 2 in this hollow part, a thermal conductivity of 2.0 mW · m separately prepared Samples for measurement were prepared by pasting 4 pieces of -1 · K -1 vacuum insulation materials without any gaps.

前記試料を熱流計に取り付け、住宅では内壁に相当する側を30℃、外壁に相当する側を10℃に設定し、熱貫流量を測定したところ1.7Wであった。支持材の側面部分を真空断熱材で被覆しなかったことにより、熱貫流量が約21%増加し、断熱性能の劣る建築用部材であった。
[比較例2]
The sample was attached to a heat flow meter, and in a house, the side corresponding to the inner wall was set to 30 ° C., the side corresponding to the outer wall was set to 10 ° C., and the heat flow rate was measured to be 1.7 W. Since the side surface portion of the support material was not covered with the vacuum heat insulating material, the heat flow rate increased by about 21%, and the building member had poor heat insulating performance.
[Comparative Example 2]

比較例2として、外周を保護材で覆った真空断熱材を内壁面のみを被覆するように施工した断熱施工面の模擬試料を作製し、熱貫流量を測定した。   As Comparative Example 2, a simulation sample of a heat insulation construction surface was prepared by applying a vacuum heat insulating material whose outer periphery was covered with a protective material so as to cover only the inner wall surface, and the heat penetration flow rate was measured.

比較例2の真空断熱材は以下のように作製した。まず、真空断熱材の芯材として、平均繊維径4.3μmの結合剤を含まないグラスウール中に、大きさ250mm×350mm、厚さ30μmのアルミニウム製フィルムを挟み、更に250℃で1時間の乾燥熱処理を行なって作製した。その後、ラミネートフィルムからなる外包材として熱溶着層の高密度ポリエチレンとエチレン−ビニルアルコール共重合体とアルミ箔(約6μm)とナイロンおよびポリエチレンテレフタレートからなる外包材中に前記グラスウールとガスを吸着するゲッター剤(モレキュラ−シ−ブス13X)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱材の内部圧力が1.5Paになるまで排気した後、外包材の端部をヒートシールで封止した。真空断熱材の大きさは300mm×400mm×10mmで、熱伝導率を測定したところ、1.8mW・m-1・K-1であった。 The vacuum heat insulating material of the comparative example 2 was produced as follows. First, as a vacuum insulation core material, an aluminum film with a size of 250 mm x 350 mm and a thickness of 30 μm is sandwiched in glass wool that does not contain a binder with an average fiber diameter of 4.3 μm, followed by a dry heat treatment at 250 ° C. for 1 hour. It was made by performing. Then, the getter that adsorbs the glass wool and gas in the outer packaging material made of high-density polyethylene, ethylene-vinyl alcohol copolymer, aluminum foil (about 6 μm), nylon, and polyethylene terephthalate as the outer packaging material made of laminate film. Packing agent (Molecular Sieve 13X), evacuating until 10 minutes with the rotary pump of the vacuum packaging machine, 10 minutes with the diffusion pump, and the internal pressure of the vacuum insulation becomes 1.5 Pa, then the end of the outer packaging material Sealed with heat seal. The size of the vacuum heat insulating material was 300 mm × 400 mm × 10 mm, and when the thermal conductivity was measured, it was 1.8 mW · m −1 · K −1 .

この真空断熱材の外周に保護層を形成した。真空断熱材の周縁封止部を折り返した後、圧縮永久歪み(70℃、22h)が35%、MFR(220℃、98N)が50g/10分の住友化学工業(株)製エスポレックスTPEオレフィン系熱可塑性エラストマーに発泡処理を施した厚さ1mmの保護材シート2枚の間に真空断熱材を挟み、保護材シート周縁部をヒートシールして保護層を形成し、熱伝導率を調べたところ8.6 mW・m-1・K-1であった。さらにこの保護材付き真空断熱材を60℃の高温槽に入れ30日間放置した後、熱伝導率を調べたところ9.6mW・m-1・K-1であった。劣化試験によっても熱伝導率の増加の少ない建築用部材であった。 A protective layer was formed on the outer periphery of the vacuum heat insulating material. After folding the peripheral sealing part of the vacuum heat insulating material, 35% compression set (70 ° C, 22h), 50g / 10 min MFR (220 ° C, 98N), Espolex TPE olefin manufactured by Sumitomo Chemical Co., Ltd. A thermal insulation was formed by sandwiching a vacuum heat insulating material between two 1 mm thick protective material sheets, which were foamed from a thermoplastic elastomer, and heat-sealing the periphery of the protective material sheet to form a protective layer. However, it was 8.6 mW · m −1 · K −1 . Furthermore, this vacuum heat insulating material with a protective material was placed in a high-temperature bath at 60 ° C. and allowed to stand for 30 days, and the thermal conductivity was examined. The result was 9.6 mW · m −1 · K −1 . It was a building member with little increase in thermal conductivity even in the deterioration test.

作製した保護材付き真空断熱材を、比較例1と同様に木枠の内壁相当面に取り付け熱貫流量を測定したところ、1.7Wであった。支持材の側面部分を真空断熱材で被覆しなかったことにより、熱貫流量が約21%増加し、断熱性能の劣る建築用部材であった。
[比較例3]
The produced vacuum heat insulating material with protective material was attached to the surface corresponding to the inner wall of the wooden frame in the same manner as in Comparative Example 1, and the heat flow rate was measured. Since the side surface portion of the support material was not covered with the vacuum heat insulating material, the heat flow rate increased by about 21%, and the building member had poor heat insulating performance.
[Comparative Example 3]

比較例3として、外周を保護材で覆った真空断熱材を図2に示すように内壁2と、隣接する2本の支持材4の対向する側面を被覆するように施工したが屈曲部に保護材を厚く配さない断熱施工面の模擬試料を作製し、熱貫流量を測定した。   As Comparative Example 3, a vacuum heat insulating material whose outer periphery was covered with a protective material was constructed so as to cover the inner wall 2 and the opposite side surfaces of two adjacent support materials 4 as shown in FIG. A simulated sample of the heat-insulated construction surface without thick material was prepared, and the heat flow rate was measured.

比較例3の真空断熱材は以下のように作製した。まず、真空断熱材の芯材として、平均繊維径4.5μmの結合剤を含まないグラスウール中に、大きさ450mm×350mm、厚さ30μmのアルミニウム製フィルムを挟み、更に250℃で1時間の乾燥熱処理を行なって作製した。その後、比較例2と同様にラミネートフィルムを用い真空断熱材を作製した。真空断熱材の大きさは500mm×400mm×10mmで、熱伝導率を測定したところ、2.0mW・m-1・K-1であった。 The vacuum heat insulating material of the comparative example 3 was produced as follows. First, as a vacuum insulation core material, an aluminum film with a size of 450 mm x 350 mm and a thickness of 30 μm is sandwiched in glass wool that does not contain a binder with an average fiber diameter of 4.5 μm, followed by a dry heat treatment at 250 ° C. for 1 hour. It was made by performing. Then, the vacuum heat insulating material was produced using the laminate film similarly to the comparative example 2. The size of the vacuum heat insulating material was 500 mm × 400 mm × 10 mm, and the thermal conductivity was measured and found to be 2.0 mW · m −1 · K −1 .

この真空断熱材の外周に比較例1と同様に保護層を形成し、熱伝導率を調べたところ7.5 mW・m-1・K-1であった。さらにこの保護材付き真空断熱材を模擬施工形状に成形した。屈曲部となる板状の真空断熱材の長さ約400mmの辺から平行に100mm内側へ移動した線上にφ20mmの丸棒を当て、曲げ試験機を用いて10mm/minで90度に曲げ、断面が「コ」の字型になるように成形した。この真空断熱材を60℃の高温槽に入れ30日間放置した後、熱伝導率を調べたところ17.5mW・m-1・K-1であった。屈曲部に保護材を厚く配さなかったため劣化試験により熱伝導率が著しく増加し、断熱性能の劣る建築用部材であった。 A protective layer was formed on the outer periphery of the vacuum heat insulating material in the same manner as in Comparative Example 1, and the thermal conductivity was examined. As a result, it was 7.5 mW · m −1 · K −1 . Furthermore, this vacuum heat insulating material with a protective material was molded into a simulated construction shape. A plate-shaped vacuum heat insulating material to be bent is applied to a round bar of φ20mm on a line that has been moved inward by 100mm in parallel from a side of about 400mm in length, and is bent to 90 degrees at 10mm / min using a bending tester. Was shaped like a “U”. This vacuum heat insulating material was placed in a high-temperature bath at 60 ° C. and left for 30 days, and then the thermal conductivity was examined. The result was 17.5 mW · m −1 · K −1 . Since the protective material was not thickly disposed at the bent portion, the thermal conductivity was remarkably increased by the deterioration test, and the building member was inferior in heat insulating performance.

作製した保護層付き真空断熱材を、比較例1と同様に木枠の内壁相当面に取り付け熱貫流量を測定したところ、1.7Wであった。支持材の側面部分を真空断熱材で被覆してはいるが、屈曲部に保護材を厚く配さなかったため熱貫流量が約21%増加し、断熱性能の劣る建築用部材であった。
[比較例4]
The manufactured vacuum heat insulating material with a protective layer was attached to the surface corresponding to the inner wall of the wooden frame in the same manner as in Comparative Example 1, and the heat flow rate was measured. Although the side surface portion of the support material is covered with a vacuum heat insulating material, the protective material is not thickly arranged at the bent portion, so that the heat penetration flow rate is increased by about 21%, and the building member has poor heat insulating performance.
[Comparative Example 4]

比較例4として、外周を保護材で覆った真空断熱材を図2に示すように内壁2・隣接する2本の支持材4の対向する側面を被覆するように施工したが屈曲部に保護材を厚く配さない断熱施工面の模擬試料を作製し、熱貫流量を測定した。   As Comparative Example 4, a vacuum heat insulating material whose outer periphery was covered with a protective material was constructed so as to cover the opposing surfaces of the inner wall 2 and two adjacent support materials 4 as shown in FIG. A simulated sample of a heat-insulated construction surface that does not have a large thickness was prepared, and the heat flow rate was measured.

比較例4の真空断熱材は以下のように作製した。まず、真空断熱材の芯材として、平均繊維径4.4μmの結合剤を含まないグラスウール中に、大きさ450mm×350mm、厚さ30μmのアルミニウム製フィルムを挟み、更に250℃で1時間の乾燥熱処理を行なって作製した。その後、比較例1と同様にラミネートフィルムを用い真空断熱材を作製した。真空断熱材の大きさは500mm×400mm×10mmで、熱伝導率を測定したところ、1.8mW・m-1・K-1であった。 The vacuum heat insulating material of the comparative example 4 was produced as follows. First, as a vacuum insulation core material, an aluminum film with a size of 450 mm x 350 mm and a thickness of 30 μm is sandwiched in glass wool that does not contain a binder with an average fiber diameter of 4.4 μm, followed by a dry heat treatment at 250 ° C. for 1 hour. It was made by performing. Then, the vacuum heat insulating material was produced using the laminate film similarly to the comparative example 1. The size of the vacuum heat insulating material was 500 mm × 400 mm × 10 mm, and when the thermal conductivity was measured, it was 1.8 mW · m −1 · K −1 .

この真空断熱材の外周に比較例2と同様に保護層を形成し、熱伝導率を調べたところ8.6mW・m-1・K-1であった。さらにこの保護材付き真空断熱材を模擬施工形状に成形した。屈曲部となる板状の真空断熱材の長さ約400mmの辺から平行に100mm内側へ移動した線上にφ20mmの丸棒を当て、曲げ試験機を用いて10mm/minで90度に曲げ、断面が「コ」の字型になるように成形した。この真空断熱材を60℃の高温槽に入れ30日間放置した後、熱伝導率を調べたところ18.6mW・m-1・K-1であった。屈曲部に保護材を厚く配さなかったため劣化試験により熱伝導率が著しく増加し断熱性能の劣る建築用部材であった。 A protective layer was formed on the outer periphery of the vacuum heat insulating material in the same manner as in Comparative Example 2, and the thermal conductivity was examined. As a result, it was 8.6 mW · m −1 · K −1 . Furthermore, this vacuum heat insulating material with a protective material was molded into a simulated construction shape. A plate-shaped vacuum heat insulating material to be bent is applied to a round bar of φ20mm on a line that has been moved inward by 100mm in parallel from a side of about 400mm in length, and is bent to 90 degrees at 10mm / min using a bending tester. Was shaped like a “U”. This vacuum heat insulating material was placed in a high-temperature bath at 60 ° C. and allowed to stand for 30 days, and then the thermal conductivity was examined. The result was 18.6 mW · m −1 · K −1 . Since the protective material was not thickly disposed at the bent portion, the thermal conductivity was remarkably increased by a deterioration test, and the building member was inferior in heat insulation performance.

作製した保護層付き真空断熱材を、比較例1と同様に木枠の内壁相当面に取り付け熱貫流量を測定したところ、1.7Wであった。支持材の側面部分を真空断熱材で被覆してはいるが、屈曲部に保護材を厚く配さなかったため熱貫流量が約21%増加し、断熱性能の劣る建築用部材であった。   The manufactured vacuum heat insulating material with a protective layer was attached to the surface corresponding to the inner wall of the wooden frame in the same manner as in Comparative Example 1, and the heat flow rate was measured. Although the side surface portion of the support material is covered with a vacuum heat insulating material, the protective material is not thickly arranged at the bent portion, so that the heat penetration flow rate is increased by about 21%, and the building member has poor heat insulating performance.

図4に示す実施例6は、本発明の建築用部材を建築構造物に使用した例を示す。なお、図4は建築構造物の柱と柱の中間線を含む切断面における断面図であるため、柱または柱の近傍は描かれていない。建築構造物では、コンクリート基礎18上の構造材19に柱を組み、内壁(または天井板、床板)2の面と支持材(柱など)の側面を被覆するように断熱パネル5を設置する。実施例6の建築用部材は、真空断熱材および保護材を組み合わせた断熱パネルからなるものであって、真空断熱材はグラスウールからなる芯材を備え、保護材はスチレン系熱可塑性エラストマー等で形成され、真空断熱材が保護材中に配置される建築用部材の断熱パネルである。   Example 6 shown in FIG. 4 shows an example in which the building member of the present invention is used in a building structure. In addition, since FIG. 4 is sectional drawing in the cut surface containing the intermediate line of the pillar of a building structure and a pillar, the vicinity of a pillar or a pillar is not drawn. In the building structure, a pillar is assembled on the structural member 19 on the concrete foundation 18 and the heat insulating panel 5 is installed so as to cover the surface of the inner wall (or ceiling plate, floor plate) 2 and the side surface of the supporting member (column etc.). The building member of Example 6 is composed of a heat insulating panel in which a vacuum heat insulating material and a protective material are combined. The vacuum heat insulating material includes a core material made of glass wool, and the protective material is formed of a styrene thermoplastic elastomer or the like. And a heat insulating panel of a building member in which the vacuum heat insulating material is disposed in the protective material.

この時、建築用部材の断熱パネルは、以下のように作製した。真空断熱材にはグラスウールからなる芯材およびガス吸着のゲッター剤をラミネートフィルムからなる外包材に入れ、真空包装機で真空封止して熱伝導率が約2.0mW・m-1・K-1程の高性能な真空断熱材を用いた。また、真空断熱材の保護材として発泡処理を施したスチレン系熱可塑性エラストマーのシート2枚を用い、その間に真空断熱材を挟み周縁部をヒートシールして熱伝導率が7.5 mW・m-1・K-1程の高性能な断熱パネルを用いた。更に、建築構造物としての断熱性能向上のため、断熱パネルの屈曲予定部に加熱により軟化したスチレン系熱可塑性エラストマーを塗布し、この部分で曲率半径10mm以上で90度に曲げたうえで、内壁2の面と支持材の側面を被覆するように設置した。断熱パネルを内壁2の面を被覆するように設置したことで、室内からの熱漏洩を抑制し、かつ外壁側は空間が存在するため通気性が良く壁内部の結露を抑止する効果も得られる。 At this time, the heat insulation panel of the building member was produced as follows. For the vacuum insulation material, a glass wool core and gas adsorption getter agent are placed in an outer packaging made of a laminate film, and sealed in a vacuum packaging machine to have a thermal conductivity of approximately 2.0 mW · m -1 · K -1 A high performance vacuum heat insulating material was used. In addition, two sheets of foamed styrene thermoplastic elastomer were used as protective materials for the vacuum heat insulating material, and the thermal conductivity was 7.5 mW · m -1 by sandwiching the vacuum heat insulating material between them and heat-sealing the periphery. -A high-performance insulation panel of about K- 1 was used. Furthermore, in order to improve the heat insulation performance as a building structure, a styrene-based thermoplastic elastomer softened by heating is applied to the planned bending portion of the heat insulation panel, and the inner wall is bent at 90 degrees with a radius of curvature of 10 mm or more at this part. It installed so that the surface of 2 and the side surface of a support material might be coat | covered. By installing the heat insulation panel so as to cover the surface of the inner wall 2, heat leakage from the room is suppressed, and since there is a space on the outer wall side, air permeability is good and the effect of suppressing condensation inside the wall is also obtained. .

実施例6の断熱パネルには面上に釘打ち可能部が設けられているため、必要に応じて釘打ちによる位置の固定が可能である。断熱性能に優れる真空断熱材を用いた断熱パネルを内壁面および支持材の側面を被覆するように設置することで、断熱パネルを設置しなかったものに比べて断熱性能を長期間維持する効果が得られ、省エネルギー効果に優れる住宅等の建築構造物が提供できる。   Since the nailable portion is provided on the surface of the heat insulating panel of Example 6, the position can be fixed by nail as necessary. By installing a heat insulation panel using a vacuum heat insulating material with excellent heat insulation performance so as to cover the inner wall surface and the side surface of the support material, the effect of maintaining the heat insulation performance for a long period of time compared to those without a heat insulation panel installed As a result, it is possible to provide a building structure such as a house that is excellent in energy saving effect.

図5は、本発明の実施例1〜5と比較例1〜4の仕様を対比して示す説明図である。   FIG. 5 is an explanatory diagram showing the specifications of Examples 1 to 5 of the present invention and Comparative Examples 1 to 4 in comparison.

真空断熱材の外周に保護材が存在することにより建築現場への輸送時などにも周囲の物体との接触により真空断熱材の外包材が損傷するのを防ぎ、断熱性能の維持に寄与する。さらに、屈曲部に他の部位よりも厚く保護材を配しているため屈曲部での性能劣化が少ない。さらに、真空断熱材の表面に室温で弾性を有する層が存在することにより、内壁と隣接する2本の支持材に囲まれた空間内に容易に周囲と隙間無く施工することができ、熱漏洩・湿気の移動を防止することができる。   Due to the presence of the protective material on the outer periphery of the vacuum heat insulating material, the outer packaging material of the vacuum heat insulating material is prevented from being damaged due to contact with surrounding objects even during transportation to the construction site, etc., and contributes to maintaining heat insulating performance. Furthermore, since the protective material is disposed thicker than the other parts at the bent portion, performance degradation at the bent portion is small. Furthermore, the presence of a layer having elasticity at room temperature on the surface of the vacuum heat insulating material allows it to be easily installed in the space surrounded by the two supporting materials adjacent to the inner wall without any gaps between them and heat leakage.・ Moisture movement can be prevented.

結果として建築物の省エネルギー性を向上し、地球温暖化防止の一助とすることができる。さらに表面の保護材の形状復元力により真空断熱材と周囲の壁面などとの間に摩擦力が生じるため、施工後の位置ずれも防止される。また、建築物を解体する際、本発明の真空断熱材の保護材を容易にリサイクルできるため、廃棄物の減量化・資源の再利用にも貢献する。   As a result, the energy-saving property of the building can be improved and it can help to prevent global warming. Furthermore, since a frictional force is generated between the vacuum heat insulating material and the surrounding wall surface by the shape restoring force of the protective material on the surface, displacement after construction is also prevented. Further, when the building is demolished, the protective material for the vacuum heat insulating material of the present invention can be easily recycled, which contributes to the reduction of waste and the reuse of resources.

1…真空断熱材、2…内壁、3… 外壁、4…支持材、5…断熱パネル、6…周縁部、7…芯材、8…外包材、9…保護材 DESCRIPTION OF SYMBOLS 1 ... Vacuum heat insulating material, 2 ... Inner wall, 3 ... Outer wall, 4 ... Support material, 5 ... Thermal insulation panel, 6 ... Peripheral part, 7 ... Core material, 8 ... Outer packaging material, 9 ... Protective material

Claims (10)

真空断熱材および該真空断熱材外周を被覆した保護材を有する断熱パネルを備えた建築用部材であって、前記真空断熱材は芯材と、ゲッター剤と、前記芯材および前記ゲッター剤を収納するガスバリア性の外包材とを備え、該外包材の内部を真空封止した真空断熱材において、前記真空断熱材の屈曲部では真空断熱材の平坦部以上の厚さの保護材を有することを特徴とする建築用部材。   A building member provided with a heat insulating panel having a vacuum heat insulating material and a protective material covering the outer periphery of the vacuum heat insulating material, the vacuum heat insulating material containing a core material, a getter agent, the core material and the getter agent A vacuum insulating material having a gas barrier outer packaging material and vacuum-sealing the inside of the outer packaging material, wherein the bent portion of the vacuum heat insulating material has a protective material having a thickness equal to or greater than the flat portion of the vacuum heat insulating material. Characteristic building material. 請求項1に記載された建築用部材において、前記真空断熱材の芯材はグラスウールからなることを特徴とする建築用部材。   The building member according to claim 1, wherein a core material of the vacuum heat insulating material is made of glass wool. 請求項1又は2に記載された建築用部材において、前記真空断熱材の平坦部における保護材の厚さを、1.0mm以上2.00mm以下としたことを特徴とする建築用部材。   The building member according to claim 1 or 2, wherein the thickness of the protective material in the flat portion of the vacuum heat insulating material is 1.0 mm or more and 2.00 mm or less. 請求項1又は2に記載された建築用部材において、前記真空断熱材の屈曲部における保護材の厚さを、2.0mm以上8.0mm以下としたことを特徴とする建築用部材。   The building member according to claim 1 or 2, wherein the thickness of the protective material at the bent portion of the vacuum heat insulating material is 2.0 mm or more and 8.0 mm or less. 請求項1乃至4のいずれか1項に記載された建築用部材において、前記真空断熱材を覆う保護材として、圧縮永久歪み(70℃、22h)が54%以下およびメルトマスフローレート (230℃、49N)が3g/10分以上の高分子材料を用いることを特徴とする建築用部材。   In the building member according to any one of claims 1 to 4, as a protective material covering the vacuum heat insulating material, compression set (70 ° C, 22h) is 54% or less and a melt mass flow rate (230 ° C, 49N) uses a polymer material of 3 g / 10 min or more. 請求項1乃至5のいずれか1項に記載された建築用部材において、前記真空断熱材を保護材で被覆した断熱パネルの熱伝導率が10mW・m-1・K-1以下であることを特徴とする建築用部材。 The building member according to any one of claims 1 to 5, wherein a thermal conductivity of a heat insulating panel in which the vacuum heat insulating material is covered with a protective material is 10 mW · m -1 · K -1 or less. Characteristic building material. 請求項1乃至6のいずれか1項に記載された建築用部材において、前記保護材がスチレン系熱可塑性エラストマーまたはオレフィン系熱可塑性エラストマーのいずれか一方を含むことを特徴とする建築用部材。   The building member according to any one of claims 1 to 6, wherein the protective material includes any one of a styrene-based thermoplastic elastomer or an olefin-based thermoplastic elastomer. 請求項1乃至7のいずれか1項に記載された建築用部材において、該建築用部材は釘打ち可能部を有することを特徴とする建築用部材。   The building member according to any one of claims 1 to 7, wherein the building member has a nailable portion. 請求項1乃至8のいずれか1項に記載された建築用部材において、該建築用部材は建築物の少なくとも内壁と隣接する2本の支持材に囲まれた空間内で前記支持材の側面および前記内壁面を被覆するように配置されたことを特徴とする建築用部材。   The building member according to any one of claims 1 to 8, wherein the building member has a side surface of the support member in a space surrounded by at least two support members adjacent to the inner wall of the building, and An architectural member arranged to cover the inner wall surface. 請求項1乃至9のいずれか1項に記載された建築用部材を、住宅等の断熱施工面に備えたことを特徴とする建築構造物。   A building structure comprising the building member according to any one of claims 1 to 9 on a heat insulating construction surface of a house or the like.
JP2010158478A 2010-07-13 2010-07-13 Member for building and building structure Pending JP2012021288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010158478A JP2012021288A (en) 2010-07-13 2010-07-13 Member for building and building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010158478A JP2012021288A (en) 2010-07-13 2010-07-13 Member for building and building structure

Publications (1)

Publication Number Publication Date
JP2012021288A true JP2012021288A (en) 2012-02-02

Family

ID=45775761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010158478A Pending JP2012021288A (en) 2010-07-13 2010-07-13 Member for building and building structure

Country Status (1)

Country Link
JP (1) JP2012021288A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053497A (en) * 2016-09-27 2018-04-05 マグ・イゾベール株式会社 Heat insulation panel and construction method thereof
US10246872B2 (en) 2014-12-26 2019-04-02 Panasonic Intellectual Property Management Co., Ltd. Dwelling wall provided with vacuum heat-insulating material and vacuum heat-insulating material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10246872B2 (en) 2014-12-26 2019-04-02 Panasonic Intellectual Property Management Co., Ltd. Dwelling wall provided with vacuum heat-insulating material and vacuum heat-insulating material
JP2018053497A (en) * 2016-09-27 2018-04-05 マグ・イゾベール株式会社 Heat insulation panel and construction method thereof

Similar Documents

Publication Publication Date Title
Kalnæs et al. Vacuum insulation panel products: A state-of-the-art review and future research pathways
EP2602395B1 (en) Vacuum thermal insulation panel
Alam et al. Vacuum Insulation Panels (VIPs) for building construction industry–A review of the contemporary developments and future directions
KR101572823B1 (en) vacuum insulation panel
Baetens et al. Vacuum insulation panels for building applications: A review and beyond
Alotaibi et al. Vacuum insulated panels for sustainable buildings: a review of research and applications
US20150315779A1 (en) Construction Panels
JP5162377B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
KR20150122137A (en) Vacuum thermal insulation material
JP4622892B2 (en) Building wall structure
Boafo et al. Slim curtain wall spandrel integrated with vacuum insulation panel: A state-of-the-art review and future opportunities
JP2012021288A (en) Member for building and building structure
JP5514015B2 (en) Interior building materials with insulation
KR102172144B1 (en) Double Vacuum Insulating Panel and Manufacturing Method Thereof
CN215488392U (en) Low-heat-bridge-effect high-strength vacuum insulation panel
JP4615489B2 (en) Thermal insulation construction method
JP2010013839A (en) Heat insulating wall
JP5077081B2 (en) Insulated walls and buildings and houses to which they are applied
JP2010053980A (en) Vacuum heat insulation material, heat insulation box using the same and refrigerator
JP5157119B2 (en) Building wall
JP5217641B2 (en) Insulation wall
JP6242043B2 (en) Thermal insulation structure of building
JP5239389B2 (en) Insulated wall and house with it
JP2018053497A (en) Heat insulation panel and construction method thereof
JP7387287B2 (en) Heat insulating structure and plate-shaped heat insulating material