KR20200071488A - 열전모듈 - Google Patents

열전모듈 Download PDF

Info

Publication number
KR20200071488A
KR20200071488A KR1020180159279A KR20180159279A KR20200071488A KR 20200071488 A KR20200071488 A KR 20200071488A KR 1020180159279 A KR1020180159279 A KR 1020180159279A KR 20180159279 A KR20180159279 A KR 20180159279A KR 20200071488 A KR20200071488 A KR 20200071488A
Authority
KR
South Korea
Prior art keywords
thermoelectric
substrate
chamfer
layers
disposed
Prior art date
Application number
KR1020180159279A
Other languages
English (en)
Other versions
KR102478827B9 (ko
KR102478827B1 (ko
Inventor
조용상
성명석
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020180159279A priority Critical patent/KR102478827B1/ko
Publication of KR20200071488A publication Critical patent/KR20200071488A/ko
Application granted granted Critical
Publication of KR102478827B1 publication Critical patent/KR102478827B1/ko
Publication of KR102478827B9 publication Critical patent/KR102478827B9/ko

Links

Images

Classifications

    • H01L35/32
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • H01L35/04
    • H01L35/16
    • H01L35/18
    • H01L35/34
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명의 한 실시예에 따른 열전모듈은 제1 기판, 상기 제1 기판 상에 배치된 열전소자, 상기 열전소자 상에 배치되며, 상기 제1 기판보다 면적이 작은 제2 기판, 그리고 상기 열전소자에 연결되며, 상기 열전소자에 전원을 공급하는 전선부를 포함하고, 상기 제2 기판에는 적어도 하나의 챔퍼가 형성된다.

Description

열전모듈{THERMOELECTRIC MODULE}
본 발명은 열전모듈에 관한 것으로, 보다 상세하게는 열전모듈에 포함되는 기판 구조에 관한 것이다.
열전현상은 재료 내부의 전자(electron)와 정공(hole)의 이동에 의해 발생하는 현상으로, 열과 전기 사이의 직접적인 에너지 변환을 의미한다.
열전소자는 열전현상을 이용하는 소자를 총칭하며, P형 열전 재료와 N형 열전 재료를 금속 전극들 사이에 접합시켜 PN 접합 쌍을 형성하는 구조를 가진다.
열전소자는 전기저항의 온도 변화를 이용하는 소자, 온도 차에 의해 기전력이 발생하는 현상인 제벡 효과를 이용하는 소자, 전류에 의한 흡열 또는 발열이 발생하는 현상인 펠티에 효과를 이용하는 소자 등으로 구분될 수 있다.
열전소자는 가전제품, 전자부품, 통신용 부품 등에 다양하게 적용되고 있다. 예를 들어, 열전소자는 냉각용 장치, 온열용 장치, 발전용 장치 등에 적용될 수 있다. 이에 따라, 열전소자의 열전성능에 대한 요구는 점점 더 높아지고 있다.
열전소자는 기판, 전극 및 열전 레그를 포함하며, 상부기판과 하부기판 사이에 복수의 열전 레그가 어레이 형태로 배치되며, 복수의 열전 레그와 상부기판 사이에 복수의 상부 전극이 배치되고, 복수의 열전 레그와 및 하부기판 사이에 복수의 하부전극이 배치된다.
이때, 전극에는 전선이 연결되며, 전선을 통하여 열전소자에 전원이 공급된다.
일반적으로, 하부 기판, 하부 전극, 복수의 열전 레그, 상부 전극 및 상부 기판의 순서로 적층한 후, 하부 전극에 전선을 연결한다. 이때, 하부 기판과 상부 기판 사이의 공간이 협소하므로, 전선 연결이 어려운 문제가 있다. 이에 따라, 하부 전극과 전선 간 솔더링이 미흡하게 된 경우, 전선이 하부 전극으로부터 이탈되기 쉬우며, 이에 따라 열전소자의 신뢰성이 낮아질 수 있다.
본 발명이 이루고자 하는 기술적 과제는 열전모듈의 기판 구조를 제공하는 것이다.
본 발명의 한 실시예에 따른 열전모듈은 제1 기판, 상기 제1 기판 상에 배치된 열전소자, 상기 열전소자 상에 배치되며, 상기 제1 기판보다 면적이 작은 제2 기판, 그리고 상기 열전소자에 연결되며, 상기 열전소자에 전원을 공급하는 전선부를 포함하고, 상기 제2 기판에는 적어도 하나의 챔퍼가 형성된다.
상기 열전소자는 상기 제1 기판 상에 배치된 제1 수지층, 상기 제1 수지층 상에 배치된 복수의 제1 전극, 상기 복수의 제1 전극 상에 배치된 복수의 P형 열전 레그 및 복수의 N형 열전 레그, 상기 복수의 P형 열전 레그 및 복수의 N형 열전 레그 상에 배치된 복수의 제2 전극, 그리고 상기 복수의 제2 전극 상에 배치된 제2 수지층을 포함하고, 상기 전선부는 상기 복수의 제1 전극 중 하나의 전극에 연결된 제1 전선 및 상기 복수의 제1 전극 중 다른 하나의 전극에 연결된 제2 전선을 포함할 수 있다.
상기 적어도 하나의 챔퍼는 상기 제1 전선이 연결된 상기 하나의 전극 및 상기 제2 전선이 연결된 상기 다른 하나의 전극 중 적어도 하나 상에 형성될 수 있다.
상기 적어도 하나의 챔퍼는 상기 제1 전선이 연결된 상기 하나의 전극 상에 형성된 제1 챔퍼 및 상기 제2 전선이 연결된 상기 다른 하나의 전극 상에 형성된 제2 챔퍼를 포함할 수 있다.
상기 제1 챔퍼는 상기 제2 기판의 한 면의 일단에 형성되고, 상기 제2 챔퍼는 상기 제2 기판의 한 면의 타단에 형성될 수 있다.
상기 제1 챔퍼 및 상기 제2 챔퍼 중 적어도 하나는 직선부 및 곡선부 중 적어도 하나를 포함할 수 있다.
상기 제1 챔퍼 및 상기 제2 챔퍼 중 적어도 하나는 제1 방향으로 배치된 제1 직선부, 상기 제1 방향과 수직하는 방향으로 형성된 제2 직선부, 그리고 상기 제1 직선부와 상기 제2 직선부 사이에 배치된 곡선부를 포함할 수 있다.
상기 열전소자의 측면을 둘러싸는 실링부를 더 포함하고, 상기 실링부는 상기 제2 기판에 형성된 적어도 하나의 챔퍼를 채우도록 배치될 수 있다.
본 발명의 실시예에 따르면, 열전도도가 우수하고, 신뢰성이 높은 열전모듈을 얻을 수 있다. 특히, 본 발명의 실시예에 따르면, 전선 연결이 용이하며, 전선이 전극에 안정적으로 연결된 열전모듈을 얻을 수 있다.
도 1은 본 발명의 한 실시예에 따른 열전모듈의 단면도이다.
도 2는 본 발명의 한 실시예에 따른 열전모듈의 사시도이다.
도 3은 본 발명의 한 실시예에 따른 열전모듈의 분해 사시도이다.
도 4는 본 발명의 한 실시예에 따른 열전모듈에 포함되는 열전소자의 단면도이다.
도 5 내지 도 8은 본 발명의 한 실시예에 따른 열전모듈의 상면도이다.
도 9는 본 발명의 실시예에 따른 열전모듈이 적용된 정수기의 블록도이다.
도 10은 본 발명의 실시예에 따른 열전모듈이 적용된 냉장고의 블록도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
도 1은 본 발명의 한 실시예에 따른 열전모듈의 단면도이고, 도 2는 본 발명의 한 실시예에 따른 열전모듈의 사시도이고, 도 3은 본 발명의 한 실시예에 따른 열전모듈의 분해 사시도이고, 도 4는 본 발명의 한 실시예에 따른 열전모듈에 포함되는 열전소자의 단면도이다. 도 5 내지 도 8은 본 발명의 한 실시예에 따른 열전모듈의 상면도이다.
도 1 내지 도 4를 참조하면, 열전소자(100)는 제1 수지층(110), 복수의 제1 전극(120), 복수의 P형 열전 레그(130), 복수의 N형 열전 레그(140), 복수의 제2 전극(150) 및 제2 수지층(160)을 포함한다.
복수의 제1 전극(120)은 제1 수지층(110)과 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)의 하면 사이에 배치되고, 복수의 제2 전극(150)은 제2 수지층(160)과 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)의 상면 사이에 배치된다. 이에 따라, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)는 복수의 제1 전극(120) 및 복수의 제2 전극(150)에 의하여 전기적으로 연결된다. 제1 전극(120)과 제2 전극(150) 사이에 배치되며, 전기적으로 연결되는 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)는 단위 셀을 형성할 수 있다.
각 제1 전극(120) 상에는 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)가 배치될 수 있으며, 각 제2 전극(150) 상에는 각 제1 전극(120) 상에 배치된 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140) 중 하나가 겹쳐지도록 한 쌍의 N형 열전 레그(140) 및 P형 열전 레그(130)가 배치될 수 있다.
여기서, P형 열전 레그(130) 및 N형 열전 레그(140)는 비스무스(Bi) 및 텔루륨(Te)를 주원료로 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. P형 열전 레그(130)는 전체 중량 100wt%에 대하여 안티몬(Sb), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 주원료 물질 99 내지 99.999wt%와 Bi 또는 Te를 포함하는 혼합물 0.001 내지 1wt%를 포함하는 열전 레그일 수 있다. 예를 들어, 주원료물질이 Bi-Se-Te이고, Bi 또는 Te를 전체 중량의 0.001 내지 1wt%로 더 포함할 수 있다. N형 열전 레그(140)는 전체 중량 100wt%에 대하여 셀레늄(Se), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 주원료 물질 99 내지 99.999wt%와 Bi 또는 Te를 포함하는 혼합물 0.001 내지 1wt%를 포함하는 열전 레그일 수 있다. 예를 들어, 주원료물질이 Bi-Sb-Te이고, Bi 또는 Te를 전체 중량의 0.001 내지 1wt%로 더 포함할 수 있다.
P형 열전 레그(130) 및 N형 열전 레그(140)는 벌크형 또는 적층형으로 형성될 수 있다. 일반적으로 벌크형 P형 열전 레그(130) 또는 벌크형 N형 열전 레그(140)는 열전 소재를 열처리하여 잉곳(ingot)을 제조하고, 잉곳을 분쇄하고 체거름하여 열전 레그용 분말을 획득한 후, 이를 소결하고, 소결체를 커팅하는 과정을 통하여 얻어질 수 있다. 적층형 P형 열전 레그(130) 또는 적층형 N형 열전 레그(140)는 시트 형상의 기재 상에 열전 소재를 포함하는 페이스트를 도포하여 단위 부재를 형성한 후, 단위 부재를 적층하고 커팅하는 과정을 통하여 얻어질 수 있다.
이때, 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)는 동일한 형상 및 체적을 가지거나, 서로 다른 형상 및 체적을 가질 수 있다. 예를 들어, P형 열전 레그(130)와 N형 열전 레그(140)의 전기 전도 특성이 상이하므로, N형 열전 레그(140)의 높이 또는 단면적을 P형 열전 레그(130)의 높이 또는 단면적과 다르게 형성할 수도 있다.
본 발명의 한 실시예에 따른 열전소자의 성능은 제벡 지수로 나타낼 수 있다. 제백 지수(ZT)는 수학식 1과 같이 나타낼 수 있다.
Figure pat00001
여기서, α는 제벡계수[V/K]이고, σ는 전기 전도도[S/m]이며, α2σ는 파워 인자(Power Factor, [W/mK2])이다. 그리고, T는 온도이고, k는 열전도도[W/mK]이다. k는 a·cp·ρ로 나타낼 수 있으며, a는 열확산도[cm2/S]이고, cp 는 비열[J/gK]이며, ρ는 밀도[g/cm3]이다.
열전소자의 제백 지수를 얻기 위하여, Z미터를 이용하여 Z 값(V/K)을 측정하며, 측정한 Z값을 이용하여 제벡 지수(ZT)를 계산할 수 있다.
본 발명의 다른 실시예에 따르면, P형 열전 레그(130) 및 N형 열전 레그(140)는 도 4(b)에서 도시하는 구조를 가질 수도 있다. 도 4(b)를 참조하면, 열전 레그(130, 140)는 열전 소재층(132, 142), 열전 소재층(132, 142)의 한 면 상에 적층되는 제1 도금층(134-1, 144-1), 열전 소재층(132, 142)의 한 면과 대향하여 배치되는 다른 면에 적층되는 제2 도금층(134-2, 144-2), 열전 소재층(132, 142)과 제1 도금층(134-1, 144-1) 사이 및 열전 소재층(132, 142)과 제2 도금층(134-2, 144-2) 사이에 각각 배치되는 제1 접합층(136-1, 146-1) 및 제2 접합층(136-2, 146-2), 그리고 제1 도금층(134-1, 144-1) 및 제2 도금층(134-2, 144-2) 상에 각각 적층되는 제1 금속층(138-1, 148-1) 및 제2 금속층(138-2, 148-2)을 포함한다.
이때, 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1)은 서로 직접 접촉하고, 열전 소재층(132. 142)과 제2 접합층(136-2, 146-2)은 서로 직접 접촉할 수 있다. 그리고, 제1 접합층(136-1, 146-1)과 제1 도금층(134-1, 144-1)은 서로 직접 접촉하고, 제2 접합층(136-2, 146-2)과 제2 도금층(134-2, 144-2)은 서로 직접 접촉할 수 있다. 그리고, 제1 도금층(134-1, 144-1)과 제1 금속층(138-1, 148-1)은 서로 직접 접촉하고, 제2 도금층(134-2, 144-2)과 제2 금속층(138-2, 148-2)은 서로 직접 접촉할 수 있다.
여기서, 열전 소재층(132, 142)은 반도체 재료인 비스무스(Bi) 및 텔루륨(Te)을 포함할 수 있다. 열전 소재층(132, 142)은 도 13(a)에서 설명한 P형 열전 레그(130) 또는 N형 열전 레그(140)와 동일한 소재 또는 형상을 가질 수 있다.
그리고, 제1 금속층(138-1, 148-1) 및 제2 금속층(138-2, 148-2)은 구리(Cu), 구리 합금, 알루미늄(Al) 및 알루미늄 합금으로부터 선택될 수 있으며, 0.1 내지 0.5mm, 바람직하게는 0.2 내지 0.3mm의 두께를 가질 수 있다. 제1 금속층(138-1, 148-1) 및 제2 금속층(138-2, 148-2)의 열팽창 계수는 열전 소재층(132, 142)의 열팽창 계수와 비슷하거나, 더 크므로, 소결 시 제1 금속층(138-1, 148-1) 및 제2 금속층(138-2, 148-2)과 열전 소재층(132, 142) 간의 경계면에서 압축 응력이 가해지기 때문에, 균열 또는 박리를 방지할 수 있다. 또한, 제1 금속층(138-1, 148-1) 및 제2 금속층(138-2, 148-2)과 전극(120, 150) 간의 결합력이 높으므로, 열전 레그(130, 140)는 전극(120, 150)과 안정적으로 결합할 수 있다.
다음으로, 제1 도금층(134-1, 144-1) 및 제2 도금층(134-2, 144-2)은 각각 Ni, Sn, Ti, Fe, Sb, Cr 및 Mo 중 적어도 하나를 포함할 수 있고, 1 내지 20㎛, 바람직하게는 1 내지 10㎛의 두께를 가질 수 있다. 제1 도금층(134-1, 144-1) 및 제2 도금층(134-2, 144-2)은 열전 소재층(132, 142) 내 반도체 재료인 Bi 또는 Te와 제1 금속층(138-1, 148-1) 및 제2 금속층(138-2, 148-2) 간의 반응을 막으므로, 열전 소자의 성능 저하를 방지할 수 있을 뿐만 아니라, 제1 금속층(138-1, 148-1) 및 제2 금속층(138-2, 148-2)의 산화를 방지할 수 있다.
이때, 열전 소재층(132, 142)과 제1 도금층(134-1, 144-1) 사이 및 열전 소재층(132, 142)과 제2 도금층(134-2, 144-2) 사이에는 제1 접합층(136-1, 146-1) 및 제2 접합층(136-2, 146-2)이 배치될 수 있다. 이때, 제1 접합층(136-1, 146-1) 및 제2 접합층(136-2, 146-2)은 Te를 포함할 수 있다. 예를 들어, 제1 접합층(136-1, 146)-1 및 제2 접합층(136-2, 146-2)은 Ni-Te, Sn-Te, Ti-Te, Fe-Te, Sb-Te, Cr-Te 및 Mo-Te 중 적어도 하나를 포함할 수 있다. 본 발명의 실시예에 따르면, 제1 접합층(136-1, 146-1) 및 제2 접합층(136-2, 146-2) 각각의 두께는 0.5 내지 100㎛, 바람직하게는 1 내지 50㎛일 수 있다. 본 발명의 실시예에 따르면, 열전 소재층(132, 142)과 제1 도금층(134-1, 144-1) 및 제2 도금층(134-2, 144-2) 사이에 Te를 포함하는 제1 접합층(136-1, 146-1) 및 제2 접합층(136-2, 146-2)을 미리 배치하여, 열전 소재층(132, 142) 내 Te가 제1 도금층(134-1, 144-1) 및 제2 도금층(134-2, 144-2)으로 확산되는 것을 방지할 수 있다. 이에 따라, Bi 리치 영역의 발생을 방지할 수 있다.
이에 따르면, 열전 소재층(132, 142)의 중심부로부터 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면까지 Te 함량은 Bi 함량보다 높고, 열전 소재층(132, 142)의 중심부로부터 열전 소재층(132, 142)과 제2 접합층(136-2, 146-2) 간의 경계면까지 Te 함량은 Bi 함량보다 높다. 열전 소재층(132, 142)의 중심부로부터 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면까지의 Te 함량 또는 열전 소재층(132, 142)의 중심부로부터 열전 소재층(132, 142)과 제2 접합층(136-2, 146-2) 간의 경계면까지의 Te 함량은 열전 소재층(132, 142)의 중심부의 Te 함량 대비 0.8 내지 1배일 수 있다. 예를 들어, 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면으로부터 열전 소재층(132, 142)의 중심부의 방향으로 100㎛ 두께 내의 Te 함량은 열전 소재층(132, 142)의 중심부의 Te 함량 대비 0.8배 내지 1배일 수 있다. 여기서, 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면으로부터 열전 소재층(132, 142)의 중심부의 방향으로 100㎛ 두께 내에서도 Te 함량은 일정하게 유지될 수 있으며, 예를 들어 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면으로부터 열전 소재층(132, 142)의 중심부의 방향으로 100㎛ 두께 내에서 Te 중량비의 변화율은 0.9 내지 1일 수 있다.
또한, 제1 접합층(136-1, 146-1) 또는 제2 접합층(136-2, 146-2) 내 Te의 함량은 열전 소재층(132, 142) 내 Te의 함량과 동일하거나 유사할 수 있다. 예를 들어, 제1 접합층(136-1, 146-1) 또는 제2 접합층(136-2, 146-2) 내 Te의 함량은 열전 소재층(132, 142) 내 Te의 함량의 0.8 내지 1배, 바람직하게는 0.85 내지 1배, 더욱 바람직하게는 0.9 내지 1배, 더욱 바람직하게는 0.95 내지 1배일 수 있다. 여기서, 함량은 중량비일 수 있다. 예를 들어, 열전 소재층(132, 142) 내 Te의 함량이 50wt%로 포함되는 경우, 제1 접합층(136-1, 146-1) 또는 제2 접합층(136-2, 146-2) 내 Te의 함량은 40 내지 50wt%, 바람직하게는 42.5 내지 50wt%, 더욱 바람직하게는 45 내지 50wt%, 더욱 바람직하게는 47.5 내지 50wt%일 수 있다. 또한, 제1 접합층(136-1, 146-1) 또는 제2 접합층(136-2, 146-2) 내 Te의 함량은 Ni대비 클 수 있다. 제1 접합층(136-1, 146-1) 또는 제2 접합층(136-2, 146-2) 내에서 Te의 함량은 일정하게 분포하는 반면, Ni 함량은 제1 접합층(136-1, 146-1) 또는 제2 접합층(136-2, 146-2) 내에서 열전 소재층(132, 142) 방향에 인접할수록 감소할 수 있다.
그리고, 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 열전 소재층(132, 142)과 제2 접합층(136-2, 146-2) 간의 경계면으로부터 제1 도금층(136-1, 146-1)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 제2 도금층(134-2, 144-2)과 제2 접합층(136-2, 146-2) 간의 경계면까지의 Te 함량은 일정하게 분포될 수 있다. 예를 들어, 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 열전 소재층(132, 142)과 제2 접합층(136-2, 146-2) 간의 경계면으로부터 제1 도금층(136-1, 146-1)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 제2 도금층(134-2, 144-2)과 제2 접합층(136-2, 146-2) 간의 경계면까지의 Te 중량비의 변화율은 0.8 내지 1일 수 있다. 여기서, Te 중량비의 변화율이 1에 가까울수록 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 열전 소재층(132, 142)과 제2 접합층(136-2, 146-2) 간의 경계면으로부터 제1 도금층(136-1, 146-1)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 제2 도금층(134-2, 144-2)과 제2 접합층(136-2, 146-2) 간의 경계면까지의 Te 함량이 일정하게 분포하는 것을 의미할 수 있다.
그리고, 제1 접합층(136-1, 146-1) 내 제1 도금층(134-1, 144-1)과 접하는 면, 즉 제1 도금층(136-1, 146-1)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 제2 접합층(136-2, 146-2) 내 제2 도금층(134-2, 144-2)과 접하는 면, 즉 제2 도금층(134-2, 144-2)과 제2 접합층(136-2, 146-2) 간의 경계면에서의 Te의 함량은 열전 소재층(132, 142) 내 제1 접합층(136-1, 146-1)과 접하는 면, 즉 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 열전 소재층(132, 142) 내 제2 접합층(136-2, 146-2)과 접하는 면, 즉 열전 소재층(132, 142)과 제2 접합층(136-2, 146-2) 간의 경계면에서의 Te의 함량의 0.8 내지 1배, 바람직하게는 0.85 내지 1배, 더욱 바람직하게는 0.9 내지 1배, 더욱 바람직하게는 0.95 내지 1배일 수 있다. 여기서, 함량은 중량비일 수 있다.
그리고, 열전 소재층(132, 142)의 중심부의 Te 함량은 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 열전 소재층(132, 142)과 제2 접합층(136-2, 146-2) 간의 경계면의 Te 함량과 동일하거나 유사하게 나타남을 알 수 있다. 즉, 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 열전 소재층(132, 142)과 제2 접합층(136-2, 146-2) 간의 경계면의 Te 함량은 열전 소재층(132, 142)의 중심부의 Te 함량의 0.8 내지 1배, 바람직하게는 0.85 내지 1배, 더욱 바람직하게는 0.9 내지 1배, 더욱 바람직하게는 0.95 내지 1배일 수 있다. 여기서, 함량은 중량비일 수 있다. 여기서, 열전 소재층(132, 142)의 중심부는 열전 소재층(132, 142)의 중심을 포함하는 주변 영역을 의미할 수 있다. 그리고, 경계면은 경계면 자체를 의미하거나, 또는 경계면과 경계면으로부터 소정 거리 내에 인접하는 경계면 주변 영역을 포함하는 것을 의미할 수 있다.
그리고, 제1 도금층(136-1, 146-1) 또는 제2 도금층(134-2, 144-2) 내 Te의 함량은 열전 소재층(132, 142) 내 Te의 함량 및 제1 접합층(136-1, 146-1) 또는 제2 접합층(136-2, 146-2) 내 Te의 함량보다 낮게 나타날 수 있다.
또한, 열전 소재층(132, 142)의 중심부의 Bi 함량은 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 열전 소재층(132, 142)과 제2 접합층(136-2, 146-2) 간의 경계면의 Bi 함량과 동일하거나 유사하게 나타남을 알 수 있다. 이에 따라, 열전 소재층(132, 142)의 중심부로부터 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 열전 소재층(132, 142)과 제2 접합층(136-2, 146-2) 간의 경계면에 이르기까지 Te의 함량이 Bi의 함량보다 높게 나타나므로, 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면 주변 또는 열전 소재층(132, 142)과 제2 접합층(136-2, 146-2) 간의 경계면 주변에서 Bi함량이 Te 함량을 역전하는 구간이 존재하지 않는다. 예를 들어, 열전 소재층(132, 142)의 중심부의 Bi 함량은 열전 소재층(132, 142)과 제1 접합층(136-1, 146-1) 간의 경계면 또는 열전 소재층(132, 142)과 제2 접합층(136-2, 146-2) 간의 경계면의 Bi 함량의 0.8 내지 1배, 바람직하게는 0.85 내지 1배, 더욱 바람직하게는 0.9 내지 1배, 더욱 바람직하게는 0.95 내지 1배일 수 있다. 여기서, 함량은 중량비일 수 있다.
여기서, 제1 수지층(110)과 P형 열전 레그(130) 및 N형 열전 레그(140) 사이에 배치되는 복수의 제1 전극(120), 그리고 제2 수지층(160)과 P형 열전 레그(130) 및 N형 열전 레그(140) 사이에 배치되는 복수의 제2 전극(150)은 구리(Cu), 은(Ag) 및 니켈(Ni) 중 적어도 하나를 포함할 수 있다.
그리고, 제1 수지층(110)과 제2 수지층(160)의 크기는 다르게 형성될 수도 있다. 예를 들어, 제1 수지층(110)과 제2 수지층(160) 중 하나의 체적, 두께 또는 면적은 다른 하나의 체적, 두께 또는 면적보다 크게 형성될 수 있다. 이에 따라, 열전소자의 흡열 성능 또는 방열 성능을 높일 수 있다.
이때, P형 열전 레그(130) 또는 N형 열전 레그(140)는 원통 형상, 다각 기둥 형상, 타원형 기둥 형상 등을 가질 수 있다.
또는, P형 열전 레그(130) 또는 N형 열전 레그(140)는 적층형 구조를 가질 수도 있다. 예를 들어, P형 열전 레그 또는 N형 열전 레그는 시트 형상의 기재에 반도체 물질이 도포된 복수의 구조물을 적층한 후, 이를 절단하는 방법으로 형성될 수 있다. 이에 따라, 재료의 손실을 막고 전기 전도 특성을 향상시킬 수 있다.
또는, P형 열전 레그(130) 또는 N형 열전 레그(140)는 존 멜팅(zone melting) 방식 또는 분말 소결 방식에 따라 제작될 수 있다. 존 멜팅 방식에 따르면, 열전 소재를 이용하여 잉곳(ingot)을 제조한 후, 잉곳에 천천히 열을 가하여 단일의 방향으로 입자가 재배열되도록 리파이닝하고, 천천히 냉각시키는 방법으로 열전 레그를 얻는다. 분말 소결 방식에 따르면, 열전 소재를 이용하여 잉곳을 제조한 후, 잉곳을 분쇄하고 체거름하여 열전 레그용 분말을 획득하고, 이를 소결하는 과정을 통하여 열전 레그를 얻는다.
본 발명의 실시예에 따르면, 제1 기판(170) 상에 제1 수지층(110)이 배치되고, 제2 수지층(160) 상에 제2 기판(180)이 배치될 수 있다.
제1 기판(170) 및 제2 기판(180)은 알루미늄, 알루미늄 합금, 구리, 구리 합금 등으로 이루어질 수 있다. 제1 기판(170) 및 제2 기판(180)이 알루미늄, 알루미늄 합금, 구리, 구리 합금 등으로 이루어지는 경우, 제1 기판(170) 및 제2 기판(180)은 제1 금속기판(170) 및 제2 금속기판(180)이라 지칭될 수도 있다. 또는, 제1 기판(170) 및 제2 기판(180) 중 적어도 하나는 세라믹 기판을 포함할 수도 있다. 제1 기판(170) 및 제2 기판(180)은 제1 수지층(110), 복수의 제1 전극(120), 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140), 복수의 제2 전극(150), 제2 수지층(160) 등을 지지할 수 있으며, 본 발명의 실시예에 따른 열전소자(100)가 적용되는 애플리케이션에 직접 부착되는 영역일 수 있다. 이에 따라, 제1 금속기판(170) 및 제2 금속기판(180)은 각각 제1 금속지지체 및 제2 금속지지체와 혼용될 수 있다. 본 발명의 실시예에 따라 제1 금속기판(170) 및 제2 금속기판(180)이 사용되는 경우, 세라믹 기판에 비하여 깨짐이 발생할 가능성이 적으며, 이에 따라 내구성이 향상될 수 있고, 열전도 성능이 현저히 높을 수 있다.
제1 기판(170)의 면적은 제1 수지층(110)의 면적보다 클 수 있으며, 제2 기판(180)의 면적은 제2 수지층(160)의 면적보다 클 수 있다. 즉, 제1 수지층(110)은 제1 기판(170)의 가장자리로부터 소정 거리만큼 이격된 영역 내에 배치될 수 있고, 제2 수지층(160)은 제2 기판(180)의 가장자리로부터 소정 거리만큼 이격된 영역 내에 배치될 수 있다.
이때, 제1 기판(170)의 폭 길이는 제2 기판(180)의 폭 길이보다 크거나, 제1 기판(170)의 두께는 제2 기판(180)의 두께보다 클 수 있다.
제1 수지층(110) 및 제2 수지층(160)은 에폭시 수지 및 무기충전재를 포함하는 에폭시 수지 조성물로 이루어지거나, PDMS(polydimethylsiloxane)를 포함하는 실리콘 수지 조성물로 이루어질 수도 있다.
여기서, 무기충전재는 수지층의 68 내지 88vol%로 포함될 수 있다. 무기충전재가 68vol%미만으로 포함되면, 열전도 효과가 낮을 수 있으며, 무기충전재가 88vol%를 초과하여 포함되면 수지층과 금속기판 간의 접착력이 낮아질 수 있으며, 수지층이 쉽게 깨질 수 있다.
제1 수지층(110) 및 제2 수지층(160)의 두께는 0.02 내지 0.6mm, 바람직하게는 0.1 내지 0.6mm, 더욱 바람직하게는 0.2 내지 0.6mm일 수 있으며, 열전도도는 1W/mK이상, 바람직하게는 10W/mK이상, 더욱 바람직하게는 20W/mK 이상일 수 있다. 제1 수지층(110)과 제2 수지층(160)의 두께가 이러한 수치범위를 만족할 경우, 제1 수지층(110) 및 제2 수지층(160)이 온도 변화에 따라 수축 및 팽창을 반복하더라도, 제1 수지층(110)과 제1 기판(170) 간의 접합 및 제2 수지층(160)과 제2 기판(180) 간의 접합에는 영향을 미치지 않을 수 있다.
이를 위하여, 에폭시 수지는 에폭시 화합물 및 경화제를 포함할 수 있다. 이때, 에폭시 화합물 10 부피비에 대하여 경화제 1 내지 10 부피비로 포함될 수 있다. 여기서, 에폭시 화합물은 결정성 에폭시 화합물, 비결정성 에폭시 화합물 및 실리콘 에폭시 화합물 중 적어도 하나를 포함할 수 있다. 결정성 에폭시 화합물은 메조겐(mesogen) 구조를 포함할 수 있다. 메조겐(mesogen)은 액정(liquid crystal)의 기본 단위이며, 강성(rigid) 구조를 포함한다. 그리고, 비결정성 에폭시 화합물은 분자 중 에폭시기를 2개 이상 가지는 통상의 비결정성 에폭시 화합물일 수 있으며, 예를 들면 비스페놀 A 또는 비스페놀 F로부터 유도되는 글리시딜에테르화물일 수 있다. 여기서, 경화제는 아민계 경화제, 페놀계 경화제, 산무수물계 경화제, 폴리메르캅탄계 경화제, 폴리아미노아미드계 경화제, 이소시아네이트계 경화제 및 블록 이소시아네이트계 경화제 중 적어도 하나를 포함할 수 있으며, 2 종류 이상의 경화제를 혼합하여 사용할 수도 있다.
무기충전재는 산화알루미늄 및 질화물을 포함할 수 있으며, 질화물은 무기충전재의 55 내지 95wt%로 포함될 수 있으며, 더 좋게는 60~80wt% 일 수 있다. 질화물이 이러한 수치범위로 포함될 경우, 열전도도 및 접합 강도를 높일 수 있다. 여기서, 질화물은, 질화붕소 및 질화알루미늄 중 적어도 하나를 포함할 수 있다. 여기서, 질화붕소는 판상의 질화붕소가 뭉쳐진 질화붕소 응집체일 수 있으며, 질화붕소 응집체의 표면은 하기 단위체 1을 가지는 고분자로 코팅되거나, 질화붕소 응집체 내 공극의 적어도 일부는 하기 단위체 1을 가지는 고분자에 의하여 충전될 수 있다.
단위체 1은 다음과 같다.
[단위체 1]
Figure pat00002
여기서, R1, R2, R3 및 R4 중 하나는 H이고, 나머지는 C1~C3 알킬, C2~C3 알켄 및 C2~C3 알킨으로 구성된 그룹에서 선택되고, R5는 선형, 분지형 또는 고리형의 탄소수 1 내지 12인 2가의 유기 링커일 수 있다.
한 실시예로, R1, R2, R3 및 R4 중 H를 제외한 나머지 중 하나는 C2~C3 알켄에서 선택되며, 나머지 중 다른 하나 및 또 다른 하나는 C1~C3 알킬에서 선택될 수 있다. 예를 들어, 본 발명의 실시예에 따른 고분자는 하기 단위체 2를 포함할 수 있다.
[단위체 2]
Figure pat00003
또는, 상기 R1, R2, R3 및 R4 중 H를 제외한 나머지는 C1~C3 알킬, C2~C3 알켄 및 C2~C3 알킨으로 구성된 그룹에서 서로 상이하도록 선택될 수도 있다.
이와 같이, 단위체 1 또는 단위체 2에 따른 고분자가 판상의 질화붕소가 뭉쳐진 질화붕소 응집체 상에 코팅되고, 질화붕소 응집체 내 공극의 적어도 일부를 충전하면, 질화붕소 응집체 내의 공기층이 최소화되어 질화붕소 응집체의 열전도 성능을 높일 수 있으며, 판상의 질화붕소 간의 결합력을 높여 질화붕소 응집체의 깨짐을 방지할 수 있다. 그리고, 판상의 질화붕소가 뭉쳐진 질화붕소 응집체 상에 코팅층을 형성하면, 작용기를 형성하기 용이해지며, 질화붕소 응집체의 코팅층 상에 작용기가 형성되면, 수지와의 친화도가 높아질 수 있다.
이때, 질화붕소 응집체의 입자크기 D50은 250 내지 350㎛이고, 산화알루미늄의 입자크기 D50은 10 내지 30㎛일 수 있다. 질화붕소 응집체의 입자크기 D50과 산화알루미늄의 입자크기 D50이 이러한 수치 범위를 만족할 경우, 질화붕소 응집체와 산화알루미늄이 수지층 내에 고르게 분산될 수 있으며, 이에 따라 수지층 전체적으로 고른 열전도 효과 및 접착 성능을 가질 수 있다.
이와 같이, 제1 기판(170)과 복수의 제1 전극(120) 사이에 제1 수지층(110)이 배치되면, 제1 기판(170)과 복수의 제1 전극(120) 사이의 열전달이 가능하며, 제1 수지층(110) 자체의 접착 성능으로 인하여 별도의 접착제 또는 물리적인 체결 수단이 필요하지 않다. 이에 따라, 열전소자(100)의 전체적인 사이즈를 줄일 수 있으며, 열전소자(100)의 내구성을 높일 수 있다.
한편, 본 발명의 실시예에 따른 열전소자(100)는 실링부(190)를 더 포함한다.
실링부(190)는 제1 수지층(110)의 측면과 제 2수지층(160)의 측면에 배치될 수 있다, 즉, 실링부(190)는 제1 금속기판(170)과 제2 금속기판(180) 사이에 배치되며, 제1 수지층(110)의 측면, 복수의 제1 전극(120)의 최외곽, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)의 최외곽, 복수의 제2 전극(150)의 최외곽 및 제2 수지층(160)의 측면을 둘러싸도록 배치될 수 있다. 이에 따라, 제1 수지층(110), 복수의 제1 전극(120), 복수의 P형 열전 레그(130), 복수의 N형 열전 레그(140), 복수의 제2 전극(150) 및 제2 수지층은 외부의 습기, 열, 오염 등으로부터 실링될 수 있다.
여기서, 실링부(190)는 제1 수지층(110)의 측면, 복수의 제1 전극(120)의 최외곽, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)의 최외곽, 복수의 제2 전극(150)의 최외곽 및 제2 수지층(160)의 측면으로부터 소정 거리 이격되어 배치되는 실링 케이스(192), 실링 케이스(192)와 제2 금속기판(180) 사이 및 실링케이스(192)와 제1 금속기판(170) 사이에 배치되는 실링재(194)를 포함할 수 있다. 이와 같이, 실링케이스(192)는 실링재(194)를 매개로 하여 제1 금속기판(170) 및 제2 금속기판(180)과 접촉할 수 있다. 이에 따라, 실링케이스(192)가 제1 금속기판(170) 및 제2 금속기판(180)과 직접 접촉할 경우 실링케이스(192)를 통해 열전도가 일어나게 되고, 결과적으로 △T가 낮아지는 문제를 방지할 수 있다.
한편, 실링 케이스(192)에는 전극에 연결된 와이어(200, 202)를 인출하기 위한 가이드 홈(G)이 형성될 수 있다. 이를 위하여, 실링 케이스(192)는 플라스틱 등으로 이루어진 사출 성형물일 수 있으며, 실링 커버와 혼용될 수 있다.
실링부(190)의 구조를 구체적으로 도시하고 있으나, 이는 예시에 지나지 않으며, 실링부(190)는 다양한 형태로 변형될 수 있다.
도시되지 않았으나, 실링부(190)를 둘러싸도록 단열재가 더 포함될 수도 있다. 또는 실링부(190)는 단열 성분을 포함할 수도 있다.
본 발명의 실시예에 따르면, 복수의 제1 전극(120) 중 하나의 전극에 전선(200)이 연결되고, 복수의 제1 전극(120) 중 다른 하나의 전극에 전선(202)이 연결되며, 전선(200, 202)을 통하여 열전소자(100)에 전원이 공급된다.
일반적으로, 제1 기판(170), 제1 수지층(110), 복수의 제1 전극(120), 복수의 P형 열전 레그(130), 복수의 N형 열전 레그(140), 복수의 제2 전극(150), 제2 수지층(160) 및 제2 기판(180)을 순차적으로 적층하여 조립한 후, 복수의 제1 전극(120) 중 하나의 전극에 전선(200)을 연결하고, 복수의 제1 전극(120) 중 다른 하나의 전극에 전선(202)을 연결한다.
이때, 제1 기판(170)과 제2 기판(180) 사이의 공간이 협소하므로, 전선(200, 202)을 전극에 정교하게 연결하기가 용이하지 않으며, 이에 따라 전선(200, 202)과 전극 간 솔더가 냉땜 등에 의하여 이탈되는 문제가 발생할 수 있다.
본 발명의 실시예에서는 제2 기판(180)의 구조를 변경하여 전선(200, 202)과 전극 간 연결의 작업성을 높이고자 한다.
도 5 내지 도 8을 참조하면, 제2 기판(180)의 면적은 제1 기판(170)의 면적보다 작게 형성될 수 있으며, 제2 기판(180)에는 적어도 하나의 챔퍼(500)가 형성될 수 있다. 여기서, 챔퍼(500)는 기판의 모서리 또는 측면이 깎인 형상을 의미할 수 있으며, 모따기, 모접기, 절단부, 삭제부 등과 혼용될 수 있다.
적어도 하나의 챔퍼(500)는 하나의 전선(200)이 연결된 하나의 제1 전극(122) 및 다른 하나의 전선(202)이 연결된 다른 하나의 제1 전극(124) 중 적어도 하나 상에 형성될 수 있다.
예를 들어, 도 5 내지 도 7에 도시한 바와 같이, 적어도 하나의 챔퍼(500)는 제2 기판(180)에서 하나의 전선(200)이 연결된 하나의 전극(122) 상에 형성된 제1 챔퍼(510) 및 다른 하나의 전선(202)이 연결된 다른 하나의 전극(124) 상에 형성된 제2 챔퍼(520)를 포함할 수 있다. 이때, 하나의 전선(200)이 연결된 하나의 전극(122)과 다른 하나의 전선(202)이 연결된 다른 하나의 전극(124)은 제1 기판(170)의 양 끝단에 이격되어 있으므로, 제1 챔퍼(510)는 제2 기판(180)의 한 면의 일단에 형성되고, 제2 챔퍼(520)는 제2 기판(180)의 한 면의 타단에 형성될 수 있다.
또는, 전극 배치 구조에 따라 하나의 전선(200)이 연결된 하나의 전극(122)과 다른 하나의 전선(202)이 연결된 다른 하나의 전극(124)이 이웃하여 배치될 수도 있다. 이러한 경우, 도 8에 도시된 바와 같이 제2 기판(180)의 한 면의 가운데 영역에 하나의 챔퍼(530)가 형성될 수도 있다.
이와 같이 제2 기판(180)에 챔퍼(500)가 형성되면, 전선(200, 202)이 연결되는 위치의 제1 전극들(122, 124)의 적어도 일부가 노출되므로, 전선(200, 202)과 제1 전극들(122, 124) 간 연결의 작업성이 현저히 향상될 수 있다.
이때, 도 5의 확대도에 도시된 바와 같이, 챔퍼(520)로 인하여 제1 전극(124)의 일부가 노출될 수 있다. 예를 들어, 도 5(b)에 도시된 바와 같이 제1 전극(124)이 직사각형 형상이고, 단변의 길이가 a이고, 장변의 길이가 b이며, 전선(200, 202)이 장변에 평행한 방향으로 연결되는 경우, 챔퍼(520)는 단변의 방향으로 0.8a 내지 1.2a, 바람직하게는 0.9a 내지 1.1a, 더욱 바람직하게는 단변의 방향으로 0.95a 내지 1.05a 의 폭(W)을 가지고, 장변의 방향으로 0.4b 내지 b, 바람직하게는 0.5b 내지 0.9b, 더욱 바람직하게는 0.6b 내지 0.8b의 높이(H)를 가지도록 형성될 수 있다. 챔퍼(520)의 사이즈가 이러한 수치 범위보다 작을 경우 전선과 전극 간의 작업성이 낮아질 수 있으며, 이러한 수치 범위보다 클 경우 전선이 연결되는 전극뿐만 아니라 이웃하는 다른 전극들도 노출되어 실링이 어려울 수 있다.
한편, 챔퍼(500)는 직선부 및 곡선부 중 적어도 하나를 포함하도록 형성될 수 있다. 예를 들어, 도 5에 도시된 바와 같이, 챔퍼(520)는 제1 방향, 즉 제1 전극(124)의 장변 방향으로 배치된 제1 직선부(522), 제1 전극(124)의의 단변 방향으로 배치된 제2 직선부(524), 그리고 제1 직선부(522)와 제2 직선부(524) 사이에 배치된 곡선부(526)를 포함하도록 형성될 수 있다. 또는, 도 6에 도시된 바와 같이 챔퍼(500)는 두 개의 직선부를 포함하도록 형성될 수도 있다. 또는, 도 7에 도시된 바와 같이, 챔퍼(500)는 곡선부만을 포함하도록 형성될 수도 있다.
이들 실시예 중 도 5에 도시된 바와 같이, 챔퍼(520)는 제1 방향, 즉 제1 전극(124)의 장변 방향으로 배치된 제1 직선부(522), 제1 전극(124)의의 단변 방향으로 배치된 제2 직선부(524), 그리고 제1 직선부(522)와 제2 직선부(524) 사이에 배치된 곡선부(526)를 포함하도록 형성되면, 제1 전극(124)의 노출을 최소화하면서도 전선과 전극 간 연결의 작업성을 높일 수 있으며, 챔퍼를 형성하는 공정이 용이할 수 있다.
이때, 챔퍼(500)는 미리 마련된 사각 형상의 제2 기판(180)을 커팅하는 공정에 의하여 형성될 수 있다. 또는, 챔퍼(500)가 형성된 모양으로 제2 기판(180)이 성형될 수도 있다.
한편, 전술한 바와 같이, 본 발명의 실시예에 따른 열전모듈은 실링부(190)를 더 포함할 수 있다. 이때, 제1 금속기판(170) 및 제2 금속기판(180) 사이의 실링을 위하여, 실링부(190)는 제2 금속기판(180)에 형성된 챔퍼(500)를 채우도록 배치될 수도 있다.
예를 들어, 도 2 내지 도 3에 도시된 바와 같이, 실링부(190)는 실링 케이스(192) 및 실링재(194)를 포함할 수 있다. 실링 케이스(192)는 제1 금속기판(170)의 한 면 상에서 열전소자(100)의 측면, 예를 들어 제1 수지층(110), 복수의 제1 전극(120), 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140), 복수의 제2 전극(150) 및 제2 수지층(160)의 측면과 제2 금속기판(180)의 측면과 이격되며, 열전소자(100)의 측면, 예를 들어 제1 수지층(110), 복수의 제1 전극(120), 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140), 복수의 제2 전극(150) 및 제2 수지층(160)의 측면과 제2 금속기판(180)의 측면을 둘러싸도록 배치된다. 이를 위하여, 실링 케이스(192)는 제1 수지층(110), 복수의 제1 전극(120), 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140), 복수의 제2 전극(150), 및 제2 수지층(160)와 제2 금속기판(180)의 적어도 일부를 수용하는 틀 형상일 수 있다.
도 3에 도시된 바와 같이, 실링 케이스(192)에는 전극에 연결된 전선(200, 202)이 관통하는 관통홈(G)이 형성될 수 있다. 이를 위하여, 실링 케이스(192)는 플라스틱 등으로 이루어진 사출 성형물일 수 있으며, 실링 지지대 또는 실링 커버와 혼용될 수 있다. 여기서, 실링 케이스(192)가 사각 형상인 것으로 예시되어 있으나, 이로 제한되는 것은 아니며, 실링 케이스(192)는 다각 형상 또는 원형 형상 등으로 다양하게 변형될 수 있다.
그리고, 실링재(194)는 제1 금속기판(170)과 실링 케이스(192) 사이 및 제2 금속기판(180)과 실링 케이스(192) 사이에 배치될 수 있으며, 제1 금속기판(170)과 실링 케이스(192) 사이 및 제2 금속기판(180)과 실링 케이스(192) 사이를 기밀하는 역할을 할 수 있다. 실링재(194)는 에폭시 수지 및 실리콘 수지 중 적어도 하나를 포함할 수 있으며, 마감재, 마감층, 방수재, 방수층 등과 혼용될 수 있다.
본 발명의 실시예에 따르면, 실링 케이스(192)는 제2 기판(180)의 챔퍼(500)의 형상에 대응하는 돌출부(600)를 더 포함할 수 있다. 돌출부(600)의 형상은 제2 기판(180)에 형성된 챔퍼(500)의 형상에 대응하되, 돌출부(600)와 챔퍼(600) 간의 이격된 공간은 실링재(194)로 더 채워질 수 있다. 실링 케이스(192)가 챔퍼(500)의 형상에 대응하는 돌출부(600)를 더 포함하는 경우, 실링 케이스(192)와 제2 금속기판(180) 사이 및 실링케이스(192)와 제1 금속기판(170) 사이에 배치되는 실링재의 양을 줄일 수 있으므로, 열전모듈을 더욱 안정적으로 실링할 수 있다.
이하에서는 도 9를 참조하여, 본 발명의 실시예에 따른 열전모듈이 정수기에 적용된 예를 설명한다.
도 9는 본 발명의 실시예에 따른 열전모듈이 적용된 정수기의 블록도이다.
본 발명의 실시예에 따른 열전모듈이 적용된 정수기(1)는 원수 공급관(12a), 정수 탱크 유입관(12b), 정수탱크(12), 필터 어셈블리(13), 냉각 팬(14), 축열조(15), 냉수 공급관(15a), 및 열전모듈(1000)을 포함한다.
원수 공급관(12a)은 수원으로부터 정수 대상인 물을 필터 어셈블리(13)로 유입시키는 공급관이고, 정수 탱크 유입관(12b)은 필터 어셈블리(13)에서 정수된 물을 정수 탱크(12)로 유입시키는 유입관이고, 냉수 공급관(15a)은 정수 탱크(12)에서 열전모듈(1000)에 의해 소정 온도로 냉각된 냉수가 최종적으로 사용자에게 공급되는 공급관이다.
정수 탱크(12)는 필터 어셈블리(13)를 경유하며 정수되고 정수 탱크 유입관(12b)을 통해 유입된 물을 저장 및 외부로 공급하도록 정수된 물을 잠시 수용한다.
필터 어셈블리(13)는 침전 필터(13a)와, 프리 카본 필터(13b)와, 멤브레인 필터(13c)와, 포스트 카본 필터(13d)로 구성된다.
즉, 원수 공급관(12a)으로 유입되는 물은 필터 어셈블리(13)를 경유하며 정수될 수 있다.
축열조(15)가 정수 탱크(12)와, 열전모듈(1000)의 사이에 배치되어, 열전모듈(1000)에서 형성된 냉기가 저장된다. 축열조(15)에 저장된 냉기는 정수 탱크(12)로 인가되어, 정수 탱크(120)에 수용된 물을 냉각시킨다.
냉기 전달이 원활하게 이루어질 수 있도록, 축열조(15)는 정수 탱크(12)와 면접촉될 수 있다.
열전모듈(1000)은 상술한 바와 같이, 흡열면과 발열면을 구비하며, P 형 반도체 및 N형 반도체 상의 전자 이동에 의해, 일측은 냉각되고, 타측은 가열된다.
여기서, 일측은 정수 탱크(12) 측이며, 타측은 정수 탱크(12)의 반대측일 수 있다.
또한, 상술한 바와 같이 열전모듈(1000)은 방수 및 방진 성능이 우수하며, 열 유동 성능이 개선되어, 정수기 내에서 정수 탱크(12)를 효율적으로 냉각할 수 있다.
이하에서는 도 10을 참조하여, 본 발명의 실시예에 따른 열전모듈이 냉장고에 적용된 예를 설명한다.
도 10은 본 발명의 실시예에 따른 열전모듈이 적용된 냉장고의 블록도이다.
냉장고는 심온 증발실내에 심온 증발실 커버(23), 증발실 구획벽(24), 메인 증발기(25), 냉각팬(26) 및 열전모듈(1000)을 포함한다.
냉장고 내는 심온 증발실 커버(23)에 의하여 심온 저장실과 심온 증발실로 구획된다.
상세히, 상기 심온 증발실 커버(23)의 전방에 해당하는 내부 공간이 심온 저장실로 정의되고, 심온 증발실 커버(23)의 후방에 해당하는 내부 공간이 심온 증발실로 정의될 수 있다.
심온 증발실 커버(23)의 전면에는 토출 그릴(23a)과 흡입 그릴(23b) 이 각각 형성될 수 있다.
증발실 구획벽(24)은 인너 캐비닛의 후벽으로부터 전방으로 이격되는 지점에 설치되어, 심온실 저장 시스템이 놓이는 공간과 메인 증발기(25)가 놓이는 공간을 구획한다.
메인 증발기(25)에 의하여 냉각되는 냉기는 냉동실로 공급된 뒤 다시 메인 증발기 쪽으로 되돌아간다.
열전모듈(1000)은 심온 증발실에 수용되며, 흡열면이 심온 저장실의 서랍 어셈블리 쪽을 향하고, 발열면이 증발기 쪽을 향하는 구조를 이룬다. 따라서, 열전모듈(1000)에서 발생되는 흡열 현상을 이용하여 서랍 어셈블리에 저장된 음식물을 섭씨 영하 50도 이하의 초저온 상태로 신속하게 냉각시키는데 사용될 수 있다.
또한, 상술한 바와 같이 열전모듈(1000)은 방수 및 방진 성능이 우수하며, 열 유동 성능이 개선되어, 냉장고 내에서 서랍 어셈블리를 효율적으로 냉각할 수 있다.
본 발명의 실시예에 따른 열전소자는 발전용 장치, 냉각용 장치, 온열용 장치 등에 작용될 수 있다. 구체적으로는, 본 발명의 실시예에 따른 열전소자는 주로 광통신 모듈, 센서, 의료 기기, 측정 기기, 항공 우주 산업, 냉장고, 칠러(chiller), 자동차 통풍 시트, 컵 홀더, 세탁기, 건조기, 와인셀러, 정수기, 센서용 전원 공급 장치, 서모파일(thermopile) 등에 적용될 수 있다. 또는, 본 발명의 실시예에 따른 열전소자는 자동차, 선박 등의 엔진으로부터 발생한 폐열을 이용하여 전기를 발생시키는 발전 장치에 적용될 수도 있다.
여기서, 본 발명의 실시예에 따른 열전소자가 의료 기기에 적용되는 예로, PCR(Polymerase Chain Reaction) 기기가 있다. PCR 기기는 DNA를 증폭하여 DNA의 염기 서열을 결정하기 위한 장비이며, 정밀한 온도 제어가 요구되고, 열 순환(thermal cycle)이 필요한 기기이다. 이를 위하여, 펠티어 기반의 열전소자가 적용될 수 있다.
본 발명의 실시예에 따른 열전소자가 의료 기기에 적용되는 다른 예로, 광 검출기가 있다. 여기서, 광 검출기는 적외선/자외선 검출기, CCD(Charge Coupled Device) 센서, X-ray 검출기, TTRS(Thermoelectric Thermal Reference Source) 등이 있다. 광 검출기의 냉각(cooling)을 위하여 펠티어 기반의 열전소자가 적용될 수 있다. 이에 따라, 광 검출기 내부의 온도 상승으로 인한 파장 변화, 출력 저하 및 해상력 저하 등을 방지할 수 있다.
본 발명의 실시예에 따른 열전소자가 의료 기기에 적용되는 또 다른 예로, 면역 분석(immunoassay) 분야, 인비트로 진단(In vitro Diagnostics) 분야, 온도 제어 및 냉각 시스템(general temperature control and cooling systems), 물리 치료 분야, 액상 칠러 시스템, 혈액/플라즈마 온도 제어 분야 등이 있다. 이에 따라, 정밀한 온도 제어가 가능하다.
본 발명의 실시예에 따른 열전소자가 의료 기기에 적용되는 또 다른 예로, 인공 심장이 있다. 이에 따라, 인공 심장으로 전원을 공급할 수 있다.
본 발명의 실시예에 따른 열전소자가 항공 우주 산업에 적용되는 예로, 별 추적 시스템, 열 이미징 카메라, 적외선/자외선 검출기, CCD 센서, 허블 우주 망원경, TTRS 등이 있다. 이에 따라, 이미지 센서의 온도를 유지할 수 있다.
본 발명의 실시예에 따른 열전소자가 항공 우주 산업에 적용되는 다른 예로, 냉각 장치, 히터, 발전 장치 등이 있다.
이 외에도 본 발명의 실시예에 따른 열전소자는 기타 산업 분야에 발전, 냉각 및 온열을 위하여 적용될 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (8)

  1. 제1 기판,
    상기 제1 기판 상에 배치된 열전소자,
    상기 열전소자 상에 배치되며, 상기 제1 기판보다 면적이 작은 제2 기판, 그리고
    상기 열전소자에 연결되며, 상기 열전소자에 전원을 공급하는 전선부를 포함하고,
    상기 제2 기판에는 적어도 하나의 챔퍼가 형성된 열전모듈.
  2. 제1항에 있어서,
    상기 열전소자는 상기 제1 기판 상에 배치된 제1 수지층, 상기 제1 수지층 상에 배치된 복수의 제1 전극, 상기 복수의 제1 전극 상에 배치된 복수의 P형 열전 레그 및 복수의 N형 열전 레그, 상기 복수의 P형 열전 레그 및 복수의 N형 열전 레그 상에 배치된 복수의 제2 전극, 그리고 상기 복수의 제2 전극 상에 배치된 제2 수지층을 포함하고,
    상기 전선부는 상기 복수의 제1 전극 중 하나의 전극에 연결된 제1 전선 및 상기 복수의 제1 전극 중 다른 하나의 전극에 연결된 제2 전선을 포함하는 열전모듈.
  3. 제2항에 있어서,
    상기 적어도 하나의 챔퍼는 상기 제1 전선이 연결된 상기 하나의 전극 및 상기 제2 전선이 연결된 상기 다른 하나의 전극 중 적어도 하나 상에 형성된 열전모듈.
  4. 제3항에 있어서,
    상기 적어도 하나의 챔퍼는 상기 제1 전선이 연결된 상기 하나의 전극 상에 형성된 제1 챔퍼 및 상기 제2 전선이 연결된 상기 다른 하나의 전극 상에 형성된 제2 챔퍼를 포함하는 열전모듈.
  5. 제4항에 있어서,
    상기 제1 챔퍼는 상기 제2 기판의 한 면의 일단에 형성되고, 상기 제2 챔퍼는 상기 제2 기판의 한 면의 타단에 형성된 열전모듈.
  6. 제4항에 있어서,
    상기 제1 챔퍼 및 상기 제2 챔퍼 중 적어도 하나는 직선부 및 곡선부 중 적어도 하나를 포함하는 열전모듈.
  7. 제6항에 있어서,
    상기 제1 챔퍼 및 상기 제2 챔퍼 중 적어도 하나는 제1 방향으로 배치된 제1 직선부, 상기 제1 방향과 수직하는 방향으로 형성된 제2 직선부, 그리고 상기 제1 직선부와 상기 제2 직선부 사이에 배치된 곡선부를 포함하는 열전모듈.
  8. 제1항에 있어서,
    상기 열전소자의 측면을 둘러싸는 실링부를 더 포함하고,
    상기 실링부는 상기 제2 기판에 형성된 적어도 하나의 챔퍼를 채우도록 배치된 열전모듈.
KR1020180159279A 2018-12-11 2018-12-11 열전모듈 KR102478827B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180159279A KR102478827B1 (ko) 2018-12-11 2018-12-11 열전모듈

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180159279A KR102478827B1 (ko) 2018-12-11 2018-12-11 열전모듈

Publications (3)

Publication Number Publication Date
KR20200071488A true KR20200071488A (ko) 2020-06-19
KR102478827B1 KR102478827B1 (ko) 2022-12-19
KR102478827B9 KR102478827B9 (ko) 2023-03-23

Family

ID=71137301

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180159279A KR102478827B1 (ko) 2018-12-11 2018-12-11 열전모듈

Country Status (1)

Country Link
KR (1) KR102478827B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180088070A (ko) * 2017-01-26 2018-08-03 엘지이노텍 주식회사 열전소자 모듈

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180088070A (ko) * 2017-01-26 2018-08-03 엘지이노텍 주식회사 열전소자 모듈

Also Published As

Publication number Publication date
KR102478827B9 (ko) 2023-03-23
KR102478827B1 (ko) 2022-12-19

Similar Documents

Publication Publication Date Title
KR102249018B1 (ko) 열전소자
CN111699562B (zh) 热电装置
KR20230141663A (ko) 열전소자
JP7344882B2 (ja) 熱電素子およびその製造方法
KR102469943B1 (ko) 열전 소자
JP7431759B2 (ja) 熱電素子
KR102511769B1 (ko) 열전모듈
KR102511766B1 (ko) 열전모듈
KR102478827B1 (ko) 열전모듈
KR102459953B1 (ko) 열전 레그 및 이를 포함하는 열전소자
KR102478825B1 (ko) 열전모듈
JP7473535B2 (ja) 熱電素子
KR102055428B1 (ko) 열전소자
KR102434259B1 (ko) 열전소자

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]