KR20200068879A - Method for development for plant grow light technology with variation of a specific wave length driven by light emitting diodes - Google Patents

Method for development for plant grow light technology with variation of a specific wave length driven by light emitting diodes Download PDF

Info

Publication number
KR20200068879A
KR20200068879A KR1020180155769A KR20180155769A KR20200068879A KR 20200068879 A KR20200068879 A KR 20200068879A KR 1020180155769 A KR1020180155769 A KR 1020180155769A KR 20180155769 A KR20180155769 A KR 20180155769A KR 20200068879 A KR20200068879 A KR 20200068879A
Authority
KR
South Korea
Prior art keywords
pled
plant
wavelength
growth
led
Prior art date
Application number
KR1020180155769A
Other languages
Korean (ko)
Other versions
KR102194453B1 (en
Inventor
이상철
강미영
강상욱
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020180155769A priority Critical patent/KR102194453B1/en
Priority to PCT/KR2019/017050 priority patent/WO2020116943A1/en
Publication of KR20200068879A publication Critical patent/KR20200068879A/en
Application granted granted Critical
Publication of KR102194453B1 publication Critical patent/KR102194453B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Abstract

A method for promoting plant growth according to panchromatic LED wavelength conversion can promote plant growth by changing the wavelength distribution of panchromatic LED light, and can achieve added value for plant resources through the use of optimal panchromatic LED light suitable for plants.

Description

전색체 LED 파장 변환에 따른 식물생장을 증진하는 방법{Method for development for plant grow light technology with variation of a specific wave length driven by light emitting diodes}Method for development for plant grow light technology with variation of a specific wave length driven by light emitting diodes}

본 발명은 LED를 활용하여 식물생장등으로 적용하고, 구체적으로는 식물의 광합성에 필수적인 450 nm와 650 nm의 빛을 이용할 뿐 아니라 가시광선 영역의 녹색과 노란색이 보강된 전색체를 발하는 빛을 대상으로 한 작물별 생장에 관한 기술이다. 첫째, 파장의 조합에 따른 식물생장을 빛과 성장 상관관계에 관한 통합적 인공광합성기술이다. 둘째, 작물의 생장이 450 nm의 빛이 전색체 분율에 매우 민감히 반응하며, 이에 따른 생장인자가 결정되는 식물재배 기술이다. 이러한 광원의 파장에 따른 맞춤형 식물생장등 기술이다.The present invention is applied to plant growth lamps by utilizing LEDs, and specifically, uses 450 nm and 650 nm lights essential for photosynthesis of plants, as well as targets light that emits green and yellow reinforced emitters in the visible region. It is a technology related to the growth of each crop. First, it is an integrated artificial photosynthesis technology for the correlation between light and growth of plant growth according to the combination of wavelengths. Second, the growth of crops is a plant cultivation technique in which 450 nm of light reacts very sensitively to the total color fraction, and thus growth factors are determined. It is a customized plant growth technology according to the wavelength of the light source.

광합성에 필수적인 태양광의 확보는 친환경 농업기술 개발에 중요하다. 특정 파장의 태양광이 식물의 생장과 농산물 생산에 직접 관련되어 있다. 한 예로서, ‘에머슨’ 원리를 들 수 있다. 이 원리는 “붉은색”의 빛에 해당하는 680nm와 700nm의 파장의 빛들은 각각 광합성 수율을 높이는데 중요한 인자로 알려져있다. 각각의 파장의 빛만을 따로따로 쪼여도 광합성 수율이 증대된다. 이 원리에 입각한 광합성의 효과는 두 파장의 빛을 동시에 쪼여줄 경우에 명확히 나타나며, 각각의 파장의 빛에 의한 광합성 수율의 합보다 수 배 이상의 높은 광합성 수율을 보인다고 알려져있다. 하지만, 이 효과가 알려진 후에도 특정 파장의 빛에 의한 광합성 효율 증대 관련 정량적인 연구결과는 보고되지 않고 있는 실정이다.Securing sunlight essential for photosynthesis is important for developing eco-friendly agricultural technologies. Sunlight at a specific wavelength is directly involved in plant growth and agricultural production. An example is the “Emerson” principle. This principle is known to be an important factor in increasing the photosynthetic yield of light at wavelengths of 680nm and 700nm, which correspond to “red” light. The photosynthesis yield increases even if only light of each wavelength is separately split. The effect of photosynthesis based on this principle is evident when dividing two wavelengths of light at the same time, and it is known that the photosynthesis yield is several times higher than the sum of photosynthetic yields by light of each wavelength. However, even after this effect is known, quantitative research results related to the increase in photosynthetic efficiency by light of a specific wavelength have not been reported.

최근, 특정 식물에서 에머슨 효과를 보이는 “붉은색” 파장의 빛 뿐만 아니라 ‘가시광선’ 영역의 특정 파장의 빛에 의해 광합성 효율이 증대됨을 관측하였다. 이러한 특정한 파장에 의한 광합성 효과의 정량적인 자료를 근거로 식물생장등 개발의 필요성이 제기되고 있으나, 현실적으로는 이러한 연구결과를 뒷받침해 줄 만한 특정 파장이 조합된 식물생장등을 손쉽게 구할 수 없을 뿐 아니라, 다량의 공급처를 찾는데에도 한계가 있었다.Recently, it has been observed that the photosynthetic efficiency is increased not only by the light of “red” wavelength showing an emerson effect in a specific plant, but also by the light of a specific wavelength in the “visible ray” region. Although there is a need to develop plant growth, etc. based on quantitative data of photosynthetic effect by this specific wavelength, in reality, it is not only easy to obtain plant growth, etc. that combines specific wavelengths to support these research results. However, there was a limit to finding a large supply.

한편, 이러한 식물등 개발의 수요와는 별개로 범국가적으로는 농업생산성 증대를 표방하며 식물생장등 보급의 일환으로 에너지 효율이 높은 청색 LED를 농가에 보급해왔다. 그러나 작물 맞춤형 식물생장등이 아닌 기존의 청색 LED만으로 태양광의 부족분을 채우는 데 만족해야 하는 실정이었다. 이에 몇몇 국내외 LED 업체에서는 광합성에 착안하여 클로로필이 주로 흡수하는 빛인 450 nm와 650 nm 파장을 보완한 2-파장 생장등을 출시하였다(도 1). On the other hand, apart from the demand for the development of plant lamps, the nationwide nation has promoted agricultural productivity and has supplied energy-efficient blue LEDs to farmhouses as a part of plant growth lamp supply. However, it was a situation that had to be satisfied to fill the shortage of sunlight with only the existing blue LED, not a plant-specific plant growth lamp. Accordingly, some domestic and foreign LED companies have focused on photosynthesis and released two-wavelength growth lamps complementing the wavelengths of 450 nm and 650 nm, which are mainly absorbed by chlorophyll (FIG. 1).

또한, 클로로필 흡수에 입각한 식물생장등의 장파장 650 nm 영역을 보강한 LED 또한 출시되고 있다. 최근에 태양광 스펙트럼을 재현한 LED등이 출시되어 고연색 조명으로 대대적인 홍보가 진행되고 있으며 이를 식물등으로 적용가능하다는 판단으로 시판되고 있다(도 1). 그러나 고연색 LED의 경우 유사 태양광 스펙트럼을 재현한 따름이고, 식물생장의 빛-생장 상관관계가 전혀 고려되지 못한 실정이다. 실제 인공광합성으로 사용되는 식물생장등의 기본요건은 식물의 빛에 대한 감응이 최우선 연구대상이다(도 1).In addition, LEDs having reinforced long wavelength 650 nm regions such as plant growth based on chlorophyll absorption have also been released. Recently, an LED lamp reproducing the solar spectrum has been released, and large-scale publicity is underway with high color rendering, and it is marketed as a judgment that it can be applied as a plant lamp (Fig. 1). However, in the case of a high color rendering LED, only the similar solar spectrum is reproduced, and the light-growth correlation of plant growth is not considered at all. In fact, the basic requirement of plant growth lamps used for artificial photosynthesis is that the plant's sensitivity to light is a top priority research subject (FIG. 1).

인공태양 설계에는 식물의 광합성 중 명반응에 해당하는 빛에 감응하는 클로로필의 흡수스펙트럼이 기준이 된다(도 5). 현재 시판되고 있는 도 1의 식물생장 등기구의 경우 실제 명반응 조건의 빛을 발생시키고 있지 못한 실정이다. 이에 추가하여, 효과적인 인공광합성을 촉진시키기 위해서는 태양광과 식물의 생장에 따른 과학적인 상관관계 확립이 선결되어야 한다. 그러나 실상은 생육결과 실험이 불충분하여 LED 생산업자와 작물을 재배하는 사용자인 농민 사이에 큰 괴리가 있는 실정이다. In the artificial solar design, the absorption spectrum of chlorophyll that responds to light corresponding to the light reaction during photosynthesis of plants is a standard (FIG. 5). In the case of the plant growth luminaire of Fig. 1, which is currently commercially available, it is not possible to generate light under an actual light reaction condition. In addition, in order to promote effective artificial photosynthesis, it is necessary to establish a scientific correlation between sunlight and plant growth. However, in reality, there is a large gap between LED producers and farmers who are growing crops due to insufficient growth results and experiments.

또한, LED의 빛을 분색할 경우 진화할수록 통상적인 LED 조명에서 고급조명으로 분류된다(도 1). 이 분류는 연색지수를 고려하여 결정되며 650 nm 파장이 추가됨에 따라 점진적인 향상을 보이고 있다. 그러나 이러한 연색지수의 향상을 위해서는 고비용의 LED가 사용되어야 하므로 경제적인 비용 또한 고려되어야 한다. 문제의 핵심은 이러한 고비용의 연색성이 높은 LED를 식물생장에 사용한다 하더라도 이에 상응하는 생장 효율을 기대하기는 매우 어려운 현실이다. 즉, 인공태양 빛과 생육조건의 상관관계 규명 없이 식물생장등의 사용은 농업생산 현장에는 받아들일 수 없는 제안이 되고 만다. 즉 매우 비현실적 LED 광원이 되고 만다. 또한, 식물의 종류에 따라 광합성 조건이 달라지므로 면밀한 인공태양의 파장 분석 없이 일괄적으로 식물생장에 적용하기가 어렵다. In addition, when the light of the LED is dissociated, it is classified as high-end lighting in the conventional LED lighting as it evolves (FIG. 1). This classification is determined considering the color rendering index and shows a gradual improvement with the addition of a 650 nm wavelength. However, in order to improve the color rendering index, high-cost LEDs have to be used, so economical cost must also be considered. The core of the problem is that even if such a high cost LED with high color rendering is used for plant growth, it is very difficult to expect the corresponding growth efficiency. In other words, the use of plant growth, etc. without identifying the correlation between artificial sunlight and growth conditions is an unacceptable proposal for agricultural production sites. In other words, it becomes a very unrealistic LED light source. In addition, since photosynthetic conditions vary depending on the type of plant, it is difficult to apply it to plant growth in a batch without careful wavelength analysis of the artificial sun.

(0001) 대한민국 등록 특허 KR1020110131970(0001) Korea registered patent KR1020110131970

본 발명은 인공태양을 발생시킬 목적으로 LED를 활용하고자 하였다. 맞춤형 식물생장등으로 활용하고자 440 내지 460 nm 파장 및 640 내지 660 nm 파장뿐만 아니라 가시광선 영역의 녹색과 노란색이 보강된 전색체를 발하는 빛을 LED 등기구를 신규로 개발하고자 하였다. 최적 광합성 조건을 파장별로 확인하여 작물별로 최적의 식물생장등을 결정하고자 하였다. 농작물의 생장이 450 nm의 빛과 이 빛의 전색체 분율에 매우 민감히 반응함을 확인하고자 하였다. 특정 파장에 따른 맞춤형 식물생장등 기술을 개발하고자 하였다.The present invention was intended to utilize an LED for the purpose of generating an artificial sun. In order to utilize it as a customized plant growth lamp, a new LED light fixture was developed to emit a chromium-enhanced green and yellow emitter in the visible region as well as a wavelength of 440 to 460 nm and 640 to 660 nm. The optimal photosynthesis conditions were checked for each wavelength to determine the optimal plant growth for each crop. It was intended to confirm that the growth of the crop was very sensitive to the 450 nm light and the total color fraction of the light. It was intended to develop customized plant growth technologies according to specific wavelengths.

본 발명은 상기 과제를 해결하기 위해서,The present invention to solve the above problems,

본 발명은 300 내지 800 nm 파장(wavelength) 범위를 포함하고,The present invention includes a wavelength range of 300 to 800 nm,

440 내지 460 nm 파장 및 640 내지 660 nm 파장에서 피크(peak)를 가지며,Has a peak at a wavelength of 440 to 460 nm and a wavelength of 640 to 660 nm,

440 내지 460 nm 파장의 피크에서 강도(intensity)가 1.0 내지 30.0 mW인 전색체(pancromatic) LED 광을 식물에 조사하여 식물의 생장을 증진하는 방법을 제공한다. Provided is a method for enhancing plant growth by irradiating a plant with a pancromatic LED light having an intensity of 1.0 to 30.0 mW at a peak of a wavelength of 440 to 460 nm.

또한, 본 발명은 상기 방법으로 재배된 생장이 증진된 식물을 제공한다. In addition, the present invention provides a plant with enhanced growth grown by the above method.

또한, 본 발명은 300 내지 800 nm 파장(wavelength) 범위를 포함하고,In addition, the present invention includes a wavelength range of 300 to 800 nm,

450 nm 파장 및 650 nm 파장에서 피크(peak)를 가지며,Has a peak at a wavelength of 450 nm and a wavelength of 650 nm,

450 nm 파장의 피크에서 강도(intensity)가 5.0 내지 20.0 mW인 식물 생장용 전색체(pancromatic) LED 램프를 제공한다. It provides a pancromatic LED lamp for plant growth with an intensity of 5.0 to 20.0 mW at a peak of 450 nm wavelength.

본 발명은 전색체(pancromatic) LED 광의 파장분포도의 변형에 의해서 식물을 생장을 촉진 시킬 수 있는 방법으로 식물에게 적합한 최적의 전색체(pancromatic) LED 광을 이용하여 식물 자원의 고부가가치화를 이룩할 수 있다. The present invention can achieve high value-adding of plant resources by using an optimal pancromatic LED light suitable for plants in a way that can promote plant growth by changing the wavelength distribution of the pancromatic LED light. .

도 1은 기존에 식물생장에 사용되는 LED의 발광 파장을 나타낸 그래프이다: 청색 LED 발광파장, 2-파장 LED 발광파장, 3-파장 LED 발광파장, 고연색 LED 발광파장.
도 2는 식물의 광합성 중 명반응에 해당하는 빛에 감응하는 클로로필의 흡수스펙트럼을 나타낸 그래프이다.
도 3은 식물재배에 사용한 전색체 식물생장 램프인 PLED-1.0 램프의 발광파장을 나타낸 그래프이다.
도 4는 식물재배에 사용한 전색체 식물생장 램프인 PLED-0.75 램프의 발광파장을 나타낸 그래프이다.
도 5는 식물재배에 사용한 전색체 식물생장 램프인 PLED-0.5 램프의 발광파장을 나타낸 그래프이다.
도 6은 식물재배에 사용한 전색체 식물생장 램프인 PLED-0.25 램프의 발광파장을 나타낸 그래프이다.
도 7은 전색체 식물생장 램프 4종(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25)에 따른 방울토마토의 초장 평균을 나타낸 그래프이다.
도 8은 전색체 식물생장 램프 4종(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25)에 따른 방울토마토의 평균 분얼수을 나타낸 그래프이다.
도 9는 전색체 식물생장 램프 4종(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25)에 따른 방울토마토의 생육 상태(종자 파종 후 30일)를 찍은 사진이다.
도 10은 전색체 식물생장 램프 4종(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25)에 따른 고추의 초장 평균을 나타낸 그래프이다.
도 11은 전색체 식물생장 램프 4종(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25)에 따른 고추의 엽폭 평균을 나타낸 그래프이다.
도 12는 전색체 식물생장 램프 4종(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25)에 따른 고추의 엽수 평균을 나타낸 그래프이다.
도 13은 전색체 식물생장 램프 4종(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25)에 따른 고추의 엽장 평균을 나타낸 그래프이다.
도 14는 전색체 식물생장 램프 4종(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25)에 따른 고추의 생육 상태를 찍은 사진이다.
도 15는 전색체 식물생장 램프 4종(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25)에 따른 녹두의 생육 상태(종자 파종 후 30일)를 찍은 사진이다.
도 16은 전색체 식물생장 램프 4종(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25)에 따른 올콩의 초장 평균(종자 파종 후 20일)을 나타낸 그래프이다.
1 is a graph showing the emission wavelengths of LEDs used in conventional plant growth: blue LED emission wavelength, 2-wavelength LED emission wavelength, 3-wavelength LED emission wavelength, and high color rendering LED emission wavelength.
2 is a graph showing the absorption spectrum of chlorophyll in response to light corresponding to a light reaction during photosynthesis of plants.
3 is a graph showing the emission wavelength of a PLED-1.0 lamp, a full-color plant growth lamp used for plant cultivation.
4 is a graph showing the emission wavelength of a PLED-0.75 lamp, a full-color plant growth lamp used for plant cultivation.
5 is a graph showing the emission wavelength of a PLED-0.5 lamp, a full-color plant growth lamp used for plant cultivation.
6 is a graph showing the emission wavelength of the PLED-0.25 lamp, a full-color plant growth lamp used for plant cultivation.
7 is a graph showing the ultra long average of cherry tomatoes according to the four plant growth lamps (PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25).
8 is a graph showing the average number of drops of cherry tomatoes according to four types of full-color plant growth lamps (PLED-1.0, PLED-0.75, PLED-0.5, and PLED-0.25).
Figure 9 is a photograph of the growth status (30 days after seed sowing) of cherry tomatoes according to the four plant growth lamps (PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25).
Figure 10 is a graph showing the ultra long average of pepper according to the four plant growth lamps (PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25).
11 is a graph showing the average leaf width of red pepper according to four plant growth lamps (PLED-1.0, PLED-0.75, PLED-0.5, and PLED-0.25).
Figure 12 is a graph showing the average number of peppers according to the four plant growth lamps (PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25).
Figure 13 is a graph showing the average leaf growth of pepper according to the four plant growth lamps (PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25).
Figure 14 is a photograph of the growth status of pepper according to the four types of full-color plant growth lamps (PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25).
Figure 15 is a photograph of the growth status (30 days after seed sowing) of green beans according to the four plant growth lamps (PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25).
Fig. 16 is a graph showing the total average of all beans (20 days after seed sowing) according to the four plant growth lamps (PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25).

이하 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명자들은 도 2의 클로로필 흡수스펙트럼을 근거로 인공태양의 파장을 설계하였다. 우선, 도 1에서 550 nm와 600 nm의 흡광이 약하기는 하지만 일방적으로 무시할 수는 없는 수치이므로 가능하면 전색체 특성을 보이는 LED를 기본으로 삼았다. 그리고 650 nm 흡광에 비해 450 nm의 흡광이 상대적으로 적으나 에너지로 볼 때 고에너지에 해당하므로, 450 nm의 파장의 변화를 기준으로 식물의 생장 상관관계를 규명하였다. 그 결과 450 nm 빛의 상대적인 세기가 식물생장에 큰 영향을 미친다는 직접적인 결과를 획득하였다. 본 특허에서는 다양한 농작물이 선택되었으며, 이 파장의 영향이 작물의 생장에 큰 요인임을 추가로 규명하였다. 그러므로 본 기술은 인공광합성이 고에너지 청색(450 nm)에 매우 민감하며, 이 파장의 세기 조절에 따라 맞춤형 식물 생장이 가능함을 공지한다. 이러한 기술의 개발에 따른 식물생장등의 파장별 설계, 제작 및 농작물 생육 조건 등이 권리의 대상이 된다. 특히 본 발명에서 작물에 적용하는 LED 기술을 전색체 PLEDTM (Panchromatic-LED) 이라 칭한다. 이 또한 기술의 범위에 포함된다. 구체적인 실험 내용은 전색체 파장을 LED를 활용하여 발생시키며, 450 nm에서의 빛의 세기를 매개변수로 삼아(PLED-1.0램프, PLED-0.75램프, PLED-0.5램프, PLED-0.25 램프), 작물별(깻잎, 오이, 토마토, 고추, 녹두, 올콩)로 각각 성장실험에 적용하여, 450 nm에서의 최적의 빛의 세기를 확인하였으므로 본 발명을 완성하였다.The present inventors designed the wavelength of the artificial sun based on the chlorophyll absorption spectrum of FIG. 2. First, in FIG. 1, the absorption of 550 nm and 600 nm is weak, but cannot be neglected unilaterally, and thus, if possible, LEDs showing full-color characteristics are used as a basis. In addition, the absorption of 450 nm is relatively small compared to that of 650 nm, but since it corresponds to high energy in terms of energy, the growth correlation of plants was investigated based on the change in wavelength of 450 nm. As a result, direct results were obtained that the relative intensity of 450 nm light greatly influences the growth of plants. In this patent, various crops were selected, and it was further clarified that the influence of this wavelength was a major factor in the growth of crops. Therefore, this technology is known that artificial photosynthesis is very sensitive to high energy blue (450 nm), and it is possible to tailor plants according to the intensity of this wavelength. In accordance with the development of these technologies, the design, production and growth conditions of plants for each wavelength such as plant growth are subject to rights. In particular, the LED technology applied to crops in the present invention is referred to as a full-color PLED TM (Panchromatic-LED). This is also within the scope of the technology. For the specific experiments, the full-color wavelength is generated by using the LED, and the light intensity at 450 nm is used as a parameter (PLED-1.0 lamp, PLED-0.75 lamp, PLED-0.5 lamp, PLED-0.25 lamp), crops. Stars (seeds, cucumbers, tomatoes, peppers, mung beans, and all beans) were applied to growth experiments, respectively, and the optimal light intensity at 450 nm was confirmed, thus completing the present invention.

본 발명은 300 내지 800 nm 파장(wavelength) 범위를 포함하고,The present invention includes a wavelength range of 300 to 800 nm,

440 내지 460 nm 파장 및 640 내지 660 nm 파장에서 피크(peak)를 가지며,Has a peak at a wavelength of 440 to 460 nm and a wavelength of 640 to 660 nm,

440 내지 460 nm 파장의 피크에서 강도(intensity)가 1.0 내지 30.0 mW인 전색체(pancromatic) LED 광을 식물에 조사하여 식물의 생장을 증진하는 방법을 제공한다. Provided is a method for enhancing plant growth by irradiating a plant with a pancromatic LED light having an intensity of 1.0 to 30.0 mW at a peak of a wavelength of 440 to 460 nm.

본 발명의 실시예에 있어서, 상기 생장은 생체중, 건물중, 엽수, 초장, 측지수, 엽면적, 엽장 및 엽폭으로 이루어진 군에서 선택된 1종 이상이 증가하는 것일 수 있다. In an embodiment of the present invention, the growth may be one or more selected from the group consisting of living weight, building weight, hardwood, vegetation, geodesic, leaf area, leaf length, and leaf width.

상기 식물은 엽채류, 과채류 또는 콩과식물일 수 있고, 깻잎, 오이, 토마토, 고추, 녹두 또는 올콩일 수 있으나, 이에 한정하지 않는다.The plant may be a leafy vegetable, a fruit or a legume, and may be sesame leaf, cucumber, tomato, pepper, mung bean, or whole bean, but is not limited thereto.

본 발명의 용어 "전색체(pancromatic) LED"는 PLEDTM (Panchromatic-LED)로 칭할 수 있다.The term "pancromatic LED" of the present invention may be referred to as PLED TM (Panchromatic-LED).

본 발명의 실시예에 있어서, 상기 440 내지 460 nm 파장 및 640 내지 660 nm 파장에서 피크(peak)를 가지며, 구체적으로는 450 nm 및 650nm에서 최대 피크를 가질 수 있다. In an embodiment of the present invention, it has a peak at a wavelength of 440 to 460 nm and a wavelength of 640 to 660 nm, specifically, a maximum peak at 450 nm and 650 nm.

본 발명의 실시예에 있어서, 상기 440 내지 460 nm 파장의 피크에서 강도(intensity)는 1.0 내지 30.0 mW일 수 있으며, 보다 바람직하게는 5.0 내지 20.0 mW일 수 있으며, 440 내지 460 nm 파장의 피크의 최적 강도는 식물의 종류에 따라 조절할 수 있다. In an embodiment of the present invention, the intensity at the peak of the wavelength of 440 to 460 nm may be 1.0 to 30.0 mW, more preferably 5.0 to 20.0 mW, and the peak of the wavelength of 440 to 460 nm The optimum strength can be adjusted according to the type of plant.

본 발명에서 440 내지 460 nm 파장의 피크에서 강도(intensity)가 20.0 mW이면 PLED-1.0, 15.0 mW 이면 PLED-0.75, 10.0 mW 이면 PLED-0.5, 5.0 mW 이면 PLED-0.25로 기재하여 440 내지 460 nm 파장의 피크에서에서 광의 상대적인 비율로 구분하여 기재하였으며, 강도는 ±0.3이면 유의한 값으로 판단할 수 있다. In the present invention, when the intensity at a peak of a wavelength of 440 to 460 nm is 20.0 mW, PLED-1.0, 15.0 mW, PLED-0.75, 10.0 mW, PLED-0.5, and 5.0 mW, PLED-0.25, 440 to 460 nm It was described by dividing it by the relative ratio of light at the peak of the wavelength. If the intensity is ±0.3, it can be judged as a significant value.

엽채류(깻잎)의 재배의 경우에는 전색체 LED 식물등인 PLED-0.75 램프의 사용이 적절하며, 과채류(오이, 방울토마토, 고추) 재배의 경우에는 PLED-0.5 램프의 사용이 적절하고, 두류(녹두, 올콩)를 식물공장에서 생산하고자 할 때는 PLED-0.25 램프를 이용하는 것이 적합하다.In the case of cultivation of leafy vegetables (perilla leaves), the use of PLED-0.75 lamps, which are full-color LED plant lights, is appropriate, and in the case of cultivation of fruits and vegetables (cucumbers, cherry tomatoes, peppers), use of PLED-0.5 lamps is appropriate If you want to produce mung beans, all beans) in a plant factory, it is appropriate to use PLED-0.25 lamp.

또한, 본 발명의 방법으로 재배된 생장이 증진된 식물을 제공한다. In addition, it provides a plant with enhanced growth grown by the method of the present invention.

또한, 본 발명은 300 내지 800 nm 파장(wavelength) 범위를 포함하고,In addition, the present invention includes a wavelength range of 300 to 800 nm,

450 nm 파장 및 650 nm 파장에서 피크(peak)를 가지며,Has a peak at a wavelength of 450 nm and a wavelength of 650 nm,

450 nm 파장의 피크에서 강도(intensity)가 5.0 내지 20.0 mW인 식물 생장용 전색체(pancromatic) LED 램프를 제공한다. It provides a pancromatic LED lamp for plant growth with an intensity of 5.0 to 20.0 mW at a peak of 450 nm wavelength.

상기 450 nm 파장의 피크의 최적 강도는 식물의 종류에 따라 조절되는 것이며, 엽채류(깻잎)의 재배시에는 15.0 mW이므로 전색체 LED 식물등으로 PLED-0.75 램프를 사용하는 것이 바람직하고, 과채류(오이, 방울토마토, 고추) 재배시에는 10.0 mW이므로 전색체 LED 식물등으로 PLED-0.5 램프를 사용하는 것이 바람직하며, 두류(녹두, 올콩) 재배시에는 5.0 mW이므로 전색체 LED 식물등으로 PLED-0.25 램프를 사용하는 것이 바람직하다. The optimum intensity of the peak at the wavelength of 450 nm is adjusted according to the type of plant, and when cultivating leafy vegetables (seed leaves), it is preferable to use a PLED-0.75 lamp as a full-color LED plant lamp, since it is 15.0 mW. , Cherry tomatoes, red peppers) is 10.0 mW when cultivated, so it is preferable to use PLED-0.5 lamps as full-color LED plant lights. When cultivating beans (green beans, all beans), it is 5.0 mW, so PLED-0.25 as full-color LED plant lights. It is preferred to use a lamp.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only intended to illustrate the present invention more specifically, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

<< 실시예Example 1> LED 파장 변화에 따른 깻잎의 생육에 미치는 영향 분석 1> Analysis on the effect of sesame leaf growth according to the change of LED wavelength

LED 파장 변화에 따른 깻잎의 엽록소 함량을 측정하였다. The chlorophyll content of sesame leaves according to the change in the LED wavelength was measured.

구체적으로, 전색체 LED 식물등을 총 20개(PLED-1.0 5개, PLED-0.75 5개, PLED-0.5 5개, PLED-0.25 5개)를 깻잎 농장에 설치하여, 2018년 10월 1일부터 8일까지 깻잎의 생육 증진효과를 확인하기 위하여 엽록소는 깻잎 수확 직전에 한 개 잎에서 10 군데를 SPAD 디지털 엽록소 측정기로 측정하였다.Specifically, a total of 20 full-color LED plant lamps (5 PLED-1.0, 5 PLED-0.75, 5 PLED-0.5, and 5 PLED-0.25) were installed on the sesame leaf farm, October 1, 2018. From 8 days to 8 days, in order to confirm the effect of enhancing the growth of sesame leaves, chlorophyll was measured by SPAD digital chlorophyll measurement in 10 places on one leaf just before harvest of sesame leaves.

대조군은 시판 LED 램프를 처리하였으며, 실험군은 LED 식물등을 4종(PLED-1.0 5개, PLED-0.75 5개, PLED-0.5 5개, PLED-0.25 5개)을 지상으로부터 2m 높이에 설치하여 처리하였다. The control group treated commercial LED lamps, and the experimental group installed 4 types of LED plant lights (5 PLED-1.0, 5 PLED-0.75, 5 PLED-0.5, and 5 PLED-0.25) at a height of 2 m from the ground. Treatment.

그 결과, 하기 표 1에 나타난 바와 같이, 깻잎은 450 nm에서의 강도(intensity)가 높은 전색체 LED 식물등 PLED-0.75, PLED-1.0 램프를 처리하였을 때 엽록소의 함량이 높으므로 생육이 우수함을 확인하였다.As a result, as shown in Table 1 below, when sesame leaf was treated with PLED-0.75 and PLED-1.0 lamps of high-intensity, full-color LED plant lamps at 450 nm, the content of chlorophyll was high, so that the growth was excellent. Confirmed.

시판 LED등 Commercial LED lights PLED-0.25PLED-0.25 PLED-0.5PLED-0.5 PLED-0.75PLED-0.75 PLED-1.0PLED-1.0 34.40±0.49a 34.40±0.49 a 34.44±0.40a 34.44±0.40 a 35.85±0.41ab 35.85±0.41 ab 37.00±0.38bc 37.00±0.38 bc 37.91±0.45c 37.91±0.45 c

<< 실시예Example 2> LED 파장 변화에 따른 오이의 수확량에 미치는 영향 분석 2> Analysis on the effect of cucumber yield on the change of LED wavelength

LED 파장 변화에 따른 오이의 수확량(갯수)을 측정하였다. The yield (number) of cucumbers according to the change in the LED wavelength was measured.

구체적으로, 전색체 LED 식물등을 총 90개(PLED-1.0 25개, PLED-0.75 25개, PLED-0.5 15개, PLED-0.25 25개)를 오이 농장에 설치하여, 2017년 12월 25일부터 2018년 2월 25일까지 오이의 수확량을 측정하였다. 오이는 매일 5개의 그루에서 전체 오이를 수확하여 갯수를 측정하였다.Specifically, a total of 90 full-color LED plant lamps (25 PLED-1.0, 25 PLED-0.75, 15 PLED-0.5, and 25 PLED-0.25) were installed on the cucumber farm, December 25, 2017 From February 25, 2018, cucumber yield was measured. Cucumbers were harvested from five trees every day, and the number was measured.

대조군은 시판 LED 램프와 백열등을 순차적으로 처리하였으며, 실험군은 LED 식물등을 4종(PLED-1.0 5개, PLED-0.75 5개, PLED-0.5 5개, PLED-0.25 5개)을 지상으로부터 1.2m 높이에 설치하여 처리하였다. The control group sequentially treated commercial LED lamps and incandescent lamps, and the experimental group treated 4 types of LED plant lights (5 PLED-1.0, 5 PLED-0.75, 5 PLED-0.5, and 5 PLED-0.25) from the ground. Installed at m height and treated.

그 결과, 하기 표 2에 나타난 바와 같이 전색체 LED 식물등을 설치하여 재배하는 경우에 시판 LED 램프를 처리한 것에 비하여 오이의 수확량이 증가하였다.As a result, as shown in Table 2 below, in the case of cultivation by installing a full-color LED plant lamp, the yield of cucumbers increased compared to that of a commercially available LED lamp.

또한, 오이수확시 식물등을 설치하지 않는 구와 식물등 설치구에서 수확한 오이의 갯수와 각 처리구를 비교하였다. 하기 표 3에 나타난 바와 같이 전색체 LED 식물등의 종류에 따라 증산효과가 다름을 확인하였고, 특히 PLED-0.5 램프를 설치하는 경우에는 20%의 증산효과가 나타났다.In addition, when harvesting cucumbers, the number of cucumbers harvested from plants without plants, etc. and plants with plants was compared with each treatment. As shown in Table 3 below, it was confirmed that the increase effect was different depending on the type of all-color LED plant light, and in particular, when installing the PLED-0.5 lamp, a 20% increase in the effect was observed.

 
 
 
 
PLED-0.75(25개)PLED-0.75 (25) PLED-0.25(25개)PLED-0.25 (25) PLED-1.0(25개)PLED-1.0 (25) PLED-0.5(15개)PLED-0.5 (15) TotalTotal 대조구Control
Left Ooh Left Ooh Left Ooh Left Ooh (개)(dog) (개)(dog) 12월 25일December 25 2222 1717 1515 2020 1515 2020 1515 1616 140140 120120 12월 26일December 26 1515 1919 1515 1212 1515 2222 1010 1616 124124 7070 12월 27일December 27 2121 2323 1515 2020 2121 2828 1313 1414 155155 153153 12월 28일December 28 1818 2525 1313 2626 1010 1212 1111 1111 126126 117117 12월 29일December 29 2222 2424 1111 1818 88 1010 55 1111 109109 6464 12월 30일December 30 1919 2525 1313 1414 77 66 77 77 9898 8484 12월 31일December 31 1313 1717 88 66 66 88 77 88 7373 5656 01월 01일01 Jan 99 1414 77 66 88 88 88 1212 7272 5959 01월 02일Jan 02 1515 99 66 1515 99 1010 1212 1313 8989 9292 01월 03일Jan 03 1414 1414 1717 1010 1414 1313 1212 1111 105105 119119 01월 04일Jan 04 1010 1313 1212 1313 1111 99 66 77 8181 8181 01월 05일Jan 05 1313 1717 77 1212 1818 1616 1717 88 108108 120120 01월 06일January 06 1212 1616 99 77 2222 1919 1313 1717 115115 102102 01월 07일Jan 07 1515 1717 1010 1515 2121 2525 1414 1919 136136 114114 01월 08일Jan 08 1414 2121 2020 1818 2424 2222 1919 2020 158158 153153 01월 09일Jan 09 2222 2424 1717 1717 1313 88 99 1414 124124 106106 01월 10일Jan 10 1212 1515 2020 2020 1818 2121 99 1515 130130 8484 01월 11일Jan 11 1515 1616 77 1313 1111 1010 99 1212 9393 8989 01월 12일January 12 1313 1818 1414 1818 55 1414 44 1313 9999 9797 01월 13일January 13 1919 1515 1616 1818 1010 2020 66 1414 118118 7474 01월 14일January 14 2424 2424 1717 2222 1616 2121 1111 1212 147147 125125 01월 15일January 15 2020 3030 1515 1919 1818 1414 1515 1515 146146 120120 01월 16일January 16 2323 2525 1515 1616 1414 1919 1111 99 132132 107107 01월 17일January 17 1414 2323 2121 1717 1616 1212 1212 1111 126126 106106 01월 18일Jan 18 2424 3030 1616 1414 1313 1010 99 88 124124 9393 01월 19일Jan 19 1717 1212 1010 1414 55 1111 66 88 8383 117117 01월 20일January 20 1818 1818 77 1515 1212 1818 1111 1212 111111 137137 01월 21일Jan 21 1212 1212 1414 1414 1515 1313 1616 1212 108108 109109 01월 22일January 22 1212 1414 1313 1212 2222 2525 99   107107 8989 01월 23일January 23 1313 1212 2020 2222 2424 1313 88 1111 123123 7373 01월 24일Jan 24 1212 1616 1010 1111 1212 99 1010 1414 9494 6666 01월 25일January 25 1313 66 66 66 66 1818 77 77 6969 8787 01월 26일January 26 1818 1919 99 1717 1313 2727 1212 1919 134134 132132 01월 27일January 27 1111 1313 1717 1919 1212 1818 88 1313 111111 125125 01월 28일January 28 1515 1919 1515 2020 2525 1616 1313 1717 140140 137137 01월 29일January 29 2323 2929 2121 2020 1414 2525 1313 1414 159159 114114 01월 30일Jan 30 2121 2626 1717 2525 2020 1616 88 1010 143143 6868 01월 31일Jan 31 2323 2525 1818 1919 1818 1616 77 99 135135 108108 02월 01일February 01 1515 1515 88 1111 1212 1515 44 1313 9393 125125 02월 02일February 02 1212 1515 1414 1818 1818 1818 1111 1313 119119 102102 02월 03일February 03 1212 2121 1919 1515 1616 1212 1212 88 115115 130130 02월 04일February 04 2020 1313 55 99 1111 99 99 44 8080 112112 02월 05일February 05 1010 1414 1212 1313 1313 77 88 1010 8787 9191 02월 06일February 06 1313 1414 1414 1616 1717 2020 88 1212 114114 114114 02월 07일Feb 07 1414 2020 1313 1919 2121 2020 99 1919 135135 116116 02월 08일February 08 2121 2323 1818 2525 2121 3030 1313 1919 170170 104104 02월 09일February 09 1818 3030 2525 2727 2828 2626 1818 1919 191191 136136 02월 10일February 10 2626 2727 3030 2222 2323 1919 1414 2121 182182 147147 02월 11일February 11 2828 3232 1212 2222 1919 2525 1919 1616 173173 173173 02월 12일February 12 2828 2626 2424 2828 1818 2626 1414 1313 177177 167167 02월 13일February 13 2222 2828 2020 2222 2222 2727 1515 2020 176176 132132 02월 14일February 14 2828 3232 2929 2020 2323 2323 1111 1818 184184 141141 02월 15일February 15 2727 2828 2121 2828 2525 2020 1616 1313 178178 8989 02월 16일February 16 2020 2727 1313 2323 1010 99 55 55 112112 8282 02월 17일February 17 1111 1414 77 77 77 88 44 1212 7070 9090 02월 18일February 18 1919 1212 55 1010 99 1212 44 77 7878 6868 02월 19일February 19 1212 1919 88 1010 77 1717 88 99 9090 127127 02월 20일February 20 1111 1515 1313 1515 1616 1515 77 1414 106106 131131 02월 21일February 21 1919 1515 1212 1111 1111 2121 77 1111 107107 6767 02월 22일February 22 1818 2424 1414 1717 1515 1212 1515 1010 125125 150150 02월 23일February 23 2424 2222 1818 2323 2020 2727 99 1717 160160 128128 02월 24일February 24 2121 2727 2626 2727 2424 2727 1717 1515 184184 134134 02월 25일February 25 2020 2222 1717 2525 1818 2525 1616 2121 164164 128128 소 계sub Total 10951095 12471247 910910 10631063 965965 10721072 665665 798798 TotalTotal 2342 2342 1973 1973 2037 2037 1463 1463 78157815 68516851

PLED-0.75PLED-0.75 PLED-0.25PLED-0.25 PLED-1.0PLED-1.0 PLED-0.5PLED-0.5 controlcontrol 실험군Experimental group controlcontrol 실험군Experimental group controlcontrol 실험군Experimental group controlcontrol 실험군Experimental group 10951095 12471247 910910 10631063 965965 10721072 665665 798798 13.9 % 증산13.9% increase 16.8 % 증산16.8% increase 11.1 % 증산11.1% increase 20 % 증산20% increase

<< 실시예Example 3> LED 파장 변화에 따른 방울토마토의 생육에 미치는 영향 분석 3> Analysis of the effect on the growth of cherry tomatoes according to the change of LED wavelength

LED 파장 변화에 따른 방울토마토의 초장 및 측지수를 측정하였다. 초장은 이식 첫날부터 지상부 길이 측정을 매 2일 간격으로 측정하였고 측지수는 이식 후 7일후부터 매 2일 간격으로 측지수를 세었다.The length and geodetic index of cherry tomatoes according to the change in the LED wavelength were measured. The length of the ground was measured every 2 days from the first day of transplantation, and the geodesic was counted every 2 days from 7 days after transplantation.

구체적으로, 전색체 LED 식물등 총 4종을(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25), 시판 LED램프, 퀀텀테이프로 파장 조절을 시도했던 Q2R 램프((주)지엘비젼)를 각각 실험실의 실험용 box에 설치하여, 2018년 9월 20일부터 2018년 10월 24일까지 방울토마토의 초장을 측정하여 평균 초장을 cm 단위로 나타내었고, 측지수는 조사하여 평균 측지수로 나타내었다. Specifically, Q2R lamps that tried to adjust the wavelength with all four types of full-color LED plant lamps (PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25), commercial LED lamps, and quantum tapes ) Was installed in each laboratory's experimental box, and the length of cherry tomatoes was measured from September 20, 2018 to October 24, 2018, and the average height was expressed in cm. Shown.

그 결과, 전색체 LED 식물등을 설치하여 재배하는 경우에 시판 LED 램프와 Q2R 램프를 처리한 것에 비하여 평균 초장이 훨씬 길었고(도 6 및 도 8), 평균 측지수도 많았으며(도 7 및 도 8), 특히 전색체 LED 식물등으로 PLED-0.5 램프를 사용한 것이 방울토마토의 생육이 가장 우수한 것을 확인하였다(도 9).As a result, in the case of planting and cultivating a full-color LED plant lamp, the average height was much longer than that of a commercial LED lamp and a Q2R lamp (Figs. 6 and 8), and the average number of geodesic indexes was also high (Figs. 7 and 8). ), In particular, it was confirmed that the use of PLED-0.5 lamp as a full-color LED plant lamp has the best growth of cherry tomatoes (FIG. 9).

<< 실시예Example 4> LED 파장 변화에 따른 고추의 생육에 미치는 영향 분석 4> Analysis of the effect on the growth of red pepper according to the change of LED wavelength

LED 파장 변화에 따른 고추의 초장, 엽폭, 엽수 및 엽장을 측정하였다. The height, leaf width, number of leaves and leaf length of red pepper according to the change of the LED wavelength were measured.

구체적으로, 전색체 LED 식물등 총 4종을(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25), 시판 LED 램프, 퀀텀테이프로 파장 조절을 시도했던 Q2R 램프를 각각 실험실의 실험용 box에 설치하여, 2018년 10월 1일부터 2018년 10월 28일까지 고추의 초장, 엽폭, 엽수, 엽장을 특정하여 그 값의 평균을 분석하였다.Specifically, four types of all-color LED plant lamps (PLED-1.0, PLED-0.75, PLED-0.5, and PLED-0.25), commercial LED lamps, and Q2R lamps that tried to control the wavelength with quantum tapes were each used in laboratory experiment boxes. It was installed on October 1, 2018 to October 28, 2018 to identify the plant height, leaf width, number of leaves, and leaf length of red pepper to analyze the average of the values.

그 결과, 전색체 LED 식물등을 설치하여 재배하는 경우에 시판 LED 램프를 처리한 것에 비하여 평균 초장이 훨씬 길었고(도 10 및 도 14), 엽폭의 평균도 길었으며(도 11 및 도 14), 엽수의 평균도 많았으며(도 12 및 도 14), 엽장의 평균도 높은것을(도 13 및 도 14) 확인하였다. 특히 전색체 LED 식물등으로 PLED-0.5램프를 사용한 것이 고추의 생육이 가장 우수한 것을 확인하였다.As a result, in the case of cultivation by installing a full-color LED plant lamp, the average plant height was much longer than that of a commercially available LED lamp (Figs. 10 and 14), and the average of the leaf width was also long (Figs. 11 and 14), The average number of lobes was also high (Figs. 12 and 14), and the average number of leaves was high (Figs. 13 and 14). In particular, it was confirmed that the use of PLED-0.5 lamp as a full-color LED plant lamp showed the best growth of pepper.

<< 실시예Example 5> LED 파장 변화에 따른 녹두의 생육에 미치는 영향 분석 5> Analysis of the effect on the growth of green beans according to the change of LED wavelength

LED 파장 변화에 따른 녹두의 초장 및 생체중을 측정하였다. 초장은 매 2일 간격으로 지상부 길이를 측정하였고 생체중은 파종 후 30일 각 POT별 5주 모두 수확하여 무게를 측정하였다.The green and green weight of green beans according to the change in the LED wavelength were measured. The length of the ground was measured at intervals of every 2 days, and live weight was measured by harvesting all 5 weeks of each POT for 30 days after sowing.

구체적으로, 전색체 LED 식물등 총 4종을(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25), 시판 LED 램프, Q2R을 각각 실험실의 실험용 box에 설치하여, 2018년 9월 18일부터 2018년 10월 28일까지 녹두의 초장 및 생체중의 평균을 조사하였다. Specifically, four types of all-color LED plant lamps (PLED-1.0, PLED-0.75, PLED-0.5, and PLED-0.25), commercial LED lamps, and Q2R were installed in laboratory test boxes, respectively, September 18, 2018 From day to October 28, 2018, the average height and weight of mung beans were investigated.

그 결과, 하기 표 4에 나타난 바와 같이, 전색체 LED 식물등을 설치하여 재배하는 경우에 시판 LED 램프나 백열등을 처리한 것에 비하여 평균 초장이 훨씬 길었고(도 15), 하기 표 5에 나타난 바와 같이 생체중도 전색체 LED 식물등을 이용해야 높은 것을 확인하였다.As a result, as shown in Table 4 below, in the case of cultivation by installing a full-color LED plant lamp, the average plant height was much longer than that of a commercially available LED lamp or incandescent lamp (FIG. 15), as shown in Table 5 below. It was confirmed that the bio-centered all-color LED plant lamp was used.

LED등LED light PLED 0.75PLED 0.75 PLED 0.25PLED 0.25 PLED 0.5PLED 0.5 PLED 1.0PLED 1.0 Q2R Q2R 9월18일September 18 3.583.58 4.134.13 3.583.58 3.503.50 3.903.90 3.503.50 9월24일September 24 7.307.30 10.2310.23 9.559.55 10.0510.05 10.7310.73 8.208.20 9월30일September 30 10.7810.78 14.8814.88 15.4315.43 15281528 16.6516.65 12.0812.08 10월4일October 4 12.8312.83 19.5519.55 19.7519.75 19.9019.90 22.7022.70 13.6313.63 10월8일October 8 15.3015.30 23.5023.50 24.5524.55 23.7723.77 25.8025.80 16.3916.39 10월12일October 12 17.2017.20 25.5825.58 27.6527.65 27.7727.77 28.1828.18 18.6818.68 10월16일October 16 19.5819.58 26.4826.48 29.5529.55 29.8029.80 30.4830.48 20.1820.18 10월20일October 20 20.4520.45 28.2528.25 33.8833.88 33.4733.47 32.6832.68 20.8320.83 10월24일October 24 21.6321.63 28.5328.53 26.1026.10 34.7034.70 33.1533.15 21.8821.88 10월28일October 28 22.4522.45 28.6528.65 37.2337.23 34.8734.87 33.3533.35 22.7522.75

LED등LED light PLED 0.75PLED 0.75 PLED 0.25PLED 0.25 PLED 0.5PLED 0.5 PLED 1.0PLED 1.0 Q2RQ2R 지상부Above ground 0.71370.7137 2.01142.0114 2.66682.6668 1.88151.8815 2.69782.6978 0.79820.7982 지하부Underground 0.01160.0116 0.05770.0577 0.05990.0599 0.03530.0353 0.06900.0690 0.01590.0159

<< 실시예Example 5> LED 파장 변화에 따른 올콩의 생육에 미치는 영향 분석 5> Analysis of the effect on the growth of all beans according to the change of LED wavelength

LED 파장 변화에 따른 올콩의 초장 및 생체중을 측정하였다. 올콩의 초장은 파종후 7일 후부터 매일 지상부 길이를 측정하였고 생체중은 파종후 20일 후 POT별 식물전체의 무게를 측정하였다.The length and weight of the whole bean were measured according to the change in the LED wavelength. The length of the above ground was measured daily from 7 days after sowing, and the weight of the whole plant for each POT was measured 20 days after sowing.

구체적으로, 전색체 LED 식물등 총 4종을(PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25), 시판 LED램프, 퀀텀테이프로 파장 조절을 시도했던 Q2R 램프를 각각 실험실의 실험용 box에 설치하여, 2018년 9월 14일부터 2018년 10월 17일까지 올콩의 초장을 조사하였다. Specifically, a total of four types of full-color LED plant lamps (PLED-1.0, PLED-0.75, PLED-0.5, PLED-0.25), commercial LED lamps, and Q2R lamps that tried to adjust the wavelength with quantum tape were used in the laboratory's experimental box. Installed on September 14, 2018 to October 17, 2018, the length of the whole bean was investigated.

그 결과, 전색체 LED 식물등을 설치하여 재배하는 경우에 시판 LED 램프나 Q2R 램프를 처리한 것에 비하여 평균 초장이 훨씬 길었고, 특히 전색체 LED 식물등으로 PLED-0.25 램프를 사용한 것이 올콩의 생육이 가장 우수한 것을 확인하였다(도 16).As a result, in the case of planting and planting full-color LED plant lamps, the average plant height was much longer than that of commercial LED lamps or Q2R lamps. It was confirmed that the most excellent (Fig. 16).

Claims (7)

300 내지 800 nm 파장(wavelength) 범위를 포함하고,
440 내지 460 nm 파장 및 640 내지 660 nm 파장에서 피크(peak)를 가지며,
440 내지 460 nm 파장의 피크에서 강도(intensity)가 1.0 내지 30.0 mW인 전색체(pancromatic) LED 광을 식물에 조사하여 식물의 생장을 증진하는 방법.
300 to 800 nm wavelength range,
Has a peak at a wavelength of 440 to 460 nm and a wavelength of 640 to 660 nm,
A method of promoting plant growth by irradiating a plant with a pancromatic LED light having an intensity of 1.0 to 30.0 mW at a peak of a wavelength of 440 to 460 nm.
제 1항에 있어서, 상기 생장은 건물중, 엽수, 초장, 측지수, 엽면적, 엽장 및 엽폭으로 이루어진 군에서 선택된 1종 이상이 증가하는 것인 전색체(pancromatic) LED 광을 식물에 조사하여 식물의 생장을 증진하는 방법.The plant according to claim 1, wherein the growth is increased by one or more selected from the group consisting of building, leaf, plant, geodetic, leaf area, leaf length, and leaf width. How to promote your growth. 제 1항에 있어서, 상기 식물은 엽채류, 과채류 또는 콩과식물인 것인 전색체(pancromatic) LED 광을 식물에 조사하여 식물의 생장을 증진하는 방법.The method of claim 1, wherein the plant is a leafy vegetable, a fruit or a legume, and a method of promoting plant growth by irradiating a plant with a pancromatic LED light. 제 1항에 있어서, 상기 440 내지 460 nm 파장에서 피크의 최적 강도는 식물의 종류에 따라 조절되는 것인 전색체(pancromatic) LED 광을 식물에 조사하여 식물의 생장을 증진하는 방법.The method of claim 1, wherein the optimum intensity of the peak at the wavelength of 440 to 460 nm is controlled according to the type of plant, thereby promoting plant growth by irradiating the plant with pancromatic LED light. 제 1항의 방법으로 재배된 생장이 증진된 식물.A plant with improved growth grown by the method of claim 1. 300 내지 800 nm 파장(wavelength) 범위를 포함하고,
450 nm 파장 및 650 nm 파장에서 피크(peak)를 가지며,
450 nm 파장의 피크에서 강도(intensity)가 5.0 내지 20.0 mW인 식물 생장용 전색체(pancromatic) LED 램프.
300 to 800 nm wavelength range,
Has a peak at a wavelength of 450 nm and a wavelength of 650 nm,
A pancromatic LED lamp for plant growth with an intensity of 5.0 to 20.0 mW at a peak of 450 nm wavelength.
제 6항에 있어서, 상기 450 nm 파장의 피크에서 최적 강도는 식물의 종류에 따라 조절되는 것인 식물 생장용 전색체(pancromatic) LED 램프.7. The panchromatic LED lamp for plant growth according to claim 6, wherein the optimum intensity at the peak of the wavelength of 450 nm is adjusted according to the type of the plant.
KR1020180155769A 2018-12-06 2018-12-06 Method for development for plant grow light technology with variation of a specific wave length driven by light emitting diodes KR102194453B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180155769A KR102194453B1 (en) 2018-12-06 2018-12-06 Method for development for plant grow light technology with variation of a specific wave length driven by light emitting diodes
PCT/KR2019/017050 WO2020116943A1 (en) 2018-12-06 2019-12-05 Method for promoting plant growth according to panchromatic led wavelength conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180155769A KR102194453B1 (en) 2018-12-06 2018-12-06 Method for development for plant grow light technology with variation of a specific wave length driven by light emitting diodes

Publications (2)

Publication Number Publication Date
KR20200068879A true KR20200068879A (en) 2020-06-16
KR102194453B1 KR102194453B1 (en) 2020-12-23

Family

ID=70973672

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180155769A KR102194453B1 (en) 2018-12-06 2018-12-06 Method for development for plant grow light technology with variation of a specific wave length driven by light emitting diodes

Country Status (2)

Country Link
KR (1) KR102194453B1 (en)
WO (1) WO2020116943A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110131970A (en) 2010-06-01 2011-12-07 서강대학교산학협력단 Portable system of monitoring patient's status using wireless battery charging
KR20130134306A (en) * 2012-05-30 2013-12-10 경상대학교산학협력단 Method for growing lettuce using artificial light source and its photoperiod in closed-type plant production system
KR20140018719A (en) * 2012-08-03 2014-02-13 경기도 Led lamp for plant
JP2014128252A (en) * 2012-12-29 2014-07-10 Univ Of Fukui Light control apparatus for plant growth, light control method, light control program and data collection apparatus for light control
JP2017035099A (en) * 2012-04-05 2017-02-16 ナノコ テクノロジーズ リミテッド Quantum dot led to enhance growth of photosynthetic organism
KR101908239B1 (en) * 2017-11-02 2018-12-28 주식회사 지엘비젼 Lighting Device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487139B (en) * 2009-08-07 2015-06-01 Showa Denko Kk Multicolor light emitting diode lamp for plant growth, lighting equipment and method of growing plant
FI20095967A (en) * 2009-09-18 2011-03-19 Valoya Oy ILLUMINATOR
EP2740349B1 (en) * 2011-08-05 2020-02-26 Showa Denko K.K. Algae cultivation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110131970A (en) 2010-06-01 2011-12-07 서강대학교산학협력단 Portable system of monitoring patient's status using wireless battery charging
JP2017035099A (en) * 2012-04-05 2017-02-16 ナノコ テクノロジーズ リミテッド Quantum dot led to enhance growth of photosynthetic organism
KR20130134306A (en) * 2012-05-30 2013-12-10 경상대학교산학협력단 Method for growing lettuce using artificial light source and its photoperiod in closed-type plant production system
KR20140018719A (en) * 2012-08-03 2014-02-13 경기도 Led lamp for plant
JP2014128252A (en) * 2012-12-29 2014-07-10 Univ Of Fukui Light control apparatus for plant growth, light control method, light control program and data collection apparatus for light control
KR101908239B1 (en) * 2017-11-02 2018-12-28 주식회사 지엘비젼 Lighting Device

Also Published As

Publication number Publication date
KR102194453B1 (en) 2020-12-23
WO2020116943A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
EP2852275B1 (en) Lighting device capable of providing horticulture light and method of illuminating horticulture
RU2667769C2 (en) Horticulture lighting device and method for stimulating plant growth and bio-rhythm of plants
CN107047093B (en) Gardening LED lighting fixture
US20110179706A1 (en) Biological Optimization Systems For Enhancing Photosynthetic Efficiency And Methods Of Use
US20180323351A1 (en) Light-emitting diode module for plant growth
US20140215917A1 (en) Plant cultivation lamp and plant cultivation method using the same
US20200260651A1 (en) Method for cultivating plant seedling by artificial light
KR102285707B1 (en) Plant cultivation apparatus and plant cultivation method using light source for plant cultivation
US20140250781A1 (en) Novel light sources and methods for illuminating plants to achieve effective plant growth
CN111448905A (en) Light-controlled tomato seedling method and illumination equipment
US20200000043A1 (en) Under canopy electromagnetic radiation device
US20210022298A1 (en) Plant growth control method and plant grow light source device
KR20160092135A (en) Lighting source for plant production and cultivation method using this
KR102194453B1 (en) Method for development for plant grow light technology with variation of a specific wave length driven by light emitting diodes
Rakutko et al. Comparative evaluation of tomato transplant growth parameters under led, fluorescent and high-pressure sodium lamps
CN111448904A (en) Light-control cucumber seedling raising method and illumination equipment
KR101593584B1 (en) LED Light Apparatus For Rooting Grafted Seedlings
Harada et al. Effects of long-day treatment using fluorescent lamps and supplemental lighting using white LEDs on the yield of cut rose flowers
KR102572520B1 (en) Cultivation method of Glehnia littoralis in plant factory
JP2016214260A (en) Method of inhibiting budding of perilla frutescen and method of suppressing dormancy of strawberries
García Victoria et al. High output LED in hybrid lighting for Alstroemeria
Victoria et al. High output LED in hybrid lighting for Alstroemeria
US20130326947A1 (en) Novel light sources and methods for illuminating plants to achieve effective plant growth
US20130329417A1 (en) Novel light sources and methods for illuminating plants to achieve effective plant growth
Vaddoriya et al. AgriCos e-Newsletter

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant