KR102205085B1 - Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body - Google Patents

Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body Download PDF

Info

Publication number
KR102205085B1
KR102205085B1 KR1020180173720A KR20180173720A KR102205085B1 KR 102205085 B1 KR102205085 B1 KR 102205085B1 KR 1020180173720 A KR1020180173720 A KR 1020180173720A KR 20180173720 A KR20180173720 A KR 20180173720A KR 102205085 B1 KR102205085 B1 KR 102205085B1
Authority
KR
South Korea
Prior art keywords
aluminum nitride
sintering
composition
amorphous
sintering aid
Prior art date
Application number
KR1020180173720A
Other languages
Korean (ko)
Other versions
KR20200082790A (en
Inventor
류성수
백수현
김경민
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020180173720A priority Critical patent/KR102205085B1/en
Publication of KR20200082790A publication Critical patent/KR20200082790A/en
Application granted granted Critical
Publication of KR102205085B1 publication Critical patent/KR102205085B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

본 발명이 해결하고자 하는 과제는 낮은 온도에서도 소결이 가능하고 열전도도가 높으면서 동시에 강도가 우수한 질화알루미늄 소결체를 만들기 위한 질화알루미늄 소결용 조성물 및 이를 소성하여 만들어지는 질화알루미늄 소결체를 제공함에 있다. 상기 과제를 해결하기 위한 본 발명의 일 측면은, 비정질 액상소결조제, 결정질 액상소결조제, 분산강화형 결정질 세라믹 첨가제 및 질화알루미늄 분말을 포함하는 질화알루미늄 소결용 조성물을 제공하는 것이다. 상기 과제를 해결하기 위한 본 발명의 또 다른 측면은, 상기 질화알루미늄 소결용 조성물을 소성하여 만들어지는 고강도 질화알루미늄 소결체를 제공하는 것이다.The problem to be solved by the present invention is to provide a composition for sintering aluminum nitride for making an aluminum nitride sintered body capable of sintering at a low temperature and having high thermal conductivity and excellent strength at the same time, and an aluminum nitride sintered body made by firing the same. One aspect of the present invention for solving the above problems is to provide an amorphous liquid phase sintering aid, a crystalline liquid phase sintering aid, a dispersion reinforced crystalline ceramic additive, and an aluminum nitride sintering composition comprising aluminum nitride powder. Another aspect of the present invention for solving the above problem is to provide a high-strength aluminum nitride sintered body made by firing the aluminum nitride sintering composition.

Description

고강도 질화알루미늄 소결용 조성물 및 고강도 질화알루미늄 소결체 {Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body}Composition for high strength aluminum nitride sintering and high strength aluminum nitride sintered body {Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body}

본 발명은 질화알루미늄 소결용 조성물 및 그로부터 만들어지는 질화알루미늄 소결체에 관한 것으로, 더욱 상세하게는 1700℃ 이하의 온도에서도 소결이 가능하고 높은 밀도와 열전도도를 얻을 수 있으며 동시에 강도가 우수한 질화알루미늄 소결체를 제조할 수 있는 소결용 조성물 및 그로부터 만들어지는 소결체에 관한 것이다.The present invention relates to a composition for sintering aluminum nitride and an aluminum nitride sintered body made therefrom, and more particularly, an aluminum nitride sintered body capable of sintering at a temperature of 1700°C or less, obtaining high density and thermal conductivity, and at the same time having excellent strength. It relates to a composition for sintering that can be produced and a sintered body made therefrom.

질화알루미늄(AlN)의 결정구조는 Al 또는 N을 중심으로 한 사면체가 기본구조가 된다. 이러한 사면체가 상호 교차하여 헥사고날 우르자이트(hexagonal wurtzite) 구조를 가지고 있으며, 원자간 결합은 공유결합으로 이루어져 있다. 이상적인 우르자이트(wurtzite) 구조에서는 c축과 a축의 비가 1.633인데 반해, AlN은 격자상수가 a = 0.31127nm, c = 0.49816nm로서 c/a 비가 약간 변이된 우르자이트(wurtzite) 구조를 갖는다.The basic structure of the crystal structure of aluminum nitride (AlN) is a tetrahedron centered on Al or N. These tetrahedrons cross each other to have a hexagonal wurtzite structure, and interatomic bonds are made of covalent bonds. In an ideal wurtzite structure, the ratio of the c-axis and the a-axis is 1.633, whereas AlN has a wurtzite structure with a lattice constant a = 0.31127nm and c = 0.49816nm with a slightly shifted c/a ratio. .

이러한 질화알루미늄은 알루미나(Al2O3)보다 10배 이상 높은 열전도도(319W/m·K)와 우수한 전기절연특성(9×1013Ω·㎝), 그리고 실리콘(Si)과 비슷한 열팽창계수(4×10-6), 우수한 기계적강도로 인해 고열전도 세라믹스의 반도체 기판이나 부품에 응용되고 있다. 이러한 특성으로 질화알루미늄은 반도체 장비용 부품으로 많이 이용되고 있으며, 구체적으로 금속박막접착 질화알루미늄기판, LED(Light Emitting Diode)용 방열판, 고출력 Si장치용 방열판, 화합물반도체용 레이저소자용 기판, 하이브리드자동차 전원제어용 기판 등에 이용되고 있다. 이중 반도체 제조장비용 부품에 사용되는 질화알루미늄의 경우 열전도성, 열팽창 그리고 플라즈마에 대한 내성이 우수하여 발열체(Heater), 정전척(Electrostatic Chuck), 세라믹 챔버 부품 등에 사용되고 있으며, 열전도도가 뛰어난 질화알루미늄의 경우 레이저 다이오드나 LED용 방열판에 관한 연구가 활발히 진행되고 있다.This aluminum nitride has a thermal conductivity (319W/m·K) 10 times higher than that of alumina (Al 2 O 3 ), excellent electrical insulation properties (9×10 13 Ω·cm), and a thermal expansion coefficient similar to that of silicon (Si) ( 4×10 -6 ), due to its excellent mechanical strength, it is applied to semiconductor substrates and parts of high thermal conductivity ceramics. Due to these characteristics, aluminum nitride is widely used as a component for semiconductor equipment, and specifically, an aluminum nitride substrate with metal thin film adhesion, a heat sink for a light emitting diode (LED), a heat sink for a high-power Si device, a substrate for a laser device for compound semiconductors, and a hybrid vehicle. It is used for power control boards and the like. Among them, aluminum nitride, which is used for parts for semiconductor manufacturing equipment, has excellent thermal conductivity, thermal expansion, and resistance to plasma, so it is used for heating elements, electrostatic chuck, and ceramic chamber parts. In this case, research on laser diodes or heat sinks for LEDs is being actively conducted.

그러나, 질화알루미늄(AlN)은 강한 공유결합의 특성으로 소결이 어렵고 치밀한 소결체를 얻기 위해서는 고온의 가압소결이 요구되고, 분위기 제어 없이 소결하게 되면 1,000℃ 이상의 고온에서는 산화되는 성질을 지니고 있다. 이러한 문제점을 보완하기 위하여 출발원료인 질화알루미늄의 미립화와 알칼리토류 금속 산화물이나 희토류 금속 산화물 등의 소결조제 첨가를 통하여 상대적으로 저온에서 치밀한 소결체를 얻으려는 연구가 많이 이루어지고 있다. 그러나 이러한 소결조제를 이용해도 여전히 1900℃ 이상의 고온공정이 필요하기 때문에 여전히 산업적 응용에 제한이 많고 저온에서 높은 밀도의 소결체를 얻을 수 있는 소결조제의 경우 열전도도가 떨어지는 문제가 여전히 있는 것으로 보고되고 있다. 또한, 질화알루미늄 소결체는 뛰어난 열전도도를 가지지만 강도 측면에서는 상대적으로 다른 재료의 소결체보다 낮은 특성을 나타내고 있어 이를 개선하려는 시도 또한 많이 이루어지고 있다.However, aluminum nitride (AlN) is difficult to sinter due to the characteristic of strong covalent bonds, and high temperature pressure sintering is required to obtain a dense sintered body, and when sintered without atmosphere control, it is oxidized at a high temperature of 1,000°C or higher. In order to compensate for this problem, many studies have been conducted to obtain a dense sintered body at a relatively low temperature through atomization of aluminum nitride as a starting material and addition of sintering aids such as alkaline earth metal oxide or rare earth metal oxide. However, even with such a sintering aid, a high-temperature process of 1900°C or higher is still required, so there are still many limitations in industrial applications. . In addition, although the aluminum nitride sintered body has excellent thermal conductivity, in terms of strength, it exhibits relatively lower properties than the sintered body of other materials, and thus many attempts to improve this have been made.

대한민국 특허등록공보 제10-1147029호Korean Patent Registration Publication No. 10-1147029

본 발명이 해결하고자 하는 과제는 낮은 온도에서도 소결이 가능하고 열전도도가 높으면서 동시에 강도가 우수한 질화알루미늄 소결체를 만들기 위한 질화알루미늄 소결용 조성물 및 이를 소성하여 만들어지는 고강도 질화알루미늄 소결체를 제공함에 있다.The problem to be solved by the present invention is to provide a composition for sintering aluminum nitride for making an aluminum nitride sintered body capable of sintering at a low temperature and having high thermal conductivity and excellent strength at the same time, and a high-strength aluminum nitride sintered body made by firing the same.

상기 과제를 해결하기 위한 본 발명의 일 측면은, 비정질 액상소결조제, 결정질 액상소결조제, 분산강화형 결정질 세라믹 첨가제 및 질화알루미늄 분말을 포함하는 질화알루미늄 소결용 조성물을 제공하는 것이다.One aspect of the present invention for solving the above problems is to provide an amorphous liquid phase sintering aid, a crystalline liquid phase sintering aid, a dispersion reinforced crystalline ceramic additive, and an aluminum nitride sintering composition comprising aluminum nitride powder.

상기 과제를 해결하기 위한 본 발명의 또 다른 측면은, 상기 질화알루미늄 소결용 조성물을 소성하여 만들어지는 고강도 질화알루미늄 소결체를 제공하는 것이다.Another aspect of the present invention for solving the above problem is to provide a high-strength aluminum nitride sintered body made by firing the aluminum nitride sintering composition.

본 발명에 따르는 질화알루미늄 소결용 조성물을 이용하여 열전도도가 높으면서 동시에 강도가 우수한 질화알루미늄 소결체를 낮은 온도에서의 소성을 통해 얻을 수 있다.By using the composition for sintering aluminum nitride according to the present invention, an aluminum nitride sintered body having high thermal conductivity and excellent strength can be obtained through firing at a low temperature.

도 1은 실험에서 사용된 원료분말의 주사전자현미경 사진이다.
도 2는 분산강화형 결정질 세라믹 첨가제 양에 따른 질화알루미늄 소결체의 강도 변화를 보여주는 그래프이다.
도 3은 분산강화형 결정질 세라믹 첨가제 유무에 따른 질화알루미늄 소결체의 미세조직 차이를 보여주는 주사전자현미경 사진이다.
도 4은 분산강화형 결정질 세라믹 첨가제 유무에 따른 질화알루미늄 소결체의 X-선 회절분석 결과를 나타내는 그래프이다.
1 is a scanning electron microscope photograph of the raw material powder used in the experiment.
2 is a graph showing a change in strength of an aluminum nitride sintered body according to the amount of dispersion-reinforced crystalline ceramic additive.
3 is a scanning electron microscope photograph showing a difference in microstructure of an aluminum nitride sintered body according to the presence or absence of a dispersion-reinforced crystalline ceramic additive.
4 is a graph showing the results of X-ray diffraction analysis of an aluminum nitride sintered body with or without a dispersion-reinforced crystalline ceramic additive.

이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다. 하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, with reference to the accompanying drawings with respect to an embodiment of the present invention will be described the configuration and operation. In the following description of the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, when a part'includes' a certain component, it means that other components may be further included rather than excluding other components unless specifically stated to the contrary.

본 발명에 따라, 비정질 액상소결조제, 결정질 액상소결조제, 분산강화형 결정질 세라믹 첨가제 및 질화알루미늄 분말을 포함하는 질화알루미늄 소결용 조성물을 제공한다. 비정질 액상소결조제는 낮은 온도에서도 질화알루미늄이 소결되도록 유도하고, 결정질 액상소결조제는 낮은 온도에서의 액상소결을 유도하면서 동시에 이차상 형성을 통해 질화알루미늄의 산소 농도를 낮춰줌으로써 열전도도를 높일 수 있다. 또한, 분산강화형 결정질 세라믹 첨가제는 소결체 내에서 미세한 결정을 유도하여 분산강화효과를 통해 소결 완료 후 소결체의 강도를 높이는 역할을 하게 된다.According to the present invention, there is provided a composition for sintering aluminum nitride comprising an amorphous liquid phase sintering aid, a crystalline liquid phase sintering aid, a dispersion-strengthening crystalline ceramic additive, and aluminum nitride powder. Amorphous liquid phase sintering aid induces sintering of aluminum nitride even at low temperature, and crystalline liquid phase sintering aid induces liquid phase sintering at low temperature and at the same time, it can increase thermal conductivity by lowering the oxygen concentration of aluminum nitride through secondary phase formation. . In addition, the dispersion-reinforced crystalline ceramic additive induces fine crystals in the sintered body to increase the strength of the sintered body after completion of sintering through the dispersion reinforcement effect.

또한 본 발명에 따라, 상기 비정질 액상소결조제는 비정질 코디어라이트(cordierite) 글래스, 비정질 붕규산 유리, 비정질 MgO-CaO-Al2O3-SiO2계 글래스 및 비정질 CaO-Al2O3-SiO2계 글래스로 이루어지는 군에서 선택되는 1종 이상을 포함하는, 질화알루미늄 소결용 조성물을 제공한다. 비정질 액상소결조제는 질화알루미늄이 소결이 될 수 있도록 도와 주는 첨가제로서, 질화알루미늄과 계면 반응을 통해 낮은 온도에서도 액상소결이 이루어지도록 유도한다. 상술한 비정질 액상소결조제들은 모두 열팽창계수가 작아 열충격에 강한 특성을 가지고 있어 질화알루미늄 소결에 적합하다. In addition, according to the present invention, the amorphous liquid phase sintering aid is amorphous cordierite glass, amorphous borosilicate glass, amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass and amorphous CaO-Al 2 O 3 -SiO 2 It provides a composition for sintering aluminum nitride, including at least one selected from the group consisting of glass. The amorphous liquid phase sintering aid is an additive that helps aluminum nitride to be sintered, and induces liquid phase sintering even at low temperatures through an interfacial reaction with aluminum nitride. All of the amorphous liquid phase sintering aids described above have small thermal expansion coefficients and are suitable for sintering aluminum nitride because they have strong properties against thermal shock.

또한, 본 발명에 따라, 상기 비정질 액상소결조제는 착체 중합법으로 만들어지는 질화알루미늄 소결용 조성물을 제공한다. 일반적인 고상 반응법에서는 기계적 분쇄와 혼합에 의존하기 때문에 합성된 분말의 균일 및 균질성이 떨어지고 1 미크론 이하의 입자를 만들기 어렵다. 이러한 고상 반응법의 문제점을 개선하기 위해 습식화학법이 많이 이용되고 있으며, 이중에서 졸겔법이나 공침법 등이 주로 사용되고 있다. 이러한 습식 화학법은 분말을 미립자화함에 있어 장점이 있지만 여러 성분이 혼합된 분말에서 화학양론적 조성을 유지하기 어려운 단점이 있다. 이에 비해 착체 중합법을 통해 복합 산화물 분말을 제조하는 경우 양이온들의 화학 양론적 조성이 유지되고 또한 양이온의 낮은 이동도에 기인한 응집 방지 효과 등으로 균질하고 미세한 입자들로 구성된 다성분계 복합 산화물 분말을 쉽게 얻을 수 있다. 또한, 높은 순도와 균일성을 보이고 합성한 분말의 화학적 물리적 특성 제어가 용이하며 공정상으로도 비교적 낮은 온도에서 제조되고 고상 반응법에서 필요한 분쇄, 재소결 단계가 없는 장점이 있다.In addition, according to the present invention, the amorphous liquid phase sintering aid provides a composition for sintering aluminum nitride made by a complex polymerization method. In a general solid-phase reaction method, since it relies on mechanical pulverization and mixing, the uniformity and homogeneity of the synthesized powder is inferior, and it is difficult to make particles of 1 micron or less. In order to improve the problems of the solid-phase reaction method, a wet chemistry method is widely used, and among them, a sol-gel method or a coprecipitation method is mainly used. This wet chemistry method has an advantage in micronizing the powder, but has a disadvantage in that it is difficult to maintain a stoichiometric composition in a powder in which several components are mixed. On the other hand, when the complex oxide powder is prepared through the complex polymerization method, the stoichiometric composition of the cations is maintained and the multi-component complex oxide powder composed of homogeneous and fine particles is produced due to the anti-aggregation effect due to the low mobility of the cations. It can be easily obtained. In addition, it exhibits high purity and uniformity, is easy to control the chemical and physical properties of the synthesized powder, is manufactured at a relatively low temperature in the process, and has the advantage of no pulverization and resintering steps required in the solid phase reaction method.

본 발명에서, 착체중합법은 에틸렌 글리콜(Ethylen glycol)과 같은 글리콜(glycol)계 용매와 시트르산(citric acid)과 같은 α-하이드록시 카르복실산(α-hydroxy carboxylic acid)을 사용하여 각 금속 이온들을 수지상 안에 균일하게 분포시킨 금속-킬레이트 복합체(metal-chelate complex)를 형성시킨 후, 적정온도( 100℃ 이하)에서 폴리에스테르(polyester)화 반응을 유도하여 폴리머 수지를 형성하고 이를 300℃ 이상의 온도에서 가열함으로써 폴리머(polymer)의 분해를 일으켜 유기물을 제거하고 복합 산화물 분말을 제조하는 방법을 의미한다. 이러한, 착체중합법은 출발 용액 상태의 양이온들이 화학양론적 조성비를 최종 생성물인 산화물 상태에서도 유지할 수 있게 되는 장점이 있고, 양이온의 이동도가 낮아 분말이 형성되면서 응집되는 것을 방지할 수 있다.In the present invention, the complex polymerization method uses a glycol-based solvent such as ethylene glycol and an α-hydroxy carboxylic acid such as citric acid to each metal ion. After forming a metal-chelate complex in which the resins are uniformly distributed in the resin, the polyesterization reaction is induced at an appropriate temperature (less than 100℃) to form a polymer resin, which is then at a temperature of 300℃ or higher. It refers to a method of producing a complex oxide powder by removing organic matter by causing decomposition of a polymer by heating at. Such a complex polymerization method has the advantage of being able to maintain a stoichiometric composition ratio of cations in a starting solution state even in an oxide state as a final product, and it is possible to prevent aggregation while forming a powder due to a low mobility of the cations.

본 발명에 따라, 상기 결정질 액상소결조제는 Y2O3, CaCO3, MgO 및 Al2O3 로 이루어지는 군에서 선택되는 1종 이상을 포함하는 질화알루미늄 소결용 조성물을 제공한다. 결정질 액상소결조제는 질화알루미늄 표면에서 공정(eutectic) 반응을 통해 액상소결이 일어나도록 유도하여 소결온도를 낮춰주는 역할을 하고, 질화알루미늄 표면에 존재하는 산소와 반응하여 이차상을 형성함으로써 질화알루미늄 자체의 순도를 높여 최종 소결체의 열전도도를 높여주는 역할을 하게 된다.According to the present invention, the crystalline liquid phase sintering aid provides a composition for sintering aluminum nitride comprising at least one selected from the group consisting of Y 2 O 3 , CaCO 3 , MgO and Al 2 O 3 . The crystalline liquid phase sintering aid serves to lower the sintering temperature by inducing liquid phase sintering through eutectic reaction on the surface of aluminum nitride, and reacts with oxygen present on the surface of aluminum nitride to form a secondary phase. It plays a role in increasing the purity of the final sintered body to increase the thermal conductivity of the final sintered body.

또한, 본 발명에 따라, 상기 분산강화형 결정질 세라믹 첨가제는 ZrO2, YSZ(Y2O3-stabilized ZrO2) 및 SiC로 이루어지는 군에서 선택되는 1종 이상을 포함하는 질화알루미늄 소결용 조성물을 제공한다. 분산강화형 결정질 세라믹 첨가제는 질화알루미늄 소결체 내에서 소결 공정 중 미세 입자 형성을 유도함으로써 분산강화효과를 통해 고강도 소결체가 되도록 한다.In addition, according to the present invention, the dispersion reinforced crystalline ceramic additive provides a composition for sintering aluminum nitride comprising at least one selected from the group consisting of ZrO 2 , YSZ (Y 2 O 3 -stabilized ZrO 2 ) and SiC do. The dispersion-reinforced crystalline ceramic additive induces the formation of fine particles during the sintering process in the aluminum nitride sintered body, thereby making the high-strength sintered body through the dispersion strengthening effect.

또한, 본 발명에 따라 비정질 액상소결조제는 질화알루미늄 소결용 조성물 전체 중량의 0.5~5%인 질화알루미늄 소결용 조성물을 제공한다. 비정질 세라믹 첨가제의 양이 너무 적으면 소결온도를 낮게 가져가기 어렵고, 소결체의 밀도가 낮게되는 문제가 있다. 반대로 양이 너무 많으면 열전도도가 낮아지는 문제가 있다. 따라서 비정질 세라믹 첨가제는 질화알루미늄 소결용 조성물 전체 중량의 0.5~5.0%가 바람직하다.In addition, the amorphous liquid phase sintering aid according to the present invention provides a composition for sintering aluminum nitride of 0.5 to 5% of the total weight of the composition for sintering aluminum nitride. If the amount of the amorphous ceramic additive is too small, it is difficult to bring the sintering temperature low, and there is a problem that the density of the sintered body is low. Conversely, if the amount is too large, there is a problem that the thermal conductivity decreases. Therefore, the amorphous ceramic additive is preferably 0.5 to 5.0% of the total weight of the composition for sintering aluminum nitride.

본 발명에 따라, 상기 비정질 세라믹 첨가제는 평균 입자 크기가 1.0㎛ 이하인, 질화알루미늄 소결용 조성물을 제공한다. 비정질 세라믹 첨가제의 크기가 작을수록 표면 에너지가 높아 낮은 온도에서도 원활한 소결이 이루어지고 소결밀도가 높아져서 소결체의 열전도도도 좋아지게 되기 때문이다.According to the present invention, the amorphous ceramic additive provides a composition for sintering aluminum nitride having an average particle size of 1.0 μm or less. This is because the smaller the size of the amorphous ceramic additive, the higher the surface energy, so that smooth sintering is performed even at a low temperature, and the sintering density is increased, thereby improving the thermal conductivity of the sintered body.

본 발명에 따라, 상기 결정질 액상소결조제는 질화알루미늄 소결용 조성물 전체 중량의 0.5~5%인 질화알루미늄 소결용 조성물을 제공한다. 결정질 액상소결조제의 양이 너무 적으면 최종 소결체의 열전도도가 낮게 되고, 너무 많으면 질화알루미늄 입자의 입성장이 발생하여 소결체의 강도가 떨어지는 문제가 발생한다. 따라서 결정질 세라믹 첨가제는 질화알루미늄 소결용 조성물 전체 중량의 0.5~5.0%가 바람직하다.According to the present invention, the crystalline liquid phase sintering aid provides a composition for sintering aluminum nitride, which is 0.5 to 5% of the total weight of the composition for sintering aluminum nitride. If the amount of the crystalline liquid sintering aid is too small, the thermal conductivity of the final sintered body is low, and when too much, grain growth of the aluminum nitride particles occurs and the strength of the sintered body decreases. Therefore, the crystalline ceramic additive is preferably 0.5 to 5.0% of the total weight of the composition for sintering aluminum nitride.

또한, 본 발명에 따라, 상기 분산강화형 결정질 세라믹 첨가제는 상기 질화알루미늄 소결용 조성물 전체 중량의 0.5~3.0%인 질화알루미늄 소결용 조성물을 제공한다. 분산강화형 결정질 세라믹 첨가제의 양이 너무 적으면 분산강화효과를 얻기 어렵고 너무 많으면 열전도도를 떨어뜨리는 문제가 있다. 따라서 분산강화형 결정질 세라믹 첨가제는 질화알루미늄 소결용 조성물 전체 중량의 0.3~3.0%가 바람직하다.In addition, according to the present invention, the dispersion reinforced crystalline ceramic additive provides a composition for sintering aluminum nitride of 0.5 to 3.0% of the total weight of the composition for sintering the aluminum nitride. If the amount of the dispersion strengthening crystalline ceramic additive is too small, it is difficult to obtain the dispersion strengthening effect, and if it is too large, there is a problem of lowering the thermal conductivity. Therefore, the dispersion-reinforced crystalline ceramic additive is preferably 0.3 to 3.0% of the total weight of the composition for sintering aluminum nitride.

또한, 본 발명에 따라, 상기 비정질 액상소결조제, 상기 결정질 액상소결조제 및 상기 분산강화형 결정질 세라믹 첨가제는 중량비가 1:2~5:0.3~3인 질화알루미늄 소결용 조성물을 제공한다. 비정질 액상소결조제 대비 결정질 액상소결조제의 중량비가 2 보다 낮으면 이차상 형성이 적어 열전도도 향상 효과가 낮고 5 보다 크면 비정질 액상소결조제의 비율이 낮아져 소결온도가 높아지기 때문에 바람직하지 않다. 또한, 비정질 액상소결조제 대비 분산강화형 결정질 세라믹 첨가제의 중량비가 0.3 보다 낮으면 분산강화효과가 나타나지 않고, 3 보다 크면 열전도도가 크게 낮아지게 되어 바람직하지 않다.In addition, according to the present invention, the amorphous liquid phase sintering aid, the crystalline liquid phase sintering aid, and the dispersion reinforced crystalline ceramic additive provide a composition for sintering aluminum nitride having a weight ratio of 1:2 to 5:0.3 to 3. If the weight ratio of the crystalline liquid sintering aid to the amorphous liquid sintering aid is less than 2, the secondary phase formation is small and the effect of improving the thermal conductivity is low, and when it is greater than 5, the ratio of the amorphous liquid sintering aid is lowered and the sintering temperature is increased. In addition, if the weight ratio of the dispersion-strengthening crystalline ceramic additive to the amorphous liquid sintering aid is less than 0.3, the dispersion strengthening effect does not appear, and if it is greater than 3, the thermal conductivity is significantly lowered, which is not preferable.

본 발명에 따라, 상기 비정질 액상소결조제, 상기 결정질 액상소결조제 및 상기 분산강화형 결정질 세라믹 첨가제의 중량의 합은 상기 질화알루미늄 소결용 조성물 전체 중량의 3~8%인 질화알루미늄 소결용 조성물을 제공한다. 전체 첨가제의 양이 너무 적으면 안정적인 소결체를 형성할 수 없어 소결체의 밀도가 낮게 되고 이에 따라 열전도도와 강도가 떨어지게 된다. 반대로 너무 많아도 열전도 역할을 하는 질화알루미늄의 양이 줄어들어 열전도도가 떨어지게 되는 문제가 있다. 따라서, 첨가제의 총량은 질화알루미늄 소결용 조성물 전체 중량의 3~8%인 것이 바람직하다.According to the present invention, the sum of the weight of the amorphous liquid phase sintering aid, the crystalline liquid phase sintering aid, and the dispersion reinforced crystalline ceramic additive is 3 to 8% of the total weight of the aluminum nitride sintering composition to provide a composition for sintering aluminum nitride do. If the amount of the total additive is too small, a stable sintered body cannot be formed, so that the density of the sintered body is low, resulting in a decrease in thermal conductivity and strength. Conversely, even if it is too large, there is a problem that the amount of aluminum nitride, which acts as a heat conduction, decreases, resulting in a decrease in thermal conductivity. Therefore, the total amount of the additive is preferably 3 to 8% of the total weight of the composition for sintering aluminum nitride.

또한, 본 발명에서 비정질 MgO-CaO-Al2O3-SiO2계 글래스는 MgO:CaO:Al2O3:SiO2의 몰비가 1:1~5:1~3:5~11인 질화알루미늄 소결용 조성물을 제공한다. 비정질 MgO-CaO-Al2O3-SiO2계 글래스는 상기 조성일 때 융점이 낮아져 질화알루미늄을 소결할 때 충분한 밀도를 나타낼 수 있다.In addition, in the present invention, the amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass is aluminum nitride having a molar ratio of MgO:CaO:Al 2 O 3 :SiO 2 of 1:1 to 5:1 to 3:5 to 11 It provides a composition for sintering. The amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass has a lower melting point in the above composition, so that it can exhibit a sufficient density when sintering aluminum nitride.

또한, 본 발명에서는 상술한 다양한 질화알루미늄 소결용 조성물을 소성하여 만들어지는 질화알루미늄 소결체를 제공한다. 주 재료인 질화알루미늄 이외에도 비정질 액상소결조제, 결정질 액상소결조제 및 분산강화형 결정질 세라믹 첨가제를 동시에 포함하는 질화알루미늄 소결용 조성물을 비교적 낮은 온도에서 소결함으로써 열전도도가 높으면서 동시에 강도가 우수한 질화알루미늄 소결체를 얻을 수 있다. 소성할 때 온도는 기존의 희토류 첨가제를 이용할 때 보다 낮은 1,400~1,700℃에서 이루어지는 것이 바람직하다. In addition, the present invention provides an aluminum nitride sintered body made by firing the various aluminum nitride sintering compositions described above. In addition to aluminum nitride, which is the main material, an aluminum nitride sintering composition containing an amorphous liquid sintering aid, a crystalline liquid sintering aid, and a dispersion-reinforced crystalline ceramic additive simultaneously is sintered at a relatively low temperature to produce an aluminum nitride sintered body with high thermal conductivity and excellent strength. Can be obtained. When firing, the temperature is preferably made at 1,400 ~ 1,700 ℃ lower than when using the existing rare earth additives.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명을 예시한 것으로서 본 발명은 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. The following examples illustrate the present invention, and the present invention is not limited thereto.

(실시예 1)(Example 1)

질화알루미늄 분말에 비정질 액상소결조제, 결정질 액상소결조제 및 분산강화형 결정질 세라믹 첨가제를 혼합하여 혼합 분말을 제작하였다. 사용된 질화알루미늄 분말(Grade H, Tokuyama, Japan)은 고순도 알루미나를 사용하여 열탄소 환원질화법으로 제조한 분말을 사용하였고, 물성표는 아래 표 1에 나타내었다. 질화알루미늄 분말에 대한 주사전자현미경 사진은 도 1(a)에서 나타내었다.A mixed powder was prepared by mixing an amorphous liquid sintering aid, a crystalline liquid sintering aid, and a dispersion-strengthening crystalline ceramic additive with aluminum nitride powder. The used aluminum nitride powder (Grade H, Tokuyama, Japan) was a powder prepared by the thermal carbon reduction nitriding method using high-purity alumina, and the physical properties are shown in Table 1 below. A scanning electron microscope photograph of the aluminum nitride powder is shown in Fig. 1(a).

비표면적(Specific Surface Area) (m2/g)Specific Surface Area (m 2 /g) 2.50~2.682.50~2.68 평균 입자 크기(Mean Particle Size) (㎛)Mean Particle Size (㎛) 1.07~1.171.07~1.17

불순물


impurities
O(wt%)O(wt%) 0.78~0.860.78~0.86
C(ppm)C(ppm) 130~270130-270 Ca(ppm)Ca(ppm) 200~240200-240 Si(ppm)Si(ppm) 39~4839~48 Fe(ppm)Fe(ppm) 10~1410-14

상기 질화알루미늄 분말에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 3.0 wt% 그리고 0.5 wt%가 되도록 칭량하여 혼합하였다. 사용된 MCAS분말은 직접 제작하여 사용하였고(도 1(b)), 이트리아 분말은 중국 시노세라(Sinocera)사에서 구매하였으며(도 1(c)), 이트리아 분말은 유럽의 스타크(H.C Stark)사로부터 구매하였다(도 1 (d))Amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass (MCAS) powder as an amorphous liquid sintering aid in the aluminum nitride powder, crystalline yttria (Y 2 O 3 ) powder as a crystalline liquid sintering aid, and dispersion-enhanced crystalline As a ceramic additive, YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder was weighed to be 1.0 wt%, 3.0 wt%, and 0.5 wt%, respectively, and mixed with respect to the total mixed powder. The MCAS powder used was directly manufactured and used (FIG. 1(b)), the yttria powder was purchased from China's Sinocera (FIG. 1(c)), and the yttria powder was European Stark (HC Stark). ) Purchased from the company (Fig. 1 (d))

혼합은 2번 이루어졌는데, 1차 혼합은 3D 믹서를 이용하여 50rpm으로 2시간 동안 실시하였으며 사용한 지르코니아 볼은 Ø3 규격이었다. 2차 혼합은 Ø3 규격의 지르코니아 볼을 이용하여 100rpm으로 24시간 동안 볼밀링을 하였다. 이후 테이프 캐스팅을 통해 시트를 제작하였는데, 테이프 캐스팅 시의 조건은 아래 표 2 에서 정리하였다. Mixing was done twice, and the first mixing was carried out for 2 hours at 50 rpm using a 3D mixer, and the zirconia balls used were Ø3. For the second mixing, ball milling was performed at 100 rpm for 24 hours using a Ø3 standard zirconia ball. Thereafter, a sheet was produced through tape casting, and the conditions for tape casting were summarized in Table 2 below.

도포조건Application condition 댐높이Dam height 0.30 mm0.30 mm 이송속도Feed speed 2 m/min2 m/min 건조dry 70℃70℃ 적층조건Lamination condition 테이블, 헤드 온도Table, head temperature 50℃50 압력pressure 10ton, 10초10 tons, 10 seconds 압착조건Crimp condition 온도Temperature 70℃70 압력pressure 200bar, 10분 (등방가압)200 bar, 10 minutes (isotropic pressure) 절단조건Cutting condition 테이블, 블레이드 온도Table, blade temperature 50℃50℃ 절단 크기Cutting size 3.5㎝ x 3.5㎝3.5cm x 3.5cm

만들어진 시트는 박스로에서 580℃, 4시간 동안 유지하여 디바인딩 공정을 진행한 후 텅스텐 소결로를 이용하여 5℃/min 속도로 승온 후 1,600℃에서 1시간 동안 유지하여 소결을 진행하였고 소결로 내는 N2-4wt%H2 혼합가스를 이용하여 비산화분위기를 유지하였다. The prepared sheet was held in a box furnace at 580°C for 4 hours to proceed with the debinding process, and then heated at a rate of 5°C/min using a tungsten sintering furnace, and then maintained at 1,600°C for 1 hour to proceed with sintering. N 2 -4 wt% H 2 A non-oxidizing atmosphere was maintained by using a mixed gas.

상기 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말은 착체중합법으로 만들어졌는데, 용매로 하이드록시 카르복실산계 용매인 시트르산(Citric acid)(C6H8O7, 99.5%, DAE JUNG), 글리콜계 용매인 에틸렌 글리콜(Ethylene glycol)(HOCH2CH2OH, 99.0%, DAE JUNG)을 사용하였다. 출발원료로는 마그네슘(Mg) 전구체로 마그네슘 질산염인 마그네슘 나이트레이트 헥사하이드레이트(Magnesium Nitrate Hexahydrate) (Mg(NO3)2·6H2O, 98%, DAE JUNG), 칼슘 카보네이트(Calcium Carbonate)(CaCO3, 99.5%, JUNSEI), 알루미늄(Al) 전구체로 알루미늄 질산염인 알루미늄 나이트레이트 노나하이드레이트(Aluminum nitrate nonahydrate)(Al(NO3)3·9H2O, 98%, SAMCHUN), 실리콘(Si) 전구체로 테르라에틸 오르소실리케이트(Tetraethyl orthosilicate)(Si(OC2H5)4, 99%, ALDRICH)를 사용하였다. 에틸렌 글리콜을 90℃로 가열한 후 시트르산을 첨가하여 250rpm으로 1시간 동안 교반시켜 용해하였다. 이때 에틸렌 글리콜과 시트르산의 몰비는 4:1이 되도록 하였고 에틸렌 글리콜과 시트르산의 혼합 용매에 합성에 필요한 ME(금속(Metal) 성분을 포함하는 전구체들)의 총량을 CA(Citric Acid)와 1:5(ME의 총량:CA)의 몰비로 계산하였다. 여기서 상기 ME는 Mg(NO3)2·6H2O, CaCO3, Al(NO3)3·9H2O 및 Si(OC2H5)4 를 의미한다. 에틸렌 글리콜과 시트르산의 혼합 용매에 Mg(NO3)2·6H2O, CaCO3, Al(NO3)3·9H2O 및 Si(OC2H5)4의 순서대로 각각 30분간 용해하였다. 이때, Mg(NO3)2·6H2O, CaCO3, Al(NO3)3·9H2O 및 Si(OC2H5)4는 6.87:18.78:28.25:46.09 의 몰비로 첨가하여 용해하였는데, 이는 산화물에 대하여 중량%로 환산하였을 때는 MgO:CaO:Al2O3:SiO2= 5:19:26:50의 비율을 이룬다. 반응이 완료된 용액은 히팅 멘틀(Heating Mentle)에서 300℃로 2시간 동안 가열하여 액체를 증발시켜 분말 상태로 만들었다. 이러한 분말을 분말전구체(powder precursor)라고 칭하였다. 가열 후에도 분말전구체에 잔존해 있는 유기물을 제거하기 위해 400℃에서 5시간 동안 열처리를 하였다. 유기물이 제거된 분말을 400∼800℃에서 5시간 동안 하소시켜 비정질의 MgO-CaO-Al2O3-SiO2계 글래스 분말을 합성하였다. 이때 합성된 비정질 글래스 분말의 입도는 평균 입자 크기가 0.1㎛ 이었다.The amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass (MCAS) powder was made by a complex polymerization method, and as a solvent, citric acid (C 6 H 8 O 7 , a hydroxy carboxylic acid solvent, 99.5%, DAE JUNG), a glycol-based solvent, ethylene glycol (HOCH 2 CH 2 OH, 99.0%, DAE JUNG) was used. The starting material is magnesium (Mg) precursor magnesium nitrate hexahydrate (Magnesium Nitrate Hexahydrate) (Mg(NO 3 ) 2 ·6H2O, 98%, DAE JUNG), calcium carbonate (Calcium Carbonate) (CaCO 3 , 99.5%, JUNSEI), aluminum nitrate nonahydrate (Al(NO 3 ) 3 9H 2 O, 98%, SAMCHUN), a silicon (Si) precursor as an aluminum nitrate Laethyl orthosilicate (Tetraethyl orthosilicate) (Si(OC 2 H 5 ) 4 , 99%, ALDRICH) was used. Ethylene glycol was heated to 90° C., citric acid was added, and the mixture was stirred at 250 rpm for 1 hour to dissolve. At this time, the molar ratio of ethylene glycol and citric acid was set to be 4:1, and the total amount of ME (precursors containing metal) required for synthesis in a mixed solvent of ethylene glycol and citric acid was 1:5 with CA (Citric Acid). It was calculated as the molar ratio of (total amount of ME: CA). Here, the ME is Mg(NO 3 ) 2 ·6H 2 O, CaCO 3 , Al(NO 3 ) 3 ·9H 2 O and Si(OC 2 H 5 ) 4 Means. In the mixed solvent of ethylene glycol and citric acid, Mg(NO 3 ) 2 ·6H 2 O, CaCO 3 , Al(NO 3 ) 3 ·9H 2 O and Si(OC 2 H 5 ) 4 were dissolved in the order of 30 minutes. At this time, Mg(NO 3 ) 2 ·6H 2 O, CaCO 3 , Al(NO 3 ) 3 ·9H 2 O and Si(OC 2 H 5 ) 4 were added and dissolved in a molar ratio of 6.87:18.78:28.25:46.09. , This constitutes a ratio of MgO:CaO:Al 2 O 3 :SiO 2 = 5:19:26:50 when converted to a weight% with respect to the oxide. After the reaction was completed, the solution was heated in a heating mentle at 300° C. for 2 hours to evaporate the liquid to form a powder. These powders were referred to as powder precursors. Even after heating, heat treatment was performed at 400° C. for 5 hours to remove organic matter remaining in the powder precursor. The powder from which the organic matter was removed was calcined at 400-800°C for 5 hours to synthesize amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass powder. At this time, the particle size of the synthesized amorphous glass powder was 0.1 μm in average particle size.

(실시예 2)(Example 2)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 3.0 wt% 그리고 1.0 wt%가 되도록 칭량하여 혼합하였다. An aluminum nitride substrate was prepared in the same manner as in Example 1, but as an amorphous liquid-phase sintering aid in the production of the mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass (MCAS) powder and a crystalline liquid phase sintering aid were used. Crystalline yttria (Y 2 O 3 ) powder and YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder as dispersion-reinforced crystalline ceramic additives were made to be 1.0 wt%, 3.0 wt% and 1.0 wt%, respectively, to the total mixed powder. Weigh and mix.

(실시예 3)(Example 3)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 3.0 wt% 그리고 2.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but as an amorphous liquid-phase sintering aid in the production of the mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass (MCAS) powder and a crystalline liquid phase sintering aid were used. Crystalline yttria (Y 2 O 3 ) powder and YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder as dispersion-reinforced crystalline ceramic additives were made to be 1.0 wt%, 3.0 wt% and 2.0 wt%, respectively, with respect to the total mixed powder. Weigh and mix.

(실시예 4)(Example 4)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 3.0 wt% 그리고 3.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but as an amorphous liquid-phase sintering aid in the production of the mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass (MCAS) powder and a crystalline liquid phase sintering aid were used. Crystalline yttria (Y 2 O 3 ) powder and YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder as dispersion-strengthening crystalline ceramic additives were made to be 1.0 wt%, 3.0 wt% and 3.0 wt%, respectively, of the total mixed powder. Weigh and mix.

(실시예 5)(Example 5)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 4.0 wt% 그리고 1.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but as an amorphous liquid-phase sintering aid in the production of the mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass (MCAS) powder and a crystalline liquid phase sintering aid were used. Crystalline yttria (Y 2 O 3 ) powder and YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder as dispersion-strengthening crystalline ceramic additives were made to be 1.0 wt%, 4.0 wt% and 1.0 wt%, respectively, to the total mixed powder. Weigh and mix.

(실시예 6)(Example 6)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 4.0 wt% 그리고 2.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but as an amorphous liquid-phase sintering aid in the production of the mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass (MCAS) powder and a crystalline liquid phase sintering aid were used. Crystalline yttria (Y 2 O 3 ) powder and YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder as dispersion-reinforced crystalline ceramic additives were made to be 1.0 wt%, 4.0 wt% and 2.0 wt%, respectively, with respect to the total mixed powder. Weigh and mix.

(실시예 7)(Example 7)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스(MCAS) 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말 그리고 분산강화형 결정질 세라믹 첨가제로서 YSZ(Y2O3-stabilized ZrO2)분말을 전체 혼합분말에 대해 각각 1.0 wt%, 5.0 wt% 그리고 1.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but as an amorphous liquid-phase sintering aid in the production of the mixed powder, amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass (MCAS) powder and a crystalline liquid phase sintering aid were used. Crystalline yttria (Y 2 O 3 ) powder and YSZ (Y 2 O 3 -stabilized ZrO 2 ) powder as dispersion-reinforced crystalline ceramic additives were made to be 1.0 wt%, 5.0 wt% and 1.0 wt%, respectively, to the total mixed powder. Weigh and mix.

(비교예 1)(Comparative Example 1)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스 분말만을 전체 혼합분말에 대해 1.0 wt%가 되도록 칭량하여 혼합하였다. An aluminum nitride substrate was prepared in the same manner as in Example 1, but only the amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass powder as an amorphous liquid sintering aid in the production of the mixed powder was 1.0 wt% based on the total mixed powder. Weighed and mixed so as to be.

(비교예 2)(Comparative Example 2)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질 액상소결조제로서 비정질의 MgO-CaO-Al2O3-SiO2계 글래스 분말과 결정질 액상소결조제로서 결정질 이트리아(Y2O3) 분말을 전체 혼합분말에 대해 각각 1.0 wt%와 3.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but the amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass powder and crystalline yttria as a crystalline liquid sintering aid as an amorphous liquid sintering aid when preparing the mixed powder. (Y 2 O 3 ) The powder was weighed and mixed to be 1.0 wt% and 3.0 wt%, respectively, with respect to the total mixed powder.

(비교예 3)(Comparative Example 3)

상기 실시예 1과 동일한 방법으로 질화알루미늄 기판을 제조하되, 혼합분말 제조 시에 비정질의 MgO-CaO-Al2O3-SiO2계 글래스 분말과 결정질 이트리아(Y2O3) 분말을 전체 혼합분말에 대해 각각 1.0 wt%와 4.0 wt%가 되도록 칭량하여 혼합하였다.An aluminum nitride substrate was prepared in the same manner as in Example 1, but the amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass powder and crystalline yttria (Y 2 O 3 ) powder were mixed as a whole when preparing the mixed powder. The powder was weighed and mixed to be 1.0 wt% and 4.0 wt%, respectively.

상기 실시예 및 비교예에서 만들어진 질화알루미늄 소결체에 대해 소결밀도 및 굽힘강도를 분석하였고 그 결과를 아래 표 3에서 정리하였다.The sintered density and the bending strength of the aluminum nitride sintered body made in the above Examples and Comparative Examples were analyzed, and the results are summarized in Table 3 below.

구분division 조성(wt%)Composition (wt%) 소결밀도
(g/cm3)
Sintering density
(g/cm 3 )
굽힘강도 (MPa)Bending strength (MPa)
AlNAlN MCASMCAS Y2O3 Y 2 O 3 YSZYSZ 평균값medium 최대값Maximum value 실시예1Example 1 95.595.5 1.01.0 3.03.0 0.50.5 3.303.30 480480 543543 실시예2Example 2 95.095.0 1.01.0 3.03.0 1.01.0 3.293.29 608608 627627 실시예3Example 3 94.094.0 1.01.0 3.03.0 2.02.0 3.343.34 565565 582582 실시예4Example 4 93.093.0 1.01.0 3.03.0 3.03.0 3.353.35 553553 596596 실시예5Example 5 94.094.0 1.01.0 4.04.0 1.01.0 3.323.32 638638 675675 실시예6Example 6 93.093.0 1.01.0 4.04.0 2.02.0 3.343.34 532532 633633 실시예7Example 7 93.093.0 1.01.0 5.05.0 1.01.0 3.303.30 563563 582582 비교예1Comparative Example 1 99.099.0 1.01.0 0.00.0 0.00.0 3.223.22 404404 435435 비교예2Comparative Example 2 96.096.0 1.01.0 3.03.0 0.00.0 3.293.29 424424 445445 비교예3Comparative Example 3 95.095.0 1.01.0 4.04.0 0.00.0 3.293.29 450450 462462

(MCAS : 비정질의 MgO-CaO-Al2O3-SiO2계 글래스 분말)(MCAS: amorphous MgO-CaO-Al 2 O 3 -SiO 2 glass powder)

상기 표 3에서 볼 수 있듯이, 비정질 액상소결조제인 비정질인 MCAS 분말만을 사용하거나 MCAS 분말과 결정질 액상소결조제인 이트리아 분말을 동시에 사용한 경우에 비해 비정질 액상소결조제인 MCAS 분말 및 결정질 액상소결조제인 이트리아 분말과 분산강화형 결정질 세라믹 첨가제인 YSZ 분말을 같이 사용한 경우 굽힘강도가 급격히 상승하는 것을 알 수 있다. As can be seen in Table 3, compared to the case of using only amorphous MCAS powder, which is an amorphous liquid sintering aid, or using MCAS powder and yttria powder, which is a crystalline liquid sintering aid at the same time, MCAS powder and crystalline liquid sintering aid are It can be seen that when yttria powder and YSZ powder, which is a dispersion reinforced crystalline ceramic additive, are used together, the bending strength increases rapidly.

도 2에서, MCAS 분말과 이트리아 분말이 각각 1.0 wt%와 3.0 wt%가 혼합된 분말(비교예 2)과 추가로 YSZ분말이 더 혼합된 분말(실시예 2 내지 4)을 비교하면 소결 후 굽힘 강도가 현격한 차이를 보이고 있음을 알 수 있다. In FIG. 2, comparing the powder in which 1.0 wt% and 3.0 wt% of MCAS powder and yttria powder were mixed (Comparative Example 2) and the powder (Examples 2 to 4) further mixed with YSZ powder, respectively, after sintering It can be seen that the bending strength shows a remarkable difference.

이렇게, 분산강화형 결정질 세라믹 첨가제를 같이 사용함에 따라 굽힘강도가 급격히 상승하는 이유는 분산강화형 결정질 세라믹 첨가제가 소결 중 소결체 내에서 미세하게 그 자체로 또는 다른 첨가제와 반응하여 분산강화형 입자를 생성함으로써 소결체의 강도를 높이기 때문이다. 도 3(a)는 비교예 2에 따른 질화알루미늄 소결체의 단면을 나타내고 있고 도 3(b)는 실시예 2에 따른 질화알루미늄 소결체의 단면을 나타내고 있는데, 여기서 볼 수 있듯이 YSZ 분말이 첨가됨에 따라 미세한 ZrN 입자가 생성되었고 이러한 미세한 입자가 분산강화효과를 통해 전체 소결체의 강도를 높이고 있는 것을 알 수 있다.In this way, the reason that the bending strength increases rapidly as the dispersion-reinforced crystalline ceramic additive is used together is that the dispersion-reinforced crystalline ceramic additive finely reacts with itself or with other additives in the sintered body to generate dispersion-reinforced particles This is because the strength of the sintered body is increased. 3(a) shows the cross-section of the aluminum nitride sintered body according to Comparative Example 2, and FIG. 3(b) shows the cross-section of the aluminum nitride sintered body according to Example 2. As can be seen here, as YSZ powder is added, a fine ZrN particles were produced, and it can be seen that these fine particles increase the strength of the entire sintered body through the dispersion strengthening effect.

비교예 2 와 실시예 2 내지 4에서 제조된 소결체에 대한 X선 회절분석을 실시한 결과에서도 분석한 모든 샘플에서 질화알루미늄 이외에 질화알루미늄과 Y2O3의 반응에 의해 생성되는 이차상인 YAG(Yttrium aluminum garnet)상이 검출되었고, ㅊ추가로 YSZ 분말이 혼합된 실시예 2 내지 4에서는 ZrN 결정질이 형성된 것을 볼 수 있었다. 비정질 액상소결조제로 사용된 MCAS는 비정질상으로 X선 회절분석으로는 관찰되지 않았다.In the results of X-ray diffraction analysis on the sintered bodies prepared in Comparative Example 2 and Examples 2 to 4, in addition to aluminum nitride, in all the samples analyzed, YAG (Yttrium aluminum), a secondary phase produced by the reaction of aluminum nitride and Y 2 O 3 garnet) phase was detected, and in Examples 2 to 4 in which YSZ powder was further mixed, it could be seen that ZrN crystals were formed. MCAS used as an amorphous liquid phase sintering aid was an amorphous phase and was not observed by X-ray diffraction analysis.

본 명세서에서는 본 발명이 일부 실시예들과 관련하여 설명되었지만, 본 발명이 속하는 기술분야의 당업자가 이해할 수 있는 본 발명의 정신 및 범위를 벗어나지 않는 범위에서 다양한 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 변형 및 변경은 본 명세서에 첨부된 특허청구의 범위 내에 속하는 것으로 생각되어야 한다.In the present specification, the present invention has been described in connection with some embodiments, but it should be understood that various modifications and changes can be made without departing from the spirit and scope of the present invention that can be understood by those skilled in the art to which the present invention belongs. something to do. In addition, such modifications and changes should be considered to fall within the scope of the claims appended to this specification.

Claims (14)

비정질 액상소결조제, 결정질 액상소결조제, 분산강화형 결정질 세라믹 첨가제 및 질화알루미늄 분말을 포함하고,
상기 분산강화형 결정질 세라믹 첨가제는 소결 시에 ZrN 이차상을 형성하는 YSZ(Y2O3-stabilized ZrO2)이고,
상기 비정질 액상소결조제, 상기 결정질 액상소결조제 및 상기 분산강화형 결정질 세라믹 첨가제는 중량비가 1:2~5:0.3~3이며,
상기 비정질 액상소결조제, 상기 결정질 액상소결조제 및 상기 분산강화형 결정질 세라믹 첨가제의 중량의 합은 전체 조성물 중량의 3~8%인,
질화알루미늄 소결용 조성물.
Including an amorphous liquid sintering aid, a crystalline liquid sintering aid, a dispersion-strengthening crystalline ceramic additive, and aluminum nitride powder,
The dispersion-reinforced crystalline ceramic additive is YSZ (Y 2 O 3 -stabilized ZrO 2 ) that forms a ZrN secondary phase during sintering,
The amorphous liquid sintering aid, the crystalline liquid sintering aid, and the dispersion reinforced crystalline ceramic additive have a weight ratio of 1:2 to 5:0.3 to 3,
The sum of the weight of the amorphous liquid sintering aid, the crystalline liquid sintering aid, and the dispersion-enhanced crystalline ceramic additive is 3 to 8% of the total weight of the composition,
Composition for sintering aluminum nitride.
제 1 항에 있어서,
상기 비정질 액상소결조제는 비정질 코디어라이트(cordierite) 글래스, 비정질 붕규산 유리, 비정질 MgO-CaO-Al2O3-SiO2계 글래스 및 비정질 CaO-Al2O3-SiO2계 글래스로 이루어지는 군에서 선택되는 1종 이상을 포함하는, 질화알루미늄 소결용 조성물.
The method of claim 1,
The amorphous liquid phase sintering aid is in the group consisting of amorphous cordierite glass, amorphous borosilicate glass, amorphous MgO-CaO-Al 2 O 3 -SiO 2 based glass and amorphous CaO-Al 2 O 3 -SiO 2 based glass Comprising at least one selected, aluminum nitride sintering composition.
제 1 항에 있어서,
상기 비정질 액상소결조제는 착체 중합법으로 만들어지는, 질화알루미늄 소결용 조성물.
The method of claim 1,
The amorphous liquid phase sintering aid is made by a complex polymerization method, a composition for sintering aluminum nitride.
제 1 항에 있어서,
상기 결정질 액상소결조제는 Y2O3, CaCO3, MgO 및 Al2O3 로 이루어지는 군에서 선택되는 1종 이상을 포함하는, 질화알루미늄 소결용 조성물.
The method of claim 1,
The crystalline liquid phase sintering aid includes at least one selected from the group consisting of Y 2 O 3 , CaCO 3 , MgO and Al 2 O 3 , for sintering aluminum nitride.
삭제delete 제 1 항에 있어서,
상기 비정질 액상소결조제는 상기 질화알루미늄 소결용 조성물 전체 중량의 0.5~5.0%인, 질화알루미늄 소결용 조성물.
The method of claim 1,
The amorphous liquid phase sintering aid is 0.5 to 5.0% of the total weight of the aluminum nitride sintering composition, aluminum nitride sintering composition.
제 1 항에 있어서,
상기 비정질 액상소결조제는 평균 입자 크기가 1.0㎛ 이하인, 질화알루미늄 소결용 조성물.
The method of claim 1,
The amorphous liquid phase sintering aid has an average particle size of 1.0 μm or less, a composition for sintering aluminum nitride.
제 1 항에 있어서,
상기 결정질 액상소결조제는 상기 질화알루미늄 소결용 조성물 전체 중량의 0.5~5.0%인, 질화알루미늄 소결용 조성물.
The method of claim 1,
The crystalline liquid phase sintering aid is 0.5 to 5.0% of the total weight of the composition for sintering the aluminum nitride, the composition for sintering aluminum nitride.
제 1 항에 있어서,
상기 분산강화형 결정질 세라믹 첨가제는 상기 질화알루미늄 소결용 조성물 전체 중량의 0.5~3.0%인, 질화알루미늄 소결용 조성물.
The method of claim 1,
The dispersion reinforced crystalline ceramic additive is 0.5 to 3.0% of the total weight of the aluminum nitride sintering composition, aluminum nitride sintering composition.
삭제delete 삭제delete 제 2 항에 있어서,
상기 비정질 MgO-CaO-Al2O3-SiO2계 글래스는 MgO:CaO:Al2O3:SiO2의 몰비가 1:1~5:1~3:5~11인, 질화알루미늄 소결용 조성물.
The method of claim 2,
The amorphous MgO-CaO-Al 2 O 3 -SiO 2 -based glass has a molar ratio of MgO:CaO:Al 2 O 3 :SiO 2 of 1:1 to 5:1 to 3:5 to 11, and a composition for sintering aluminum nitride .
제 1 항 내지 제 4 항, 제6항 내지 제9항 및 제12 항 중 어느 한 항에 기재된 질화알루미늄 소결용 조성물을 소성하여 만들어지는, 질화알루미늄 소결체.An aluminum nitride sintered body produced by firing the composition for sintering aluminum nitride according to any one of claims 1 to 4, 6 to 9, and 12. 제 13 항에 있어서, 상기 소성은 1400~1700℃에서 이루어지는, 질화알루미늄 소결체.
14. The aluminum nitride sintered body according to claim 13, wherein the firing is performed at 1400 to 1700°C.
KR1020180173720A 2018-12-31 2018-12-31 Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body KR102205085B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180173720A KR102205085B1 (en) 2018-12-31 2018-12-31 Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180173720A KR102205085B1 (en) 2018-12-31 2018-12-31 Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body

Publications (2)

Publication Number Publication Date
KR20200082790A KR20200082790A (en) 2020-07-08
KR102205085B1 true KR102205085B1 (en) 2021-01-19

Family

ID=71600757

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180173720A KR102205085B1 (en) 2018-12-31 2018-12-31 Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body

Country Status (1)

Country Link
KR (1) KR102205085B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101516990B1 (en) * 2014-02-18 2015-05-04 한국세라믹기술원 Manufacturing method of aluminium nitride

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541145A (en) * 1993-12-22 1996-07-30 The Carborundum Company/Ibm Corporation Low temperature sintering route for aluminum nitride ceramics
JP3100871B2 (en) * 1995-07-11 2000-10-23 株式会社東芝 Aluminum nitride sintered body
EP2110366A4 (en) 2007-02-02 2012-05-30 Tokuyama Corp Aluminum nitride sinter and process for producing the same
KR101470322B1 (en) * 2013-05-08 2014-12-09 한국과학기술원 Aluminum Nitride ceramics with high strength and the method of low temperature sintering thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101516990B1 (en) * 2014-02-18 2015-05-04 한국세라믹기술원 Manufacturing method of aluminium nitride

Also Published As

Publication number Publication date
KR20200082790A (en) 2020-07-08

Similar Documents

Publication Publication Date Title
KR101516990B1 (en) Manufacturing method of aluminium nitride
KR100341696B1 (en) High thermal conductivity silicon nitride sintered body and method for manufacturing the same
WO2003004437A1 (en) Translucent rare earth oxide sintered article and method for production thereof
KR20150114468A (en) Aluminum nitride powder
KR102270704B1 (en) Method for producing a powdery precursor material, powdery precursor material and use thereof
KR102270157B1 (en) Aluminum oxynitride ceramic heater and method for preparing the same
KR20110020292A (en) Oxide sintered object, sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object
KR20200132977A (en) Aluminum nitride plate
US11319254B2 (en) Aluminum nitride sintered body and method for producing same
KR20200081969A (en) Composition for Sintering Aluminum Nitride and Aluminum Nitride Sintered Body
TWI746750B (en) Aligned AlN sintered body and its manufacturing method
WO2005049525A1 (en) High thermally conductive aluminum nitride sintered product
KR102205085B1 (en) Composition for High Strength Aluminum Nitride Sintering and High Strength Aluminum Nitride Sintered Body
US11014855B2 (en) Transparent AlN sintered body and method for producing the same
JP2017100937A (en) Aluminum nitride sintered body and manufacturing method therefor
JP2856734B2 (en) High thermal conductive aluminum nitride sintered body
JP6678623B2 (en) Aluminum nitride sintered body and method for producing the same
JP6062912B2 (en) Aluminum nitride sintered body and manufacturing method thereof
KR20140095460A (en) Silicon nitride sintered body and method for producing same
KR20140110439A (en) Method for producing the spherical agglomerate type Boron Nitride and the spherical agglomerate type Boron Nitride made thereby
KR102299212B1 (en) High Strength Aluminum Nitride Sintered Body
KR102206446B1 (en) Silicon nitride ceramic and manufacturing method of the same
JPH01252584A (en) Sintered composite ceramic compact and production thereof
Taniguchi et al. Preparation of Perovskite Pb (B 0.5 Nb 0.5) O 3 (B= Rare-Earth Elements)
JPH02279568A (en) Aluminum nitride-based sintered body and its production

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant