KR20200075134A - 저주파 누설전류를 감소시킬 수 있는 충전 장치 - Google Patents

저주파 누설전류를 감소시킬 수 있는 충전 장치 Download PDF

Info

Publication number
KR20200075134A
KR20200075134A KR1020180160158A KR20180160158A KR20200075134A KR 20200075134 A KR20200075134 A KR 20200075134A KR 1020180160158 A KR1020180160158 A KR 1020180160158A KR 20180160158 A KR20180160158 A KR 20180160158A KR 20200075134 A KR20200075134 A KR 20200075134A
Authority
KR
South Korea
Prior art keywords
switching element
duty
value
power
voltage
Prior art date
Application number
KR1020180160158A
Other languages
English (en)
Other versions
KR102657323B1 (ko
Inventor
우동균
최규태
장희숭
성현욱
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020180160158A priority Critical patent/KR102657323B1/ko
Priority to US16/520,075 priority patent/US11228238B2/en
Publication of KR20200075134A publication Critical patent/KR20200075134A/ko
Application granted granted Critical
Publication of KR102657323B1 publication Critical patent/KR102657323B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • Y02T10/7005
    • Y02T10/7022
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • Y02T10/7216
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

스위칭 소자를 포함하며 상기 스위칭 소자의 온/오프 제어를 통해 외부 충전설비에서 제공되는 교류 전력의 역률을 보정하여 직류 전력으로 변환하여 출력하는 역률 보정 컨버터; 상기 역률 보정 컨버터의 양단에 연결되어 직류 전압을 형성하는 직류 링크 커패시터; 상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기를 충전 대상 에너지 저장 장치에서 요구하는 전압의 크기로 변환하는 직류-직류 컨버터; 및 상기 외부 충전설비에서 제공되는 교류 전력의 교류 전압의 공통모드 성분의 크기와 상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기에 기반하여 상기 역률 보정 컨버터 내 스위칭 소자의 듀티를 결정하는 듀티 제어기를 포함하는 저주파 누설전류를 감소시킬 수 있는 충전 장치가 개시된다.

Description

저주파 누설전류를 감소시킬 수 있는 충전 장치{CHARGING APPARATUS CAPABLE OF REDUCING LOW FREQUENCY LEAKAGE CURRENT}
본 발명은 에너지 저장 장치를 충전하기 위한 충전 장치에 관한 것으로, 더욱 상세하게는 다양한 형식의 교류 계통 전력에 포함된 공통 모드 성분으로 인한 저주파 누설전류를 교류 계통 전력의 형식에 따른 제약 없이 감소시킬 수 있는 충전 장치에 관한 것이다.
일반적으로 전기 자동차 또는 플러그인 하이브리드 자동차는 충전 설비를 이용하여 교류의 계통 전력을 제공 받아 저장하는 에너지 저장 장치(예를 들어, 배터리)를 포함한다. 에너지 저장 장치를 충전하기 위해서, 차량은 외부의 충전 설비에서 제공되는 교류의 계통 전력을 원하는 크기의 직류 전력으로 변환하는 충전 장치를 포함한다.
차량 내 탑재되는 충전 장치는 통상 OBC(On Board Charger)라 불리며, 입력되는 교류 전력의 역률 보정하여 직류 전압을 생성하기 위한 역률 보정 컨버터와 역률 보정 컨버터의 출력 전압의 크기를 배터리 충전에 요구되는 전압의 크기로 변환하는 직류-직류 컨버터를 포함하여 구성될 수 있다. 또한, 차량 탑재형 충전 장치의 입출력 단에는 노이즈 성분을 제거하기 위해 Y-커패시터가 마련된다. 통상 입력단에 설치된 Y-커패시터 보다 출력단에 설치된 Y-커패시터가 더 큰 커패시턴스를 갖도록 제작된다.
한편, 차량 외부의 충전 설비가 제공하는 교류 전력은 충전 설비의 형식이나 국가별 전력 공급망의 형식에 따라 대칭형과 비대칭형이 있을 수 있다. 교류 전력이 비대칭형인 경우 공통모드 성분이 존재하게 된다. 이러한 공통모드 성분은 저주파(계통 전력의 주파수) 노이즈로 작용하여 큰 커패시턴스를 갖는 출력단의 Y-커패시터를 통해 접지로 흘러 나가는 누설전류를 발생시킬 수 있다.
특히, 차량 탑재형 충전 장치에 포함되는 직류-직류 컨버터가 트랜스포머(변압기)를 갖는 절연형인 경우, 직류-직류 컨버터의 입력단과 출력단이 상호 아이솔레이션 되므로, 출력단 측의 Y-커패시터는 차량 탑재형 충전 장치에 입력되는 계통 전력의 영향을 받지 않는다. 그러나, 차량 탑재형 충전 장치에 포함된 직류-직류 컨버터가 비절연형인 경우에는 직류-직류 컨버터의 입력단과 출력단 사이에 전기적 연결 경로가 형성되므로 입력되는 계통 전력의 공통모드 성분이 저주파(계통 전력의 주파수) 노이즈로 작용하여 큰 커패시턴스를 갖는 출력단의 Y-커패시터를 통해 접지로 흘러 나가는 누설전류를 발생시키게 된다.
전술한 바와 같이, 차량 탑재형 충전 장치의 입력단에 연결된 Y-커패시터 보다 출력단에 연결된 Y-커패시터가 훨씬 더 큰 커패시턴스를 갖기 때문에 대부분의 공통 모드에 의한 저주파 누설전류는 출력단의 Y-커패시터로 집중되는 것이다.
차량에 계통 전력을 제공하는 외부 충전 설비는 누설 전류가 일정 레벨 이상 증가하는 경우 안전을 위해 제공되는 계통 전력을 차단하는 RCD(Residual Current Detection) 장치를 포함한다. 차량 탑재형 충전 장치의 출력단에 설치된 Y-커패시터로 누설되는 전류가 이 RCD에서 설정한 기준 검출 레벨 보다 크거나 같아지면 RCD 장치는 계통 전력의 공급을 중단하고 이에 따라 차량 내 배터리의 충전이 중단되어 운전자가 원하는 수준까지 배터리 충전이 불가능해지는 문제가 발생할 수 있다.
상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
KR 10-2016-0013551 A KR 10-2014-0114175 A
이에 본 발명은, 비대칭 교류 전력원에 포함된 공통 모드 성분으로 인한 저주파 누설전류 발생을 감소시킬 수 있는 충전 장치를 제공하는 것을 해결하고자 하는 기술적 과제로 한다.
특히, 본 발명은, 교류 전력원의 형식에 상관없이 다양한 형식의 교류 계통 전력에 포함된 공통 모드 성분으로 인한 저주파 누설전류를 감소시킬 수 있는 충전 장치를 제공하는 것을 해결하고자 하는 기술적 과제로 한다.
상기 기술적 과제를 해결하기 위한 수단으로서 본 발명은,
스위칭 소자를 포함하며 상기 스위칭 소자의 온/오프 제어를 통해 외부 충전설비에서 제공되는 교류 전력의 역률을 보정하여 직류 전력으로 변환하여 출력하는 역률 보정 컨버터;
상기 역률 보정 컨버터의 양단에 연결되어 직류 전압을 형성하는 직류 링크 커패시터;
상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기를 충전 대상 에너지 저장 장치에서 요구하는 전압의 크기로 변환하는 직류-직류 컨버터; 및
상기 외부 충전설비에서 제공되는 교류 전력의 교류 전압의 공통모드 성분의 크기와 상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기에 기반하여 상기 역률 보정 컨버터 내 스위칭 소자의 듀티를 결정하는 듀티 제어기;
를 포함하는 저주파 누설전류를 감소시킬 수 있는 충전 장치를 제공한다.
본 발명의 일 실시형태에서, 상기 듀티 제어기는, 상기 PFC 컨버터가 사전 설정된 크기의 전압을 출력하도록 상기 스위칭 소자를 제어하기 위한 제1 듀티값을 결정하는 기본 듀티 생성부; 및 상기 교류 전력의 교류 전압의 공통모드 성분의 크기를 상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기로 나누어 제2 듀티값을 연산하는 승산기를 포함하며, 상기 제1 듀티값 및 상기 제1 듀티값의 상보값에 각각 상기 제2 듀티값을 합산하여 상기 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공할 수 있다.
본 발명의 일 실시형태에서, 상기 역률 보정 컨버터는, 상호 직결되는 제1 스위칭 소자 및 제2 스위칭 소자를 갖는 제1 레그; 및 상호 직결되는 제3 스위칭 소자 및 제4 스위칭 소자를 포함하는 제2 레그를 포함하며, 상기 제1 레그와 제2 레그는 상기 직류-직류 컨버터의 입력단의 두 입력 단자 사이에 상호 병렬 관계로 연결되고, 상기 제1 스위칭 소자와 상기 제2 스위칭 소자의 연결 노드에 상기 교류 전력이 제공되는 입력단의 일단자가 연결되고, 상기 제3 스위칭 소자와 상기 제4 스위칭 소자의 연결 노드에 상기 교류 전력이 제공되는 입력단의 타단자가 연결될 수 있다.
본 발명의 일 실시형태에서, 상기 듀티 제어기는, 상기 제1 듀티값에 상기 제2 듀티값을 합산한 값을 상기 제1 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하고, 상기 제1 듀티값에 상기 제2 듀티값을 합산한 값의 상보값을 상기 제2 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하고, 상기 제1 듀티값의 상보값에 각각 상기 제2 듀티값을 합산 값을 상기 제3 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하고, 상기 제1 듀티값의 상보값에 각각 상기 제2 듀티값을 합산 값의 상보값을 상기 제4 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공할 수 있다.
본 발명의 일 실시형태에서, 상기 직류-직류 컨버터는 비절연형일 수 있다.
본 발명의 일 실시형태는, 상기 교류 전력이 입력되는 입력단 사이에 상호 직렬 연결되고 그 연결 노드가 접지되는 두 개의 입력단 Y-커패시터를 더 포함할 수 있다.
본 발명의 일 실시형태에서, 상기 듀티 제어기는, 상기 PFC 컨버터가 사전 설정된 크기의 전압을 출력하도록 상기 스위칭 소자를 제어하기 위한 제1 듀티값을 결정하는 기본 듀티 생성부; 및 상기 입력단 Y-커패시터 중 하나의 전압에 상기 교류 전력의 교류 전압의 1/2을 차감 연산하는 감산기; 상기 감산기의 연산 결과를 상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기로 나누어 제2 듀티값을 연산하는 승산기를 포함하며, 상기 제1 듀티값 및 상기 제1 듀티값의 상보값에 각각 상기 제2 듀티값을 합산하여 상기 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공할 수 있다.
본 발명의 일 실시형태에서, 상기 역률 보정 컨버터는, 상호 직결되는 제1 스위칭 소자 및 제2 스위칭 소자를 갖는 제1 레그; 및 상호 직결되는 제3 스위칭 소자 및 제4 스위칭 소자를 포함하는 제2 레그를 포함하며, 상기 제1 레그와 제2 레그는 상기 직류-직류 컨버터의 입력단의 두 입력 단자 사이에 상호 병렬 관계로 연결되고, 상기 제1 스위칭 소자와 상기 제2 스위칭 소자의 연결 노드에 상기 교류 전력이 제공되는 입력단의 일단자가 연결되고, 상기 제3 스위칭 소자와 상기 제4 스위칭 소자의 연결 노드에 상기 교류 전력이 제공되는 입력단의 타단자가 연결될 수 있다.
본 발명의 일 실시형태에서, 상기 듀티 제어기는, 상기 제1 듀티값에 상기 제2 듀티값을 합산한 값을 상기 제1 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하고, 상기 제1 듀티값에 상기 제2 듀티값을 합산한 값의 상보값을 상기 제2 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하고, 상기 제1 듀티값의 상보값에 각각 상기 제2 듀티값을 합산 값을 상기 제3 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하고, 상기 제1 듀티값의 상보값에 각각 상기 제2 듀티값을 합산 값의 상보값을 상기 제4 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공할 수 있다.
상기 기술적 과제를 해결하기 위한 다른 수단으로서 본 발명은,
외부 충전설비에서 제공되는 교류 전력이 입력되는 입력단 사이에 상호 직렬 연결되고 그 연결 노드가 접지되는 두 개의 입력단 Y-커패시터를 포함하는 필터;
스위칭 소자를 포함하며 상기 교류 전력의 역률을 보정하여 직류 전력으로 변환하여 출력하는 역률 보정 컨버터;
상기 역률 보정 컨버터의 양단에 연결되어 직류 전압을 형성하는 직류 링크 커패시터;
상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기를 충전 대상 에너지 저장 장치에서 요구하는 전압의 크기로 변환하는 직류-직류 컨버터; 및
상기 입력단 Y-커패시터 중 하나의 전압에 상기 교류 전력의 교류 전압의 1/2을 차감하여 도출된 상기 교류 전력의 교류 전압의 공통모드 성분의 크기와 상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기에 기반하여 상기 역률 보정 컨버터 내 스위칭 소자의 듀티를 결정하는 듀티 제어기;
를 포함하는 저주파 누설전류를 감소시킬 수 있는 충전 장치를 제공한다.
상기 저주파 누설전류를 감소시킬 수 있는 충전 장치에 따르면, 충전 장치에서 발생하는 비대칭 구조의 직류 전력원의 공통모드 성분에 의한 저주파 누설 전류를 감소시킬 수 있다. 이에 따라, 상기 저주파 누설전류를 감소시킬 수 있는 충전 장치에 따르면, 충전 설비에 구비된 RCD(Residual Current Detection) 감지 레벨 이하로 누설전류를 감소시켜 충전 중단 현상이 발생하는 것을 예방할 수 있다.
특히, 상기 저주파 누설전류를 감소시킬 수 있는 충전 장치에 따르면, 교류 전력원의 형식에 상관없이 다양한 형식의 교류 계통 전력에 포함된 공통 모드 성분으로 인한 저주파 누설전류를 감소시킬 수 있으므로, 누설전류 감소를 위한 제어기 구조를 단순화할 수 있고 충전 플러그의 극성을 판단할 필요가 없어 충전 플러그 삽입 시 방향에 대한 판단이 불필요하므로 운전자의 편의성을 증대시킬 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시형태에 따른 저주파 누설전류를 감소시킬 수 있는 충전 장치의 회로도이다.
도 2는 본 발명의 일 실시형태에 따른 저주파 누설전류를 감소시킬 수 있는 충전 장치의 듀티 제어기의 일례를 더욱 상세하게 도시한 구성도이다.
도 3은 본 발명의 일 실시형태에 따른 저주파 누설전류를 감소시킬 수 있는 충전 장치의 공통모드 성분과 Y-커패시터 사이의 연결관계를 도시한 등가회로도이다.
도 4 내지 도 6은 다양한 형식의 외부 충전기 교류 계통 전력 공급 구조를 도시한 도면이다.
도 7은 본 발명의 일 실시형태에 따른 저주파 누설전류를 감소시킬 수 있는 충전 장치의 듀티 제어기의 다른 예를 더욱 상세하게 도시한 구성도이다.
이하, 첨부의 도면을 참조하여 다양한 실시 형태에 따른 저주파 누설전류를 감소시킬 수 있는 충전 장치를 더욱 상세하게 설명한다.
도 1은 본 발명의 일 실시형태에 따른 저주파 누설전류를 감소시킬 수 있는 충전 장치의 회로도이다.
도 1을 참조하면, 본 발명의 일 실시형태에 따른 저주파 누설전류를 감소시킬 수 있는 충전 장치는, 외부 충전설비로부터 입력되는 교류 전력(vg, ig)의 고주파 노이즈를 제거하기 위한 필터(11)와 역률 보정(Power Factor Correction: PFC) 컨버터(13)와, 역률 보정 컨버터(13)의 출력단에 직류 전압을 형성하는 직류 링크 커패시터(Clink)와, 직류 링크 커패시터(Clink)의 전압(vlink)의 레벨을 배터리(17)을 충전하기 위한 충전 전압 레벨로 변환하는 직류-직류 컨버터(15)와, 직류-직류 컨버터(15)의 출력단에 연결된 출력단 Y-커패시터(CCM31 , CCM32) 및 듀티 제어기(100)를 포함하여 구성될 수 있다.
필터(11)는 외부 충전설비에서 제공되는 전력에 포함된 고주파 노이즈 성분을 제거하기 위한 요소로서 외부 충전설비의 교류 전압이 인가되는 입력단 사이에 상호 직렬 연결되는 두 개의 Y-커패시터(CCM11 , CCM12)를 포함할 수 있다. 두 개의 Y-커패시터(CCM11, CCM12)의 연결 노드는 접지될 수 있다.
도 1에서 필터(11)는 변압기를 구성하는 두 인덕터(LCM)과 두 인덕터(LCM) 사이에 연결되는 추가의 입력단 Y-커패시터(CCM21 , CCM22)를 포함할 수 있으나, 이러한 구조는 필요에 따라 변경될 수도 있다.
PFC 컨버터(13)는 외부에서 입력되는 교류 전력(계통 전력)(vg)(11)을 입력 받고 이를 직류 전력으로 변환하여 출력하되, 교류 전력의 역률을 보정하는 기능을 한다. 특히, PFC 컨버터(13)는 복수의 스위칭 소자(Q1 내지 Q4)를 갖는 계통 연계형 인버터 토폴로지를 채용하여 구현될 수 있다.
더욱 구체적으로, PFC 컨버터(13)는, 상호 직결되는 제1 스위칭 소자(Q1) 및 제2 스위칭 소자(Q2)를 포함하는 제1 레그 및 상호 직결되는 제3 스위칭 소자(Q3) 및 제4 스위칭 소자(Q4)를 포함하는 제2 레그를 포함할 수 있다. 제1 레그와 제2 레그는 직류-직류 컨버터(15)의 입력단의 두 입력 단자 사이에 상호 병렬 관계로 연결 수 있다. 즉, 제1 스위칭 소자(Q1) 및 제2 스위칭 소자(Q2)는 PFC 컨버터(13)의 출력단의 정(+)단자와 부(-)단자 사이에 순차적으로 직렬 연결되고, 제3 스위칭 소자(Q3) 및 제4 스위칭 소자(Q4)는 PFC 컨버터(13)의 출력단의 정(+)단자와 부(-)단자 사이에 순차적으로 직렬 연결될 수 있다.
더하여, PFC 컨버터(13)는, 입력되는 교류 전력의 일단과 제1 스위칭 소자(Q1) 및 제2 스위칭 소자(Q2)의 연결 노드에 각각 양단이 연결된 제1 인덕터(Lac1) 및 입력되는 교류 전력의 타단과 제3 스위칭 소자(Q3) 및 제4 스위칭 소자(Q4)의 연결 노드에 각각 양단이 연결된 제2 인덕터(Lac2)를 포함할 수 있다. 제1 및 제2 인덕터(Lac1, Lac2)는 필터용으로 적용될 수 있다.
PFC 컨버터(13)의 스위칭 소자(Q1-Q4)는 후술하는 제1 듀티 제어기(110) 및 제2 듀티 제어기(120)에 의해 결정되는 듀티값에 의해 온/오프 상태가 제어될 수 있다.
PFC 컨버터(13)의 입력단에는 필터(11)에 의해 필터링된 교류 전력이 입력될 수 있다. 교류 전력은 국가별 또는 충전설비의 사양별로 대칭형(symmetric) 또는 비대칭형(Asymmetric)의 구조를 가질 수 있다. 대칭형 구조로 제공되는 교류 전력은 공통모드 성분을 갖지 않으나, 비대칭형 구조로 제공되는 단상의 교류 전력은 그 형식 또는 제공 구조에 따라 다양하게 변경될 수 있다. 이에 대해서는 후술하기로 한다.
PFC 컨버터(13)는 제1 스위칭 소자(Q1) 및 제2 스위칭 소자(Q2)의 연결 노드와 필터(11)의 출력단 중 하나(정(+) 단자) 사이에 연결된 제1 인덕터(Lac1)와, 제3 스위칭 소자(Q3) 및 제4 스위칭 소자(Q4)의 연결 노드와 필터(11)의 출력단 중 나머지 하나(부(-) 단자) 사이에 연결된 제2 인덕터(Lac2)를 포함할 수 있다.
PFC 컨버터(13)는 교류 전력원(11)에서 입력된 교류 전력을 직류로 변환하여 출력하며 PFC 컨버터(13)의 출력단의 양 단자 사이에 양단이 연결된 직류링크 커패시터(Clink)는 PFC 컨버터(13)에서 출력되는 전력에 의해 충전되어 일정한 크기의 직류 링크 전압(vlink)을 형성하게 된다.
직류-직류(DC-DC) 컨버터(15)는 PFC 컨버터(13)의 양 출력단 사이에 연결된 직류 링크 커패시터(Clink)의 직류 전압(vlink)를 원하는 크기의 직류 전압으로 변환하여 출력할 수 있다. 본 발명의 여러 실시형태는 차량의 배터리(17) 등을 충전하기 위한 직류 전력을 생성하는 충전 장치이므로, 직류-직류 컨버터(15)는 배터리(17)을 충전할 수 있는 크기의 전압을 출력하도록 제어될 수 있다.
본 발명은 충전 장치의 출력단에 마련되는 Y-커패시터(CCM1, CCM2)로 교류 전력원의 공통모드 성분에 의한 저주파 누설 전류를 감소시키고자 하는 것이므로, 본 발명의 여러 실시형태에서 직류-직류 컨버터(15)는 교류 전력원(11)의 공통모드 성분이 출력단까지 전달될 수 있는 비절연형 구조를 갖는 컨버터일 수 있다.
본 발명의 여러 실시형태에서 적용된 비절연형 직류-직류 컨버터는 당 기술분야에 공지된 다양한 구조를 채용할 수 있으며, 직류-직류 컨버터의 제어 기법 역시 당 기술분야에 공지된 것이므로, 직류-직류 컨버터(15)에 대한 추가적인 설명은 생략하기로 한다.
제1 및 제2 출력단 Y-커패시터(CCM31, CCM32)는 직류-직류 컨버터(15)의 출력단(즉, 충전 장치의 출력단)의 정(+)단자 및 부(-)단자에 각각 일단이 연결되고 각각의 타단은 접지(차량의 경우 섀시 접지)에 공통으로 연결될 수 있다.
차량 충전 장치의 경우, 충전 장치의 출력단에 마련된 제1 및 제2 출력단 Y-커패시터(CCM1, CCM2)는 충전 장치의 필터(11)에 포함된 입력단 Y-커패시터(CCM11, CCM12), CCM21, CCM22)에 비해 훨씬 더 큰 커패시턴스를 가지므로 공통모드 성분에 의한 저주파 누설 전류(iCG) 중 많은 부분이 제1 및 제2 출력단 Y-커패시터(CCM1, CCM2)를 통해 접지로 흘러 나가게 된다. 본 발명의 여러 실시형태는 제1 및 제2 Y-커패시터(CCM1, CCM2)를 통해 접지로 흘러 나가는 저주파 누설 전류(iCG)를 감소시키기 위해 후술하는 것과 같이, PFC 컨버터(13) 내 스위칭 소자의 듀티를 적절하게 제어한다.
도 2는 본 발명의 일 실시형태에 따른 저주파 누설전류를 감소시킬 수 있는 충전 장치의 듀티 제어기의 일례를 더욱 상세하게 도시한 구성도이다.
듀티 제어기(100) 내 기본 듀티 생성부(120)는 PFC 컨버터(13)가 사전 설정된 크기의 전압을 출력하도록 스위칭 소자(Q1-Q4)를 제어할 수 있는 듀티값(d1)을 결정하여 출력할 수 있다. 즉, 기본 듀티 생성부(120)는 직류 링크 전압(vlink)의 크기가 사전 설정된 전압이 될 수 있도록 PFC 컨버터(13) 내 스위칭 소자(Q1-Q4)의 제1 듀티값(d1)을 결정할 수 있다.
더욱 구체적으로, 기본 듀티 생성부(120)는 직류 링크 전압(Vlink)과 사전 설정된 전압을 비교하여 직류 링크 전압(vlink)이 사전 설정된 전압을 추종하게 하는 기준 전류값을 생성하고, 입력 전압의 위상 정보에 기반하여 입력 전류를 dq 변환한 값과 기준 전류값을 비교하여 입력 전류가 기준 전류값을 추종하도록 하기 위한 dq축 전압 제어값을 성성한 후 dq축 전압 제어값을 다시 dq 역변환하여 제1 듀티값(d1)를 생성할 수 있다. 이러한 기본 듀티 생성부(120)가 제1 듀티값(d1)을 생성하는 기법은 인버터형 토폴로지를 적용한 PFC 제어구조에 적용되는 공지의 기술이므로 이상의 상세한 설명은 생략하기로 한다.
또한, 듀티 제어기(100)는 외부 충전설비에서 제공되는 교류 전력의 교류 전압(vg)의 공통모드 성분(vg _CM)을 직류 링크 전압(vlink)으로 나누는 승산기(110)를 포함할 수 있다. 교류 전압(vg)의 공통모드 성분(vg _CM)을 직류 링크 전압(vlink)으로 나누어 생성된 값은 공통 모드에 의한 누설 전류를 제거할 수 있는 제2 듀티(dCM)를 생성하게 된다.
도 3은 본 발명의 일 실시형태에 따른 저주파 누설전류를 감소시킬 수 있는 충전 장치의 공통모드 성분과 Y-커패시터 사이의 연결관계를 도시한 등가회로도이다.
도 3에서, 'vAB _CM'으로 표시된 전압은, PFC 컨버터(13)의 제1 레그를 구성하는 제1 스위칭 소자(Q1)와 제2 스위칭 소자(Q2)의 연결 노드(A)와 제2 레그를 구성하는 제3 스위칭 소자(Q3)와 제4 스위칭 소자(Q4)의 연결 노드(B) 사이에 형성된 전압(vAB)의 공통모드 성분이다.
도 3에 도시된 등가회로도는 도 1에 도시된 회로에서 저주파 공통모드 성분과 관련있는 부분만으로 구현되는 등가회로도이다. 도 1의 회로에서, 인덕터(Lac)는 저주파 성분에 대해서 임피던스가 작으므로 무시 가능하며, 비절연 DC-DC 컨버터(15)의 경우 저주파의 공통 모드 성분을 출력단으로 전달하므로 무시 가능하다. 또한, 출력단의 Y-커패시터의 경우 등가회로 해석 시, 직류의 음극(-) 라인을 기준으로 해석하는 것이 용이하므로 제2 Y-커패시터(CCM32)를 통하는 저주파 공통모드 경로를 표현한 것이 적절하다. 도 1에서 이러한 점들을 고려할 때 공통모드 성분과 관련있는 등가회로도는 도 3와 같이 도출될 수 있다.
도 3에 나타난 것과 같이, 노드(A)와 노드(B) 사이 전압의 공통모드 성분(vAB_CM)을 제어하면 Y-커패시터(도 2에서는 제2 Y-커패시터(CCM32))에 흐르는 교류 전력원의 공통모드 성분(vg _CM)에 의한 누설 전류를 조정할 수 있다. 여기서, 노드(A)와 노드(B) 사이 전압은 계통 연계형 인버터 토폴로지를 적용하여 스위칭 소자(Q1-Q4)의 온/오프 듀티값을 제어하는 것에 의해 결정될 수 있다.
즉, 본 발명은 교류 전력원의 공통모드 성분에 의한 Y-커패시터(CCM31, CCM32)의 저주파 누설 전류를 감소시키기 위해, 교류 전력원의 공통모드 성분(vg _CM)이 노드(A)와 노드(B) 사이 전압의 공통모드 성분(vAB _CM)에 의해 상쇄될 수 있도록 스위칭 소자(Q1-Q4)의 온/오프 듀티값을 제어한다. 이는 Y-커패시터(CCM31, CCM32)의 전압을 직류로 만들어 주기 위한 스위칭 소자(Q1-Q4)의 온/오프 듀티값을 결정하는 것과 동일한 의미이다.
한편, Y-커패시터(CCM31, CCM32)는 직류 성분에 대한 임피던스가 실질적으로 무한대이므로 Y-커패시터(CCM31, CCM32) 통해 접지로 흘러 나가는 전류(iCG)의 직류 성분은 무시할 수 있다.
따라서, 도 3에 도시된 노드(A)와 노드(B) 사이의 공통모드 성분 전압(vAB _CM)의 직류 성분은 무시하고 교류 성분만 계통 전력원의 공통모드 성분(vg _CM)과 동일하도록 제어하여 공통모드 성분에 의한 저주파 누설 전류를 제거할 수 있다.
이를 위해, 본 발명의 일 실시형태에서는, 교류 전력의 교류 전압(vg)의 공통모드 성분(vg _CM)을 직류 링크 전압(vlink)으로 나누어 제2 듀티값(dCM)을 생성하고 이를 제1 듀티값(d1)에 합산하여 PFC 컨버터(13)의 스위칭 소자(Q1-Q4)를 제어할 수 있다.
[식 1]
Figure pat00001
상기 식에서 vY -cap_p는 직류-직류 컨버터(15)의 출력단의 정(+)단자에 연결된 Y-커패시터(CCM31)의 전압이며, vbat는 직류-직류 컨버터(15)의 출력단에 연결된 에너지 저장장치의 전압이며, vlink는 직류-직류 컨버터(15)의 입력단의 직류 링크 전압을 나타낸다. 또한, α는 0과 1 사이에서 결정되는 임의의 상수로 바람직하게는 0.5에 인접한 값이 될 수 있으며, 더욱 바람직하게는 0.5가 될 수 있다.
상기 식에 의하면 직류-직류 컨버터(15)의 출력단의 부(-)단자에 연결된 Y-커패시터(CCM32)의 전압의 크기는 항상
Figure pat00002
가 된다.
노드(A)와 노드(B) 사이의 공통모드 성분 전압(vAB _CM)의 직류 성분은 직류 링크 전압(vlink)의 절반(0.5vlink)이 되고 상기 식 1에 의하면 Y-커패시터(CCM32)의 전압의 크기는 항상
Figure pat00003
가 된다. 즉, 도 3과 식 1의 고려할 때, 직류-직류 컨버터(15)의 승강압 여부와는 상관없이 'α=0.5'이면 직류 성분은 감안하지 않고 노드(A)와 노드(B) 사이의 공통모드 성분 전압(vAB _CM)의 교류 성분만 조정하여 공통모드 성분을 제거할 수 있는 제2 듀티값(dCM)을 생성할 수 있게 된다.
노드(A)와 노드(B) 각각의 전압은 각 레그의 스위칭 소자 듀티(dA, dB)에 의해 결정되므로(
Figure pat00004
,
Figure pat00005
), 다음 식 2와 같이 노드(A)와 노드(B) 사이의 공통모드 성분 전압(vAB _CM)을 결정할 수 있다.
[식 2]
Figure pat00006
또한, 도 3의 등가 회로를 참고하면, 교류 전원의 공통모드 성분 전압이 노드(A)와 노드(B) 사이의 공통모드 성분 전압(vAB _CM)과 Y-커패시터(CCM32)의 전압의 크기의 합과 동일하게 되면 누설전류를 제거할 수 있으므로, 특히 Y-커패시터(CCM32)의 전압이
Figure pat00007
가 되면 직류 오프셋 성분을 고려하지 않을 수 있으므로 다음의 식 3이 도출될 수 있다.
[식 3]
Figure pat00008
한편, 각 레그의 스위칭 소자 듀티(dA, dB)는 0.5를 기준으로 서로 상보적인 값을 갖도록 결정된 듀티를 기반으로 결정되므로 0.5의 오프셋값을 포함하고 있다. 즉 각 레그의 스위칭 소자 듀티(dA, dB)를 생성하기 위한 기본 듀티(예를 들어, 도 7의 기본듀티 생성부(120)에서 생성된 제1 듀티)에 의해 각 레그의 스위칭 소자를 제어하는 듀티의 합은 항상 1이 되도록 결정되므로, 이들을 기반으로 생성된 각 레그의 스위칭 소자 듀티(dA, dB)의 합을 0.5로 나눈 값에 0.5를 감산하면 공통모드 성분에 해당하는 듀티(dCM)을 구할 수 있게 된다. 이는 다음의 식 4로 나타난다.
[식 4]
Figure pat00009
상기 식 3과 식 4에 의하면, 공통모드 성분에 대응되는 듀티는 다음 식 5와 같이 구할 수 있다.
[식 5]
Figure pat00010
즉, 교류 전압(vg)의 공통모드 성분(vg _CM)을 PFC 컨버터(13)와 직류-직류 컨버터(15)가 연결되는 직류 링크단의 전압으로 나누면 공통모드 성분을 제어하기 위한 듀티를 도출할 수 있게 된다.
여기서, 교류 전압(vg)의 공통모드 성분(vg _CM)은 교류 전원의 형식에 따라 입력 전압을 검출하여 이론적으로 결정할 수 있다. 교류 전원의 형식별 교류 전압의 공통모드 성분을 구하는 방식은 후술하는 도 4 내지 도 6을 통해 설명된다.
또한, 듀티 제어기(11)는 기본듀티 생성부(120)에서 생성된 제1 듀티(d1)의 상보값, 즉 1에서 제1 듀티(d1)을 차감한 값을 연산하는 상보값 연산기(130)과 제1 듀티(d1)에 제2 듀티(dCM)을 합산하여 PFC 컨버터(13)의 제1 스위칭 소자(Q1)를 제어하기 위한 듀티(dA)를 생성하는 제1 합산기(140) 및 상보값 연산기(130)에서 출력되는 값에 제2 듀티(dCM)를 합산하여 제2 스위칭 소자(Q2)를 제어하기 위한 듀티(dB)를 생성하는 제2 합산기(150)를 포함할 수 있다. 제1 스위칭 소자(Q1)과 동일한 레그에 포함된 제3 스위칭 소자(Q3)는 제1 스위칭 소자(Q1)과 상보 관계로 온/오프 되므로 제3 스위칭 소자(Q3)는 '1-dA'의 듀티로 제어될 수 있으며, 제2 스위칭 소자(Q2)과 동일한 레그에 포함된 제4 스위칭 소자(Q3)는 제2 스위칭 소자(Q2)과 상보 관계로 온/오프 되므로 제4 스위칭 소자(Q4)는 '1-dB'의 듀티로 제어될 수 있다.
이와 같이, 본 발명의 일 실시형태는 충전기로 입력되는 교류 전력의 공통 모드 성분에 의해 발생하는 저주파 누설 전류를 PFC 컨버터의 듀티 제어를 통해 감소시킬 수 있다. 이에 따라, 본 발명의 여러 실시형태에 따른 저주파 누설전류를 감소시킬 수 있는 충전 장치는, 충전 설비에 구비된 RCD(Residual Current Detection) 감지 레벨 이하로 누설전류를 감소시켜 충전 중단 현상이 발생하는 것을 예방할 수 있다.
도 4 내지 도 6은 다양한 형식의 외부 충전기 교류 계통 전력 공급 구조를 도시한 도면이다.
도 4는 내수, 유럽 및 북미에서 적용되고 있는 ICCB(In Cable Control Box)의 교류전력 공급 구조를 도시한 것으로 3상 중 한 상과 접지가 되는 중성점 사이의 교류 전압을 공급하는 비대칭형 구조를 도시한다. 도 4와 같은 계통 전원 구조에서는 공급되는 교류전력(vg)의 1/2이 공통모드 성분이 될 수 있다. 특히 도 4의 계통 구조에서는 두 라인(L1, L2)과 차량 탑재형 충전기의 입력단의 결선이 반대가 되는 경우 교류전력(vg)의 -1/2이 공통모드 성분이 될 수도 있다.
도 5는 북미에서 적용되고 있는 계통 구조 중 하나로 서로 다른 위상의 두 라인 사이의 전압을 교류 전압(vg)으로 제공하고 두 라인 사이의 중성점이 접지를 형성하는 비대칭형 구조이다. 도 5에 도시된 구조에서는 두 라인의 위상각 차이가 +120도 또는 -120도인 경우 서로 다른 공통모드 성분을 나타낸다.
도 6은 북미 EVSE(Electic Vehicle Supply Equipment)에서 적용되는 대칭형 구조이다. 이 경우에는 공통모드 성분이 0가 된다.
이러한 도 4 내지 도 6에 도시된 계통 전력 공급 구조에서 공통모드는 교류 전압(vg)가 입력되는 입력단의 두 단자 각각과 접지 사이의 전압 크기의 평균, 즉 1/2이 공통모드 전압으로 표현될 수 있다.
특히, 전술한 필터(11) 내 입력단에 연결되는 Y-커패시터(CCM11, CCM12)가 존재하는 경우 하나의 Y-커패시터(CCM11)에 인가되는 전압을 검출하는 경우 다음의 식과 같이 교류 전압의 공통모드 성분을 정의할 수 있다.
[식 6]
Figure pat00011
따라서, 위 식 6을 이용하여, 도 2의 입력 교류 전압의 공통모드 성분을 구할 수 있도록 듀티 제어기를 구성하면 도 7과 같을 수 있다.
도 7은 본 발명의 일 실시형태에 따른 저주파 누설전류를 감소시킬 수 있는 충전 장치의 듀티 제어기의 다른 예를 더욱 상세하게 도시한 구성도이다.
도 7을 참조하면, 듀티 제어기는 필터(11)에 포함된 입력측 Y-커패시터 중 하나(CCM11)의 전압값을 검출한 값(vY -Cap_in)에 입력 교류 전압(vg)를 검출한 값을 차감하는 감산기(210)를 포함할 수 있다. 감산기(210)의 차감연산 결과는 결국 입력 교류 전압의 공통모드 성분(vg _CM)을 나타낸다. 이 차감연산한 값에 직류 링크 전압(vlink)을 나누어 제2 듀티값(dCM)을 연산한 후 도 2의 예와 동일한 연산을 통해 PFC 컨버터(13)의 스위칭 소자(Q1-Q4)의 온/오프를 제어할 수 있다.
이와 같이, 본 발명의 일 실시형태는, 충전장치 입력측의 Y-커패시터 전압 및 입력되는 교류 전압과 같이 용이하게 검출 가능한 값을 이용하여 입력 교류 전력의 공통모드 성분을 쉽게 감소시킬 수 있다. 특히, 충전장치 입력측의 Y-커패시터 전압 및 입력되는 교류 전압을 이용함으로써 누설전류 감소를 위한 제어기 구조를 단순화할 수 있고 충전 플러그의 극성을 판단할 필요가 없어 충전 플러그 삽입 시 방향에 대한 판단이 불필요하므로 운전자의 편의성을 증대시킬 수 있다.
이상에서 본 발명의 특정한 실시형태에 관련하여 도시하고 설명하였지만, 청구범위의 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
11: 필터 13: 역률 보정(PFC) 컨버터
15: 직류-직류(DC-DC) 컨버터 17: 에너지 저장장치(배터리)
100: 듀티 제어기 110: 승산기
120: 기본 듀티 생성부 130: 상보값 연산기
140, 150: 합산기 210: 뺄셈기
CCM11, CCM12: 입력단 Y-커패시터
CCM31, CCM32: 출력단 Y-커패시터

Claims (10)

  1. 스위칭 소자를 포함하며 상기 스위칭 소자의 온/오프 제어를 통해 외부 충전설비에서 제공되는 교류 전력의 역률을 보정하여 직류 전력으로 변환하여 출력하는 역률 보정 컨버터;
    상기 역률 보정 컨버터의 양단에 연결되어 직류 전압을 형성하는 직류 링크 커패시터;
    상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기를 충전 대상 에너지 저장 장치에서 요구하는 전압의 크기로 변환하는 직류-직류 컨버터; 및
    상기 외부 충전설비에서 제공되는 교류 전력의 교류 전압의 공통모드 성분의 크기와 상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기에 기반하여 상기 역률 보정 컨버터 내 스위칭 소자의 듀티를 결정하는 듀티 제어기;
    를 포함하는 저주파 누설전류를 감소시킬 수 있는 충전 장치.
  2. 청구항 1에 있어서, 상기 듀티 제어기는,
    상기 PFC 컨버터가 사전 설정된 크기의 전압을 출력하도록 상기 스위칭 소자를 제어하기 위한 제1 듀티값을 결정하는 기본 듀티 생성부; 및
    상기 교류 전력의 교류 전압의 공통모드 성분의 크기를 상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기로 나누어 제2 듀티값을 연산하는 승산기를 포함하며,
    상기 제1 듀티값 및 상기 제1 듀티값의 상보값에 각각 상기 제2 듀티값을 합산하여 상기 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하는 것을 특징으로 하는 저주파 누설전류를 감소시킬 수 있는 충전 장치.
  3. 청구항 2에 있어서, 상기 역률 보정 컨버터는,
    상호 직결되는 제1 스위칭 소자 및 제2 스위칭 소자를 갖는 제1 레그; 및
    상호 직결되는 제3 스위칭 소자 및 제4 스위칭 소자를 포함하는 제2 레그를 포함하며,
    상기 제1 레그와 제2 레그는 상기 직류-직류 컨버터의 입력단의 두 입력 단자 사이에 상호 병렬 관계로 연결되고, 상기 제1 스위칭 소자와 상기 제2 스위칭 소자의 연결 노드에 상기 교류 전력이 제공되는 입력단의 일단자가 연결되고, 상기 제3 스위칭 소자와 상기 제4 스위칭 소자의 연결 노드에 상기 교류 전력이 제공되는 입력단의 타단자가 연결된 것을 특징으로 하는 저주파 누설전류를 감소시킬 수 있는 충전 장치.
  4. 청구항 3에 있어서, 상기 듀티 제어기는,
    상기 제1 듀티값에 상기 제2 듀티값을 합산한 값을 상기 제1 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하고,
    상기 제1 듀티값에 상기 제2 듀티값을 합산한 값의 상보값을 상기 제2 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하고,
    상기 제1 듀티값의 상보값에 각각 상기 제2 듀티값을 합산 값을 상기 제3 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하고,
    상기 제1 듀티값의 상보값에 각각 상기 제2 듀티값을 합산 값의 상보값을 상기 제4 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하는 것을 특징으로 하는 저주파 누설전류를 감소시킬 수 있는 충전 장치.
  5. 청구항 1에 있어서,
    상기 직류-직류 컨버터는 비절연형인 것을 특징으로 하는 저주파 누설전류를 감소시킬 수 있는 충전 장치.
  6. 청구항 1에 있어서,
    상기 교류 전력이 입력되는 입력단 사이에 상호 직렬 연결되고 그 연결 노드가 접지되는 두 개의 입력단 Y-커패시터를 더 포함하는 것을 특징으로 하는 저주파 누설전류를 감소시킬 수 있는 충전 장치.
  7. 청구항 6에 있어서, 상기 듀티 제어기는,
    상기 PFC 컨버터가 사전 설정된 크기의 전압을 출력하도록 상기 스위칭 소자를 제어하기 위한 제1 듀티값을 결정하는 기본 듀티 생성부; 및
    상기 입력단 Y-커패시터 중 하나의 전압에 상기 교류 전력의 교류 전압의 1/2을 차감 연산하는 감산기;
    상기 감산기의 연산 결과를 상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기로 나누어 제2 듀티값을 연산하는 승산기를 포함하며,
    상기 제1 듀티값 및 상기 제1 듀티값의 상보값에 각각 상기 제2 듀티값을 합산하여 상기 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하는 것을 특징으로 하는 저주파 누설전류를 감소시킬 수 있는 충전 장치.
  8. 청구항 7에 있어서, 상기 역률 보정 컨버터는,
    상호 직결되는 제1 스위칭 소자 및 제2 스위칭 소자를 갖는 제1 레그; 및
    상호 직결되는 제3 스위칭 소자 및 제4 스위칭 소자를 포함하는 제2 레그를 포함하며,
    상기 제1 레그와 제2 레그는 상기 직류-직류 컨버터의 입력단의 두 입력 단자 사이에 상호 병렬 관계로 연결되고, 상기 제1 스위칭 소자와 상기 제2 스위칭 소자의 연결 노드에 상기 교류 전력이 제공되는 입력단의 일단자가 연결되고, 상기 제3 스위칭 소자와 상기 제4 스위칭 소자의 연결 노드에 상기 교류 전력이 제공되는 입력단의 타단자가 연결된 것을 특징으로 하는 저주파 누설전류를 감소시킬 수 있는 충전 장치.
  9. 청구항 8에 있어서, 상기 듀티 제어기는,
    상기 제1 듀티값에 상기 제2 듀티값을 합산한 값을 상기 제1 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하고,
    상기 제1 듀티값에 상기 제2 듀티값을 합산한 값의 상보값을 상기 제2 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하고,
    상기 제1 듀티값의 상보값에 각각 상기 제2 듀티값을 합산 값을 상기 제3 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하고,
    상기 제1 듀티값의 상보값에 각각 상기 제2 듀티값을 합산 값의 상보값을 상기 제4 스위칭 소자의 온/오프를 제어하기 위한 듀티값으로 제공하는 것을 특징으로 하는 저주파 누설전류를 감소시킬 수 있는 충전 장치.
  10. 외부 충전설비에서 제공되는 교류 전력이 입력되는 입력단 사이에 상호 직렬 연결되고 그 연결 노드가 접지되는 두 개의 입력단 Y-커패시터를 포함하는 필터;
    스위칭 소자를 포함하며 상기 교류 전력의 역률을 보정하여 직류 전력으로 변환하여 출력하는 역률 보정 컨버터;
    상기 역률 보정 컨버터의 양단에 연결되어 직류 전압을 형성하는 직류 링크 커패시터;
    상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기를 충전 대상 에너지 저장 장치에서 요구하는 전압의 크기로 변환하는 직류-직류 컨버터; 및
    상기 입력단 Y-커패시터 중 하나의 전압에 상기 교류 전력의 교류 전압의 1/2을 차감하여 도출된 상기 교류 전력의 교류 전압의 공통모드 성분의 크기와 상기 직류 링크 커패시터에 의해 형성된 직류 전압의 크기에 기반하여 상기 역률 보정 컨버터 내 스위칭 소자의 듀티를 결정하는 듀티 제어기;
    를 포함하는 저주파 누설전류를 감소시킬 수 있는 충전 장치.
KR1020180160158A 2018-12-12 2018-12-12 저주파 누설전류를 감소시킬 수 있는 충전 장치 KR102657323B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180160158A KR102657323B1 (ko) 2018-12-12 2018-12-12 저주파 누설전류를 감소시킬 수 있는 충전 장치
US16/520,075 US11228238B2 (en) 2018-12-12 2019-07-23 Charging apparatus capable of reducing low-frequency leakage current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180160158A KR102657323B1 (ko) 2018-12-12 2018-12-12 저주파 누설전류를 감소시킬 수 있는 충전 장치

Publications (2)

Publication Number Publication Date
KR20200075134A true KR20200075134A (ko) 2020-06-26
KR102657323B1 KR102657323B1 (ko) 2024-04-12

Family

ID=71071865

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180160158A KR102657323B1 (ko) 2018-12-12 2018-12-12 저주파 누설전류를 감소시킬 수 있는 충전 장치

Country Status (2)

Country Link
US (1) US11228238B2 (ko)
KR (1) KR102657323B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102379157B1 (ko) * 2020-11-04 2022-03-25 한국항공우주연구원 통합형 dc/dc 및 ac/dc 컨버터 시스템
WO2022120663A1 (zh) * 2020-12-09 2022-06-16 宁德时代新能源科技股份有限公司 功率变换器的控制方法、装置及系统
DE102022209506A1 (de) * 2022-09-12 2024-03-14 Vitesco Technologies GmbH Isolationsfehlererkennung anhand von Wechselspannungskomponenten eines Ansteuersignals in der Gleichspannungsseite einer Wechselspannnungsladeschaltung
DE102022211478A1 (de) 2022-10-28 2024-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Schaltung und Verfahren zum Betreiben derselben

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078352A (ja) * 2000-08-24 2002-03-15 Fujitsu General Ltd インバータ装置の保護方法
KR20120006392A (ko) * 2010-07-12 2012-01-18 삼성전기주식회사 발광 다이오드 구동용 전원 공급 장치
KR20130087748A (ko) * 2012-01-30 2013-08-07 엘에스산전 주식회사 전기자동차 충전기를 위한 dc-링크 캐패시터 방전 장치
KR20140114175A (ko) 2013-03-18 2014-09-26 엘에스산전 주식회사 충전기의 동작 방법
KR20160013551A (ko) 2014-07-28 2016-02-05 현대자동차주식회사 친환경 자동차의 완속 충전 제어 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272025B1 (en) * 1999-10-01 2001-08-07 Online Power Supply, Inc. Individual for distributed non-saturated magnetic element(s) (referenced herein as NSME) power converters
US6930293B2 (en) 2002-02-04 2005-08-16 Canon Kabushiki Kaisha Induction heating apparatus, heat fixing apparatus and image forming apparatus
CA2554127A1 (en) 2003-01-22 2004-08-05 Power Innovations International, Inc. Power conditioner and backup for security scanning equipment
TW200723662A (en) 2005-12-07 2007-06-16 Jentec Technology Co Ltd Switching power-converting device capable of decreasing low frequency common-mode voltage at the secondary side
JP5422178B2 (ja) 2008-11-12 2014-02-19 株式会社東芝 系統連系インバータ
TWI384744B (zh) 2009-12-22 2013-02-01 Ind Tech Res Inst 交流轉直流之轉換電路架構
US8441235B2 (en) 2011-01-31 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. Battery charger digital control circuit and method
US9257864B2 (en) 2012-03-21 2016-02-09 Cistel Technology Inc. Input power controller for AC/DC battery charging
US9559581B2 (en) 2013-04-17 2017-01-31 The Regents Of The University Of Michigan Single phase bi-directional AC-DC converter with reduced passive components size and common mode electro-magnetic interference
US9431169B2 (en) 2013-06-07 2016-08-30 Qualcomm Incorporated Primary power supply tuning network for two coil device and method of operation
JP2017069996A (ja) 2015-09-28 2017-04-06 田淵電機株式会社 非絶縁電力変換装置及び非絶縁電力変換システム
WO2017138176A1 (ja) 2016-02-08 2017-08-17 三菱電機株式会社 電力変換装置
JP6690317B2 (ja) 2016-03-11 2020-04-28 株式会社明電舎 電力変換装置
US20180054140A1 (en) 2016-08-22 2018-02-22 Virginia Tech Intellectual Properties, Inc. Interface converter common mode voltage control
JP6784607B2 (ja) 2017-02-06 2020-11-11 株式会社京三製作所 絶縁電源、及び電力変換装置
US10205401B1 (en) 2017-07-11 2019-02-12 Alexei V. Nikitin Controllers for regulated power inverters, AC/DC, and DC/DC converters
KR102523253B1 (ko) 2018-03-21 2023-04-20 현대자동차주식회사 전기 자동차의 충전 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078352A (ja) * 2000-08-24 2002-03-15 Fujitsu General Ltd インバータ装置の保護方法
KR20120006392A (ko) * 2010-07-12 2012-01-18 삼성전기주식회사 발광 다이오드 구동용 전원 공급 장치
KR20130087748A (ko) * 2012-01-30 2013-08-07 엘에스산전 주식회사 전기자동차 충전기를 위한 dc-링크 캐패시터 방전 장치
KR20140114175A (ko) 2013-03-18 2014-09-26 엘에스산전 주식회사 충전기의 동작 방법
KR20160013551A (ko) 2014-07-28 2016-02-05 현대자동차주식회사 친환경 자동차의 완속 충전 제어 방법

Also Published As

Publication number Publication date
US20200195129A1 (en) 2020-06-18
US11228238B2 (en) 2022-01-18
KR102657323B1 (ko) 2024-04-12

Similar Documents

Publication Publication Date Title
US9584047B2 (en) Bidirectional power converter having a charger and export modes of operation
KR102657323B1 (ko) 저주파 누설전류를 감소시킬 수 있는 충전 장치
Sharma et al. Comparison of common DC and AC bus architectures for EV fast charging stations and impact on power quality
US9698700B2 (en) Predictive current control in bidirectional power converter
KR102486104B1 (ko) 전기 자동차의 충전 장치
CN110048626B (zh) 逆变器交流合闸共模冲击电流抑制方法及其应用装置
US9621063B2 (en) Reference current generation in bidirectional power converter
AU2007294445B2 (en) Method for control of inverters
KR102659238B1 (ko) 저주파 누설전류를 감소시킬 수 있는 충전 장치
JP2014033565A (ja) 電力変換装置
RU155594U1 (ru) Многофункциональный регулятор качества электроэнергии для трехфазных распределительных систем электроснабжения 0,4 кв
Segaran et al. High-performance bi-directional AC-DC converters for PHEV with minimised DC bus capacitance
JP6174981B2 (ja) 二次電池の充放電制御装置
KR101827573B1 (ko) 축전기 수단의 충전을 위한 스위칭 암의 스위치 제어 방법 및 대응 충전 장치
KR102542941B1 (ko) 저주파 누설전류를 감소시킬 수 있는 충전 장치
KR101655200B1 (ko) 친환경 자동차용 배터리 충전 장치 및 이의 충전 방법
Sharma et al. A generalised double integral sliding mode control for bidirectional charger of light electric vehicle
WO2021258212A1 (en) Converter modulation for reduction of common-mode leakage current
KR102660347B1 (ko) 누설전류를 감소시킬 수 있는 충전 시스템
Siu et al. Design, implementation and analysis of an advanced digital controller for active virtual ground-bridgeless PFC
KR102627065B1 (ko) 전해 캐패시터를 직접 대체하는 모듈형 플러그인 전력디커플링 회로
KR102040228B1 (ko) 배터리 충전 장치
AU2017422125B2 (en) Power conversion system, and associated control method
Samal et al. Non Isolated Multi Port Inverter with Reduced Common Mode Leakage Current and Minimum Phase Property
Preethi et al. Design and control of bidirectional onboard charger for an electric vehicle

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant