KR20200079115A - 감마 보정 회로, 디스플레이 장치 및 감마 보정 방법 - Google Patents

감마 보정 회로, 디스플레이 장치 및 감마 보정 방법 Download PDF

Info

Publication number
KR20200079115A
KR20200079115A KR1020180168704A KR20180168704A KR20200079115A KR 20200079115 A KR20200079115 A KR 20200079115A KR 1020180168704 A KR1020180168704 A KR 1020180168704A KR 20180168704 A KR20180168704 A KR 20180168704A KR 20200079115 A KR20200079115 A KR 20200079115A
Authority
KR
South Korea
Prior art keywords
gamma
voltage
circuit
subpixel
gamma correction
Prior art date
Application number
KR1020180168704A
Other languages
English (en)
Other versions
KR102592820B1 (ko
Inventor
곽봉춘
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020180168704A priority Critical patent/KR102592820B1/ko
Publication of KR20200079115A publication Critical patent/KR20200079115A/ko
Application granted granted Critical
Publication of KR102592820B1 publication Critical patent/KR102592820B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

본 발명의 실시예는 감마 보정 회로, 디스플레이 장치, 및 감마 보정 방법에 관한 것이다. 본 발명의 실시예에 의하면, 최적의 감마 전압을 자동으로 설정할 수 있는 감마 보정 회로, 디스플레이 장치, 및 감마 보정 방법을 제공할 수 있다. 또한, 본 발명의 실시예에 의하면, 더미 서브픽셀 어레이를 이용하여 최적의 감마 전압을 설정할 수 있는 감마 보정 회로, 디스플레이 장치, 및 감마 보정 방법을 제공할 수 있다. 또한, 본 발명의 다른 실시예에 의하면, 디스플레이 패널의 환경 특성을 반영하여 그에 따라 휘도 변화를 보상할 수 있는 감마 보정 회로, 디스플레이 장치, 및 감마 보정 방법을 제공할 수 있다.

Description

감마 보정 회로, 디스플레이 장치 및 감마 보정 방법{GAMMA CORRECTION CIRCUIT, DISPLAY DEVICE, AND GAMMA CORRECTING METHOD}
본 발명의 실시예는 감마 보정 회로, 디스플레이 장치, 및 감마 보정 방법에 관한 것이다.
정보화 사회가 발전함에 따라 화상을 표시하는 디스플레이 장치에 대한 다양한 요구가 증가하고 있으며, 액정 디스플레이 장치 (Liquid Crystal Display; LCD), 유기 발광 디스플레이 장치 (Organic Light Emitting Diode Display; OLED Display) 등과 같은 다양한 유형의 디스플레이 장치가 활용되고 있다.
이러한 디스플레이 장치 중 유기 발광 디스플레이 장치는 스스로 발광하는 유기 발광 다이오드를 이용함으로써, 응답 속도가 빠르고 명암비, 발광 효율, 휘도(luminance) 및 시야각 등에서 장점이 존재한다.
이러한 유기 발광 디스플레이 장치는 디스플레이 패널에 배열된 다수의 서브픽셀(Sub-pixel, SP) 각각에 배치된 유기 발광 다이오드를 포함하고, 유기 발광 다이오드에 흐르는 전압 제어를 통해 유기 발광 다이오드를 발광시킴으로써 각각의 서브픽셀(SP)이 나타내는 휘도를 제어하며 이미지를 표시할 수 있다.
이 때, 사람의 시각이 가지는 비선형성을 보정하고 자연스러운 휘도가 인식될 수 있도록, 디지털 영상 데이터가 표현하고자 하는 특정 계조(gradation)에 에 대응되는 감마 전압을 출력함으로써, 디지털 영상 데이터를 아날로그 데이터 전압으로 변환하여 디스플레이 패널의 서브픽셀(SP)로 공급하는 방법이 사용되고 있다. 감마 전압은 단계별 계조를 최대 계조(예를 들어, 256계조)로 나눈 값에 감마 코드를 지수의 형태로 제곱하여 결정할 수 있는데, 현재 가장 많이 사용되는 감마 값은 인간의 시각 특성을 가장 잘 반영한다고 알려진 2.2에 해당한다.
이러한 감마 보정은 일반적으로 디스플레이 장치가 제조된 후에 제조자가 감마 코드를 변경해 가면서 최적의 감마 전압을 찾는 과정을 거치게 된다. 즉, 최대 휘도 또는 감마 코드에 대한 계조별 이미지를 측정하고, 해당 계조에서의 감마 전압을 수동으로 조정하는 방법으로 이루어지는 것이다. 그러나, 이러한 방식은 표현하고자 하는 최대 휘도 및 감마 코드가 증가함에 따라, 최적의 감마 전압을 찾기 위한 계산 시간이 증가할 뿐만 아니라, 최대 휘도 및 감마 값에 대한 조건이 변경됨에 따라 필요한 레지스터의 크기도 증가하게 되는 문제점이 있다.
본 발명의 실시예의 목적은 최적의 감마 전압을 자동으로 설정할 수 있는 감마 보정 회로, 디스플레이 장치, 및 감마 보정 방법을 제공하는데 있다.
또한, 본 발명의 실시예의 목적은 더미 서브픽셀 어레이를 이용하여 최적의 감마 전압을 설정할 수 있는 감마 보정 회로, 디스플레이 장치, 및 감마 보정 방법을 제공하는데 있다.
또한, 본 발명의 실시예의 목적은 디스플레이 패널의 환경 특성을 반영하여 그에 따라 휘도 변화를 보상할 수 있는 감마 보정 회로, 디스플레이 장치, 및 감마 보정 방법을 제공하는데 있다.
일 측면에서, 본 발명의 실시예에 따른 디스플레이 장치는 다수의 게이트 라인, 다수의 데이터 라인 및 다수의 서브픽셀이 배치되며, 표시 영역에 배치되는 메인 서브픽셀 어레이와 메인 서브픽셀 어레이의 외측에 배치되는 더미 서브픽셀 어레이를 포함하는 디스플레이 패널과, 다수의 게이트 라인을 구동하는 게이트 구동 회로와, 다수의 데이터 라인을 구동하는 데이터 구동 회로와, 게이트 구동 회로 및 데이터 구동 회로에 인가되는 신호를 제어하는 타이밍 컨트롤러와, 타이밍 컨트롤러의 제어에 따라, 디스플레이 패널의 일부 영역에 배치된 더미 서브픽셀 어레이에 흐르는 더미 서브픽셀 전류와 발광 소자의 발광 효율에 따라 결정된 서브픽셀 기준 전류를 비교해서 감마 보정 전압을 출력하는 감마 보정 회로를 포함하되, 데이터 구동 회로는 감마 보정 전압에 해당하는 데이터 전압을 상기 디스플레이 패널의 표시 영역에 배치된 메인 서브픽셀 어레이에 인가할 수 있다.
감마 보정 회로는 데이터 구동 회로의 내부에 배치될 수 있다.
디스플레이 패널은 표시 영역에 배치되는 메인 서브픽셀 어레이와, 메인 서브픽셀 어레이의 외측에 배치되는 더미 서브픽셀 어레이를 포함할 수 있다.
감마 보정 회로는 계조별 감마 전압에 대한 정보가 저장되는 레지스터와, 서브픽셀 기준 전류를 발생하는 기준 전류 발생 회로와, 서브픽셀 기준 전류와 더미 서브픽셀 어레이에 흐르는 더미 서브픽셀 전류를 비교하는 비교기와, 비교기의 비교 결과값에 따라 상기 감마 전압 및 감마 보정 전압을 출력하는 감마 전압 제어 회로를 포함할 수 있다.
레지스터는 서브픽셀에 배치되는 발광 소자의 발광 효율에 대한 정보를 더 포함할 수 있다.
발광 효율은 온도 또는 조도에 따라 다른 값을 가질 수 있다.
기준 전류 발생 회로는 (최대 휘도값)/(발광 효율)로 최대 서브픽셀 전류를 계산하고, (최대 서브픽셀 전류)*(단계별 계조/최대 계조)감마코드 의 수식으로 서브픽셀 기준 전류를 산출할 수 있다.
단계별 계조는 전체 계조 단계 중에서 일부 단계의 계조로 이루어질 수 있다.
감마 전압 제어 회로는 비교기의 비교 결과 값을 n 비트 동안 디지털 로직 값으로 누적하는 연속 근사 로직 회로와, 연속 근사 로직 회로의 디지털 로직 값에 따라 상기 감마 전압 및 감마 보정 전압을 출력하는 감마 전압 발생 회로를 포함할 수 있다.
감마 전압 발생 회로는 임의의 계조에서 (하이 레벨 감마 전압과 로우 레벨 감마 전압의 차이)/(2n+1) 의 폭으로 감마 전압을 상승 또는 하향 조정할 수 있다.
감마 전압 제어 회로는 감마 보정 전압을 레지스터에 저장할 수 있다.
본 발명의 감마 보정 회로는 메인 서브픽셀 어레이가 디스플레이 패널의 표시 영역에 배치되고, 더미 서브픽셀 어레이가 메인 서브픽셀 어레이의 외측에 배치되는 디스플레이 장치에서 감마 전압을 보정하는 회로에 있어서, 계조별 감마 전압에 대한 정보가 저장되는 레지스터와, 서브픽셀 기준 전류를 발생하는 기준 전류 발생 회로와, 서브픽셀 기준 전류와 더미 서브픽셀 어레이에 흐르는 더미 서브픽셀 전류를 비교하는 비교기와, 비교기의 비교 결과값에 따라, 상기 감마 전압 및 감마 보정 전압을 출력하는 감마 전압 제어 회로를 포함할 수 있다.
본 발명의 감마 보정 방법은 메인 서브픽셀 어레이가 디스플레이 패널의 표시 영역에 배치되고, 더미 서브픽셀 어레이가 메인 서브픽셀 어레이의 외측에 배치되는 디스플레이 장치에서 감마 전압을 보정하는 방법에 있어서, 환경 정보를 수신하는 단계와, 최대 휘도값 및 감마 코드를 수신하는 단계와, 서브픽셀 기준 전류를 계산하는 단계와, 감마 전압에 따른 더미 서브픽셀 전류를 측정하는 단계와, 서브픽셀 기준 전류와 더미 서브픽셀 전류를 비교하는 단계와, 감마 보정 전압을 결정하는 단계와, 상기 감마 보정 전압을 출력하는 단계를 포함할 수 있다.
서브픽셀 기준 전류를 계산하는 단계는 (최대 휘도값)/(발광 효율)로 최대 서브픽셀 전류를 계산하는 단계와, (최대 서브픽셀 전류)*(단계별 계조/최대 계조)감마코드 의 수식으로 서브픽셀 기준 전류를 산출하는 단계를 포함할 수 있다.
감마 보정 전압을 결정하는 단계는 서브픽셀 기준 전류와 더미 서브픽셀 전류의 비교 결과 값을 n 비트 동안 디지털 로직 값으로 누적하는 단계와, 디지털 로직 값에 따라 상기 감마 전압 및 감마 보정 전압을 결정하는 단계를 포함할 수 있다.
이상에서 설명한 바와 같은 본 발명의 실시예에 의하면, 최적의 감마 전압을 자동으로 설정할 수 있는 감마 보정 회로, 디스플레이 장치, 및 감마 보정 방법을 제공할 수 있다.
또한, 본 발명의 실시예에 의하면, 더미 서브픽셀 어레이를 이용하여 최적의 감마 전압을 설정할 수 있는 감마 보정 회로, 디스플레이 장치, 및 감마 보정 방법을 제공할 수 있다.
또한, 본 발명의 다른 실시예에 의하면, 디스플레이 패널의 환경 특성을 반영하여 그에 따라 휘도 변화를 보상할 수 있는 감마 보정 회로, 디스플레이 장치, 및 감마 보정 방법을 제공할 수 있다.
도 1은 본 발명의 실시예에 따른 디스플레이 장치의 개략적인 구성을 나타낸 도면이다.
도 2는 본 발명의 실시예에 따른 디스플레이 장치에서, 데이터 전압을 출력하는 데이터 구동 회로의 개략적인 구성을 나타낸 것이다.
도 3은 본 발명의 실시예에 따른 디스플레이 장치에서, 디스플레이 패널을 구성하는 메인 픽셀 어레이와 더미 픽셀 어레이의 예시 구조를 나타낸 도면이다.
도 4는 본 발명의 실시예에 따른 디스플레이 장치에서, 더미 서브픽셀 어레이를 이용하여 감마 전압을 발생시키는 감마 보정 회로의 예시 블록도를 나타낸 도면이다.
도 5는 본 발명의 실시예에 따른 디스플레이 장치에서 레지스터에 저장된 계조별 감마 전압의 예시를 나타낸 도면이다.
도 6은 본 발명의 실시예에 따른 디스플레이 장치에서, 감마 보정 회로의 기준 전류 발생 회로에서 서브픽셀 기준 전류를 발생하는 방법을 흐름도로 나타낸 도면이다.
도 7은 본 발명의 실시예에 따른 디스플레이 장치에서, 감마 보정 회로를 구성하는 감마 전압 제어 회로를 좀 더 구체적으로 나타낸 블록도이다.
도 8은 본 발명의 실시예에 따른 디스플레이 장치에서, 감마 전압 제어 회로에 의해 감마 보정 전압이 결정되는 과정을 나타낸 신호 파형도의 예시이다.
도 9는 본 발명의 실시예에 따른 감마 보정 방법의 흐름도를 나타낸 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
또한, 본 발명의 실시예들을 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 본 명세서 상에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함할 수 있다.
또한, 본 발명의 실시예들에서의 구성 요소들을 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석되어야 할 것이다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질, 차례, 순서 또는 개수 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 다른 구성 요소가 "개재"되거나, 각 구성 요소가 다른 구성 요소를 통해 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다. 위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수도 있다.
또한, 본 발명의 실시예들에서의 구성 요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성 요소를 다른 구성 요소와 구별하기 위하여 사용하는 것일 뿐이다. 따라서, 이하에서 언급되는 제1 구성 요소는 본 발명의 기술적 사상 내에서 제2 구성 요소일 수도 있다.
또한, 본 발명의 실시예들에서의 특징들(구성들)이 부분적으로 또는 전체적으로 서로 결합 또는 조합 또는 분리 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예는 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다.
이하에서는, 본 발명의 실시예들을 첨부된 도면을 참조하여 상세히 설명한다.
여기에서, 본 발명의 디스플레이 장치(100)는 액정 디스플레이(LCD), 전계 방출 표시 소자(Field Emission Display: FED), 플라즈마 디스플레이 패널(Plasma Display Panel, PDP), 유기발광 다이오드 디스플레이 장치, 전기 영동 표시 소자(Electrophoresis, EPD) 등의 평판 디스플레이 장치를 기반으로 구현될 수 있다. 이하에서는, 평판 디스플레이 장치의 일예로서 유기 발광 디스플레이 장치를 중심으로 설명하지만, 본 발명의 디스플레이 장치는 이에 한정되지 않는다는 것에 주의하여야 할 것이다.
도 1은 본 발명의 실시예에 따른 디스플레이 장치의 개략적인 구성을 나타낸 도면이다.
도 1을 참조하면, 본 발명의 실시예에 따른 디스플레이 장치(100)는 다수의 서브픽셀(SP)이 횡렬로 배열된 디스플레이 패널(110), 디스플레이 패널(110)을 구동하기 위한 게이트 구동 회로(120)와 데이터 구동 회로(130), 및 게이트 구동 회로(120)와 데이터 구동 회로(130)를 제어하기 위한 타이밍 컨트롤러(Timing Controller, 140)를 포함할 수 있다.
디스플레이 패널(110)에는 다수의 게이트 라인(GL)과 다수의 데이터 라인(DL)이 배치되고, 게이트 라인(GL)과 데이터 라인(DL)이 교차하는 영역에 서브픽셀(SP)이 배치된다. 예를 들어, 2,160 X 3,840 의 해상도를 가지는 유기 발광 디스플레이 장치의 경우에는, 2,160 개의 게이트 라인(GL)과 3,840 개의 데이터 라인(DL)이 구비될 수 있으며, 이들 게이트 라인(GL)과 데이터 라인(DL)이 교차되는 지점에 각각 서브픽셀(SP)이 배치될 것이다.
게이트 구동 회로(120)는 타이밍 컨트롤러(140)에 의해 제어되는데, 디스플레이 패널(110)에 배치된 다수의 게이트 라인(GL)으로 스캔 신호(SCAN)를 순차적으로 출력함으로써 다수의 서브픽셀(SP)에 대한 구동 타이밍을 제어한다. 2,160 X 3,840 의 해상도를 가지는 디스플레이 장치(100)에서, 2,160 개의 게이트 라인(GL)에 대하여 제 1 게이트 라인(GL1)으로부터 제 2,160 게이트 라인(GL2,160)까지 순차적으로 스캔 신호(SCAN)를 출력하는 경우를 2,160상(2,160 phase) 구동이라 할 수 있다. 또는, 제 1 게이트 라인(GL1)으로부터 제 4 게이트 라인(GL4)까지 순차적으로 스캔 신호(SCAN)를 출력한 다음, 제 5 게이트 라인(GL5)으로부터 제 8 게이트 라인(GL8)까지 스캔 신호(SCAN)를 순차적으로 출력하는 경우와 같이, 4개의 게이트 라인을 단위로 순차적으로 스캔 신호(SCAN)를 출력하는 경우를 4상 구동이라고 한다. 즉, N개의 게이트 라인 마다 순차적으로 스캔 신호(SCAN)를 출력하는 경우를 N상 구동이라고 할 수 있다.
이 때, 게이트 구동 회로(120)는 하나 이상의 게이트 드라이버 집적 회로(Gate Driver Integrated Circuit; GDIC)를 포함할 수 있는데, 구동 방식에 따라 디스플레이 패널(110)의 일 측에만 위치할 수도 있고 양 측에 위치할 수도 있다. 또는, 게이트 구동 회로(120)가 디스플레이 패널(110)의 베젤(Bezel) 영역에 내장되어 GIP(Gate In Panel) 형태로 구현될 수도 있다.
한편, 데이터 구동 회로(130)는 타이밍 컨트롤러(140)로부터 영상 데이터(DATA)를 수신하고, 수신된 영상 데이터를 아날로그 형태의 데이터 전압(Vdata)으로 변환한다. 그런 다음, 게이트 라인(GL)을 통해 스캔 신호(SCAN)가 인가되는 타이밍에 맞춰 데이터 전압(Vdata)을 각각의 데이터 라인(DL)으로 출력함으로써, 데이터 라인(DL)에 연결된 각각의 서브픽셀(SP)은 데이터 전압(Vdata)에 따라 해당하는 밝기의 발광 신호를 디스플레이 한다.
마찬가지로, 데이터 구동 회로(130)는 하나 이상의 소스 드라이버 집적 회로(Source Driver Integrated Circuit; SDIC)를 포함할 수 있는데, 소스 드라이버 집적 회로(SDIC)는, TAB (Tape Automated Bonding) 방식 또는 COG (Chip On Glass) 방식으로 디스플레이 패널(110)의 본딩 패드(Bonding Pad)에 연결되거나 디스플레이 패널(110) 상에 직접 배치될 수도 있다. 경우에 따라서, 각 소스 드라이버 집적 회로(SDIC)는 디스플레이 패널(110)에 집적화되어 배치될 수도 있다. 또한, 각 소스 드라이버 집적 회로(SDIC)는 COF (Chip On Film) 방식으로 구현될 수 있는데, 이 경우에, 각 소스 드라이버 집적 회로(SDIC)는 회로 필름 상에 실장 되어, 회로 필름을 통해 디스플레이 패널(110)의 데이터 라인(DL)과 전기적으로 연결될 수 있다.
타이밍 컨트롤러(140)는 게이트 구동 회로(120)와 데이터 구동 회로(130)에 여러 가지 제어 신호를 공급하며, 게이트 구동 회로(120)와 데이터 구동 회로(130)의 동작을 제어한다. 즉, 타이밍 컨트롤러(140)는 각 프레임에서 구현하는 타이밍에 따라 게이트 구동 회로(120)가 스캔 신호(SCAN)를 출력하도록 제어하고, 다른 한편으로는 외부에서 수신한 영상 데이터를 데이터 구동 회로(130)에서 사용하는 데이터 신호 형식에 맞게 변환하여 변환된 영상 데이터(DATA)를 데이터 구동 회로(130)로 전달한다.
이 때, 타이밍 컨트롤러(140)는 영상 데이터와 함께 수직 동기 신호(VSYNC), 수평 동기 신호(HSYNC), 데이터 인에이블 신호(Data Enable; DE), 클럭 신호(CLK) 등을 포함하는 여러 가지 타이밍 신호를 외부(예, 호스트 시스템)로부터 수신한다. 이에 따라, 타이밍 컨트롤러(140)는 외부로부터 수신한 여러 가지 타이밍 신호를 이용하여 제어 신호를 생성하고, 이를 게이트 구동 회로(120) 및 데이터 구동 회로(130)로 전달한다.
예를 들어, 타이밍 컨트롤러(140)는 게이트 구동 회로(120)를 제어하기 위하여, 게이트 스타트 펄스(Gate Start Pulse; GSP), 게이트 시프트 클럭(Gate Shift Clock; GSC), 게이트 출력 인에이블 신호(Gate Output Enable; GOE) 등을 포함하는 여러 가지 게이트 제어 신호(GCS)를 출력한다. 여기에서, 게이트 스타트 펄스(GSP)는 게이트 구동 회로(120)를 구성하는 하나 이상의 게이트 드라이버 집적 회로(GDIC)가 동작을 시작하는 타이밍을 제어한다. 또한, 게이트 시프트 클럭(GSC)은 하나 이상의 게이트 드라이버 집적 회로(GDIC)에 공통으로 입력되는 클럭 신호로서, 스캔 신호(SCAN)의 시프트 타이밍을 제어한다. 또한, 게이트 출력 인에이블 신호(GOE)는 하나 이상의 게이트 드라이버 집적 회로(GDIC)의 타이밍 정보를 지정하고 있다.
또한, 타이밍 컨트롤러(140)는 데이터 구동 회로(130)를 제어하기 위하여, 소스 스타트 펄스(Source Start Pulse; SSP), 소스 샘플링 클럭(Source Sampling Clock; SSC), 소스 출력 인에이블 신호(Source Output Enable; SOE) 등을 포함하는 각종 데이터 제어 신호(DCS)를 출력한다. 여기에서, 소스 스타트 펄스(SSP)는 데이터 구동 회로(130)를 구성하는 하나 이상의 소스 드라이버 집적 회로(SDIC)가 데이터 샘플링을 시작하는 타이밍을 제어한다. 소스 샘플링 클럭(SSC)은 소스 드라이버 집적 회로(SDIC)에서 데이터를 샘플링하는 타이밍을 제어하는 클럭 신호이다. 소스 출력 인에이블 신호(SOE)는 데이터 구동 회로(130)의 출력 타이밍을 제어한다.
이러한 디스플레이 장치(100)는 디스플레이 패널(110), 게이트 구동 회로(120), 데이터 구동 회로(130) 등으로 각종 전압 또는 전류를 공급해주거나, 공급할 각종 전압 또는 전류를 제어하는 전원 관리 집적 회로를 더 포함할 수 있다.
한편, 서브픽셀(SP)은 게이트 라인(GL)과 데이터 라인(DL)이 교차되는 지점에 위치하며, 각각의 서브픽셀(SP)에는 발광 소자가 배치될 수 있다. 예를 들어, 디스플레이 장치(100)는 각각의 서브픽셀(SP)에 발광 다이오드(LED) 또는 유기 발광 다이오드(OLED)와 같은 발광 소자를 포함하며, 데이터 전압(Vdata)에 따라 발광 소자에 흐르는 전류를 제어함으로써 이미지를 표시할 수 있다.
도 2는 본 발명의 실시예에 따른 디스플레이 장치에서, 데이터 전압을 출력하는 데이터 구동 회로의 개략적인 구성을 나타낸 것이다.
도 2를 참조하면, 데이터 구동 회로(130)는 타이밍 컨트롤러(140)로부터 수신한 영상 데이터(DATA)에 해당하는 데이터 전압을 출력하는 데이터 전압 출력 회로(131)와 감마 전압을 생성하여 데이터 전압 출력 회로(131)에 인가하는 감마 보정 회로(200)를 포함할 수 있다.
데이터 전압 출력 회로(131)는 타이밍 컨트롤러(140)로부터 디지털 형태의 영상 데이터(DATA)를 수신하면, 수신된 영상 데이터(DATA)를 아날로그 형태의 데이터 전압으로 변환하고, 데이터 전압의 레벨을 통해 영상 데이터의 계조를 표현하도록 한다. 이 때, 데이터 전압 출력 회로(131)는 감마 보정 회로(200)로부터 출력되는 감마 전압을 이용하여 각 계조에 해당하는 데이터 전압을 출력할 수 있다.
감마 보정 회로(200)는 감마 전압을 생성하기 위한 기준 전압을 외부로부터 입력받고, 입력된 기준 전압을 이용하여 특정 계조에 해당하는 감마 전압을 출력할 수 있다. 일 예로, 256개의 계조를 표현하는 경우, 감마 보정 회로(200)는 0계조(0G), 1계조(1G), 15계조(15G), 31계조(31G), 63계조(63G), 127계조(127G), 191계조(191G), 및 255계조(255G)에 해당하는 감마 전압을 출력할 수 있다. 이 때, 감마 보정 회로(200)가 출력 가능한 감마 전압의 값 및 범위는 다양하게 변경될 수 있다.
데이터 전압 출력 회로(131)는 감마 보정 회로(200)로부터 출력된 특정 계조에 해당하는 감마 전압을 입력받고, 입력된 감마 전압을 이용하여 영상 데이터(DATA)의 계조에 해당하는 데이터 전압을 디스플레이 패널(110)로 공급한다. 즉, 데이터 전압 출력 회로(131)가 255계조(255G)에 해당하는 데이터 전압을 출력하는 경우, 255계조(255G)에 해당하는 감마 전압을 이용할 수 있으며, 191계조(191G)와 255계조(255G) 사이에 해당하는 데이터 전압을 출력하는 경우에는 191계조(191G)에 해당하는 감마 전압과 255계조(255G)에 해당하는 감마 전압을 이용하여 데이터 전압을 출력할 수 있다.
특히, 본 발명의 디스플레이 장치(100)는 특정 계조에서 요구되는 서브픽셀(SP)의 전류를 계산하고 이를 기반으로 최적의 감마 전압을 결정하기 위하여, 디스플레이 패널(110) 내에 배치되는 더미 서브픽셀 어레이를 활용한다.
도 3은 본 발명의 실시예에 따른 디스플레이 장치에서, 디스플레이 패널을 구성하는 메인 픽셀 어레이와 더미 픽셀 어레이의 예시 구조를 나타낸 도면이다.
도 3을 참조하면, 본 발명의 디스플레이 장치(100)는 디스플레이 패널(110)에 복수의 더미 서브픽셀로 구성되는 더미 서브픽셀 어레이(114)가 포함될 수 있다. 더미 서브픽셀 어레이(114)는 디스플레이 패널(110)의 표시 영역에 해당하는 메인 서브픽셀 어레이(112)의 외측, 즉 비표시 영역에 형성된다. 디스플레이 패널(110)의 비표시 영역에 형성되는 더미 서브픽셀 어레이(114)의 형상, 개수, 및 배치 구조 등은 위치에 따라 다르게 형성될 수 있을 것이다.
디스플레이 패널(110)을 구성하는 기판에는 외부로 빛을 발광하는 메인 서브픽셀(SP)들이 형성되는 표시 영역과, 표시 영역의 외측에 위치하며 더미 서브픽셀 어레이(114)가 형성되는 비표시 영역으로 구성될 수 있다. 비표시 영역은 표시 영역의 상부에 위치하는 상부 비표시 영역, 하부에 위치하는 하부 비표시 영역, 우측에 위치하는 우측 비표시 영역, 및 좌측에 위치하는 좌측 비표시 영역으로 각각 구분될 수 있다.
상부 비표시 영역에는 상부 더미 서브픽셀 어레이가 형성되고, 하부 비표시 영역에는 하부 더미 서브픽셀 어레이가 형성되며, 우측 비표시 영역에는 우측 더미 서브픽셀 어레이가 형성되고, 좌측 비표시 영역에는 좌측 더미 서브픽셀 어레이가 형성될 것이다. 이 때, 상부 더미 서브픽셀 어레이, 하부 더미 서브픽셀 어레이, 우측 더미 서브픽셀 어레이, 및 좌측 더미 서브픽셀 어레이 중 적어도 하나는 생략될 수도 있을 것이다.
이러한 더미 서브픽셀 어레이(114)는 표시 영역에 위치하는 메인 서브픽셀 어레이(112)와 데이터 라인(DL)을 공유할 수 있다. 즉, 수직으로 배열된 더미 서브픽셀 어레이(114)와 표시 영역의 메인 서브픽셀 어레이(112)는 동일한 데이터 라인(DL)에 연결됨으로써, 표시 영역에 위치하는 메인 서브픽셀 어레이(112)와 유사한 응답 특성을 가질 수 있다. 따라서, 더미 서브픽셀 어레이(114)는 표시 영역에 위치하는 메인 서브픽셀 어레이(112)와 대비할 때, 정상 구동되는 발광 소자가 없는 것을 제외하면 표시 영역의 메인 서브픽셀 어레이(112)와 동일할 수 있다. 또한, 표시 영역에 있는 메인 서브픽셀 어레이(112)와 비표시 영역에 있는 더미 서브픽셀 어레이(114)는 동일한 구동 신호 체계로 구동되기 때문에, 게이트 구동 회로(120) 및 데이터 구동 회로(130)를 공유할 수 있다.
도 4는 본 발명의 실시예에 따른 디스플레이 장치에서, 더미 서브픽셀 어레이를 이용하여 감마 전압을 발생시키는 감마 보정 회로의 예시 블록도를 나타낸 도면이다.
도 4를 참조하면, 본 발명의 실시예에 따른 감마 보정 회로(200)는 기준 전류 발생 회로(210), 비교기(220), 감마 전압 제어 회로(230), 및 레지스터(240)를 포함할 수 있다.
기준 전류 발생 회로(210)는 더미 서브픽셀 어레이(114)에서 발생되는 더미 서브픽셀 전류(Idpx)와 비교하기 위한 서브픽셀 기준 전류(Ipxr)를 발생한다. 비교기(220)는 서브픽셀 기준 전류(Ipxr)와 더미 서브픽셀 어레이(114)에 흐르는 더미 서브픽셀 전류(Idpx)를 비교해서 비교 결과 값(Vcomp)을 감마 전압 제어 회로(230)로 제공한다. 감마 전압 제어 회로(230)는 레지스터(240)에 저장된 디지털 형식의 감마 전압(VGAM)을 참조해서, 더미 서브픽셀 어레이(114)에 인가하기 위한 감마 전압(Vgam(n))을 순차적으로 변경함으로써, 서브픽셀 기준 전류(Ipxr)에 근사한 값의 전류가 메인 서브픽셀 어레이(112)에 흐를 수 있도록 하기 위한 최적의 감마 보정 전압(Vgamc)를 결정한다. 이 때, 감마 전압 제어 회로(230)는 비교기(220)의 비교 결과값(Vcomp)을 순차적으로 누적해서 최적의 감마 보정 전압(Vgamc)을 나타내는 디지털 로직 값(Dsar)을 산출하고, 이를 레지스터(240)에 저장함으로써 감마 전압(Vgam)을 수정할 수 있다.
여기에서는 감마 전압 제어 회로(230)에서 더미 서브픽셀 어레이(114)에 감마 전압(Vgam(n))을 인가하는 구성으로 표시하였으나, 데이터 구동 회로(130)의 데이터 전압 출력 회로(131)에서 감마 전압 제어 회로(230)로부터 전달되는 감마 전압(Vgam(n))을 데이터 전압으로 변환하여 더미 서브픽셀 어레이(114)에 공급할 수 있을 것이다.
또한, 레지스터(240)는 계조별 감마 전압(VGAM)에 대한 정보와 함께, 더미 서브픽셀(SP)에 흐르는 서브픽셀 기준 전류(Ipxr)를 계산하기 위한 발광 소자의 발광 효율(Eoled)에 대한 정보를 포함할 수 있다. 디스플레이 장치(100)가 유기 발광 디스플레이 장치인 경우에는 발광 소자로서 유기 발광 다이오드(OLED)가 사용되므로, 유기 발광 다이오드(OLED)에 대한 발광 효율(Eoled) 정보에 해당하게 될 것이다.
도 5에는 본 발명의 실시예에 따른 디스플레이 장치에서 레지스터에 저장된 계조별 감마 전압의 예시를 나타내고 있다.
8 비트로 계조를 표현하는 경우에는 256단계의 계조를 나타낼 수 있으며, 감마 코드(예를 들어, 2.2)에 따라 레지스터(240)에는 해당하는 256계조별 감마 전압(VGAM)이 디지털 형식으로 저장될 수 있다. 레지스터(240)에 저장되는 계조별 감마 전압(VGAM)은 특정한 레벨의 전압 값을 가질 수도 있지만, 일정한 범위를 가지는 전압 값을 가질 수도 있다. 예를 들어, 0계조에서부터 255계조까지의 감마 전압(VGAM)은 0 ~ 5.7V의 값을 가질 수 있는데, 255계조에 해당하는 감마 전압(VGAM255)은 5.5 ~ 5.7V의 범위를 가질 수 있다. 1계조에 해당하는 감마 전압(VGAM1)은 0.1 ~ 0.3V의 범위를 가질 수 있다. 감마 전압(VGAM)은 디스플레이 장치(100)가 적용되는 제품, 즉 TV 또는 스마트폰 등의 종류에 따라 다양하게 조정될 수 있을 것이다.
이 때, 레지스터(240)는 256계조 전체에 해당하는 감마 전압(VGAM)을 저장할 수도 있지만, 일부의 계조에 대한 감마 전압(VGAM)을 저장하고, 나머지 계조에 해당하는 감마 전압(VGAM)은 레지스터(240)에 저장된 감마 전압(VGAM)의 조합을 통해 표현할 수도 있다.
또한, 디스플레이 장치(100)에서 발광 소자에 의해 표현되는 휘도는 발광 소자에 흐르는 전류와 발광 소자의 발광 효율(Eoled)에 비례하게 된다. 따라서, 레지스터(240)에 저장되는 발광 소자가 배치된 서브픽셀(SP)에 흐르는 서브픽셀 기준 전류(Ipxr)는 디스플레이 장치(100)가 나타내는 최대 휘도값(LUMmax)을 발광 효율(Eoled)로 나눈 값으로 나타낼 수 있을 것이다. 이 때, 디스플레이 장치(100)는 온도 및 주변의 조도(illuminance)에 따라, 최대 휘도값(LUMmax)이 달라질 수 있으므로, 온도 및 조도에 따른 발광 효율(Eoled) 정보가 세부적으로 저장될 수도 있을 것이다.
이러한 레지스터(240)는 감마 보정 회로(200) 내부에 위치될 수도 있지만, 감마 보정 회로(200) 외부에 있는 별도의 메모리에 위치될 수도 있을 것이다.
본 발명의 감마 보정 회로(200)에서 기준 전류 발생 회로(210)는 더미 서브픽셀 어레이(114)에서 발생되는 더미 서브픽셀 전류(Idpx)와 비교하기 위한 서브픽셀 기준 전류(Ipxr)를 발생하는 부분이다. 이를 위해서, 기준 전류 발생 회로(210)는 레지스터(240)로부터 전달되는 발광 소자의 발광 효율(Eoled)에 대한 정보와 최대 휘도값(LUMmax) 및 감마 코드(CODEgam)를 이용할 수 있다.
이 때, 발광 소자의 발광 효율(Eoled)은 디스플레이 장치(100)의 온도 또는 주변의 조도에 따라 달라질 수 있으므로, 디스플레이 장치(100)에 배치된 온도 센서(300) 또는 조도 센서(400)로부터 전달되는 온도와 조도 정보를 활용할 수 있다. 따라서, 온도 센서(300)에서 측정된 온도 값 또는 조도 센서(400)를 통해 측정된 조도 값에 해당하는 발광 효율(Eoled)을 레지스터(240)로부터 제공받을 수 있다. 여기에서, 온도 센서(300) 또는 조도 센서(400)는 필요에 따라 하나만 사용될 수도 있고, 함께 사용될 수도 있을 것이다.
도 6은 본 발명의 실시예에 따른 디스플레이 장치에서, 감마 보정 회로의 기준 전류 발생 회로에서 서브픽셀 기준 전류를 발생하는 방법을 흐름도로 나타낸 도면이다.
도 6을 참조하면, 서브픽셀 기준 전류(Ipxr)를 발생하는 방법은 환경 정보를 수신하는 단계(S10), 환경에 따른 발광 효율(Eoled) 정보를 수신하는 단계(S20), 최대 서브픽셀 전류(Ipxm)를 계산하는 단계(S30), 감마 코드(CODEgam)를 수신하는 단계(S40), 및 서브픽셀 기준 전류(Ipxr)를 계산하는 단계(S50)를 포함할 수 있다.
환경 정보를 수신하는 단계(S10)는 온도 센서(300) 또는 조도 센서(400)로부터 디스플레이 장치(100)의 온도 정보 또는 주변의 조도 정보를 수신하는 단계이다. 본 발명에서는 온도 정보 또는 조도 정보를 개별적으로 이용할 수도 있고, 동시에 이용할 수도 있을 것이다.
환경에 따른 발광 효율(Eoled) 정보를 수신하는 단계(S20)는 온도 센서(300)로부터 전달된 온도 정보 또는 조도 센서(400)로부터 전달된 조도 정보에 대응되는 발광 소자의 발광 효율(Eoled)에 대한 정보를 수신하는 단계이다. 발광 소자의 발광 효율(Eoled)은 레지스터(240)에 저장될 수도 있지만, 별도의 메모리에 저장될 수도 있을 것이다. 서브픽셀(SP)의 휘도는 서브픽셀(SP)에 흐르는 전류와 발광 소자의 발광 효율(Eoled)에 비례하므로, 발광 효율(Eoled)은 전류/휘도의 단위로 나타낼 수 있을 것이다.
최대 서브픽셀 전류(Ipxm)를 계산하는 단계(S30)는 레지스터(240)로부터 전달된 발광 소자의 발광 효율(Eoled)을 이용해서, 최고 계조(예를 들어, 256계조)에서 서브픽셀(SP)에 흐르는 최대 서브픽셀 전류(Ipxm)를 계산하는 단계이다. 예를 들어, 최대 서브픽셀 전류(Ipxm)는 최대 휘도값(LUMmax)을 발광 효율(Eoled)로 나눈 값(LUMmax/Eoled)이 될 것이다.
감마 코드(CODEgam)를 수신하는 단계(S40)는 감마 보정의 정도를 나타내는 디지털 코드 값을 수신하는 단계이다. 예를 들어, 감마 2.2 보정을 적용하는 경우에는 감마 코드(CODEgam)가 2.2의 값을 가질 것이며, 감마 2.0 보정을 적용하는 경우에는 감마 코드(CODEgam)가 2.0의 값을 가질 것이다. 감마 코드(CODEgam)를 수신하는 단계(S40)는 최대 서브픽셀 전류(Ipxm)를 계산하는 단계(S30) 이후에 이루어질 수도 있지만, 환경 정보를 수신하는 단계(S10) 또는 그 이전에 이루어질 수도 있을 것이다.
서브픽셀 기준 전류(Ipxr)를 계산하는 단계(S50)는 특정 온도 또는 특정 조도에서 계조에 따라, 서브픽셀(SP)이 나타내는 특정 휘도에 대응되는 전류를 계산하는 단계이다. 서브픽셀 기준 전류(Ipxr)는 특정 계조를 표현하기 위해서 서브픽셀(SP)에 흐르는 이상적인 전류 값으로 볼 수 있다. 서브픽셀 기준 전류(Ipxr)는 최대 서브픽셀 전류(Ipxm)에 대해서, 단계별 계조를 최대 계조(예를 들어, 8비트의 경우에는 256계조)로 나눈 값에 감마 코드(CODEgam)를 지수의 형태로 제곱해서 결정할 수 있으며, 이를 수식으로 나타내면 Ipxr = Ipxm * (n/255)CODEgam 이 된다. 여기에서, n은 특정 단계의 계조를 나타내는 값으로서, 255계조의 경우에는 255, 191계조의 경우에는 191의 값을 가질 수 있다. 따라서, 256계조를 표현하는 경우에, n은 0에서부터 255계조까지 256가지 값을 가질 수 있지만, 일부 단계의 계조만을 이용할 수도 있으므로 도 5와 같이 8단계로 구분하는 경우에는, 예를 들어 0, 1, 15, 31, 63, 127, 191, 및 255의 8가지 값을 가질 수 있을 것이다. 이러한 n의 개수와 값은 다양하게 변경될 수 있을 것이다.
위와 같이 계산된 서브픽셀 기준 전류(Ipxr)는 비교기(220)에서 서브픽셀(SP)에 흐르는 실제 전류와 비교해서, 더미 서브픽셀 어레이(114)에 인가되는 데이터 전압을 발생시킬 감마 전압(Vgam)을 조정하게 된다. 즉, 서브픽셀 기준 전류(Ipxr)가 서브픽셀 기준 전류(Ipxr)보다 큰 경우에는 감마 전압(Vgam)을 하향 조정하고, 서브픽셀(SP)에 흐르는 실제 전류가 서브픽셀 기준 전류(Ipxr)보다 작은 경우에는 감마 전압(Vgam)을 상향 조정함으로써, 최적의 감마 보정 전압(Vgamc)을 찾을 수 있을 것이다.
이를 위해서, 본 발명의 디스플레이 장치(100)는 디스플레이 패널(110)을 구성하는 더미 서브픽셀 어레이(114)에서 흐르는 서브픽셀 전류(Idpx)를 대상으로 서브픽셀 기준 전류(Ipxr)과 비교하도록 한다. 따라서, 비교기(220)는 기준 전류 발생 회로(210)에서 인가되는 서브픽셀 기준 전류(Ipxr)를 입력 단자, 예를 들어 비반전 입력 단자로 제공받고, 더미 서브픽셀 어레이(114)에 흐르는 더미 서브픽셀 전류(Idpx)를 다른 입력 단자, 예를 들어 반전 입력 단자로 제공받을 수 있다.
비교기(220)는 서브픽셀 기준 전류(Ipxr)와 더미 서브픽셀 어레이(114)에 흐르는 더미 서브픽셀 전류(Idpx)를 비교해서, 비교 결과(Vcomp)를 감마 전압 제어 회로(230)에 공급한다. 이 때, 비교기(20)는 전류를 직접 입력받아 비교하는 전류 비교기 뿐만 아니라, 저항을 통해 입력되는 전류를 전압으로 변환하여 전압 값을 비교하는 전압 비교기가 사용될 수도 있을 것이다.
감마 전압 제어 회로(230)는 레지스터(240)에 저장된 디지털 형식의 감마 전압(VGAM)을 참조해서, 더미 서브픽셀 어레이(114)에 인가할 데이터 전압을 생성할 수 있는 감마 전압(Vgam(n))을 순차적으로 변경할 수 있다. 예를 들어, 감마 전압 제어 회로(230)는 먼저, 레지스터(240)에 저장된 특정 계조의 감마 전압(VGAM)을 아날로그 감마 전압(Vgam)으로 변환해서 더미 서브픽셀 어레이(114)에 인가하는데, 127계조를 표현하는 경우에는 127계조에 해당하는 감마 전압(VGAM127)을 아날로그 전압으로 변환하고, 이에 해당하는 데이터 전압이 데이터 구동 회로(130)를 통해 더미 서브픽셀 어레이(114)에 공급되다. 이 때, 127계조의 감마 전압(VGAM127)에 해당하는 데이터 전압이 인가된 더미 서브픽셀 어레이(114)는 이에 해당하는 더미 서브픽셀 전류(Idpx)를 발생하게 될 것이고, 비교기(220)는 서브픽셀 기준 전류(Ipxr)와 더미 서브픽셀 전류(Idpx)를 비교하게 될 것이다.
감마 전압 제어 회로(230)는 비교기(220)의 비교 결과 값(Vcomp)에 따라 더미 서브픽셀 어레이(114)에 인가할 데이터 전압에 해당하는 감마 전압(Vgam)을 순차적으로 상승하거나 하강하는 값으로 조정할 수 있으며, 데이터 구동 회로(130)는 이를 이용해서 해당하는 데이터 전압을 다시 더미 서브픽셀 어레이(114)로 인가한다. 이러한 비교 및 조정 과정을 일정한 횟수로 반복함으로써, 더미 서브픽셀 어레이(114)에 흐르는 더미 서브픽셀 전류(Idpx)는 서브픽셀 기준 전류(Ipxr)에 근사한 값을 가지게 될 것이다. 이러한 과정을 통해 최종적으로 결정된 감마 보상 전압(Vgamc)을 메인 서브픽셀 어레이(112)에 인가함으로써, 온도와 조도 등의 환경 요인에 따른 최적의 휘도를 디스플레이 패널(110)이 표현할 수 있도록 한다.
도 7은 본 발명의 실시예에 따른 디스플레이 장치에서, 감마 보정 회로를 구성하는 감마 전압 제어 회로를 좀 더 구체적으로 나타낸 블록도이다. 또한, 도 8은 감마 전압 제어 회로에 의해 감마 보정 전압이 결정되는 과정을 나타낸 신호 파형도의 예시이다. 이를 통해, 최적의 감마 보정 전압(Vgamc)이 결정되는 과정을 살펴보도록 한다.
본 발명의 실시예에 따른 디스플레이 장치에서, 감마 보정 회로(200)를 구성하는 감마 전압 제어 회로(230)는 연속 근사 로직(Successive Approximation Register) 회로(232)와 감마 전압 발생 회로(234)를 포함할 수 있다.
연속 근사 로직 회로(232)는 비교기(220)의 비교 결과 값(Vcomp)을 n 비트 동안 디지털 로직 값(Dsar)으로 누적하여, 이를 감마 전압 발생 회로(234) 및 레지스터(240)로 전달한다. 감마 전압 발생 회로(234)는 연속 근사 로직 회로(232)에서 전달된 디지털 로직 값(Dsar)에 해당하는 최적의 감마 보정 전압(Vgamc)을 생성할 수 있으며, 데이터 구동 회로(130)는 이를 이용해서 메인 서브픽셀 어레이(112)에 해당하는 데이터 전압을 공급할 수 있다. 레지스터(240)는 연속 근사 로직 회로(232)에서 전달된 디지털 로직 값(Dsar)을 저장하여, 계조별 감마 전압(VGAM)을 변경할 수 있을 것이다.
이 때, 연속 근사 로직 회로(232)에서 서브픽셀 기준 전류(Ipxr)와 더미 서브픽셀 전류(Idpx)의 비교 결과 값(Vcomp)을 n 비트 동안 순차적으로 제공받을 수 있도록, 감마 전압 발생 회로(234)는 레지스터(240)에 저장된 감마 전압(VGAM)에 해당하는 아날로그 감마 전압(Vgam)을 생성한다. 또한, 데이터 구동 회로(130)가 이를 이용해서 더미 서브픽셀 어레이(114)에 데이터 전압을 순차적으로 인가하게 되면, 비교기(220)로부터 더미 서브픽셀 어레이(114)에 흐르는 더미 서브픽셀 전류(Idpx)와 서브픽셀 기준 전류(Ipxr)의 비교 결과 값(Vcomp)을 제공받아, 더미 서브픽셀 어레이(114)에 인가하기 위한 감마 전압(Vgam(n))의 값을 일정한 폭으로 증가시키거나 감소시킬 수 있을 것이다. 따라서, 감마 전압 발생 회로(234)에서 더미 서브픽셀 어레이(114)에 인가하기 위한 감마 전압(Vgam(n))을 n 개의 값으로 조정할 수 있을 것이다.
예를 들어, 255계조를 표현하는 경우, 더미 서브픽셀 어레이(114)에 인가하기 위한 감마 전압(Vgam)은 0계조에 해당하는 로우 레벨 감마 전압(VL)과 255계조에 해당하는 하이 레벨 감마 전압(VH) 사이의 전압으로 설정될 수 있는데, 로우 레벨 감마 전압(VL)은 그라운드 전압이 될 수 있고, 하이 레벨 감마 전압(VH)은 3 ~ 6V 사이의 값을 가질 수 있다. 따라서, 하이 레벨 감마 전압(VH)과 로우 레벨 감마 전압(VL)의 차이(△VHL)는 3 ~ 6V 사이의 값을 가질 수 있으며, 최대 계조인 255계조를 기준으로 하는 경우에 하이 레벨 감마 전압(VH)과 로우 레벨 감마 전압(VL)의 차이(△VHL)는 6V 가 될 것이다.
이 때, 63계조에 대한 감마 보정이 이루어지는 경우, 레지스터(240)에 저장된 63계조 감마 전압(VGAM63)은 2.1V ~ 2.3V 사이의 값을 가질 수 있으므로, 8 비트를 기준으로 연속 근사 로직 회로(232)가 동작하는 경우, T0의 시점에서 더미 서브픽셀 어레이(114)에 인가되는 63계조의 최초 감마 전압(Vgam(0))은 2.2V가 될 수 있다.
2.2V의 값을 가지는 63계조의 최초 감마 전압(Vgam(0))에 따라 더미 서브픽셀 어레이(114)에 데이터 전압이 인가되면, 더미 서브픽셀 어레이(114)에는 최초 감마 전압(Vgam(0))에 대응되는 더미 서브픽셀 전류(Idpx)가 흐르게 되고, 비교기(220)는 서브픽셀 기준 전류(Ipxr)과 더미 서브픽셀 전류(Idpx)를 비교하게 된다. 비교 결과, 더미 서브픽셀 전류(Idpx)가 서브픽셀 기준 전류(Ipxr)보다 작은 경우에는 서브픽셀(SP)의 휘도가 낮은 것으로 판단하고, 서브픽셀(SP)의 휘도를 높일 수 있도록 감마 전압(Vgam)을 상승시키도록 한다. 따라서, T1 시점에서, 63계조의 1단계 감마 전압(Vgam(1))은 최초 감마 전압(Vgam(0))을 △VHL/4 V(6/4 = 1.5V)만큼 상승시킨 3.7V로 설정할 수 있을 것이다. 즉, 감마 전압(Vgam)의 상승 또는 하강 폭은 △VHL/2n+1 이 될 수 있을 것이다. 물론, 감마 전압(Vgam)의 상승 및 하강 폭은 다양하게 조정될 수 있을 것이다.
감마 전압 발생 회로(234)을 통해 1단계 감마 전압(Vgam(1))인 3.7V에 해당하는 데이터 전압이 더미 서브픽셀 어레이(114)에 인가된 상태에서, 비교기(220)는 더미 서브픽셀 어레이(114)에 흐르는 더미 서브픽셀 전류(Idpx)와 서브픽셀 기준 전류(Ipxr)를 다시 비교하고, 비교 결과 값(Vcomp)을 연속 근사 로직 회로(232)에 전달한다. 비교 결과, 서브픽셀 기준 전류(Ipxr)가 더미 서브픽셀 전류(Idpx)보다 작은 경우에는 T2 시점에서 서브픽셀(SP)의 휘도를 감소시킬 필요가 있으므로, 1단계 감마 전압(Vgam(1))을 일정한 크기(예를 들어, △VHL/8V = 6/8V = 0.75V)만큼 하강시킨 2단계 감마 전압(Vgam(2))을 기준으로 데이터 구동 회로(130)에서 데이터 전압을 더미 서브픽셀 어레이(114)에 공급할 것이다.
8 비트 연속 근사 로직 회로(232)의 경우에는 이러한 비교 단계가 8번 계속될 수 있으며, 각 단계에서의 비교 결과 값(Vcomp)은 8비트의 디지털 로직 값(Dsar)으로 저장될 수 있다. 이 과정을 통해 얻어진 디지털 로직 값(Dsar)에 대응되는 감마 전압(Vgam(8))은 서브픽셀 기준 전류(Ipxr)와 근사한 전류를 더미 서브픽셀 어레이(114)에 흐르도록 하는데 요구되는 최적의 감마 보정 전압(Vgamc)이 될 것이다.
따라서, 감마 전압 발생 회로(234)는 연속 근사 로직 회로(232)에서 저장된 n비트의 디지털 로직 값(Dsar)에 대응되는 감마 전압(Vgam(n))을 감마 보정 전압(Vgamc)으로 결정하고, 데이터 구동 회로(130)는 이를 이용해서 메인 서브픽셀 어레이(112)에 데이터 전압을 공급할 수 있다. 그 결과, 메인 서브픽셀 어레이(112)에는 서브픽셀 기준 전류(Ipxr)에 근사한 값의 전류가 흐르게 될 것이며, 온도 또는 조도와 같은 외부 환경이 변화하는 경우에도 디스플레이 패널(110)에 균일한 휘도의 영상을 표시할 수 있게 된다. 특히, 최대 휘도 값 또는 감마 코드를 수정하거나 환경 조건이 변경되더라도 연속 근사 로직 회로(232)를 통해 최적의 감마 보정 전압(Vgamc)을 찾을 수 있으므로, 레지스터(240)에 저장되는 감마 전압(VGAM)에 대한 데이터를 추가하거나 증가시키지 않고도 감마 보정 전압(Vgamc)을 자동으로 설정할 수 있게 된다.
한편, 위에서는 비교기(220)와 연속 근사 로직 회로(232)를 분리하여 도시하였지만, 연속 근사 로직 회로(232) 내부에 비교기(220)가 구비되거나 감마 전압 제어 회로(230) 내부에 비교기(220)가 위치할 수도 있을 것이다.
도 9는 본 발명의 실시예에 따른 감마 보정 방법의 흐름도를 나타낸 도면이다.
도 9를 참조하면, 본 발명의 감마 보정 방법은 환경 정보를 수신하는 단계(S100), 최대 휘도값(LUMmax) 및 감마 코드(CODEgam)를 수신하는 단계(S200), 서브픽셀 기준 전류(Ipxr)를 계산하는 단계(S300), 감마 전압(Vgam)에 따른 더미 서브픽셀 전류(Idpx)를 측정하는 단계(S400), 서브픽셀 기준 전류(Ipxr)와 더미 서브픽셀 전류(Idpx)를 비교하는 단계(S500), 감마 보정 전압(Vgamc)을 결정하는 단계(S600), 및 감마 보정 전압(Vgamc)을 메인 서브픽셀 어레이(112)에 인가하는 단계(S700)를 포함할 수 있다.
환경 정보를 수신하는 단계(S100)는 디스플레이 장치(100)가 구동되는 동안에 디스플레이 패널(110)의 휘도에 영향을 줄 수 있는 외부의 환경적인 요소에 대한 정보를 수신하는 단계이다. 디스플레이 장치(100)의 휘도에 영향을 미칠 수 있는 환경적인 요소로서는 온도와 주변의 조도를 예로 들 수 있으며, 이 밖에 휘도에 영향을 미치는 요소가 있으면 추가로 고려될 수 있을 것이다. 온도 정보와 조도 정보를 환경 정보로서 수신하는 경우에는 디스플레이 장치(100)에 내재된 온도 센서(300) 및 조도 센서(400)를 통해 제공받을 수 있을 것이다.
최대 휘도값(LUMmax) 및 감마 코드(CODEgam)를 수신하는 단계(S200)는 디스플레이 장치(100)에서 표현할 수 있는 최대 휘도값(LUMmax)과 감마 보정을 위해 적용되는 감마 코드(CODEgam)를 수신하는 단계이다. 최대 휘도값(LUMmax)의 경우, TV에서는 30 ~ 40 니트(nit) 값을 가질 수 있고, 모바일 디스플레이 장치에서는 200 ~ 300 니트(nit) 값을 가질 수 있다. 감마 코드(CODEgam)의 경우, 일반적으로는 감마 2.2 보정이 적용되기 때문에 2.2의 값을 가질 수 있으나, 필요에 의해 2.0 또는 그 밖의 다른 감마 코드(CODEgam)가 사용될 수도 있을 것이다.
서브픽셀 기준 전류(Ipxr)를 계산하는 단계(S300)는 환경 정보, 예를 들어 특정 온도 또는 조도에서 서브픽셀(SP)을 통해 나타내고자 하는 휘도에 대응하여, 서브픽셀(SP)에 흐르는 전류를 계산하는 단계이다. 디스플레이 장치(100)에서 서브픽셀(SP)을 구성하는 발광 소자에 의해 표현되는 휘도는 발광 소자에 흐르는 전류와 발광 소자의 발광 효율(Eoled)에 비례한다. 따라서, 본 발명의 디스플레이 장치(100)는 레지스터(240)에 온도 또는 조도에 따른 발광 효율(Eoled)을 저장하고, 온도 센서(300) 또는 조도 센서(400)를 통해 측정된 온도 또는 조도에 대응되는 발광 효율(Eoled)을 레지스터(240)로부터 제공받을 수 있다. 이 때, 서브픽셀 기준 전류(Ipxr)는 디스플레이 장치(100)가 나타내는 최대 휘도값(LUMmax)을 발광 효율(Eoled)로 나눈 값으로 나타낼 수 있을 것이다.
감마 전압에 따른 더미 서브픽셀 전류(Idpx)를 측정하는 단계(S400)는 레지스터(240)에 저장된 감마 전압(VGAM) 중에서 특정 계조에 해당하는 감마 전압(VGAM)에 해당하는 데이터 전압을 디스플레이 패널(110)의 더미 서브픽셀 어레이(114)에 인가함으로써, 더미 서브픽셀 어레이(114)에 흐르는 더미 서브픽셀 전류(Idpx)를 측정하는 단계이다.
서브픽셀 기준 전류(Ipxr)와 더미 서브픽셀 전류(Idpx)를 비교하는 단계(S500)는 특정 계조에 대해서 더미 서브픽셀 어레이(114)에 흐르는 더미 서브픽셀 전류(Idpx)와 환경 정보를 반영하여 계산된 서브픽셀 기준 전류(Ipxr)를 비교하는 단계이다.
감마 보정 전압(Vgamc)을 결정하는 단계(S600)는 서브픽셀 기준 전류(Ipxr)와 더미 서브픽셀 전류(Idpx)의 비교 결과를 이용하여, 메인 서브픽셀 어레이(112)에 인가할 최적의 감마 전압, 즉 감마 보정 전압(Vgamc)을 결정하는 단계이다. 이를 위해서, 감마 보정 회로(200) 내부의 감마 전압 제어 회로(230)는 연속 근사 로직 회로(232) 및 감마 전압 발생 회로(234)를 포함할 수 있다. 즉, 연속 근사 로직 회로(232)에서 서브픽셀 기준 전류(Ipxr)와 더미 서브픽셀 전류(Idpx)의 비교 결과에 따라, n 번에 걸쳐서 감마 전압(Vgam(n))을 단계적으로 수정하게 된다. 그 결과, n 개의 단계적 감마 전압(Vgam(n))에 대한 디지털 로직 값(Dsar)을 추출해서, 이를 바탕으로 최적의 감마 보정 전압(Vgamc)을 결정할 수 있다.
감마 보정 전압(Vgamc)을 메인 서브픽셀 어레이에 인가하는 단계(S700)는 감마 보정 회로(200)에서 감마 보정 전압(Vgamc)을 출력하면, 데이터 구동 회로(130)에서 감마 보정 전압(Vcomc)을 기준으로 데이터 전압을 생성하고 이를 메인 서브픽셀 어레이(112)에 인가하는 단계이다. 위 과정을 통해 결정된 감마 보정 전압(Vgamc)을 메인 서브픽셀 어레이(112)에 인가함으로써, 온도 또는 조도를 포함하는 환경 상황에서 감마 코드(CODEgam)에 따라 서브픽셀(SP)에 흐르게 되는 이상적인 전류인 서브픽셀 기준 전류(Ipxr)에 근사한 전류가 메인 서브픽셀 어레이(112)에 흐를 수 있게 된다.
본 발명의 감마 보정 방법에 따르면, 디스플레이 패널(110)의 최대 휘도값 및 감마 코드에 따라 특정 계조에서 필요로 하는 최적의 감마 전압을 자동으로 결정함으로써, 디스플레이 장치(100)의 영상 이미지를 최적화하기 위한 시간을 최소화할 수 있다. 또한, 온도 또는 조도와 같은 환경 요소에 따른 휘도 편차를 함께 조정할 수 있기 때문에 디스플레이 패널(110)의 전체 영역에서 균일한 휘도의 영상을 표현할 수 있게 된다. 또한, 연속 근사 로직 회로를 이용한 궤환 처리를 통해 특정 계조에서 필요로 하는 최적의 감마 전압을 결정함으로써, 최대 휘도값 및 감마 코드가 증가하거나 조건이 변경되더라도 레지스터(240)를 증가시키지 않고도 최적의 감마 전압을 결정할 수 있는 장점이 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 또한, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.
100: 디스플레이 장치 110: 디스플레이 패널
112: 메인 서브픽셀 어레이 114: 더미 서브픽셀 어레이
120: 게이트 구동 회로 130: 데이터 구동 회로
131: 데이터 전압 출력 회로 140: 타이밍 컨트롤러
200: 감마 보정 회로 210: 기준 전류 발생 회로
220: 비교기 230: 감마 전압 제어 회로
232: 연속 근사 로직 회로 234: 감마 전압 발생 회로
240: 레지스터 300: 온도 센서
400: 조도 센서

Claims (25)

  1. 다수의 게이트 라인, 다수의 데이터 라인 및 다수의 서브픽셀이 배치되며, 표시 영역에 배치되는 메인 서브픽셀 어레이와 상기 메인 서브픽셀 어레이의 외측에 배치되는 더미 서브픽셀 어레이를 포함하는 디스플레이 패널;
    상기 다수의 게이트 라인을 구동하는 게이트 구동 회로;
    상기 다수의 데이터 라인을 구동하는 데이터 구동 회로;
    상기 게이트 구동 회로 및 상기 데이터 구동 회로에 인가되는 신호를 제어하는 타이밍 컨트롤러; 및
    상기 타이밍 컨트롤러의 제어에 따라, 상기 디스플레이 패널의 일부 영역에 배치된 더미 서브픽셀 어레이에 흐르는 더미 서브픽셀 전류와 발광 소자의 발광 효율에 따라 결정된 서브픽셀 기준 전류를 비교해서 감마 보정 전압을 출력하는 감마 보정 회로를 포함하되,
    상기 데이터 구동 회로는 상기 감마 보정 전압에 해당하는 데이터 전압을 상기 디스플레이 패널의 표시 영역에 배치된 메인 서브픽셀 어레이에 인가하는 디스플레이 장치.
  2. 제1항에 있어서,
    상기 감마 보정 회로는
    상기 데이터 구동 회로의 내부에 배치되는 디스플레이 장치.
  3. 제1항에 있어서,
    상기 감마 보정 회로는
    계조별 감마 전압에 대한 정보가 저장되는 레지스터;
    서브픽셀 기준 전류를 결정하는 기준 전류 발생 회로;
    상기 서브픽셀 기준 전류와 상기 더미 서브픽셀 어레이에 흐르는 더미 서브픽셀 전류를 비교하는 비교기; 및
    상기 비교기의 비교 결과값에 따라 상기 감마 전압 및 감마 보정 전압을 출력하는 감마 전압 제어 회로를 포함하는 디스플레이 장치.
  4. 제3항에 있어서,
    상기 레지스터는
    상기 서브픽셀에 배치되는 발광 소자의 발광 효율에 대한 정보를 더 포함하는 디스플레이 장치.
  5. 제4항에 있어서,
    상기 발광 효율은
    온도 또는 조도에 따라 다른 값을 가지는 디스플레이 장치.
  6. 제4항에 있어서,
    상기 기준 전류 발생 회로는
    (최대 휘도값)/(발광 효율)로 최대 서브픽셀 전류를 계산하고,
    (최대 서브픽셀 전류)*(단계별 계조/최대 계조)감마코드 의 수식으로 상기 서브픽셀 기준 전류를 산출하는 디스플레이 장치.
  7. 제6항에 있어서,
    상기 단계별 계조는 전체 계조 단계 중에서 일부 단계의 계조로 이루어지는 디스플레이 장치.
  8. 제3항에 있어서,
    상기 감마 전압 제어 회로는
    상기 비교기의 비교 결과 값을 n 비트 동안 디지털 로직 값으로 누적하는 연속 근사 로직 회로; 및
    상기 연속 근사 로직 회로의 디지털 로직 값에 따라 상기 감마 전압 및 감마 보정 전압을 출력하는 감마 전압 발생 회로를 포함하는 디스플레이 장치.
  9. 제8항에 있어서,
    상기 감마 전압 발생 회로는
    임의의 계조에서 (하이 레벨 감마 전압과 로우 레벨 감마 전압의 차이)/(2n+1) 의 폭으로 상기 감마 전압을 상승 또는 하향 조정하는 디스플레이 장치.
  10. 제8항에 있어서,
    상기 감마 전압 제어 회로는
    상기 감마 보정 전압을 상기 레지스터에 저장하는 디스플레이 장치.
  11. 메인 서브픽셀 어레이가 디스플레이 패널의 표시 영역에 배치되고, 더미 서브픽셀 어레이가 상기 메인 서브픽셀 어레이의 외측에 배치되는 디스플레이 장치에서 감마 전압을 보정하는 회로에 있어서,
    계조별 감마 전압에 대한 정보가 저장되는 레지스터;
    서브픽셀 기준 전류를 발생하는 기준 전류 발생 회로;
    상기 서브픽셀 기준 전류와 상기 더미 서브픽셀 어레이에 흐르는 더미 서브픽셀 전류를 비교하는 비교기; 및
    상기 비교기의 비교 결과값에 따라, 상기 레지스터에 저장된 감마 전압을 변경하며, 상기 변경된 감마 전압 및 감마 보정 전압을 출력하는 감마 전압 제어 회로를 포함하는 감마 보정 회로.
  12. 제11항에 있어서,
    상기 레지스터는
    상기 서브픽셀에 배치되는 발광 소자의 발광 효율에 대한 정보를 더 포함하는 감마 보정 회로.
  13. 제12항에 있어서,
    상기 발광 효율은
    온도 또는 조도에 따라 다른 값을 가지는 감마 보정 회로.
  14. 제12항에 있어서,
    상기 기준 전류 발생 회로는
    (최대 휘도값)/(발광 효율)로 최대 서브픽셀 전류를 계산하고,
    (최대 서브픽셀 전류)*(단계별 계조/최대 계조)감마코드 의 수식으로 상기 서브픽셀 기준 전류를 산출하는 감마 보정 회로.
  15. 제14항에 있어서,
    상기 단계별 계조는 전체 계조 단계 중에서 일부 단계의 계조로 이루어지는 감마 보정 회로.
  16. 제11항에 있어서,
    상기 감마 전압 제어 회로는
    상기 비교기의 비교 결과 값을 n 비트 동안 디지털 로직 값으로 누적하는 연속 근사 로직 회로; 및
    상기 연속 근사 로직 회로의 디지털 로직 값에 따라 상기 감마 전압 및 감마 보정 전압을 출력하는 감마 전압 발생 회로를 포함하는 감마 보정 회로.
  17. 제16항에 있어서,
    상기 감마 전압 발생 회로는
    임의의 계조에서 (하이 레벨 감마 전압과 로우 레벨 감마 전압의 차이)/(2n+1) 의 폭으로 상기 감마 전압을 상승 또는 하향 조정하는 감마 보정 회로.
  18. 제16항에 있어서,
    상기 감마 전압 제어 회로는
    상기 감마 보정 전압을 상기 레지스터에 저장하는 감마 보정 회로.
  19. 메인 서브픽셀 어레이가 디스플레이 패널의 표시 영역에 배치되고, 더미 서브픽셀 어레이가 상기 메인 서브픽셀 어레이의 외측에 배치되는 디스플레이 장치에서 감마 전압을 보정하는 방법에 있어서,
    환경 정보를 수신하는 단계;
    최대 휘도값 및 감마 코드를 수신하는 단계;
    서브픽셀 기준 전류를 계산하는 단계;
    감마 전압에 따른 더미 서브픽셀 전류를 측정하는 단계;
    상기 서브픽셀 기준 전류와 상기 더미 서브픽셀 전류를 비교하는 단계;
    감마 보정 전압을 결정하는 단계; 및
    상기 감마 보정 전압을 출력하는 단계를 포함하는 감마 보정 방법.
  20. 제19항에 있어서,
    상기 환경 정보는
    온도 또는 조도 정보인 감마 보정 방법.
  21. 제19항에 있어서,
    상기 서브픽셀 기준 전류를 계산하는 단계는
    (최대 휘도값)/(발광 효율)로 최대 서브픽셀 전류를 계산하는 단계; 및
    (최대 서브픽셀 전류)*(단계별 계조/최대 계조)감마코드 의 수식으로 서브픽셀 기준 전류를 산출하는 단계를 포함하는 감마 보정 방법.
  22. 제21항에 있어서,
    상기 단계별 계조는 전체 계조 단계 중에서 일부 단계의 계조로 이루어지는 감마 보정 방법.
  23. 제19항에 있어서,
    상기 감마 보정 전압을 결정하는 단계는
    상기 서브픽셀 기준 전류와 상기 더미 서브픽셀 전류의 비교 결과 값을 n 비트 동안 디지털 로직 값으로 누적하는 단계; 및
    상기 디지털 로직 값에 따라 상기 감마 전압을 상승 또는 하향 조정함으로써, 상기 감마 보정 전압을 결정하는 단계를 포함하는 감마 보정 방법.
  24. 제23항에 있어서,
    상기 감마 전압은
    임의의 계조에서 (하이 레벨 감마 전압과 로우 레벨 감마 전압의 차이)/(2n+1) 의 폭으로 상승 또는 하향 조정하는 감마 보정 방법.
  25. 제19항에 있어서,
    상기 감마 보정 전압을 상기 레지스터에 저장하는 단계를 더 포함하는 감마 보정 방법.
KR1020180168704A 2018-12-24 2018-12-24 감마 보정 회로, 디스플레이 장치 및 감마 보정 방법 KR102592820B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180168704A KR102592820B1 (ko) 2018-12-24 2018-12-24 감마 보정 회로, 디스플레이 장치 및 감마 보정 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180168704A KR102592820B1 (ko) 2018-12-24 2018-12-24 감마 보정 회로, 디스플레이 장치 및 감마 보정 방법

Publications (2)

Publication Number Publication Date
KR20200079115A true KR20200079115A (ko) 2020-07-02
KR102592820B1 KR102592820B1 (ko) 2023-10-20

Family

ID=71599353

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180168704A KR102592820B1 (ko) 2018-12-24 2018-12-24 감마 보정 회로, 디스플레이 장치 및 감마 보정 방법

Country Status (1)

Country Link
KR (1) KR102592820B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3943889A2 (en) 2020-06-29 2022-01-26 RideFlux Inc. Method, apparatus, and computer program for generating road network data for autonomous driving vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240799A (ja) * 2006-03-08 2007-09-20 Sony Corp 自発光表示装置、ホワイトバランス調整装置及びプログラム
KR20110031096A (ko) * 2009-09-18 2011-03-24 소니 주식회사 표시 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240799A (ja) * 2006-03-08 2007-09-20 Sony Corp 自発光表示装置、ホワイトバランス調整装置及びプログラム
KR20110031096A (ko) * 2009-09-18 2011-03-24 소니 주식회사 표시 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3943889A2 (en) 2020-06-29 2022-01-26 RideFlux Inc. Method, apparatus, and computer program for generating road network data for autonomous driving vehicle

Also Published As

Publication number Publication date
KR102592820B1 (ko) 2023-10-20

Similar Documents

Publication Publication Date Title
US10395596B2 (en) Organic light emitting display device, data driver, and method for driving data driver
KR102468022B1 (ko) 디스플레이 장치 및 구동 방법
KR102364165B1 (ko) 표시 장치 및 표시 장치의 구동 방법
KR102000041B1 (ko) 발광표시장치 및 그 구동방법
KR20200057204A (ko) 데이터 구동 회로, 디스플레이 패널 및 디스플레이 장치
KR102437171B1 (ko) 멀티비젼 시스템
KR20140108604A (ko) 유기 발광 표시 장치 및 그 구동 방법
KR20210007455A (ko) 디스플레이 구동 회로, 이를 포함하는 디스플레이 장치 및 디스플레이 구동 회로의 동작 방법
KR20160078634A (ko) 유기발광표시패널, 유기발광표시장치 및 그 구동방법
KR102450545B1 (ko) 유기발광표시장치, 타이밍 컨트롤러 및 그 구동 방법
CN105047128A (zh) 显示装置和用于驱动显示装置的方法
US11361731B2 (en) Display device and method of driving the same
KR101606766B1 (ko) 평판표시장치 및 그의 구동방법
KR20110046848A (ko) 표시장치와 그 구동 방법
KR20150081104A (ko) 구동 전압 생성 장치, 이를 포함하는 표시 장치 및 구동 전압 생성 방법
CN115995197A (zh) 显示装置和显示驱动方法
KR20160055324A (ko) 유기발광표시장치 및 유기발광표시패널
KR20170051785A (ko) 유기발광표시패널, 유기발광표시장치 및 그 구동방법
KR20130131807A (ko) 액정표시장치 및 이의 구동방법
KR102592820B1 (ko) 감마 보정 회로, 디스플레이 장치 및 감마 보정 방법
KR20160079562A (ko) 복수의 타이밍 컨트롤러 및 이를 이용한 표시 장치
KR102598361B1 (ko) 유기 발광 디스플레이 장치 및 구동 방법
KR20140120544A (ko) 표시 장치 및 표시 장치의 색 보상 방법
KR20170073771A (ko) 유기발광표시패널, 유기발광표시장치 및 유기발광표시장치의 구동 방법
US9916810B2 (en) Method of driving a display apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant