KR20200065957A - Preparation method of secondary polyetheramine - Google Patents

Preparation method of secondary polyetheramine Download PDF

Info

Publication number
KR20200065957A
KR20200065957A KR1020180152930A KR20180152930A KR20200065957A KR 20200065957 A KR20200065957 A KR 20200065957A KR 1020180152930 A KR1020180152930 A KR 1020180152930A KR 20180152930 A KR20180152930 A KR 20180152930A KR 20200065957 A KR20200065957 A KR 20200065957A
Authority
KR
South Korea
Prior art keywords
catalyst
polyetheramine
weight
sio
parts
Prior art date
Application number
KR1020180152930A
Other languages
Korean (ko)
Inventor
김경준
최종명
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020180152930A priority Critical patent/KR20200065957A/en
Publication of KR20200065957A publication Critical patent/KR20200065957A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/28Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having one amino group and at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the carbon skeleton, e.g. ethers of polyhydroxy amines
    • C07C217/40Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having one amino group and at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the carbon skeleton, e.g. ethers of polyhydroxy amines having at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the same carbon atom of the carbon skeleton, e.g. amino-ketals, ortho esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/06Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton
    • C07C251/08Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton being acyclic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a catalyst for a reductive amination reaction and a method for producing a secondary polyetheramine using the same. According to the present invention, a secondary polyetheramine can be produced in a high yield through a reductive amination reaction by using primary polyetheramine, ketone and hydrogen without using alcohol as a reaction raw material.

Description

2차 폴리에테르아민의 제조방법 {PREPARATION METHOD OF SECONDARY POLYETHERAMINE}Manufacturing method of secondary polyetheramine {PREPARATION METHOD OF SECONDARY POLYETHERAMINE}

본 발명은 환원성 아민화 반응용 촉매를 사용하여 2차 폴리에테르아민을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing a secondary polyetheramine using a catalyst for a reductive amination reaction.

환원성 아민화(reductive amination)는, 본 발명이 속하는 기술분야(이하 '당업계'라 함)에 알려진 바와 같이, 수소와 촉매가 존재하는 환원조건 하에서 지방족 알칸 유도체의 아민화 반응을 통해 아민기가 도입된 지방족 알칸 유도체를 얻는 방법 중 하나이다. 이러한 환원성 아민화는 폴리에테르아민과 같은 다양한 종류의 아민 화합물을 제조하는데 이용되고 있다.Reductive amination, as known in the art to which the present invention pertains (hereinafter referred to as'the art'), introduces an amine group through the amination reaction of an aliphatic alkane derivative under reducing conditions in which hydrogen and a catalyst are present. It is one of the methods to obtain an aliphatic alkane derivative. This reductive amination is used to prepare various types of amine compounds such as polyetheramines.

기존의 2차 폴리에테르아민 제조는 알코올을 원료로 하여 알코올의 탈수소화(dehydrogenation)를 통하여 알데하이드로 전환시킨 후 1차 아민과 반응시켜 제조하는 것이 일반적이나, 알코올을 알데하이드로 전환하는 단계가 반응속도 결정단계로서 반응속도의 제어가 어렵다는 단점이 있다.Existing secondary polyetheramine production is generally produced by converting to aldehyde through dehydrogenation of alcohol using alcohol as a raw material and then reacting with the primary amine, but the step of converting alcohol to aldehyde is the reaction rate. As a decision step, there is a disadvantage that it is difficult to control the reaction rate.

이에, 본 발명자들은 알코올을 사용하지 않고도 아민 전환율 및 수율이 우수한 2차 폴리에테르아민을 제조하는 방법을 개발하였다.Accordingly, the present inventors have developed a method for producing a secondary polyetheramine having excellent amine conversion and yield without using alcohol.

문헌 [Jih-Mirn Jehng, Catalysis Letters, Vol. 77 No 1-3, 2001] Jih-Mirn Jehng, Catalysis Letters, Vol. 77 No 1-3, 2001]

본 발명은 알코올을 반응원료로 사용하지 않고 1차 폴리에테르아민을 사용하여 2차 폴리에테르아민을 제조하는 방법을 제공한다.The present invention provides a method of preparing a secondary polyetheramine using primary polyetheramine without using alcohol as a reaction raw material.

본 발명은 (A) 하기 화학식 1의 1차 폴리에테르아민을 케톤과 반응시켜 1차 폴리에테르이민을 생성하는 단계;The present invention (A) reacting the primary polyetheramine of Formula 1 with ketone to produce a primary polyetherimine;

(B) 상기 1차 폴리에테르이민을, 코발트(Co) 화합물 및 이트륨(Y) 화합물 및 팔라듐(Pd) 화합물이 담지체 상에 담지된 환원성 아민화 반응용 촉매의 존재 하에, 수소와 접촉시켜 2차 폴리에테르아민을 생성하는 단계를 포함하는, 2차 폴리에테르아민의 제조방법을 제공한다.(B) The primary polyetherimine is contacted with hydrogen in the presence of a catalyst for a reductive amination reaction supported on a carrier in which a cobalt (Co) compound, a yttrium (Y) compound, and a palladium (Pd) compound are supported. 2 It provides a method for producing a secondary polyetheramine, comprising the step of producing a secondary polyetheramine.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서, In Chemical Formula 1,

R은 수소 또는 C1-3알킬이고, x는 0 내지 200의 정수이다.R is hydrogen or C 1-3 alkyl, and x is an integer from 0 to 200.

본 발명에 따르면 알코올을 반응원료로 사용하지 않고 1차 폴리에테르아민, 케톤 및 수소를 사용하여, 반응 중 생성되는 수분의 존재 하에서도 활성을 유지하는 환원성 아민화 반응용 촉매의 존재 하에, 환원성 아민화 반응을 통해 높은 아민 전환율 및 수율로 2차 폴리에테르아민을 제조할 수 있다.According to the present invention, in the presence of a catalyst for a reductive amination reaction that maintains activity even in the presence of moisture generated during the reaction, using primary polyetheramine, ketone and hydrogen without using alcohol as a reaction raw material, reducing ah Secondary polyetheramines can be produced with high amine conversion and yield through a minification reaction.

본 발명은 코발트(Co), 이트륨(Y) 및 팔라듐(Pd)을 포함하는 활성성분이 담지체 상에 담지된 환원성 아민화 반응용 촉매의 존재 하에 1차 폴리에테르아민을 사용하여 2차 폴리에테르아민을 제조하는 방법을 제공한다.The present invention is a secondary polyether using a primary polyetheramine in the presence of a catalyst for a reductive amination reaction in which an active component comprising cobalt (Co), yttrium (Y) and palladium (Pd) is supported on a carrier. Provided are methods for preparing amines.

일반적으로 환원성 아민화 반응에는 구리(Cu)-니켈(Ni)계 촉매, 니켈(Ni)-레늄(Re)계 촉매, 코발트(Co)-니켈(Ni)-구리(Cu)계 촉매 등이 사용되어 왔으며, 이와 함께 크롬(Cr), 티타늄(Ti), 지르코늄(Zr), 아연(Zn), 몰리브덴(Mo) 등의 금속 원소를 조합하여 촉매 활성을 향상시키고자 하는 많은 시도들이 있었다.In general, copper (Cu)-nickel (Ni)-based catalysts, nickel (Ni)-rhenium (Re)-based catalysts, and cobalt (Co)-nickel (Ni)-copper (Cu)-based catalysts are used for the reductive amination reaction. There have been many attempts to improve the catalytic activity by combining metal elements such as chromium (Cr), titanium (Ti), zirconium (Zr), zinc (Zn), and molybdenum (Mo).

그러나, 전술한 이전의 촉매들은 환원성 아민화 반응의 중간에 생성되는 수분에 의해 활성을 쉽게 잃게 되어 아민 전환율이 급격히 떨어지는 문제점이 있었다. However, the catalysts described above have a problem in that amine conversion rate is drastically reduced because the catalyst easily loses activity due to moisture generated in the middle of the reductive amination reaction.

그에 비하여, 본 발명의 일 구현예에 따른 담지 촉매는 코발트(Co), 이트륨(Y) 및 팔라듐(Pd)을 활성성분으로 포함하는 것으로서, 환원성 아민화에 동반되는 수소화 반응의 밸런스를 적절히 유지할 수 있다.In contrast, the supported catalyst according to one embodiment of the present invention includes cobalt (Co), yttrium (Y), and palladium (Pd) as active ingredients, and can properly maintain the balance of the hydrogenation reaction accompanying reductive amination. have.

또한, 본 발명의 일 구현예에 따른 담지 촉매는 코발트(Co), 이트륨(Y) 및 팔라듐(Pd)을 활성성분으로 포함함에 따라, 이들의 상승 작용에 의해 환원성 아민화 반응에 동반되는 수소화(hydrogenation) 반응에 있어서도 보다 안정적인 밸런스를 유지할 수 있다. 그리고, 상기 활성성분이 담지되는 담지체를 포함함에 따라, 활성 성분의 함량을 낮출 수 있으면서도 동등한 반응성을 확보할 수 있고, 촉매의 취급이 용이한 장점이 있다.In addition, the supported catalyst according to an embodiment of the present invention includes cobalt (Co), yttrium (Y) and palladium (Pd) as active ingredients, and hydrogenation accompanying the reductive amination reaction by their synergistic action ( In the hydrogenation reaction, a more stable balance can be maintained. In addition, as the active ingredient is supported, the content of the active ingredient can be lowered while ensuring equal reactivity and easy handling of the catalyst.

본 발명의 일 구현예에 따르면, 상기 담지 촉매는 코발트 산화물(CoO), 이트륨 산화물(Y2O3), 및 팔라듐 산화물(PdO)을 포함하는 것일 수 있다. 상기 촉매는 소성 과정 후에 CoO-Y2O3-PdO의 조성을 가질 수 있으며, 촉매 환원 조건을 거쳐 촉매 환원 조건을 거쳐 (Co 금속)-(이트륨 금속 또는 이트륨 산화물)-(Pd 금속)을 포함하는 조성을 나타낼 수 있다. 이와 같이 산화물 형태 또는 금속 형태의 활성 성분들이 환원성 아민화 반응에 촉매로써 이용될 수 있고, 수분의 영향을 거의 받지 않는 특성을 가지고 있다. 또한, 상기 팔라듐(Pd)은 코발트(Co) 및 이트륨(Y)과의 상승 작용에 의해 촉매의 엑티베이션 과정에서 촉매 환원이 보다 원활하게 이루어질 수 있도록 하여, 최종적으로 아민 전환율을 더욱 향상시킬 수 있다.According to an embodiment of the present invention, the supported catalyst may include cobalt oxide (CoO), yttrium oxide (Y 2 O 3 ), and palladium oxide (PdO). The catalyst may have a composition of CoO-Y 2 O 3 -PdO after the calcination process, and includes (Co metal)-(yttrium metal or yttrium oxide)-(Pd metal) through catalytic reduction conditions through catalytic reduction conditions. Composition. As such, the active components in the form of oxides or metals can be used as a catalyst in the reductive amination reaction, and have properties that are hardly affected by moisture. In addition, the palladium (Pd) by cobalt (Co) and yttrium (Y) by synergistic action to enable the catalyst reduction during the activation process of the catalyst to be made more smoothly, can finally further improve the amine conversion rate .

특히, 본 발명에 따르면, 상기 촉매는 코발트 산화물 100 중량부를 기준으로 이트륨 산화물 0.05 내지 30 중량부 및 팔라듐 산화물 0.01 내지 5 중량부를 포함할 수 있고; 또는 팔라듐 산화물 0.01 내지 4 중량부; 또는 팔라듐 산화물 0.02 내지 3 중량부를 포함할 수 있다. 즉, 코발트, 이트륨 및 팔라듐의 상승작용에 의한 효과가 충분히 발현될 수 있도록 하면서도, 이들의 함량비에 따른 촉매 활성의 향상 정도 등을 감안하여, 상기 촉매는 전술한 함량비의 활성성분을 포함하는 것이 유리하다.In particular, according to the present invention, the catalyst may include 0.05 to 30 parts by weight of yttrium oxide and 0.01 to 5 parts by weight of palladium oxide based on 100 parts by weight of cobalt oxide; Or 0.01 to 4 parts by weight of palladium oxide; Or it may include 0.02 to 3 parts by weight of palladium oxide. That is, while allowing the synergistic effect of cobalt, yttrium, and palladium to be sufficiently expressed, in view of the degree of improvement in catalytic activity according to their content ratio, the catalyst includes the active ingredients in the aforementioned content ratio It is advantageous.

한편, 본 발명에 따른 환원성 아민화 반응용 담지 촉매는 전술한 활성성분이 담지되는 담지체를 포함한다.On the other hand, the supported catalyst for the reductive amination reaction according to the present invention includes a carrier on which the above-described active ingredient is supported.

즉, 상기 촉매는 소정의 담지체 상에 코발트 및 이트륨을 포함하는 활성성분이 담지된 촉매일 수 있으며, 상기 활성성분으로 팔라듐이 더욱 포함될 수 있다. 이와 같이, 활성성분이 담지체 상에 담지된 촉매는 활성성분의 비표면적을 넓게 확보할 수 있어, 상대적으로 적은 양의 활성성분으로도 동등한 효과를 얻을 수 있다.That is, the catalyst may be a catalyst on which an active component including cobalt and yttrium is supported on a predetermined carrier, and palladium may be further included as the active component. As described above, the catalyst in which the active ingredient is supported on the carrier can secure a wide specific surface area of the active ingredient, and thus an equal effect can be obtained even with a relatively small amount of the active ingredient.

여기서, 상기 담지체로는 전술한 활성성분의 활성에 악영향을 미치지 않는 것이라면, 당업계에 공지된 통상의 성분이 사용될 수 있다. 다만, 본 발명의 일 실시예에 따르면, 상기 담지체는 SiO2, Al2O3, MgO, MgCl2, CaCl2, ZrO2, TiO2, B2O3, CaO, ZnO, BaO, ThO2, SiO2-Al2O3, SiO2-MgO, SiO2-TiO2, SiO2-V2O5, SiO2-CrO2O3, SiO2-TiO2-MgO, Molecular sieve 13X, 보오크사이트, 제올라이트, 전분(starch), 사이클로덱스트린(cyclodextrine) 또는 합성고분자일 수 있다.Here, as the carrier, as long as it does not adversely affect the activity of the above-described active ingredient, conventional ingredients known in the art may be used. However, according to an embodiment of the present invention, the carrier is SiO 2 , Al 2 O 3 , MgO, MgCl 2 , CaCl 2 , ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 , SiO 2 -Al 2 O 3 , SiO 2 -MgO, SiO 2 -TiO 2 , SiO 2 -V 2 O 5 , SiO 2 -CrO 2 O 3 , SiO 2 -TiO 2 -MgO, Molecular sieve 13X, Booch It can be a site, zeolite, starch, cyclodextrine or synthetic polymer.

상기와 같은 담지체에 전술한 활성성분을 담지시키는 방법은 수분이 제거된(dehydrated) 담지체에 활성성분을 직접 담지시키는 방법, 또는 활성성분과 담지체를 혼합하여 침강법으로 담지시킨 후 소성하는 방법 등 당업계에 공지된 통상의 담지 방법이 적용될 수 있다.The method of supporting the above-described active ingredient on the above-mentioned support member is a method of directly supporting the active ingredient on a dehydrated support member, or mixing the active ingredient and the support member to be supported by sedimentation, followed by firing. A conventional loading method known in the art, such as a method, can be applied.

이때, 상기 담지체 상에 담지되는 활성성분의 함량은 최소한도의 활성이 발현될 수 있는 정도 이상의 범위와, 담지체 도입에 따른 활성성분의 사용량 감량 효과 등을 감안하여 결정될 수 있으므로, 특별히 제한되지 않는다. 다만, 바람직하게는, 상기 활성성분은 담지체 100 중량부를 기준으로 1 중량부 이상, 또는 1 내지 200 중량부, 또는 10 내지 150 중량부로 포함될 수 있다. 여기서, 상기 담지체 100 중량부를 기준으로 활성성분이 100 중량부로 포함될 경우를 '활성성분이 50 중량%로 담지되었다'라고 표현할 수 있다.At this time, the content of the active ingredient supported on the carrier can be determined in consideration of a range over which the minimum activity can be expressed and the effect of reducing the amount of the active ingredient used according to the introduction of the carrier, and is not particularly limited. Does not. However, preferably, the active ingredient may be included in 1 part by weight or more, or 1 to 200 parts by weight, or 10 to 150 parts by weight based on 100 parts by weight of the carrier. Here, when the active ingredient is included in 100 parts by weight based on 100 parts by weight of the carrier, it can be expressed as'the active ingredient is supported at 50% by weight'.

이 밖에도, 상기 촉매는 전술한 활성성분의 활성도를 보다 더 향상시킬 수 있는 조촉매 화합물을 더욱 포함할 수 있다. 상기 조촉매 화합물은 전술한 담지체 상에 함께 담지될 수 있으며, 당업계에 공지된 통상의 조촉매 화합물들이 특별한 제한없이 채택될 수 있다.In addition, the catalyst may further include a cocatalyst compound that can further improve the activity of the above-described active ingredient. The co-catalyst compound may be supported together on the above-mentioned carrier, and conventional co-catalyst compounds known in the art may be adopted without particular limitation.

한편, 상기 촉매는 당업계에 알려진 통상의 방법에 따라 제조될 수 있으므로, 그 제조 방법의 구체적인 내용 또한 특별히 제한되지 않는다.On the other hand, the catalyst can be prepared according to a conventional method known in the art, so the details of the manufacturing method are also not particularly limited.

다만, 본 발명에 따르면, 침강법(precipitation method) 등을 통해 전술한 활성성분들을 포함하는 촉매가 제조될 수 있다. 비제한적인 예로, 코발트 질산염(cobalt nitrate)과 이트륨 질산염(yttrium nitrate)을 물에 녹인 후, 소정의 담지체를 첨가하고, 여기에 탄산나트륨 수용액(sodium carbonate solution)을 첨가하여 코발트 산화물 및 이트륨 산화물을 포함하는 염이 담지체 상에 담지된 침전이 얻어질 수 있고, 침전된 염을 세척, 건조, 및 소성하는 방법으로 일 구현예의 촉매가 제조될 수 있다. 나아가, 상기 소성 과정을 거친 촉매에 팔라듐 질산염(palladium nitrate)을 녹인 물을 첨가하여 혼합하고, 이를 고온 건조시키는 방법으로 다른 구현예의 촉매가 제조될 수 있다.However, according to the present invention, a catalyst including the above-described active ingredients may be prepared through a precipitation method or the like. As a non-limiting example, cobalt nitrate (cobalt nitrate) and yttrium nitrate (yttrium nitrate) are dissolved in water, a predetermined carrier is added, and a sodium carbonate solution is added thereto to form cobalt oxide and yttrium oxide. Precipitation in which the containing salt is supported on the carrier can be obtained, and the catalyst of one embodiment can be prepared by washing, drying, and calcining the precipitated salt. Furthermore, a catalyst of another embodiment may be prepared by adding and mixing water with a mixture of palladium nitrate dissolved in the catalyst that has undergone the calcination process, and drying it at a high temperature.

이와 같은 본 발명에 따른 촉매는 말단에 아미노기를 갖는 1차 폴리에테르아민의 환원성 아민화를 통한 2차 폴리에테르아민의 제조에 사용될 수 있다.The catalyst according to the present invention can be used for the production of secondary polyetheramines through reductive amination of primary polyetheramines having an amino group at the terminal.

한편, 본 발명의 다른 구현예에 따르면, 아민화 반응 중에 생성되는 수분의 존재 하에서도 활성을 유지하는 전술한 환원성 아민화 반응용 촉매의 존재 하에, 1차 폴리에테르아민과 케톤을 반응시켜 이민을 생성한 후, 상기 이민을 수소화 반응시켜 2차 폴리에테르아민을 제조하는 방법이 제공된다.On the other hand, according to another embodiment of the present invention, in the presence of the catalyst for the reductive amination reaction described above, which maintains activity even in the presence of moisture generated during the amination reaction, the primary polyetheramine and ketone are reacted to imine. After generation, a method of preparing a secondary polyetheramine by hydrogenating the imine is provided.

환원성 아민화 반응의 일 예를 들면, 말단에 아미노(-NH2)기를 갖는 1차 폴리에테르아민은 하기와 같은 2단계의 반응 메커니즘을 거치게 된다.For example, in the reductive amination reaction, a primary polyetheramine having an amino (-NH 2 ) group at the terminal undergoes a two-step reaction mechanism as follows.

[반응 메커니즘][Reaction mechanism]

단계 1: 1차 아민을 케톤과 반응시켜 이민을 생성하는 단계Step 1: reacting the primary amine with the ketone to produce imine

Figure pat00002
Figure pat00002

(상기 식에서, R4는 수소 또는 C1-3알킬임)(Wherein R 4 is hydrogen or C 1-3 alkyl)

단계 2: 단계 1에서 생성된 이민을 수소와 반응시켜 2차 아민을 생성하는 단계Step 2: Reacting the imine produced in Step 1 with hydrogen to produce a secondary amine.

Figure pat00003
Figure pat00003

(상기 식에서, R4는 수소 또는 C1-3알킬임)(Wherein R 4 is hydrogen or C 1-3 alkyl)

상기 반응 메커니즘에서 1차 폴리에테르아민은 케톤과 반응하여 이민으로 전환되고, 상기 이민은 수소와 반응하여 2차 폴리에테르아민을 형성할 수 있다. In the reaction mechanism, the primary polyetheramine reacts with a ketone to be converted to imine, and the imine can react with hydrogen to form a secondary polyetheramine.

본 발명의 일 구현예에 따르면, According to one embodiment of the invention,

(A) 말단에 아미노기(-NH2)를 갖는 1차 폴리에테르아민을 케톤과 반응시켜 이민을 생성하는 단계; 및(A) reacting a primary polyetheramine having an amino group (-NH 2 ) at the terminal with a ketone to generate imine; And

(B) 상기 이민을, 본 발명에 따른 환원성 아민화 반응용 촉매의 존재 하에, 수소와 접촉시켜 2차 폴리에테르아민을 생성하는 단계를 포함하는, 2차 폴리에테르아민의 제조방법이 제공된다.(B) In the presence of the catalyst for the reductive amination reaction according to the present invention, the imine is provided with a method of producing a secondary polyetheramine, comprising the step of contacting hydrogen to produce a secondary polyetheramine.

본 발명의 일 구현예에 따르면, 상기 1차 폴리에테르아민은 하기 화학식 1의 화합물일 수 있다.According to an embodiment of the present invention, the primary polyetheramine may be a compound of Formula 1 below.

[화학식 1][Formula 1]

Figure pat00004
Figure pat00004

상기 화학식 1에서, In Chemical Formula 1,

R은 수소 또는 C1-3알킬이고, x는 0 내지 200의 정수이다.R is hydrogen or C 1-3 alkyl, and x is an integer from 0 to 200.

본 발명의 일 구현예에 따르면, 상기 1차 폴리에테르아민은 상기 화학식 1에서 x가 1 내지 80, 또는 2 내지 35, 예컨대 하기 반응식과 같이 2.5 일 수 있다.According to an embodiment of the present invention, in the primary polyetheramine, x in Formula 1 may be 1 to 80, or 2 to 35, for example 2.5 as in the following scheme.

본 발명의 일 구현예에서, 1차 폴리에테르아민으로부터 2차 폴리에테르아민을 생성하는 반응은 하기 반응식에 따를 수 있다.In one embodiment of the present invention, the reaction for generating the secondary polyetheramine from the primary polyetheramine can be according to the following scheme.

Figure pat00005
Figure pat00005

상기 반응식에서, R은 수소 또는 C1-3알킬이다.In the above scheme, R is hydrogen or C 1-3 alkyl.

본 발명의 일 구현예에서, 상기 케톤은 탄소수 1 내지 6의 다이알킬케톤일 수 있고, 예컨대 메틸에틸케톤, 또는 상기 반응식과 같이 아세톤일 수 있다In one embodiment of the present invention, the ketone may be a dialkyl ketone having 1 to 6 carbon atoms, for example, methyl ethyl ketone, or acetone as in the above scheme.

본 발명에 따른 2차 폴리에테르아민의 제조방법에서 반응물의 중량비는 일련의 반응이 충분히 이루어질 수 있는 범위 내에서 반응 효율 등을 고려하여 결정될 수 있으므로 특별히 한정되지 않는다. The weight ratio of the reactants in the production method of the secondary polyetheramine according to the present invention is not particularly limited since it can be determined in consideration of reaction efficiency and the like within a range in which a series of reactions can be sufficiently performed.

다만, 본 발명에 따르면, 상기 제조방법은 상기 1차 폴리에테르아민 100 중량부에 대해, 수소는 0.01 내지 5 중량부 또는 0.1 내지 3 중량부 또는 0.1 내지 2 중량부의 존재 하에 수행되는 것이 반응 효율의 향상 측면에서 유리할 수 있다.However, according to the present invention, the production method is carried out in the presence of 0.01 to 5 parts by weight or 0.1 to 3 parts by weight or 0.1 to 2 parts by weight of hydrogen relative to 100 parts by weight of the primary polyetheramine. It can be advantageous in terms of improvement.

또한, 본 발명에 따른 제조방법에서 각 단계는 20℃ 내지 350℃의 온도 및 1 bar 내지 300bar의 압력 하에서, 또는 50℃ 내지 280℃의 온도 및 1 bar 내지 200barr의 압력 하에서; 또는 100℃ 내지 230의 온도 및 1 bar 내지 150bar의 압력 하에서 수행되는 것이, 반응 효율의 향상 측면에서 유리할 수 있다.In addition, in the manufacturing method according to the present invention, each step may be performed at a temperature of 20°C to 350°C and a pressure of 1 bar to 300 bar, or a temperature of 50°C to 280°C and a pressure of 1 bar to 200 barr; Or it may be advantageous in terms of improving the reaction efficiency, to be performed under a temperature of 100°C to 230 and a pressure of 1 bar to 150 bar.

한편, 본 발명에 따른 폴리에테르아민의 제조 방법은 전술한 단계들 이외에도, 상기 각 단계의 이전 또는 이후에 당업계에 공지된 통상적인 단계를 더욱 포함하여 수행될 수 있다.On the other hand, the production method of the polyetheramine according to the present invention may be performed in addition to the above-described steps, further comprising conventional steps known in the art before or after each step.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나, 본 발명은 여러 가지 다양한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art to which the present invention pertains can easily practice. However, the present invention can be implemented in many different forms and is not limited to the embodiments described herein.

우선, 하기와 같은 방법으로 실시예의 촉매와 비교예의 촉매를 제조하였고(실시예 1, 비교예 1 및 2), 각각의 촉매를 사용하여 폴리에테르아민을 제조하였다(실시예 2 및 3, 비교예 3 및 4).First, catalysts of Examples and Comparative Examples were prepared in the following manner (Examples 1, Comparative Examples 1 and 2), and polyetheramines were prepared using each catalyst (Examples 2 and 3, Comparative Examples). 3 and 4).

그리고, 실시예 및 비교예의 내용을 요약하여 하기 표 1 및 2에 나타내었다.And, the contents of Examples and Comparative Examples are summarized in Tables 1 and 2 below.

이때, '수율'은 출발물질인 폴리에테르 유도체가 환원성 아민화를 통해 폴리에테르아민으로 전환된 비율(중량비)을 의미하는 것으로서, 폴리에테르아민의 중량은 Total amine value 측정법(ASTM D2074)에 따라 적정(Titration)하는 방법으로 측정하였다.At this time,'yield' refers to the ratio (weight ratio) of the starting material polyether derivative converted to polyetheramine through reductive amination, and the weight of polyetheramine is titrated according to the Total amine value measurement method (ASTM D2074) It was measured by the method (Titration).

제조예 1, 비교 제조예 1 및 2Preparation Example 1, Comparative Preparation Examples 1 and 2 촉매의 제조 Preparation of catalyst

상온 하에서, 표 1에 기재된 투입 금속 화합물을 물 400 g에 녹인 후, Molecular sieve 13X를 담지체로 투여한다. 탄산나트륨(sodium carbonate) 15 wt% 수용액을 0.08 ml/s의 속도로 주입하는 방법으로 침강법(precipitation method)을 실시하였다.Under normal temperature, the charged metal compound shown in Table 1 was dissolved in 400 g of water, and then Molecular sieve 13X was administered as a carrier. Precipitation was performed by injecting a 15 wt% aqueous solution of sodium carbonate at a rate of 0.08 ml/s.

1 시간이 경과된 후, 생성된 염(salt)을 500 ml 증류수를 이용하여 수 차례 세척 및 여과하였고, 110 ℃에서 15 시간 동안 건조하였다.After 1 hour, the resulting salt was washed and filtered several times using 500 ml distilled water, and dried at 110° C. for 15 hours.

이와 같이 건조된 염을 소성로에 투입하였고, 소성로의 온도를 300 ℃/hr로 600 ℃까지 승온시켜 600 ℃ 및 공기 분위기 하에서 4 시간 동안 소성 시키는 방법으로 촉매를 얻었다. 이 촉매를 수소 분위기 하에서 600℃ 및 H2 유속 100cc/min으로 처리하여 Cobalt가 metal state로 되도록 환원시켜 표 1에 기재된 촉매를 수득하였다. 이에 따라, 제조예 1에서 Co-Y2O3-Pd/Molecular sieve 13X 촉매 (Co 8.9168 중량부에 대하여, Y2O3 0.1706 중량부 및 Pd 0.0224 중량부 함유), 비교 제조예 1에서 CoO/Molecular sieve 13X 촉매, 비교 제조예 2에서 Co-Y2O3/Molecular sieve 13X 촉매 (Co 8.9168 중량부에 대하여, Y2O3 0.1706 중량부)를 각각 제조하였다.The dried salt was added to the firing furnace, and the temperature of the firing furnace was raised to 600 °C at 300 °C/hr to obtain a catalyst by firing at 600 °C and air for 4 hours. The catalyst was treated under a hydrogen atmosphere at 600° C. and a H 2 flow rate of 100 cc/min to reduce Cobalt to a metal state to obtain the catalyst shown in Table 1. Accordingly, Co-Y 2 O 3 -Pd/Molecular sieve 13X catalyst in Preparation Example 1 (containing 0.1706 parts by weight of Y 2 O 3 and 0.0224 parts by weight of Pd in relation to 8.9168 parts by weight of Co), CoO/ in Comparative Preparation Example 1 Molecular sieve 13X catalyst, Co-Y 2 O 3 /Molecular sieve 13X catalyst in Comparative Preparation Example 2 (Co 8.9168 parts by weight, Y 2 O 3 0.1706 parts by weight) was prepared, respectively.

투입 금속 화합물Input metal compound 제조된 촉매Prepared catalyst 코발트 질산염
Cobalt nitrate
Cobalt nitrate
Cobalt nitrate
이트륨 질산염
Yttrium nitrate
Yttrium nitrate
Yttrium nitrate
팔라듐 질산염
Palladium nitrate
Palladium nitrate
Palladium nitrate
제조예 1Preparation Example 1 44.034 g44.034 g 0.525 g0.525 g 0.056 g0.056 g Co-Y2O3-Pd/Molecular sieve 13X 촉매Co-Y 2 O 3 -Pd/Molecular sieve 13X catalyst 비교
제조예 1
compare
Preparation Example 1
44.034 g44.034 g -- -- Co/Molecular sieve 13X 촉매Co/Molecular sieve 13X catalyst
비교
제조예 2
compare
Preparation Example 2
44.034 g44.034 g 0.525 g0.525 g -- Co-Y2O3/Molecular sieve 13X 촉매Co-Y 2 O 3 /Molecular sieve 13X catalyst

실시예 1, 비교예 1 및 2Example 1, Comparative Examples 1 and 2

2차 폴리에테르아민의 제조Preparation of secondary polyetheramine

용량 200ml의 배치 반응기(batch reactor)에, 표 2에 기재된 촉매 2.5g과, 1차 Polyetheramine(폴리에테르아민-230(PEA-230), 분자량: 230) 50 g 및 아세톤 27.8 g을 투입하였다.To a batch reactor having a capacity of 200 ml, 2.5 g of the catalyst described in Table 2, 50 g of primary Polyetheramine (polyetheramine-230 (PEA-230), molecular weight: 230) and 27.8 g of acetone were added.

이어서, 상기 반응기 내에 산소를 제거하기 위해 질소로 5 차례 퍼지(purge)를 실시하였고, 수소를 상온에서 80bar 주입하였다. 그 후 반응기 온도를 220℃ ℃까지 승온시켜 135 bar의 압력 하에서 5시간 동안 반응시키는 방법으로 2차 폴리에테르아민 49.5 g (실시예 1), 23.6 g (비교예 1), 30.3 g (비교예 2)을 얻었다. 각 실시예와 비교예에 대한 2차 아민 수율은 표 2에 나타내었다.Subsequently, in order to remove oxygen in the reactor, nitrogen was purged five times, and hydrogen was injected at 80 bar at room temperature. Then, the temperature of the reactor was raised to 220° C. and reacted for 5 hours under a pressure of 135 bar. 49.5 g of secondary polyetheramines (Example 1), 23.6 g (Comparative Example 1), 30.3 g (Comparative Example 2) ). The secondary amine yield for each Example and Comparative Example is shown in Table 2.

촉매catalyst 반응
온도
reaction
Temperature
반응
압력
reaction
pressure
2차 아민
수율
Secondary amine
yield
실시예1Example 1 제조예 1
(Co-Y2O3-Pd/Molecularsieve 13X)
Preparation Example 1
(Co-Y 2 O 3 -Pd/Molecularsieve 13X)
140℃140℃ 3 Bar3 Bar 99.0%99.0%
비교예1Comparative Example 1 비교 제조예 1
Co/Molecularsieve 13X
Comparative Production Example 1
Co/Molecularsieve 13X
140℃140℃ 3 bar3 bar 47.2%47.2%
비교예2Comparative Example 2 비교 제조예 2
Co-Y2O3
/Molecularsieve 13X
Comparative Preparation Example 2
Co-Y 2 O 3
/Molecularsieve 13X
140℃140℃ 3 bar3 bar 60.6%60.6%

상기 실시예 및 비교예를 통해 알 수 있는 바와 같이, 비교 제조예 1 또는 비교 제조예 2의 촉매를 사용한 비교예 1 및 비교예 2의 제조방법은 아민 수율이 각각 47.2% 및 60.6%으로 낮게 나타났다. 그에 비하여, 제조예 1의 촉매를 사용한 실시예 1의 제조방법은 높은 아민 수율을 나타내었다. 특히, 실시예 1을 통해 알 수 있는 바와 같이, 본 발명에 따른 촉매를 사용하는 경우 99.0%의 높은 아민 수율을 나타내었다.As can be seen from the above Examples and Comparative Examples, the preparation methods of Comparative Examples 1 and 2 using the catalysts of Comparative Preparation Example 1 or Comparative Preparation Example 2 showed low amine yields of 47.2% and 60.6%, respectively. . In contrast, the preparation method of Example 1 using the catalyst of Preparation Example 1 showed a high amine yield. In particular, as can be seen through Example 1, when using the catalyst according to the present invention showed a high amine yield of 99.0%.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. Since the specific parts of the present invention have been described in detail above, it is obvious to those skilled in the art that this specific technique is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (5)

(A) 하기 화학식 1의 1차 폴리에테르아민을 케톤과 반응시켜 1차 폴리에테르이민을 생성하는 단계; 및
(B) 상기 1차 폴리에테르이민을, 코발트(Co) 화합물 및 이트륨(Y) 화합물 및 팔라듐(Pd) 화합물이 담지체 상에 담지된 환원성 아민화 반응용 촉매의 존재 하에, 수소와 접촉시켜 2차 폴리에테르아민을 생성하는 단계를 포함하는, 2차 폴리에테르아민의 제조방법:
[화학식 1]
Figure pat00006

상기 화학식 1에서,
R은 수소 또는 C1-3알킬이고, x는 0 내지 200의 정수이다.
(A) generating a primary polyetherimine by reacting a primary polyetheramine of Formula 1 with a ketone; And
(B) The primary polyetherimine is contacted with hydrogen in the presence of a catalyst for a reductive amination reaction supported on a carrier in which a cobalt (Co) compound, a yttrium (Y) compound, and a palladium (Pd) compound are supported. 2 A method of preparing a secondary polyetheramine, comprising the step of producing a secondary polyetheramine:
[Formula 1]
Figure pat00006

In Chemical Formula 1,
R is hydrogen or C 1-3 alkyl, and x is an integer from 0 to 200.
제1항에 있어서, 상기 환원성 아민화 반응용 촉매는 코발트 100 중량부를 기준으로, 이트륨 산화물 0.05 내지 30 중량부 및 팔라듐 0.01 내지 5 중량부를 포함하는 것인, 2차 폴리에테르아민의 제조방법.The method of claim 1, wherein the catalyst for the reductive amination reaction comprises 0.05 to 30 parts by weight of yttrium oxide and 0.01 to 5 parts by weight of palladium, based on 100 parts by weight of cobalt. 제1항에 있어서, 상기 담지체는 SiO2, Al2O3, MgO, MgCl2, CaCl2, ZrO2, TiO2, B2O3, CaO, ZnO, BaO, ThO2, SiO2-Al2O3, SiO2-MgO, SiO2-TiO2, SiO2-V2O5, SiO2-CrO2O3, SiO2-TiO2-MgO, Molecular sieve 13X, 보오크사이트, 제올라이트, 전분(starch), 사이클로덱스트린(cyclodextrine) 및 합성고분자로 이루어진 군에서 선택되는 것인, 2차 폴리에테르아민의 제조방법.The method of claim 1, wherein the carrier is SiO 2 , Al 2 O 3 , MgO, MgCl 2 , CaCl 2 , ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 , SiO 2 -Al 2 O 3 , SiO 2 -MgO, SiO 2 -TiO 2 , SiO 2 -V 2 O 5 , SiO 2 -CrO 2 O 3 , SiO 2 -TiO 2 -MgO, Molecular sieve 13X, bauxite, zeolite, starch (starch), cyclodextrin (cyclodextrine) and is selected from the group consisting of synthetic polymers, a method for producing a secondary polyetheramine. 제1항에 있어서, 상기 케톤은 아세톤인 것인, 2차 폴리에테르아민의 제조방법.The method of claim 1, wherein the ketone is acetone. 제1항에 있어서, 상기 각 단계에서 반응물의 중량비는, 상기 1차 폴리에테르아민 100 중량부에 대해 수소 0.01 내지 5 중량부인 것인, 2차 폴리에테르아민의 제조방법.The method of claim 1, wherein the weight ratio of the reactants in each step is 0.01 to 5 parts by weight of hydrogen relative to 100 parts by weight of the primary polyetheramine.
KR1020180152930A 2018-11-30 2018-11-30 Preparation method of secondary polyetheramine KR20200065957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180152930A KR20200065957A (en) 2018-11-30 2018-11-30 Preparation method of secondary polyetheramine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180152930A KR20200065957A (en) 2018-11-30 2018-11-30 Preparation method of secondary polyetheramine

Publications (1)

Publication Number Publication Date
KR20200065957A true KR20200065957A (en) 2020-06-09

Family

ID=71082163

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180152930A KR20200065957A (en) 2018-11-30 2018-11-30 Preparation method of secondary polyetheramine

Country Status (1)

Country Link
KR (1) KR20200065957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220075644A (en) * 2020-11-30 2022-06-08 롯데케미칼 주식회사 Method for preparation of morpholine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
문헌 [Jih-Mirn Jehng, Catalysis Letters, Vol. 77 No 1-3, 2001]

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220075644A (en) * 2020-11-30 2022-06-08 롯데케미칼 주식회사 Method for preparation of morpholine

Similar Documents

Publication Publication Date Title
KR101491783B1 (en) A catalyst for reductive-amination reaction and uses thtereof
US8324433B2 (en) Method for producing ethylene glycol from polyhydroxy compound
KR20040064727A (en) Advances in amination catalysis
CN114433089B (en) Titanium-containing catalyst with ammoniation function and preparation method and application thereof
CN111889097B (en) Aniline hydrogenation catalyst, preparation method and application
KR101439431B1 (en) Cobalt-yittrium based supported catalyst for reductive amination reaction and preparation method of polyetheramine compound using the catalyst
KR20200065957A (en) Preparation method of secondary polyetheramine
JPS60191020A (en) Molybdenum salt soluble in hydrocarbon
KR20200065723A (en) Preparation method of dibenzylamine
EP2749351B1 (en) A catalyst for reductive amination-reaction and uses thereof
JP5038700B2 (en) Method for producing fat nitrogen-containing compound
KR20090034772A (en) Catalyst
KR102315753B1 (en) Preparation method of secondary and tertiary polyetheramine compound
KR101671943B1 (en) Catalyst for reductive-amination reaction and uses thtereof
KR102322050B1 (en) Preparation method of secondary and tertiary polyetheramine compound
KR102622834B1 (en) Method for preparation of morpholine
US7507863B2 (en) Process for producing nitrogen-containing compounds
KR101426409B1 (en) Cobalt-yittrium based catalyst for reductive amination reaction and preparation method of polyetheramine compound using the catalyst
CN114426468B (en) Method for preparing glutaraldehyde by taking cyclopentene as raw material
KR102644182B1 (en) Method for preparation of primary amine
KR102055927B1 (en) Process for preparing acrolein
KR101611585B1 (en) Supported catalyst for reductive amination reaction and preparation method of polyetheramine compound using the catalyst
KR20210061040A (en) Preparation method of ethylenediamine
KR20210061041A (en) Preparation method of ethylenediamine
WO2022179864A1 (en) Process for the production of polyalkylene-polyamines by condensation of alkylene-diamines