KR20200082790A - Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body - Google Patents

Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body Download PDF

Info

Publication number
KR20200082790A
KR20200082790A KR1020180173720A KR20180173720A KR20200082790A KR 20200082790 A KR20200082790 A KR 20200082790A KR 1020180173720 A KR1020180173720 A KR 1020180173720A KR 20180173720 A KR20180173720 A KR 20180173720A KR 20200082790 A KR20200082790 A KR 20200082790A
Authority
KR
South Korea
Prior art keywords
aluminum nitride
sintering
composition
amorphous
sintering aid
Prior art date
Application number
KR1020180173720A
Other languages
Korean (ko)
Other versions
KR102205085B1 (en
Inventor
류성수
백수현
김경민
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020180173720A priority Critical patent/KR102205085B1/en
Publication of KR20200082790A publication Critical patent/KR20200082790A/en
Application granted granted Critical
Publication of KR102205085B1 publication Critical patent/KR102205085B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

The purpose of the present invention is to provide a composition for sintering aluminum nitride, which can be sintered even at a low temperature, and is configured to make an aluminum nitride sintered body having high heat conductivity while having excellent strength at the same time, and an aluminum nitride sintered body made by sintering the same. According to an embodiment of the present invention in order to achieve the purpose, provided is a composition for sintering aluminum nitride containing amorphous liquid sintering aid, crystalline liquid sintering aid, dispersion-strengthening crystalline ceramic additive, and aluminum nitride powder. According to another embodiment of the present invention in order to achieve the purpose, provided is a high strength aluminum nitride sintered body made by sintering the composition for sintering the aluminum nitride.

Description

고강도 질화알루미늄 소결용 조성물 및 고강도 질화알루미늄 소결체 {Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body}High strength aluminum nitride composition and high strength aluminum nitride sintered body {Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body}

본 발명은 질화알루미늄 소결용 조성물 및 그로부터 만들어지는 질화알루미늄 소결체에 관한 것으로, 더욱 상세하게는 1700℃ 이하의 온도에서도 소결이 가능하고 높은 밀도와 열전도도를 얻을 수 있으며 동시에 강도가 우수한 질화알루미늄 소결체를 제조할 수 있는 소결용 조성물 및 그로부터 만들어지는 소결체에 관한 것이다.The present invention relates to a composition for sintering aluminum nitride and an aluminum nitride sintered body made therefrom, more specifically, it is possible to sinter even at a temperature of 1700° C. or lower, obtain a high density and thermal conductivity, and at the same time, an aluminum nitride sintered body having excellent strength. It relates to a composition for sintering that can be produced and a sintered body made therefrom.

질화알루미늄(AlN)의 결정구조는 Al 또는 N을 중심으로 한 사면체가 기본구조가 된다. 이러한 사면체가 상호 교차하여 헥사고날 우르자이트(hexagonal wurtzite) 구조를 가지고 있으며, 원자간 결합은 공유결합으로 이루어져 있다. 이상적인 우르자이트(wurtzite) 구조에서는 c축과 a축의 비가 1.633인데 반해, AlN은 격자상수가 a = 0.31127nm, c = 0.49816nm로서 c/a 비가 약간 변이된 우르자이트(wurtzite) 구조를 갖는다.The crystal structure of aluminum nitride (AlN) is a tetrahedron centered on Al or N as a basic structure. These tetrahedrons cross each other and have a hexagonal wurtzite structure, and the interatomic bonds consist of covalent bonds. In an ideal wurtzite structure, the ratio between c-axis and a-axis is 1.633, whereas AlN has a lattice constant of a = 0.31127 nm and c = 0.49816 nm, which has a w/tz structure with a slight c/a ratio shift. .

이러한 질화알루미늄은 알루미나(Al2O3)보다 10배 이상 높은 열전도도(319W/m·K)와 우수한 전기절연특성(9×1013Ω·㎝), 그리고 실리콘(Si)과 비슷한 열팽창계수(4×10-6), 우수한 기계적강도로 인해 고열전도 세라믹스의 반도체 기판이나 부품에 응용되고 있다. 이러한 특성으로 질화알루미늄은 반도체 장비용 부품으로 많이 이용되고 있으며, 구체적으로 금속박막접착 질화알루미늄기판, LED(Light Emitting Diode)용 방열판, 고출력 Si장치용 방열판, 화합물반도체용 레이저소자용 기판, 하이브리드자동차 전원제어용 기판 등에 이용되고 있다. 이중 반도체 제조장비용 부품에 사용되는 질화알루미늄의 경우 열전도성, 열팽창 그리고 플라즈마에 대한 내성이 우수하여 발열체(Heater), 정전척(Electrostatic Chuck), 세라믹 챔버 부품 등에 사용되고 있으며, 열전도도가 뛰어난 질화알루미늄의 경우 레이저 다이오드나 LED용 방열판에 관한 연구가 활발히 진행되고 있다.This aluminum nitride has a thermal conductivity (319W/m·K) 10 times higher than that of alumina (Al 2 O 3 ), excellent electrical insulation properties (9×10 13 Ω·㎝), and a coefficient of thermal expansion similar to silicon (Si) ( 4×10 -6 ), due to its excellent mechanical strength, it has been applied to semiconductor substrates and components of high thermal conductivity ceramics. Due to these characteristics, aluminum nitride is widely used as a component for semiconductor equipment, specifically, a metal thin film adhesive aluminum nitride substrate, a heat sink for LEDs (Light Emitting Diode), a heat sink for high-power Si devices, a substrate for laser devices for compound semiconductors, and a hybrid vehicle. It is used for power control boards and the like. Aluminum nitride used in semiconductor manufacturing equipment parts has excellent thermal conductivity, thermal expansion, and resistance to plasma, so it is used in heaters, electrostatic chucks, ceramic chamber parts, etc. In the case, studies on laser diodes and heat sinks for LEDs are being actively conducted.

그러나, 질화알루미늄(AlN)은 강한 공유결합의 특성으로 소결이 어렵고 치밀한 소결체를 얻기 위해서는 고온의 가압소결이 요구되고, 분위기 제어 없이 소결하게 되면 1,000℃ 이상의 고온에서는 산화되는 성질을 지니고 있다. 이러한 문제점을 보완하기 위하여 출발원료인 질화알루미늄의 미립화와 알칼리토류 금속 산화물이나 희토류 금속 산화물 등의 소결조제 첨가를 통하여 상대적으로 저온에서 치밀한 소결체를 얻으려는 연구가 많이 이루어지고 있다. 그러나 이러한 소결조제를 이용해도 여전히 1900℃ 이상의 고온공정이 필요하기 때문에 여전히 산업적 응용에 제한이 많고 저온에서 높은 밀도의 소결체를 얻을 수 있는 소결조제의 경우 열전도도가 떨어지는 문제가 여전히 있는 것으로 보고되고 있다. 또한, 질화알루미늄 소결체는 뛰어난 열전도도를 가지지만 강도 측면에서는 상대적으로 다른 재료의 소결체보다 낮은 특성을 나타내고 있어 이를 개선하려는 시도 또한 많이 이루어지고 있다.However, aluminum nitride (AlN) is hard to sinter due to the characteristics of strong covalent bonds, and high-temperature sintering is required to obtain a dense sintered body. In order to compensate for this problem, many studies have been conducted to obtain a compact sintered body at a relatively low temperature by atomizing aluminum nitride as a starting material and adding a sintering aid such as an alkaline earth metal oxide or a rare earth metal oxide. However, even with these sintering aids, it is still reported that there is still a problem of poor thermal conductivity in the case of sintering aids capable of obtaining high-density sintered bodies at low temperatures because there are still many limitations in industrial applications because high-temperature processes of 1900°C or higher are still required. . In addition, the aluminum nitride sintered body has excellent thermal conductivity, but the strength is relatively lower than that of other materials, so many attempts have been made to improve it.

대한민국 특허등록공보 제10-1147029호Republic of Korea Patent Registration Publication No. 10-1147029

본 발명이 해결하고자 하는 과제는 낮은 온도에서도 소결이 가능하고 열전도도가 높으면서 동시에 강도가 우수한 질화알루미늄 소결체를 만들기 위한 질화알루미늄 소결용 조성물 및 이를 소성하여 만들어지는 고강도 질화알루미늄 소결체를 제공함에 있다.The problem to be solved by the present invention is to provide a composition for sintering aluminum nitride for making an aluminum nitride sintered body capable of sintering at a low temperature and having high thermal conductivity and excellent strength, and a high strength aluminum nitride sintered body made by firing the same.

상기 과제를 해결하기 위한 본 발명의 일 측면은, 비정질 액상소결조제, 결정질 액상소결조제, 분산강화형 결정질 세라믹 첨가제 및 질화알루미늄 분말을 포함하는 질화알루미늄 소결용 조성물을 제공하는 것이다.One aspect of the present invention for solving the above problems is to provide a composition for sintering aluminum nitride comprising an amorphous liquid sintering aid, a crystalline liquid sintering aid, a dispersion-reinforced crystalline ceramic additive and an aluminum nitride powder.

상기 과제를 해결하기 위한 본 발명의 또 다른 측면은, 상기 질화알루미늄 소결용 조성물을 소성하여 만들어지는 고강도 질화알루미늄 소결체를 제공하는 것이다.Another aspect of the present invention for solving the above problems is to provide a high-strength aluminum nitride sintered body made by firing the composition for sintering the aluminum nitride.

본 발명에 따르는 질화알루미늄 소결용 조성물을 이용하여 열전도도가 높으면서 동시에 강도가 우수한 질화알루미늄 소결체를 낮은 온도에서의 소성을 통해 얻을 수 있다.By using the composition for sintering aluminum nitride according to the present invention, an aluminum nitride sintered body having high thermal conductivity and excellent strength can be obtained through firing at a low temperature.

도 1은 실험에서 사용된 원료분말의 주사전자현미경 사진이다.
도 2는 분산강화형 결정질 세라믹 첨가제 양에 따른 질화알루미늄 소결체의 강도 변화를 보여주는 그래프이다.
도 3은 분산강화형 결정질 세라믹 첨가제 유무에 따른 질화알루미늄 소결체의 미세조직 차이를 보여주는 주사전자현미경 사진이다.
도 4은 분산강화형 결정질 세라믹 첨가제 유무에 따른 질화알루미늄 소결체의 X-선 회절분석 결과를 나타내는 그래프이다.
1 is a scanning electron microscope photograph of the raw material powder used in the experiment.
Figure 2 is a graph showing the strength change of the aluminum nitride sintered body according to the amount of the dispersion-reinforced crystalline ceramic additive.
Figure 3 is a scanning electron microscope photograph showing the difference in the microstructure of the aluminum nitride sintered body with or without dispersion-reinforced crystalline ceramic additive.
4 is a graph showing the results of X-ray diffraction analysis of the aluminum sintered sintered body with or without dispersion-reinforced crystalline ceramic additive.

이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다. 하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, with reference to the accompanying drawings for the embodiment of the present invention will be described the configuration and operation. In the following description of the present invention, when it is determined that a detailed description of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. Also, when a part is said to'include' a certain component, this means that other components may be further included rather than excluding other components, unless otherwise stated.

본 발명에 따라, 비정질 액상소결조제, 결정질 액상소결조제, 분산강화형 결정질 세라믹 첨가제 및 질화알루미늄 분말을 포함하는 질화알루미늄 소결용 조성물을 제공한다. 비정질 액상소결조제는 낮은 온도에서도 질화알루미늄이 소결되도록 유도하고, 결정질 액상소결조제는 낮은 온도에서의 액상소결을 유도하면서 동시에 이차상 형성을 통해 질화알루미늄의 산소 농도를 낮춰줌으로써 열전도도를 높일 수 있다. 또한, 분산강화형 결정질 세라믹 첨가제는 소결체 내에서 미세한 결정을 유도하여 분산강화효과를 통해 소결 완료 후 소결체의 강도를 높이는 역할을 하게 된다.According to the present invention, there is provided a composition for sintering aluminum nitride comprising an amorphous liquid sintering aid, a crystalline liquid sintering aid, a dispersion-reinforced crystalline ceramic additive and an aluminum nitride powder. The amorphous liquid sintering aid induces aluminum nitride to be sintered even at a low temperature, and the crystalline liquid sintering aid induces liquid sintering at a low temperature while simultaneously increasing the thermal conductivity by lowering the oxygen concentration of aluminum nitride through secondary phase formation. . In addition, the dispersion-reinforced crystalline ceramic additive induces fine crystals in the sintered body to increase the strength of the sintered body after completion of the sintering through the dispersion strengthening effect.

또한 본 발명에 따라, 상기 비정질 액상소결조제는 비정질 코디어라이트(cordierite) 글래스, 비정질 붕규산 유리, 비정질 MgO-CaO-Al2O3-SiO2계 글래스 및 비정질 CaO-Al2O3-SiO2계 글래스로 이루어지는 군에서 선택되는 1종 이상을 포함하는, 질화알루미늄 소결용 조성물을 제공한다. 비정질 액상소결조제는 질화알루미늄이 소결이 될 수 있도록 도와 주는 첨가제로서, 질화알루미늄과 계면 반응을 통해 낮은 온도에서도 액상소결이 이루어지도록 유도한다. 상술한 비정질 액상소결조제들은 모두 열팽창계수가 작아 열충격에 강한 특성을 가지고 있어 질화알루미늄 소결에 적합하다. In addition, according to the present invention, the amorphous liquid sintering aid is amorphous cordierite glass, amorphous borosilicate glass, amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass and amorphous CaO-Al 2 O 3 -SiO 2 It provides a composition for sintering aluminum nitride, comprising at least one selected from the group consisting of glass based. Amorphous liquid sintering aid is an additive that helps aluminum nitride to be sintered, and leads to liquid sintering even at low temperatures through an interfacial reaction with aluminum nitride. All of the above-mentioned amorphous liquid sintering aids have a small thermal expansion coefficient and are strong in thermal shock, so they are suitable for sintering aluminum nitride.

또한, 본 발명에 따라, 상기 비정질 액상소결조제는 착체 중합법으로 만들어지는 질화알루미늄 소결용 조성물을 제공한다. 일반적인 고상 반응법에서는 기계적 분쇄와 혼합에 의존하기 때문에 합성된 분말의 균일 및 균질성이 떨어지고 1 미크론 이하의 입자를 만들기 어렵다. 이러한 고상 반응법의 문제점을 개선하기 위해 습식화학법이 많이 이용되고 있으며, 이중에서 졸겔법이나 공침법 등이 주로 사용되고 있다. 이러한 습식 화학법은 분말을 미립자화함에 있어 장점이 있지만 여러 성분이 혼합된 분말에서 화학양론적 조성을 유지하기 어려운 단점이 있다. 이에 비해 착체 중합법을 통해 복합 산화물 분말을 제조하는 경우 양이온들의 화학 양론적 조성이 유지되고 또한 양이온의 낮은 이동도에 기인한 응집 방지 효과 등으로 균질하고 미세한 입자들로 구성된 다성분계 복합 산화물 분말을 쉽게 얻을 수 있다. 또한, 높은 순도와 균일성을 보이고 합성한 분말의 화학적 물리적 특성 제어가 용이하며 공정상으로도 비교적 낮은 온도에서 제조되고 고상 반응법에서 필요한 분쇄, 재소결 단계가 없는 장점이 있다.In addition, according to the present invention, the amorphous liquid sintering aid provides a composition for sintering aluminum nitride made by a complex polymerization method. In the general solid-state reaction method, since it relies on mechanical grinding and mixing, the uniformity and homogeneity of the synthesized powder is poor and it is difficult to make particles of 1 micron or less. In order to improve the problems of the solid phase reaction method, a wet chemical method is widely used, and among them, a sol-gel method or a co-precipitation method is mainly used. This wet chemistry method has an advantage in micronizing the powder, but has a disadvantage in that it is difficult to maintain a stoichiometric composition in a powder mixed with various components. On the other hand, when the complex oxide powder is prepared through the complex polymerization method, the stoichiometric composition of the cations is maintained, and the multi-component complex oxide powder composed of homogeneous and fine particles is maintained due to the agglomeration prevention effect due to the low mobility of the cations. It is easy to get. In addition, it exhibits high purity and uniformity, and it is easy to control the chemical and physical properties of the synthesized powder, and has the advantage of being manufactured at a relatively low temperature in the process and without the necessary crushing and resintering steps in the solid phase reaction method.

본 발명에서, 착체중합법은 에틸렌 글리콜(Ethylen glycol)과 같은 글리콜(glycol)계 용매와 시트르산(citric acid)과 같은 α-하이드록시 카르복실산(α-hydroxy carboxylic acid)을 사용하여 각 금속 이온들을 수지상 안에 균일하게 분포시킨 금속-킬레이트 복합체(metal-chelate complex)를 형성시킨 후, 적정온도( 100℃ 이하)에서 폴리에스테르(polyester)화 반응을 유도하여 폴리머 수지를 형성하고 이를 300℃ 이상의 온도에서 가열함으로써 폴리머(polymer)의 분해를 일으켜 유기물을 제거하고 복합 산화물 분말을 제조하는 방법을 의미한다. 이러한, 착체중합법은 출발 용액 상태의 양이온들이 화학양론적 조성비를 최종 생성물인 산화물 상태에서도 유지할 수 있게 되는 장점이 있고, 양이온의 이동도가 낮아 분말이 형성되면서 응집되는 것을 방지할 수 있다.In the present invention, the complex polymerization method uses a glycol-based solvent such as ethylene glycol (Ethylen glycol) and an α-hydroxy carboxylic acid such as citric acid. After forming a metal-chelate complex in which they are uniformly distributed in a dendritic phase, a polymer resin is formed by inducing a polyesterification reaction at an appropriate temperature (100° C. or lower) and a temperature of 300° C. or higher It means a method of removing the organic material by causing decomposition of the polymer by heating in and preparing a composite oxide powder. Such a complex polymerization method has an advantage in that cations in the starting solution state can maintain a stoichiometric composition ratio even in the oxide state as a final product, and it is possible to prevent cations from being agglomerated while forming a powder due to low mobility of the cations.

본 발명에 따라, 상기 결정질 액상소결조제는 Y2O3, CaCO3, MgO 및 Al2O3 로 이루어지는 군에서 선택되는 1종 이상을 포함하는 질화알루미늄 소결용 조성물을 제공한다. 결정질 액상소결조제는 질화알루미늄 표면에서 공정(eutectic) 반응을 통해 액상소결이 일어나도록 유도하여 소결온도를 낮춰주는 역할을 하고, 질화알루미늄 표면에 존재하는 산소와 반응하여 이차상을 형성함으로써 질화알루미늄 자체의 순도를 높여 최종 소결체의 열전도도를 높여주는 역할을 하게 된다.According to the present invention, the crystalline liquid sintering aid provides a composition for sintering aluminum nitride comprising one or more selected from the group consisting of Y 2 O 3 , CaCO 3 , MgO and Al 2 O 3 . The crystalline liquid sintering aid lowers the sintering temperature by inducing liquid sintering to occur through an eutectic reaction on the aluminum nitride surface, and reacts with oxygen present on the aluminum nitride surface to form a secondary phase, thereby forming aluminum secondary itself. It plays a role of increasing the purity of the final sintered body to increase the thermal conductivity.

또한, 본 발명에 따라, 상기 분산강화형 결정질 세라믹 첨가제는 ZrO2, YSZ(Y2O3-stabilized ZrO2) 및 SiC로 이루어지는 군에서 선택되는 1종 이상을 포함하는 질화알루미늄 소결용 조성물을 제공한다. 분산강화형 결정질 세라믹 첨가제는 질화알루미늄 소결체 내에서 소결 공정 중 미세 입자 형성을 유도함으로써 분산강화효과를 통해 고강도 소결체가 되도록 한다.In addition, according to the present invention, the dispersion-reinforced crystalline ceramic additive provides a composition for sintering aluminum nitride comprising at least one member selected from the group consisting of ZrO 2 , YSZ (Y 2 O 3 -stabilized ZrO 2 ) and SiC. do. The dispersion-reinforced crystalline ceramic additive induces fine particle formation during the sintering process in the aluminum nitride sintered body, so that it becomes a high-strength sintered body through a dispersion strengthening effect.

또한, 본 발명에 따라 비정질 액상소결조제는 질화알루미늄 소결용 조성물 전체 중량의 0.5~5%인 질화알루미늄 소결용 조성물을 제공한다. 비정질 세라믹 첨가제의 양이 너무 적으면 소결온도를 낮게 가져가기 어렵고, 소결체의 밀도가 낮게되는 문제가 있다. 반대로 양이 너무 많으면 열전도도가 낮아지는 문제가 있다. 따라서 비정질 세라믹 첨가제는 질화알루미늄 소결용 조성물 전체 중량의 0.5~5.0%가 바람직하다.In addition, the amorphous liquid sintering aid according to the present invention provides a composition for sintering aluminum nitride, which is 0.5 to 5% of the total weight of the composition for sintering aluminum nitride. If the amount of the amorphous ceramic additive is too small, it is difficult to bring the sintering temperature low, and there is a problem that the density of the sintered body is low. Conversely, if the amount is too large, there is a problem that the thermal conductivity is lowered. Therefore, the amorphous ceramic additive is preferably 0.5 to 5.0% of the total weight of the composition for sintering aluminum nitride.

본 발명에 따라, 상기 비정질 세라믹 첨가제는 평균 입자 크기가 1.0㎛ 이하인, 질화알루미늄 소결용 조성물을 제공한다. 비정질 세라믹 첨가제의 크기가 작을수록 표면 에너지가 높아 낮은 온도에서도 원활한 소결이 이루어지고 소결밀도가 높아져서 소결체의 열전도도도 좋아지게 되기 때문이다.According to the present invention, the amorphous ceramic additive provides a composition for sintering aluminum nitride having an average particle size of 1.0 μm or less. This is because the smaller the size of the amorphous ceramic additive, the higher the surface energy, and smooth sintering even at low temperatures, and the higher the sintering density, the better the thermal conductivity of the sintered body.

본 발명에 따라, 상기 결정질 액상소결조제는 질화알루미늄 소결용 조성물 전체 중량의 0.5~5%인 질화알루미늄 소결용 조성물을 제공한다. 결정질 액상소결조제의 양이 너무 적으면 최종 소결체의 열전도도가 낮게 되고, 너무 많으면 질화알루미늄 입자의 입성장이 발생하여 소결체의 강도가 떨어지는 문제가 발생한다. 따라서 결정질 세라믹 첨가제는 질화알루미늄 소결용 조성물 전체 중량의 0.5~5.0%가 바람직하다.According to the present invention, the crystalline liquid sintering aid provides a composition for sintering aluminum nitride, which is 0.5 to 5% of the total weight of the composition for sintering aluminum nitride. If the amount of the crystalline liquid sintering aid is too small, the thermal conductivity of the final sintered body becomes low, and if too large, particle growth of the aluminum nitride particles occurs, resulting in a decrease in strength of the sintered body. Therefore, the crystalline ceramic additive is preferably 0.5 to 5.0% of the total weight of the composition for sintering aluminum nitride.

또한, 본 발명에 따라, 상기 분산강화형 결정질 세라믹 첨가제는 상기 질화알루미늄 소결용 조성물 전체 중량의 0.5~3.0%인 질화알루미늄 소결용 조성물을 제공한다. 분산강화형 결정질 세라믹 첨가제의 양이 너무 적으면 분산강화효과를 얻기 어렵고 너무 많으면 열전도도를 떨어뜨리는 문제가 있다. 따라서 분산강화형 결정질 세라믹 첨가제는 질화알루미늄 소결용 조성물 전체 중량의 0.3~3.0%가 바람직하다.Further, according to the present invention, the dispersion-reinforced crystalline ceramic additive provides a composition for sintering aluminum nitride, which is 0.5 to 3.0% of the total weight of the composition for sintering aluminum nitride. If the amount of the dispersion-reinforced crystalline ceramic additive is too small, it is difficult to obtain a dispersion-reinforcement effect, and if the amount is too large, there is a problem of deteriorating thermal conductivity. Therefore, the dispersion-reinforced crystalline ceramic additive is preferably 0.3 to 3.0% of the total weight of the composition for sintering aluminum nitride.

또한, 본 발명에 따라, 상기 비정질 액상소결조제, 상기 결정질 액상소결조제 및 상기 분산강화형 결정질 세라믹 첨가제는 중량비가 1:2~5:0.3~3인 질화알루미늄 소결용 조성물을 제공한다. 비정질 액상소결조제 대비 결정질 액상소결조제의 중량비가 2 보다 낮으면 이차상 형성이 적어 열전도도 향상 효과가 낮고 5 보다 크면 비정질 액상소결조제의 비율이 낮아져 소결온도가 높아지기 때문에 바람직하지 않다. 또한, 비정질 액상소결조제 대비 분산강화형 결정질 세라믹 첨가제의 중량비가 0.3 보다 낮으면 분산강화효과가 나타나지 않고, 3 보다 크면 열전도도가 크게 낮아지게 되어 바람직하지 않다.In addition, according to the present invention, the amorphous liquid sintering aid, the crystalline liquid sintering aid and the dispersion-reinforced crystalline ceramic additive provide a composition for sintering aluminum nitride having a weight ratio of 1:2 to 5:0.3 to 3. When the weight ratio of the crystalline liquid sintering aid compared to the amorphous liquid sintering aid is less than 2, the secondary phase formation is small, so the effect of improving thermal conductivity is low, and when it is greater than 5, the ratio of the amorphous liquid sintering aid is lowered, which is not preferable. In addition, when the weight ratio of the dispersion-reinforced crystalline ceramic additive compared to the amorphous liquid sintering aid is lower than 0.3, the dispersion strengthening effect does not appear, and when it is larger than 3, the thermal conductivity is significantly lowered, which is not preferable.

본 발명에 따라, 상기 비정질 액상소결조제, 상기 결정질 액상소결조제 및 상기 분산강화형 결정질 세라믹 첨가제의 중량의 합은 상기 질화알루미늄 소결용 조성물 전체 중량의 3~8%인 질화알루미늄 소결용 조성물을 제공한다. 전체 첨가제의 양이 너무 적으면 안정적인 소결체를 형성할 수 없어 소결체의 밀도가 낮게 되고 이에 따라 열전도도와 강도가 떨어지게 된다. 반대로 너무 많아도 열전도 역할을 하는 질화알루미늄의 양이 줄어들어 열전도도가 떨어지게 되는 문제가 있다. 따라서, 첨가제의 총량은 질화알루미늄 소결용 조성물 전체 중량의 3~8%인 것이 바람직하다.According to the present invention, the sum of the weights of the amorphous liquid sintering aid, the crystalline liquid sintering aid and the dispersion-reinforced crystalline ceramic additive provides a composition for sintering aluminum nitride that is 3 to 8% of the total weight of the composition for sintering aluminum nitride. do. If the total amount of the additive is too small, a stable sintered body cannot be formed, so the density of the sintered body becomes low, and thus the thermal conductivity and strength decrease. Conversely, even if too much, there is a problem in that the amount of aluminum nitride, which serves as thermal conductivity, decreases, resulting in a decrease in thermal conductivity. Therefore, the total amount of the additive is preferably 3 to 8% of the total weight of the composition for sintering aluminum nitride.

또한, 본 발명에서 비정질 MgO-CaO-Al2O3-SiO2계 글래스는 MgO:CaO:Al2O3:SiO2의 몰비가 1:1~5:1~3:5~11인 질화알루미늄 소결용 조성물을 제공한다. 비정질 MgO-CaO-Al2O3-SiO2계 글래스는 상기 조성일 때 융점이 낮아져 질화알루미늄을 소결할 때 충분한 밀도를 나타낼 수 있다.In addition, in the present invention, the amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass has an aluminum nitride having a molar ratio of MgO:CaO:Al 2 O 3 :SiO 2 of 1:1 to 5:1 to 3:5 to 11 Provided is a composition for sintering. Amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass may exhibit a sufficient density when sintering aluminum nitride due to a low melting point in the above composition.

또한, 본 발명에서는 상술한 다양한 질화알루미늄 소결용 조성물을 소성하여 만들어지는 질화알루미늄 소결체를 제공한다. 주 재료인 질화알루미늄 이외에도 비정질 액상소결조제, 결정질 액상소결조제 및 분산강화형 결정질 세라믹 첨가제를 동시에 포함하는 질화알루미늄 소결용 조성물을 비교적 낮은 온도에서 소결함으로써 열전도도가 높으면서 동시에 강도가 우수한 질화알루미늄 소결체를 얻을 수 있다. 소성할 때 온도는 기존의 희토류 첨가제를 이용할 때 보다 낮은 1,400~1,700℃에서 이루어지는 것이 바람직하다. In addition, the present invention provides an aluminum nitride sintered body made by firing the above-described various compositions for sintering aluminum nitride. By sintering the composition for sintering aluminum nitride, which simultaneously includes an amorphous liquid sintering aid, a crystalline liquid sintering aid, and a dispersion-reinforced crystalline ceramic additive in addition to the main material of aluminum nitride, sintered aluminum nitride sintered body having high thermal conductivity and excellent strength at the same time. Can be obtained. When firing, the temperature is preferably made at 1,400 to 1,700°C lower than when using the conventional rare earth additive.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명을 예시한 것으로서 본 발명은 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. The following examples illustrate the invention and the invention is not limited thereto.

(실시예 1)(Example 1)

질화알루미늄 분말에 비정질 액상소결조제, 결정질 액상소결조제 및 분산강화형 결정질 세라믹 첨가제를 혼합하여 혼합 분말을 제작하였다. 사용된 질화알루미늄 분말(Grade H, Tokuyama, Japan)은 고순도 알루미나를 사용하여 열탄소 환원질화법으로 제조한 분말을 사용하였고, 물성표는 아래 표 1에 나타내었다. 질화알루미늄 분말에 대한 주사전자현미경 사진은 도 1(a)에서 나타내었다.A mixed powder was prepared by mixing an aluminum nitride powder with an amorphous liquid sintering aid, a crystalline liquid sintering aid, and a dispersion-reinforced crystalline ceramic additive. The aluminum nitride powder (Grade H, Tokuyama, Japan) used was a powder prepared by a thermal carbon reduction nitriding method using high-purity alumina, and the physical properties are shown in Table 1 below. The scanning electron microscope photograph of the aluminum nitride powder is shown in Fig. 1(a).

비표면적(Specific Surface Area) (m2/g)Specific Surface Area (m 2 /g) 2.50~2.682.50~2.68 평균 입자 크기(Mean Particle Size) (㎛)Mean particle size (㎛) 1.07~1.171.07~1.17

불순물


impurities
O(wt%)O(wt%) 0.78~0.860.78 to 0.86
C(ppm)C (ppm) 130~270130~270 Ca(ppm)Ca(ppm) 200~240200-240 Si(ppm)Si (ppm) 39~4839~48 Fe(ppm)Fe(ppm) 10~1410~14

상기 질화알루미늄 분말에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 3.0 wt% 그리고 0.5 wt%가 되도록 칭량하여 혼합하였다. 사용된 MCAS분말은 직접 제작하여 사용하였고(도 1(b)), 이트리아 분말은 중국 시노세라(Sinocera)사에서 구매하였으며(도 1(c)), 이트리아 분말은 유럽의 스타크(H.C Stark)사로부터 구매하였다(도 1 (d))Amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass (MCAS) powder as an amorphous liquid sintering aid in the aluminum nitride powder, crystalline yttria (Y 2 O 3 ) powder as a crystalline liquid sintering aid, and dispersion-enhanced crystalline As a ceramic additive, YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder was weighed and mixed to 1.0 wt%, 3.0 wt% and 0.5 wt%, respectively, for the total mixed powder. The used MCAS powder was produced and used directly (FIG. 1(b)), and the yttria powder was purchased from Sinocera, China (FIG. 1(c)), and the yttria powder was stark in Europe (HC Stark). ) From the company (Fig. 1 (d))

혼합은 2번 이루어졌는데, 1차 혼합은 3D 믹서를 이용하여 50rpm으로 2시간 동안 실시하였으며 사용한 지르코니아 볼은 Ø3 규격이었다. 2차 혼합은 Ø3 규격의 지르코니아 볼을 이용하여 100rpm으로 24시간 동안 볼밀링을 하였다. 이후 테이프 캐스팅을 통해 시트를 제작하였는데, 테이프 캐스팅 시의 조건은 아래 표 2 에서 정리하였다. The mixing was done twice, and the primary mixing was performed at 50 rpm for 2 hours using a 3D mixer, and the zirconia ball used was Ø3 standard. For the second mixing, ball milling was performed at 100 rpm for 24 hours using a zirconia ball of Ø3 standard. Since the sheet was produced through tape casting, the conditions at the time of tape casting are summarized in Table 2 below.

도포조건Application conditions 댐높이Dam height 0.30 mm0.30 mm 이송속도Feed speed 2 m/min2 m/min 건조dry 70℃70℃ 적층조건Lamination condition 테이블, 헤드 온도Table, head temperature 50℃50℃ 압력pressure 10ton, 10초10ton, 10 seconds 압착조건Crimping condition 온도Temperature 70℃70℃ 압력pressure 200bar, 10분 (등방가압)200bar, 10 minutes (isotropic pressure) 절단조건Cutting condition 테이블, 블레이드 온도Table, blade temperature 50℃50℃ 절단 크기Cutting size 3.5㎝ x 3.5㎝3.5 cm x 3.5 cm

만들어진 시트는 박스로에서 580℃, 4시간 동안 유지하여 디바인딩 공정을 진행한 후 텅스텐 소결로를 이용하여 5℃/min 속도로 승온 후 1,600℃에서 1시간 동안 유지하여 소결을 진행하였고 소결로 내는 N2-4wt%H2 혼합가스를 이용하여 비산화분위기를 유지하였다. The produced sheet was maintained at 580° C. for 4 hours in a box furnace, and then subjected to a debinding process, heated up at a rate of 5° C./min using a tungsten sintering furnace, and then maintained at 1,600° C. for 1 hour to proceed with sintering. N 2 -4wt%H 2 A non-oxidizing atmosphere was maintained using a mixed gas.

상기 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말은 착체중합법으로 만들어졌는데, 용매로 하이드록시 카르복실산계 용매인 시트르산(Citric acid)(C6H8O7, 99.5%, DAE JUNG), 글리콜계 용매인 에틸렌 글리콜(Ethylene glycol)(HOCH2CH2OH, 99.0%, DAE JUNG)을 사용하였다. 출발원료로는 마그네슘(Mg) 전구체로 마그네슘 질산염인 마그네슘 나이트레이트 헥사하이드레이트(Magnesium Nitrate Hexahydrate) (Mg(NO3)2·6H2O, 98%, DAE JUNG), 칼슘 카보네이트(Calcium Carbonate)(CaCO3, 99.5%, JUNSEI), 알루미늄(Al) 전구체로 알루미늄 질산염인 알루미늄 나이트레이트 노나하이드레이트(Aluminum nitrate nonahydrate)(Al(NO3)3·9H2O, 98%, SAMCHUN), 실리콘(Si) 전구체로 테르라에틸 오르소실리케이트(Tetraethyl orthosilicate)(Si(OC2H5)4, 99%, ALDRICH)를 사용하였다. 에틸렌 글리콜을 90℃로 가열한 후 시트르산을 첨가하여 250rpm으로 1시간 동안 교반시켜 용해하였다. 이때 에틸렌 글리콜과 시트르산의 몰비는 4:1이 되도록 하였고 에틸렌 글리콜과 시트르산의 혼합 용매에 합성에 필요한 ME(금속(Metal) 성분을 포함하는 전구체들)의 총량을 CA(Citric Acid)와 1:5(ME의 총량:CA)의 몰비로 계산하였다. 여기서 상기 ME는 Mg(NO3)2·6H2O, CaCO3, Al(NO3)3·9H2O 및 Si(OC2H5)4 를 의미한다. 에틸렌 글리콜과 시트르산의 혼합 용매에 Mg(NO3)2·6H2O, CaCO3, Al(NO3)3·9H2O 및 Si(OC2H5)4의 순서대로 각각 30분간 용해하였다. 이때, Mg(NO3)2·6H2O, CaCO3, Al(NO3)3·9H2O 및 Si(OC2H5)4는 6.87:18.78:28.25:46.09 의 몰비로 첨가하여 용해하였는데, 이는 산화물에 대하여 중량%로 환산하였을 때는 MgO:CaO:Al2O3:SiO2= 5:19:26:50의 비율을 이룬다. 반응이 완료된 용액은 히팅 멘틀(Heating Mentle)에서 300℃로 2시간 동안 가열하여 액체를 증발시켜 분말 상태로 만들었다. 이러한 분말을 분말전구체(powder precursor)라고 칭하였다. 가열 후에도 분말전구체에 잔존해 있는 유기물을 제거하기 위해 400℃에서 5시간 동안 열처리를 하였다. 유기물이 제거된 분말을 400∼800℃에서 5시간 동안 하소시켜 비정질의 MgO-CaO-Al2O3-SiO2계 글래스 분말을 합성하였다. 이때 합성된 비정질 글래스 분말의 입도는 평균 입자 크기가 0.1㎛ 이었다.The amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass (MCAS) powder was made by a complex polymerization method, and as a solvent, a hydroxy carboxylic acid solvent citric acid (C 6 H 8 O 7 , 99.5%, DAE JUNG), a glycol-based solvent, ethylene glycol (HOCH 2 CH 2 OH, 99.0%, DAE JUNG) was used. Starting materials include magnesium nitrate hexahydrate (Mg(NO 3 ) 2 , 6H2O, 98%, DAE JUNG), calcium carbonate (Calcium Carbonate) (CaCO 3 , magnesium nitrate as a precursor for magnesium) 99.5%, JUNSEI), aluminum nitrate, aluminum nitrate nonahydrate (Al(NO 3 ) 3 , 9H 2 O, 98%, SAMCHUN), terminator as silicon (Si) precursor Tetraethyl orthosilicate (Si(OC 2 H 5 ) 4 , 99%, ALDRICH) was used. After heating ethylene glycol to 90°C, citric acid was added and stirred at 250 rpm for 1 hour to dissolve. At this time, the molar ratio of ethylene glycol and citric acid was 4:1, and the total amount of ME (progenitors containing a metal component) required for synthesis in a mixed solvent of ethylene glycol and citric acid was 1:5 with CA (Citric Acid). It was calculated by the molar ratio of (total amount of ME:CA). Here, the ME is Mg(NO 3 ) 2 ·6H 2 O, CaCO 3 , Al(NO 3 ) 3 ·9H 2 O and Si(OC 2 H 5 ) 4 Means In a mixed solvent of ethylene glycol and citric acid, Mg(NO 3 ) 2 ·6H 2 O, CaCO 3 , Al(NO 3 ) 3 ·9H 2 O, and Si(OC 2 H 5 ) 4 were each dissolved in the order of 30 minutes. At this time, Mg(NO 3 ) 2 ·6H 2 O, CaCO 3 , Al(NO 3 ) 3 ·9H 2 O, and Si(OC 2 H 5 ) 4 were added and dissolved at a molar ratio of 6.87:18.78:28.25:46.09. , This is the ratio of MgO:CaO:Al 2 O 3 :SiO 2 = 5:19:26:50 in terms of weight percent relative to oxide. After the reaction was completed, the solution was heated to 300° C. for 2 hours in a heating mentle to evaporate the liquid to form a powder. This powder was referred to as powder precursor. After heating, heat treatment was performed at 400° C. for 5 hours to remove organic substances remaining in the powder precursor. The powder from which the organic material had been removed was calcined at 400 to 800°C for 5 hours to synthesize amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass powder. At this time, the average particle size of the synthesized amorphous glass powder was 0.1 μm.

(실시예 2)(Example 2)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 3.0 wt% 그리고 1.0 wt%가 되도록 칭량하여 혼합하였다. An aluminum nitride substrate was prepared in the same manner as in Example 1, but as an amorphous liquid sintering aid during the production of the mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass (MCAS) powder and crystalline liquid sintering aid were prepared. Crystalline yttria (Y 2 O 3 ) powder and YSZ (Y 2 O 3 -stabilized ZrO 2 ) powders as dispersion-enhanced crystalline ceramic additives, such that 1.0 wt%, 3.0 wt% and 1.0 wt%, respectively, for the total mixed powder. Weigh and mix.

(실시예 3)(Example 3)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 3.0 wt% 그리고 2.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but as an amorphous liquid sintering aid during the production of the mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass (MCAS) powder and crystalline liquid sintering aid were prepared. Crystalline yttria (Y 2 O 3 ) powder and YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder as a dispersion-reinforced crystalline ceramic additive to be 1.0 wt%, 3.0 wt% and 2.0 wt%, respectively, for the total mixed powder, respectively. Weigh and mix.

(실시예 4)(Example 4)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 3.0 wt% 그리고 3.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but as an amorphous liquid sintering aid during the production of the mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass (MCAS) powder and crystalline liquid sintering aid were prepared. Crystalline yttria (Y 2 O 3 ) powder and YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder as a dispersion-enhanced crystalline ceramic additive, such that 1.0 wt%, 3.0 wt% and 3.0 wt%, respectively, of the total mixed powder Weigh and mix.

(실시예 5)(Example 5)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 4.0 wt% 그리고 1.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but as an amorphous liquid sintering aid during the production of the mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass (MCAS) powder and crystalline liquid sintering aid were prepared. Crystalline yttria (Y 2 O 3 ) powders and YSZ (Y 2 O 3 -stabilized ZrO 2 ) powders as dispersion-enhanced crystalline ceramic additives are 1.0 wt%, 4.0 wt% and 1.0 wt%, respectively, for the total mixed powder. Weigh and mix.

(실시예 6)(Example 6)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 4.0 wt% 그리고 2.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but as an amorphous liquid sintering aid during the production of the mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass (MCAS) powder and crystalline liquid sintering aid were prepared. Crystalline yttria (Y 2 O 3 ) powder and YSZ (Y 2 O 3 -stabilized ZrO 2 ) powders as dispersion-enhanced crystalline ceramic additives such that 1.0 wt%, 4.0 wt% and 2.0 wt%, respectively, for the total mixed powder Weigh and mix.

(실시예 7)(Example 7)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 5.0 wt% 그리고 1.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but as an amorphous liquid sintering aid during the production of the mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass (MCAS) powder and crystalline liquid sintering aid were prepared. Crystalline yttria (Y 2 O 3 ) powder and YSZ (Y 2 O 3 -stabilized ZrO 2 ) powders as dispersion-enhanced crystalline ceramic additives such that 1.0 wt%, 5.0 wt% and 1.0 wt% of the total mixed powder, respectively. Weigh and mix.

(비교예 1)(Comparative Example 1)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스 분말만을 전체 혼합분말에 대해 1.0 wt%가 되도록 칭량하여 혼합하였다. An aluminum nitride substrate was prepared in the same manner as in Example 1, but only the amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass powder as an amorphous liquid sintering aid was prepared in a mixed powder, 1.0 wt% of the total mixed powder. Weighed and mixed.

(비교예 2)(Comparative Example 2)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말을 전체 혼합분말에 대해 각각 1.0 wt%와 3.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but when preparing a mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 glass powder as an amorphous liquid sintering aid and crystalline yttria as a crystalline liquid sintering aid (Y 2 O 3 ) The powders were weighed and mixed to 1.0 wt% and 3.0 wt%, respectively, for the total mixed powder.

(비교예 3)(Comparative Example 3)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질의 MgO-CaO-Al2O3-SiO2계 글래스 분말과 결정질 이트리아(Y2O3) 분말을 전체 혼합분말에 대해 각각 1.0 wt%와 4.0 wt%가 되도록 칭량하여 혼합하였다.In the same manner as in Example 1, an aluminum nitride substrate was prepared, but when mixing powder was prepared, amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass powder and crystalline yttria (Y 2 O 3 ) powder were thoroughly mixed. The powder was weighed and mixed to be 1.0 wt% and 4.0 wt%, respectively.

상기 실시예 및 비교예에서 만들어진 질화알루미늄 소결체에 대해 소결밀도 및 굽힘강도를 분석하였고 그 결과를 아래 표 3에서 정리하였다.The sintered density and bending strength of the aluminum nitride sintered body made in the above Examples and Comparative Examples were analyzed and the results are summarized in Table 3 below.

구분division 조성(wt%)Composition (wt%) 소결밀도
(g/cm3)
Sintering density
(g/cm 3 )
굽힘강도 (MPa)Flexural strength (MPa)
AlNAlN MCASMCAS Y2O3 Y 2 O 3 YSZYSZ 평균값medium 최대값Maximum 실시예1Example 1 95.595.5 1.01.0 3.03.0 0.50.5 3.303.30 480480 543543 실시예2Example 2 95.095.0 1.01.0 3.03.0 1.01.0 3.293.29 608608 627627 실시예3Example 3 94.094.0 1.01.0 3.03.0 2.02.0 3.343.34 565565 582582 실시예4Example 4 93.093.0 1.01.0 3.03.0 3.03.0 3.353.35 553553 596596 실시예5Example 5 94.094.0 1.01.0 4.04.0 1.01.0 3.323.32 638638 675675 실시예6Example 6 93.093.0 1.01.0 4.04.0 2.02.0 3.343.34 532532 633633 실시예7Example 7 93.093.0 1.01.0 5.05.0 1.01.0 3.303.30 563563 582582 비교예1Comparative Example 1 99.099.0 1.01.0 0.00.0 0.00.0 3.223.22 404404 435435 비교예2Comparative Example 2 96.096.0 1.01.0 3.03.0 0.00.0 3.293.29 424424 445445 비교예3Comparative Example 3 95.095.0 1.01.0 4.04.0 0.00.0 3.293.29 450450 462462

(MCAS : 비정질의 MgO-CaO-Al2O3-SiO2계 글래스 분말)(MCAS: amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass powder)

상기 표 3에서 볼 수 있듯이, 비정질 액상소결조제인 비정질인 MCAS 분말만을 사용하거나 MCAS 분말과 결정질 액상소결조제인 이트리아 분말을 동시에 사용한 경우에 비해 비정질 액상소결조제인 MCAS 분말 및 결정질 액상소결조제인 이트리아 분말과 분산강화형 결정질 세라믹 첨가제인 YSZ 분말을 같이 사용한 경우 굽힘강도가 급격히 상승하는 것을 알 수 있다. As shown in Table 3, compared to the case of using only amorphous MCAS powder, which is an amorphous liquid sintering aid or simultaneously using MCAS powder and yttria powder, which is an crystalline liquid sintering aid, MCAS powder and crystalline liquid sintering aid are amorphous liquid sintering aids. When yttria powder and YSZ powder, which is a dispersion-reinforced crystalline ceramic additive, are used together, it can be seen that the bending strength increases rapidly.

도 2에서, MCAS 분말과 이트리아 분말이 각각 1.0 wt%와 3.0 wt%가 혼합된 분말(비교예 2)과 추가로 YSZ분말이 더 혼합된 분말(실시예 2 내지 4)을 비교하면 소결 후 굽힘 강도가 현격한 차이를 보이고 있음을 알 수 있다. In FIG. 2, the MCAS powder and the yttria powder were compared with 1.0 wt% and 3.0 wt%, respectively (Comparative Example 2), and additionally mixed with YSZ powder (Examples 2 to 4), after sintering. It can be seen that the bending strength shows a significant difference.

이렇게, 분산강화형 결정질 세라믹 첨가제를 같이 사용함에 따라 굽힘강도가 급격히 상승하는 이유는 분산강화형 결정질 세라믹 첨가제가 소결 중 소결체 내에서 미세하게 그 자체로 또는 다른 첨가제와 반응하여 분산강화형 입자를 생성함으로써 소결체의 강도를 높이기 때문이다. 도 3(a)는 비교예 2에 따른 질화알루미늄 소결체의 단면을 나타내고 있고 도 3(b)는 실시예 2에 따른 질화알루미늄 소결체의 단면을 나타내고 있는데, 여기서 볼 수 있듯이 YSZ 분말이 첨가됨에 따라 미세한 ZrN 입자가 생성되었고 이러한 미세한 입자가 분산강화효과를 통해 전체 소결체의 강도를 높이고 있는 것을 알 수 있다.In this way, the reason why the bending strength rapidly increases as the dispersion-reinforced crystalline ceramic additive is used together is that the dispersion-reinforced crystalline ceramic additive reacts finely with itself or other additives in the sintered body during sintering to produce dispersed reinforced particles. This is because the strength of the sintered body is increased by doing so. 3(a) shows a cross section of the aluminum nitride sintered body according to Comparative Example 2 and FIG. 3(b) shows a cross section of the aluminum nitride sintered body according to Example 2, as can be seen here, as YSZ powder is added, it is fine. It can be seen that ZrN particles were produced and these fine particles are increasing the strength of the entire sintered body through the dispersion strengthening effect.

비교예 2 와 실시예 2 내지 4에서 제조된 소결체에 대한 X선 회절분석을 실시한 결과에서도 분석한 모든 샘플에서 질화알루미늄 이외에 질화알루미늄과 Y2O3의 반응에 의해 생성되는 이차상인 YAG(Yttrium aluminum garnet)상이 검출되었고, ㅊ추가로 YSZ 분말이 혼합된 실시예 2 내지 4에서는 ZrN 결정질이 형성된 것을 볼 수 있었다. 비정질 액상소결조제로 사용된 MCAS는 비정질상으로 X선 회절분석으로는 관찰되지 않았다.YAG (Yttrium aluminum), a secondary phase produced by the reaction of aluminum nitride and Y 2 O 3 in addition to aluminum nitride in all samples analyzed in X-ray diffraction analysis of the sintered bodies prepared in Comparative Examples 2 and 2 to 4 garnet) phase was detected, and in Examples 2 to 4, in which YSZ powder was further mixed, ZrN crystalline was formed. MCAS used as an amorphous liquid sintering aid was an amorphous phase and was not observed by X-ray diffraction analysis.

본 명세서에서는 본 발명이 일부 실시예들과 관련하여 설명되었지만, 본 발명이 속하는 기술분야의 당업자가 이해할 수 있는 본 발명의 정신 및 범위를 벗어나지 않는 범위에서 다양한 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 변형 및 변경은 본 명세서에 첨부된 특허청구의 범위 내에 속하는 것으로 생각되어야 한다.Although the present invention has been described herein with reference to some embodiments, it should be understood that various modifications and changes can be made without departing from the spirit and scope of the present invention, which can be understood by those skilled in the art to which the present invention pertains. something to do. In addition, such modifications and variations should be considered within the scope of the claims appended hereto.

Claims (14)

비정질 액상소결조제, 결정질 액상소결조제, 분산강화형 결정질 세라믹 첨가제 및 질화알루미늄 분말을 포함하는 질화알루미늄 소결용 조성물.A composition for sintering aluminum nitride comprising an amorphous liquid sintering aid, a crystalline liquid sintering aid, a dispersion-reinforced crystalline ceramic additive, and an aluminum nitride powder. 제 1 항에 있어서,
상기 비정질 액상소결조제는 비정질 코디어라이트(cordierite) 글래스, 비정질 붕규산 유리, 비정질 MgO-CaO-Al2O3-SiO2계 글래스 및 비정질 CaO-Al2O3-SiO2계 글래스로 이루어지는 군에서 선택되는 1종 이상을 포함하는, 질화알루미늄 소결용 조성물.
According to claim 1,
The amorphous liquid sintering aid is in the group consisting of amorphous cordierite glass, amorphous borosilicate glass, amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass and amorphous CaO-Al 2 O 3 -SiO 2 based glass A composition for sintering aluminum nitride, comprising at least one selected.
제 1 항에 있어서,
상기 비정질 액상소결조제는 착체 중합법으로 만들어지는, 질화알루미늄 소결용 조성물.
According to claim 1,
The amorphous liquid sintering aid is made by a complex polymerization method, the composition for sintering aluminum nitride.
제 1 항에 있어서,
상기 결정질 액상소결조제는 Y2O3, CaCO3, MgO 및 Al2O3 로 이루어지는 군에서 선택되는 1종 이상을 포함하는, 질화알루미늄 소결용 조성물.
According to claim 1,
The crystalline liquid sintering aid includes one or more selected from the group consisting of Y 2 O 3 , CaCO 3 , MgO, and Al 2 O 3 , aluminum nitride sintering composition.
제 1 항에 있어서,
상기 분산강화형 결정질 세라믹 첨가제는 ZrO2, YSZ(Y2O3-stabilized ZrO2) 및 SiC로 이루어지는 군에서 선택되는 1종 이상을 포함하는, 질화알루미늄 소결용 조성물.
According to claim 1,
The dispersion-reinforced crystalline ceramic additive comprises one or more selected from the group consisting of ZrO 2 , YSZ (Y 2 O 3 -stabilized ZrO 2 ) and SiC, aluminum nitride sintering composition.
제 1 항에 있어서,
상기 비정질 액상소결조제는 상기 질화알루미늄 소결용 조성물 전체 중량의 0.5~5.0%인, 질화알루미늄 소결용 조성물.
According to claim 1,
The amorphous liquid sintering aid is 0.5 to 5.0% of the total weight of the composition for sintering aluminum nitride, the composition for sintering aluminum nitride.
제 1 항에 있어서,
상기 비정질 액상소결조제는 평균 입자 크기가 1.0㎛ 이하인, 질화알루미늄 소결용 조성물.
According to claim 1,
The amorphous liquid sintering aid has an average particle size of 1.0 μm or less, a composition for sintering aluminum nitride.
제 1 항에 있어서,
상기 결정질 액상소결조제는 상기 질화알루미늄 소결용 조성물 전체 중량의 0.5~5.0%인, 질화알루미늄 소결용 조성물.
According to claim 1,
The crystalline liquid sintering aid is 0.5 to 5.0% of the total weight of the composition for sintering aluminum nitride, the composition for sintering aluminum nitride.
제 1 항에 있어서,
상기 분산강화형 결정질 세라믹 첨가제는 상기 질화알루미늄 소결용 조성물 전체 중량의 0.5~3.0%인, 질화알루미늄 소결용 조성물.
According to claim 1,
The dispersion-reinforced crystalline ceramic additive is 0.5 to 3.0% of the total weight of the composition for sintering aluminum nitride, the composition for sintering aluminum nitride.
제 1 항에 있어서,
상기 비정질 액상소결조제, 상기 결정질 액상소결조제 및 상기 분산강화형 결정질 세라믹 첨가제는 중량비가 1:2~5:0.3~3인, 질화알루미늄 소결용 조성물.
According to claim 1,
The amorphous liquid sintering aid, the crystalline liquid sintering aid and the dispersion-reinforced crystalline ceramic additive has a weight ratio of 1:2 to 5:0.3 to 3, aluminum nitride sintering composition.
제 1 항에 있어서,
상기 비정질 액상소결조제, 상기 결정질 액상소결조제 및 상기 분산강화형 결정질 세라믹 첨가제의 중량의 합은 상기 질화알루미늄 소결용 조성물 전체 중량의 3~8%인, 질화알루미늄 소결용 조성물.
According to claim 1,
A composition for sintering aluminum nitride, wherein the sum of the weights of the amorphous liquid sintering aid, the crystalline liquid sintering aid, and the dispersion-reinforced crystalline ceramic additive is 3 to 8% of the total weight of the composition for sintering aluminum nitride.
제 2 항에 있어서,
상기 비정질 MgO-CaO-Al2O3-SiO2계 글래스는 MgO:CaO:Al2O3:SiO2의 몰비가 1:1~5:1~3:5~11인, 질화알루미늄 소결용 조성물.
According to claim 2,
The amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass is a composition for sintering aluminum nitride, wherein the molar ratio of MgO:CaO:Al 2 O 3 :SiO 2 is 1:1 to 5:1 to 3:5 to 11 .
제 1 항 내지 제 12 항 중 어느 한 항에 기재된 질화알루미늄 소결용 조성물을 소성하여 만들어지는, 질화알루미늄 소결체.An aluminum nitride sintered body produced by firing the composition for sintering aluminum nitride according to any one of claims 1 to 12. 제 13 항에 있어서, 상기 소성은 1400~1700℃에서 이루어지는, 질화알루미늄 소결체.
The aluminum nitride sintered body according to claim 13, wherein the firing is performed at 1400 to 1700°C.
KR1020180173720A 2018-12-31 2018-12-31 Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body KR102205085B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180173720A KR102205085B1 (en) 2018-12-31 2018-12-31 Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180173720A KR102205085B1 (en) 2018-12-31 2018-12-31 Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body

Publications (2)

Publication Number Publication Date
KR20200082790A true KR20200082790A (en) 2020-07-08
KR102205085B1 KR102205085B1 (en) 2021-01-19

Family

ID=71600757

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180173720A KR102205085B1 (en) 2018-12-31 2018-12-31 Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body

Country Status (1)

Country Link
KR (1) KR102205085B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541145A (en) * 1993-12-22 1996-07-30 The Carborundum Company/Ibm Corporation Low temperature sintering route for aluminum nitride ceramics
JPH0925166A (en) * 1995-07-11 1997-01-28 Toshiba Corp Aluminum nitride sintered compact and its production
KR101147029B1 (en) 2007-02-02 2012-05-17 가부시끼가이샤 도꾸야마 Aluminum nitride sinter and process for producing the same
KR20140132866A (en) * 2013-05-08 2014-11-19 한국과학기술원 Aluminum Nitride ceramics with high strength and the method of low temperature sintering thereof
KR101516990B1 (en) * 2014-02-18 2015-05-04 한국세라믹기술원 Manufacturing method of aluminium nitride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541145A (en) * 1993-12-22 1996-07-30 The Carborundum Company/Ibm Corporation Low temperature sintering route for aluminum nitride ceramics
JPH0925166A (en) * 1995-07-11 1997-01-28 Toshiba Corp Aluminum nitride sintered compact and its production
KR101147029B1 (en) 2007-02-02 2012-05-17 가부시끼가이샤 도꾸야마 Aluminum nitride sinter and process for producing the same
KR20140132866A (en) * 2013-05-08 2014-11-19 한국과학기술원 Aluminum Nitride ceramics with high strength and the method of low temperature sintering thereof
KR101516990B1 (en) * 2014-02-18 2015-05-04 한국세라믹기술원 Manufacturing method of aluminium nitride

Also Published As

Publication number Publication date
KR102205085B1 (en) 2021-01-19

Similar Documents

Publication Publication Date Title
KR101516990B1 (en) Manufacturing method of aluminium nitride
KR100843758B1 (en) Alpha-sialon powder and process for producing the
WO2003004437A1 (en) Translucent rare earth oxide sintered article and method for production thereof
KR102270704B1 (en) Method for producing a powdery precursor material, powdery precursor material and use thereof
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
KR102270157B1 (en) Aluminum oxynitride ceramic heater and method for preparing the same
KR20110020292A (en) Oxide sintered object, sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object
JP2017178751A (en) Spherical ain particles and manufacturing method therefor
US11319254B2 (en) Aluminum nitride sintered body and method for producing same
KR20200081969A (en) Composition for Sintering Aluminum Nitride and Aluminum Nitride Sintered Body
KR102333561B1 (en) Method for producing a powdery precursor material, powdery precursor material, and use of said powdery precursor material
CN110036089B (en) Ceramic composition
JP6284609B2 (en) Aluminum nitride sintered body
JP2017178752A (en) Spherical ain particles, spherical ain filler and manufacturing method of spherical ain particles
US11014855B2 (en) Transparent AlN sintered body and method for producing the same
KR20160100110A (en) Composition for Pressureless Sintered Silicon Carbide Material Having Low-Resistivity, Sintered Body and the Producing Method of the Same
KR102205085B1 (en) Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body
JP6678623B2 (en) Aluminum nitride sintered body and method for producing the same
JP6062912B2 (en) Aluminum nitride sintered body and manufacturing method thereof
KR102299212B1 (en) High Strength Aluminum Nitride Sintered Body
JPH01252584A (en) Sintered composite ceramic compact and production thereof
KR102206446B1 (en) Silicon nitride ceramic and manufacturing method of the same
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JPH0566339B2 (en)
KR20210062783A (en) Aluminium nitride ceramics and manufacturing method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant