KR20200082324A - Cathode electrode for lithium ion secondary battery and methods of fabricating the same - Google Patents

Cathode electrode for lithium ion secondary battery and methods of fabricating the same Download PDF

Info

Publication number
KR20200082324A
KR20200082324A KR1020180172802A KR20180172802A KR20200082324A KR 20200082324 A KR20200082324 A KR 20200082324A KR 1020180172802 A KR1020180172802 A KR 1020180172802A KR 20180172802 A KR20180172802 A KR 20180172802A KR 20200082324 A KR20200082324 A KR 20200082324A
Authority
KR
South Korea
Prior art keywords
metal
secondary battery
ion secondary
negative electrode
lithium ion
Prior art date
Application number
KR1020180172802A
Other languages
Korean (ko)
Other versions
KR102384275B9 (en
KR102384275B1 (en
Inventor
엄지용
이다연
김성인
Original Assignee
한국자동차연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국자동차연구원 filed Critical 한국자동차연구원
Priority to KR1020180172802A priority Critical patent/KR102384275B1/en
Publication of KR20200082324A publication Critical patent/KR20200082324A/en
Application granted granted Critical
Publication of KR102384275B1 publication Critical patent/KR102384275B1/en
Publication of KR102384275B9 publication Critical patent/KR102384275B9/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

According to an aspect of the present invention, a manufacturing method of a negative electrode for a lithium ion secondary battery includes a step of forming a surface treatment layer on a porous metal foam and a step of impregnating the surface treated metal foam with lithium metal.

Description

리튬이온 이차전지용 음극 및 그 제조방법{Cathode electrode for lithium ion secondary battery and methods of fabricating the same}Cathode electrode for lithium ion secondary battery and methods of fabricating the same}

본 발명은 전지 기술에 관한 것으로서, 더 상세하게는 리튬이온 이차전지용 음극 및 그 제조방법에 관한 것이다.The present invention relates to a battery technology, and more particularly, to a negative electrode for a lithium ion secondary battery and a method of manufacturing the same.

이차전지는 방전뿐 아니라 충전이 가능하여 반복적으로 사용할 수 있는 전지를 말한다. 이차전지 중 대표적인 리튬 이차전지는 양극활물질에 포함된 리튬이온이 전해질을 거쳐 음극으로 이동한 후 음극활물질의 구조 내로 삽입되며(충전), 이 후 음극활물질의 구조 내로 삽입되었던 리튬이온이 다시 양극으로 되돌아가는(방전) 원리를 통해 작동한다. 이러한 리튬 이차전지는 현재 상용화되어 휴대전화, 노트북 컴퓨터 등의 소형전원으로 사용되고 있으며, 하이브리드 자동차 등의 대형 전원으로도 사용가능할 것으로 예측되고 있어, 그 수요가 증대될 것으로 예상된다.Secondary battery refers to a battery that can be used repeatedly because it can be charged as well as discharge. A representative lithium secondary battery among the secondary batteries, lithium ions contained in the positive electrode active material are transferred to the negative electrode through the electrolyte and then inserted into the structure of the negative electrode active material (charge), and then the lithium ions inserted into the structure of the negative electrode active material are returned to the positive electrode. It works through the principle of reversal (discharge). These lithium secondary batteries are currently commercialized and used as small power sources such as mobile phones and notebook computers, and are expected to be used as large power sources such as hybrid vehicles, and the demand is expected to increase.

1. 한국공개번호 제1020180040083호 (2018.04.19. 공개)1. Korea Publication No. 1020180040083 (published April 19, 2018)

리튬이온 이차전지는 충전 및 방전 과정 중 리튬 금속 표면에서 리튬 덴드라이트(Li dendrite)가 성장하여 분리막을 손상시켜 단락회로를 형성시켜 전지의 수명 특성을 저하시키는 문제가 있다. 또한, 이러한 리튬 덴드라이트 성장은 비활성 Li 형성으로 인한 새로운 SEI(solid electrolyte interface)를 발생시켜 전극의 이온 전도 및 전자 전도를 방해하는 요인으로 작용하기도 한다.The lithium ion secondary battery has a problem in that lithium dendrite grows on the surface of the lithium metal during the charging and discharging process, damaging the separator to form a short circuit, thereby deteriorating the life characteristics of the battery. In addition, the growth of lithium dendrites also creates a new solid electrolyte interface (SEI) due to the formation of inactive Li, which also acts as a factor that interferes with ion conduction and electron conduction of the electrode.

본 발명은 이러한 문제점을 해결하기 위해서 안출된 것으로서, 고비표면적을 갖는 고수명 리튬이온 이차전지용 음극 및 그 제조방법을 제공하고자 한다. 그러나, 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention has been devised to solve this problem, and is to provide a negative electrode for a high-life lithium-ion secondary battery having a high specific surface area and a method of manufacturing the same. However, these problems are exemplary, and the scope of the present invention is not limited thereby.

본 발명의 일 관점에 따른 리튬이온 이차전지용 음극의 제조방법은 다공성 금속폼 상에 표면 처리층을 형성하는 단계와, 표면 처리된 상기 금속폼에 리튬 금속을 함침시키는 단계를 포함한다.A method of manufacturing a negative electrode for a lithium ion secondary battery according to an aspect of the present invention includes forming a surface treatment layer on a porous metal foam and impregnating the surface treated metal foam with lithium metal.

상기 리튬이온 이차전지용 음극의 제조방법에 있어서, 상기 표면 처리층을 형성하는 단계는, 상기 리튬 금속의 상기 금속폼 내 함침을 촉진시키도록 상기 금속폼 상에 금속 산화층을 형성하는 단계를 포함할 수 있다.In the method of manufacturing a negative electrode for a lithium ion secondary battery, the step of forming the surface treatment layer may include forming a metal oxide layer on the metal foam to promote impregnation of the lithium metal in the metal foam. have.

상기 리튬이온 이차전지용 음극의 제조방법에 있어서, 상기 금속 산화층을 형성하는 단계는, 상기 금속폼 내 금속을 산화시키는 단계를 포함할 수 있다.In the method of manufacturing a negative electrode for a lithium ion secondary battery, the forming of the metal oxide layer may include oxidizing a metal in the metal foam.

상기 리튬이온 이차전지용 음극의 제조방법에 있어서, 상기 금속 산화층을 형성하는 단계는, 상기 금속폼 내 상기 금속에 대한 상기 금속 산화층의 무게비가 16% 초과 28% 미만이 되도록 산화조건을 설정하여 수행할 수 있다.In the method of manufacturing a negative electrode for a lithium ion secondary battery, the step of forming the metal oxide layer is performed by setting oxidation conditions such that the weight ratio of the metal oxide layer to the metal in the metal foam is more than 16% and less than 28%. Can be.

상기 리튬이온 이차전지용 음극의 제조방법에 있어서, 상기 금속폼 내 상기 금속은 Ni을 포함하고, 상기 금속 산화층은 Ni 산화물을 포함할 수 있다.In the method for manufacturing the negative electrode for a lithium ion secondary battery, the metal in the metal foam may include Ni, and the metal oxide layer may include Ni oxide.

본 발명의 다른 관점에 따른 리튬이온 이차전지용 음극은 다공성 금속폼과, 상기 금속폼 상의 표면 처리층과, 상기 금속폼 내에 함침된 리튬 금속을 포함한다.The negative electrode for a lithium ion secondary battery according to another aspect of the present invention includes a porous metal foam, a surface treatment layer on the metal foam, and lithium metal impregnated in the metal foam.

상기 리튬이온 이차전지용 음극에 있어서, 상기 표면 처리층은 상기 금속폼 내 금속을 산화시켜 형성된 금속 산화층을 포함할 수 있다.In the negative electrode for a lithium ion secondary battery, the surface treatment layer may include a metal oxide layer formed by oxidizing a metal in the metal foam.

상기 리튬이온 이차전지용 음극에 있어서, 상기 금속폼 내 상기 금속에 대한 상기 금속 산화층의 무게비가 16% 초과 28% 미만일 수 있다.In the negative electrode for a lithium ion secondary battery, a weight ratio of the metal oxide layer to the metal in the metal foam may be more than 16% and less than 28%.

상기한 바와 같이 이루어진 본 발명의 일 실시예에 따른 리튬이온 이차전지용 음극 및 그 제조방법에 따르면, 음극의 비표면적을 높일 수 있고 리튬 함침 함량을 높일 수 있어서 전지의 안정성을 높이고 수명을 늘릴 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to the negative electrode for a lithium ion secondary battery and a method of manufacturing the same according to an embodiment of the present invention made as described above, it is possible to increase the specific surface area of the negative electrode and increase the content of lithium impregnation, thereby increasing the stability of the battery and extending its life. . Of course, the scope of the present invention is not limited by these effects.

도 1은 본 발명의 일 실시예에 따른 리튬이온 이차전지용 음극의 제조방법을 보여주는 개략도이다.
도 2는 본 발명의 일 실시예에 따른 리튬이온 이차전지용 음극 제조 시 표면처리 단계에서 금속 산화층의 X선 회절피크를 보여주는 그래프이다.
도 3은 본 발명의 일 실시예에 따른 음극의 표면처리 단계에서 금속 산화층 제조 조건에 따른 이차전지의 사이클 특성을 보여주는 그래프이다.
1 is a schematic view showing a method of manufacturing a negative electrode for a lithium ion secondary battery according to an embodiment of the present invention.
Figure 2 is a graph showing the X-ray diffraction peak of the metal oxide layer in the surface treatment step when manufacturing a negative electrode for a lithium ion secondary battery according to an embodiment of the present invention.
Figure 3 is a graph showing the cycle characteristics of the secondary battery according to the metal oxide layer manufacturing conditions in the surface treatment step of the negative electrode according to an embodiment of the present invention.

이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and the following embodiments make the disclosure of the present invention complete, and the scope of the invention to those skilled in the art It is provided to inform you completely. In addition, for convenience of description, in the drawings, the size of components may be exaggerated or reduced.

도 1은 본 발명의 일 실시예에 따른 리튬이온 이차전지용 음극의 제조방법을 보여주는 개략도이다. 1 is a schematic view showing a method of manufacturing a negative electrode for a lithium ion secondary battery according to an embodiment of the present invention.

도 1을 참조하면, 먼저 (a)에 도시된 바와 같이 다공성 금속폼(porous metal foam)을 준비한다. 다공성 금속폼은 금속의 내부에 많은 기공을 포함하고 있다는 점에서 다공질 금속으로 불릴 수도 있다. 금속폼에서 기공은 어느 정도 농도 이상으로 부가되어 세포형 구조(cellular structure)를 형성할 수 있다. 이러한 금속폼은 체적의 30~90%가 기공으로 되어 있기 때문에 물리적, 기계적, 열적 특성을 포함하는 제반 특성이 순수 금속과는 현저하게 다를 수 있다. Referring to FIG. 1, first, a porous metal foam is prepared as shown in (a). Porous metal foam may also be called a porous metal in that it contains many pores inside the metal. In the metal foam, pores may be added to a certain level or more to form a cellular structure. Since these metal foams have 30 to 90% of the volume of pores, various properties including physical, mechanical, and thermal properties may be significantly different from those of pure metal.

금속폼은 개방형 기공 또는 폐쇄형 기공을 포함할 수 있다. 개방형 기공은 서로 연결되어 있는 반면, 폐쇄형 기공은 서로 격리되어 있다. 이러한 금속폼은 다양하게 제조될 수 있고, 예를 들어 용융금속에 발포제를 첨가하여 발포제의 분해에서 발생하는 수소가스로 용융금속을 발포시키는 방법이나, 금속분말과 발포제를 혼합한 압분체를 성형한 후 고온으로 가영하여 발포시키는 방법, 다공질 우레탄 프리폼에 금속을 증착시키는 방법, 소실형 주형을 이용하는 로스트왁스법, 중공 금속구(metallic hollow sphere)를 이용하는 방법 등이 사용될 수 있다.The metal foam may include open pores or closed pores. The open pores are connected to each other, while the closed pores are isolated from each other. Such a metal foam can be manufactured in various ways, for example, by adding a blowing agent to molten metal to foam molten metal with hydrogen gas generated during decomposition of the blowing agent, or by molding a green compact mixed with a metal powder and a blowing agent. Thereafter, a method of foaming by heating at a high temperature, a method of depositing a metal on a porous urethane preform, a lost wax method using a vanishing mold, a method of using a hollow metal sphere may be used.

이러한 금속폼은 통상의 금속에서는 기대할 수 없는 물성, 예컨대 우수한 경량성과 높은 비강도, 표면적 증대에 의한 반응촉지, 관통기공에 의한 열전달 능력 등을 발휘할 수 있다. 금속폼의 소재로는 니켈, 구리, 알루미늄, 티타늄, 마그네슘 등이 이용될 수 있다.Such a metal foam can exhibit properties that cannot be expected in ordinary metals, such as excellent light weight and high specific strength, reaction promotion by increasing surface area, and heat transfer ability through through pores. Nickel, copper, aluminum, titanium, magnesium, etc. may be used as the material of the metal foam.

이어서, 다공성 금속폼 상에 표면 처리층을 형성할 수 있다. 표면 처리층은 금속폼의 표면 특성을 개질하여 리튬의 함침 효율을 향상시키기 위해서 부가될 수 있다. 예를 들어, 표면 처리층을 형성하는 단계는 금속폼 상에 금속 산화층을 형성하는 단계를 포함할 수 있다. 이러한 금속 산화층은 금속폼의 표면에 친유성을 부여하여 금속폼 내 리튬 금속의 함침을 촉진하는 역할을 할 수 있다.Subsequently, a surface treatment layer may be formed on the porous metal foam. The surface treatment layer may be added to modify the surface properties of the metal foam to improve the impregnation efficiency of lithium. For example, forming the surface treatment layer may include forming a metal oxide layer on the metal foam. The metal oxide layer may serve to promote impregnation of lithium metal in the metal foam by imparting lipophilicity to the surface of the metal foam.

예를 들어, 금속 산화층을 형성하는 단계는 금속폼 내 금속을 산화시키는 단계를 포함할 수 있다. 금속 산화층의 두께는 함침을 촉진하기 위한 표면 특성 개선 관점과 금속 산화층이 두꺼워지면서 기공이 감속하거나 표면이 거칠어지는 문제를 고려하여 선택할 수 있다.For example, forming the metal oxide layer may include oxidizing the metal in the metal foam. The thickness of the metal oxide layer can be selected in consideration of the improvement in surface properties for promoting impregnation and the problem of the pores being slowed or the surface being rough as the metal oxide layer becomes thicker.

예를 들어, Ni 폼의 경우 700 ~ 850 ℃의 온도 범위에서, 1분 내지 30분의 시간 동안 산화 공정을 수행할 수 있다.For example, in the case of Ni foam, in the temperature range of 700 to 850° C., the oxidation process may be performed for a time of 1 minute to 30 minutes.

표 1은 금속폼의 예로 Ni 폼의 산화조건에 따른 Ni 및 Ni 산화층(NiO layer)의 무게 변화를 나타낸다.Table 1 shows a change in weight of the Ni and Ni oxide layers (NiO layer) according to the oxidation conditions of the Ni foam as an example of the metal foam.

<산화조건에 따른 Ni 폼의 무게 변화><Change of weight of Ni foam according to oxidation conditions> 샘플1Sample 1 샘플2Sample 2 샘플3Sample 3 Ni 무게(g)Ni weight(g) 0.14450.1445 0.13880.1388 0.13420.1342 NiO 무게(g)NiO weight(g) 0.022840.02284 0.034030.03403 0.0372950.037295 NiO/Ni 무게비NiO/Ni weight ratio 16%16% 25%25% 28%28%

표 1에서, 샘플1은 750℃에서 3분 동안 산화를 진행한 것이고, 샘플2는 750℃에서 7분 동안 산화를 진행한 것이고, 샘플3은 750℃에서 10분 동안 산화를 진행한 것이다. Ni에 대한 NiO의 무게비(NiO/Ni)는 샘플1에서 약 16%이고 샘플2에서 약 25%이고 샘플3에서 약 28%이다. 즉, 산화 시간이 커짐에 따라서, NiO의 양이 증가함을 알 수 있다.In Table 1, Sample 1 is oxidized at 750°C for 3 minutes, Sample 2 is oxidized at 750°C for 7 minutes, and Sample 3 is oxidized at 750°C for 10 minutes. The weight ratio of NiO to Ni (NiO/Ni) is about 16% in Sample 1, about 25% in Sample 2, and about 28% in Sample 3. That is, it can be seen that as the oxidation time increases, the amount of NiO increases.

도 2는 본 발명의 일 실시예에 따른 리튬이온 이차전지용 음극 제조 시 표면처리 단계에서 금속 산화층의 X선 회절피크를 보여주는 그래프이다. Figure 2 is a graph showing the X-ray diffraction peak of the metal oxide layer in the surface treatment step when manufacturing a negative electrode for a lithium ion secondary battery according to an embodiment of the present invention.

도 2를 참조하면, 산화 처리 전 Ni 폼, 즉 비교 샘플(A0)은 Ni 피크만을 나타내고 있고, 샘플1(S1), 샘플2(S2) 및 샘플3(S3)은 Ni 피크와 NiO 피크를 같이 나타내고 있음을 알 수 있다. 나아가, 산화시간이 길어짐에 따라 Ni 피크 대비 NiO 피크비가 더 커짐을 알 수 있다. 즉, 산화시간이 길어짐에 따라 Ni 폼 표면 상에 NiO층이 더 두꺼워지는 것을 알 수 있다.Referring to FIG. 2, the Ni foam before oxidation treatment, that is, the comparative sample (A0) shows only the Ni peak, and the Sample 1 (S1), Sample 2 (S2), and Sample 3 (S3) have the Ni peak and the NiO peak together. Can be seen. Further, it can be seen that as the oxidation time increases, the NiO to NiO peak ratio becomes larger. That is, it can be seen that as the oxidation time increases, the NiO layer becomes thicker on the surface of the Ni foam.

이어서, 다시 도 1을 참조하면, (b)에 도시된 바와 같이 표면 처리된 금속폼에 리튬 금속을 함침시킬 수 있다. 예를 들어, 표면에 금속 산화층이 형성된 금속 폼의 기공 내로 리튬 금속을 함침시킬 수 있다. 금속 폼 내로 리튬 금속이 함침된 음극 소재는 높은 비표면적을 갖게 될 수 있다.Subsequently, referring to FIG. 1 again, as shown in (b), the surface-treated metal foam may be impregnated with lithium metal. For example, lithium metal may be impregnated into the pores of the metal foam having a metal oxide layer formed on the surface. The negative electrode material impregnated with lithium metal into the metal foam may have a high specific surface area.

이 실시예에 따라서 제조된, 리튬이온 이차전지용 음극은 다공성 금속폼과, 이러한 금속폼 상의 표면 처리층과, 금속폼 내에 함침된 리튬 금속을 포함할 수 있다. 예를 들어, 표면 처리층은 금속폼 내 금속을 산화시켜 형성된 금속 산화층을 포함할 수 있다.The negative electrode for a lithium ion secondary battery manufactured according to this embodiment may include a porous metal foam, a surface treatment layer on the metal foam, and lithium metal impregnated in the metal foam. For example, the surface treatment layer may include a metal oxide layer formed by oxidizing a metal in the metal foam.

이와 같이, 금속 폼 내 리튬 금속을 함침시켜 제조한 음극은 그 비표면적이 매우 커지고 균일한 표면 에너지를 갖게 됨에 따라서 충전 및 방전의 반복적인 동작 하에서도 리튬의 덴드라이트 성장을 억제시킬 수 있다. 이에 따라, 이러한 음극을 이용하면 전지의 전기화학적 특성이 향상되어 전지의 안정성 및 수명이 향상될 수 있다.As described above, a negative electrode prepared by impregnating lithium metal in a metal foam has a very large specific surface area and has a uniform surface energy, and thus it is possible to suppress the growth of lithium dendrites even under repeated operation of charging and discharging. Accordingly, the use of such a negative electrode can improve the electrochemical properties of the battery, thereby improving the stability and life of the battery.

도 3은 본 발명의 일 실시예에 따른 음극의 표면처리 단계에서 금속 산화층 제조 조건에 따른 이차전지의 사이클 특성을 보여주는 그래프이다. 음극 샘플(B0)은 통상적인 리튬 금속을 이용하여 음극을 제조한 경우를 나타내고, 음극 샘플(C1)은 위 샘플1(S1)에 리튬 금속을 함침하여 음극을 제조한 경우를 나타내고, 음극 샘플(C2)은 위 샘플1(S2)에 리튬 금속을 함침하여 음극을 제조한 경우를 나타내고, 음극 샘플(C3)은 위 샘플3(S3)에 리튬 금속을 함침하여 음극을 제조한 경우를 나타낸다.3 is a graph showing cycle characteristics of a secondary battery according to conditions for manufacturing a metal oxide layer in a surface treatment step of a negative electrode according to an embodiment of the present invention. The negative electrode sample (B0) represents a case in which a negative electrode was prepared using conventional lithium metal, and the negative electrode sample (C1) represents a case in which a negative electrode was prepared by impregnating lithium metal in Sample 1 (S1) above, and the negative electrode sample ( C2) represents a case in which a negative electrode was prepared by impregnating lithium metal in sample 1 (S2), and negative electrode sample (C3) represents a case in which a negative electrode was prepared by impregnating lithium metal in sample 3 (S3).

도 3을 참조하면, 통상적인 리튬 금속을 이용한 음극 샘플(B0)의 경우 사이클 수가 늘어남에 따라 용량 특성이 저하되는 것을 알 수 있다. 하지만, 금속폼에 리튬 금속을 함침시켜 제조한 음극 샘플들(C1, C2, C3)의 경우 통상적인 음극(B0)보다 사이클 특성이 개선된 것을 알 수 있다.Referring to FIG. 3, it can be seen that in the case of the negative electrode sample B0 using a conventional lithium metal, the capacity characteristics deteriorated as the number of cycles increased. However, in the case of the negative electrode samples C1, C2, and C3 prepared by impregnating the metal with lithium metal, it can be seen that the cycle characteristics are improved over the conventional negative electrode B0.

나아가, 금속폼 상에 산화막 형성조건에 따라서 사이클 특성의 개선정도가 다르다는 것을 알 수 있다. 특히, 음극 샘플(C2)의 사이클 특성이 음극 샘플들(C1, C3)보다 우수한 것을 알 수 있다. 즉, 금속폼의 표면처리 시, 금속 산화층의 두께가 너무 두꺼워져도 사이클 특성이 나빠지는 것을 알 수 있다. 따라서, 금속 산화층의 두께는 적정 조건으로 선택될 필요가 있다.Furthermore, it can be seen that the degree of improvement in cycle characteristics differs depending on the conditions for forming the oxide film on the metal foam. In particular, it can be seen that the cycle characteristics of the cathode samples C2 are superior to those of the cathode samples C1 and C3. That is, it can be seen that in the surface treatment of the metal foam, even if the thickness of the metal oxide layer is too thick, the cycle characteristics deteriorate. Therefore, the thickness of the metal oxide layer needs to be selected under appropriate conditions.

즉, 금속폼 내 금속에 대한 금속 산화막의 무게비로 보면, 음극 샘플(C2)의 25%의 경우가, 음극 샘플(C1)의 16% 및 음극 샘플(C3)의 28%인 경우보다 사이클 특성이 더 우수한 것을 알 수 있다. 따라서, 금속 산화층을 형성하는 단계에서, 금속폼 내 금속에 대한 금속 산화층의 무게비가 16% 초과 28% 미만이 되도록 산화조건을 설정하여 수행하는 것이 사이클 특성 면에서 더 우수할 수 있다.That is, in terms of the weight ratio of the metal oxide film to the metal in the metal foam, 25% of the cathode samples (C2) have cycle characteristics than 16% of the cathode samples (C1) and 28% of the cathode samples (C3). You can see that it is better. Therefore, in the step of forming the metal oxide layer, it may be better in terms of cycle characteristics to set and perform the oxidation conditions such that the weight ratio of the metal oxide layer to the metal in the metal foam is greater than 16% and less than 28%.

본 발명은 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.The present invention has been described with reference to one embodiment shown in the drawings, but this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.

Claims (8)

다공성 금속폼 상에 표면 처리층을 형성하는 단계; 및
표면 처리된 상기 금속폼에 리튬 금속을 함침시키는 단계;를 포함하는
리튬이온 이차전지용 음극의 제조방법.
Forming a surface treatment layer on the porous metal foam; And
Impregnating the surface-treated metal foam with lithium metal; containing
Method for manufacturing a negative electrode for a lithium ion secondary battery.
제 1 항에 있어서,
상기 표면 처리층을 형성하는 단계는, 상기 리튬 금속의 상기 금속폼 내 함침을 촉진시키도록 상기 금속폼 상에 금속 산화층을 형성하는 단계를 포함하는,
리튬이온 이차전지용 음극의 제조방법.
According to claim 1,
The forming of the surface treatment layer includes forming a metal oxide layer on the metal foam to promote impregnation of the lithium metal in the metal foam,
Method for manufacturing a negative electrode for a lithium ion secondary battery.
제 2 항에 있어서,
상기 금속 산화층을 형성하는 단계는, 상기 금속폼 내 금속을 산화시키는 단계를 포함하는,
리튬이온 이차전지용 음극의 제조방법.
According to claim 2,
The step of forming the metal oxide layer includes oxidizing the metal in the metal foam,
Method for manufacturing a negative electrode for a lithium ion secondary battery.
제 2 항에 있어서,
상기 금속 산화층을 형성하는 단계는, 상기 금속폼 내 상기 금속에 대한 상기 금속 산화층의 무게비가 16% 초과 28% 미만이 되도록 산화조건을 설정하여 수행하는,
리튬이온 이차전지용 음극의 제조방법.
According to claim 2,
The step of forming the metal oxide layer is performed by setting oxidation conditions such that a weight ratio of the metal oxide layer to the metal in the metal foam is more than 16% and less than 28%,
Method for manufacturing a negative electrode for a lithium ion secondary battery.
제 4 항에 있어서,
상기 금속폼 내 상기 금속은 Ni을 포함하고, 상기 금속 산화층은 Ni 산화층을 포함하는,
리튬이온 이차전지용 음극의 제조방법.
The method of claim 4,
The metal in the metal foam includes Ni, and the metal oxide layer includes a Ni oxide layer,
Method for manufacturing a negative electrode for a lithium ion secondary battery.
다공성 금속폼;
상기 금속폼 상의 표면 처리층;
상기 금속폼 내에 함침된 리튬 금속을 포함하는,
리튬이온 이차전지용 음극.
Porous metal foam;
A surface treatment layer on the metal foam;
Including the lithium metal impregnated in the metal foam,
Cathode for lithium ion secondary battery.
제 6 항에 있어서,
상기 표면 처리층은 상기 금속폼 내 금속을 산화시켜 형성된 금속 산화층을 포함하는,
리튬이온 이차전지용 음극.
The method of claim 6,
The surface treatment layer includes a metal oxide layer formed by oxidizing a metal in the metal foam,
Cathode for lithium ion secondary battery.
제 7 항에 있어서,
상기 금속폼 내 상기 금속에 대한 상기 금속 산화층의 무게비가 16% 초과 28% 미만인,
리튬이온 이차전지용 음극.
The method of claim 7,
The weight ratio of the metal oxide layer to the metal in the metal foam is more than 16% and less than 28%,
Cathode for lithium ion secondary battery.
KR1020180172802A 2018-12-28 2018-12-28 Anode electrode for lithium ion secondary battery and methods of fabricating the same KR102384275B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180172802A KR102384275B1 (en) 2018-12-28 2018-12-28 Anode electrode for lithium ion secondary battery and methods of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180172802A KR102384275B1 (en) 2018-12-28 2018-12-28 Anode electrode for lithium ion secondary battery and methods of fabricating the same

Publications (3)

Publication Number Publication Date
KR20200082324A true KR20200082324A (en) 2020-07-08
KR102384275B1 KR102384275B1 (en) 2022-04-07
KR102384275B9 KR102384275B9 (en) 2022-06-10

Family

ID=71600364

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180172802A KR102384275B1 (en) 2018-12-28 2018-12-28 Anode electrode for lithium ion secondary battery and methods of fabricating the same

Country Status (1)

Country Link
KR (1) KR102384275B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134997A (en) * 1993-11-10 1995-05-23 Yuasa Corp Thermal battery
KR20140131115A (en) * 2013-05-03 2014-11-12 주식회사 제낙스 Non-woven collector, method of fabricating a battery with the same and system for fabricating the same
KR101484042B1 (en) * 2014-07-23 2015-01-19 국방과학연구소 Manufacturing method for thin metal foam impregnated with lithium as an anode for thermally activated reserve batteries
KR20180040083A (en) 2016-10-11 2018-04-19 주식회사 엘지화학 Negative electrode for lithium metal secondary battery and lithium metal secondary battery comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134997A (en) * 1993-11-10 1995-05-23 Yuasa Corp Thermal battery
KR20140131115A (en) * 2013-05-03 2014-11-12 주식회사 제낙스 Non-woven collector, method of fabricating a battery with the same and system for fabricating the same
KR101484042B1 (en) * 2014-07-23 2015-01-19 국방과학연구소 Manufacturing method for thin metal foam impregnated with lithium as an anode for thermally activated reserve batteries
KR20180040083A (en) 2016-10-11 2018-04-19 주식회사 엘지화학 Negative electrode for lithium metal secondary battery and lithium metal secondary battery comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ADV. FUNCT. MATER. 2017, 27, 1700348호(2012.08.16. 공개)* *
J. Mater. Chem. A, 2014, 2, pp. 20022-20029 (2014.10.15. 공개)* *

Also Published As

Publication number Publication date
KR102384275B9 (en) 2022-06-10
KR102384275B1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
Yang et al. An electron/ion dual‐conductive alloy framework for high‐rate and high‐capacity solid‐state lithium‐metal batteries
KR101307041B1 (en) Cathode active material coated with resistance-reduction coating layer, and all solid-state lithium secondary battery using the same
JPH08170126A (en) Porous metallic body, its production and plate for battery using the same
JP2011096630A (en) Solid-state lithium secondary battery, and method for producing the same
JP5641193B2 (en) All-solid lithium secondary battery
Li et al. A collaborative strategy for stable lithium metal anodes by using three-dimensional nitrogen-doped graphene foams
KR101445692B1 (en) Anode active material for lithium secondary battery and Lithium secondary battery containing the same for anode
CN110534796A (en) A kind of solid lithium battery and preparation method thereof
KR20210057253A (en) Core-shell structure comprising a graphene shell, and a method of manufacturing the same
Yao et al. 3D hollow reduced graphene oxide foam as a stable host for high-capacity lithium metal anodes
CN111916682A (en) Composite metal lithium cathode, preparation method thereof and lithium battery
CN111613757A (en) Solid state battery design with mixed ionic and electronic conductors
US10998583B1 (en) Composite solid electrolyte without self-discharge, battery unit cell having same, and method of manufacturing composite solid electrolyte
KR20200072269A (en) All-solid-state battery without active material layer and method of preparing the same
US20220020991A1 (en) Battery cells comprising elastic compressible functiona layers and manufacturing process
KR101802115B1 (en) Manufacture method of Thermal battery cathode using metal foam
KR20130025525A (en) Multilayer electrode for rechargeable battery and preparation method thereof
CN115411351A (en) Solid-state battery modified by ion/electron mixed conductive solid interface layer and preparation method thereof
JP2010177042A (en) Positive electrode for nonaqueous electrolyte battery, method of manufacturing the same, and nonaqueous electrolyte battery
CN107863487B (en) Lithium-sulfur battery positive electrode and preparation method thereof, lithium-sulfur battery cell and lithium-sulfur battery
KR100359605B1 (en) Lithium secondary battery cathode composition, lithium secondary battery cathode and lithium secondary battery employing the same, and method for preparing the same
CN111725480A (en) Composite shape memory alloy cathode, preparation method thereof and lithium battery
KR102384275B1 (en) Anode electrode for lithium ion secondary battery and methods of fabricating the same
KR102140128B1 (en) Lithium Metal Electrode and Lithium Secondary Battery Comprising the Same
KR20170069071A (en) An all-solid state battery and preparation thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]