KR20200058862A - Cultivating method of microalgae using titanium dioxide nano particles - Google Patents

Cultivating method of microalgae using titanium dioxide nano particles Download PDF

Info

Publication number
KR20200058862A
KR20200058862A KR1020180143488A KR20180143488A KR20200058862A KR 20200058862 A KR20200058862 A KR 20200058862A KR 1020180143488 A KR1020180143488 A KR 1020180143488A KR 20180143488 A KR20180143488 A KR 20180143488A KR 20200058862 A KR20200058862 A KR 20200058862A
Authority
KR
South Korea
Prior art keywords
tio
microalgae
nanoparticles
titanium dioxide
cells
Prior art date
Application number
KR1020180143488A
Other languages
Korean (ko)
Other versions
KR102119145B1 (en
Inventor
최형균
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020180143488A priority Critical patent/KR102119145B1/en
Publication of KR20200058862A publication Critical patent/KR20200058862A/en
Application granted granted Critical
Publication of KR102119145B1 publication Critical patent/KR102119145B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Cosmetics (AREA)

Abstract

The present invention relates to a method for culturing microalgae by using titanium dioxide (TiO_2) nanoparticles and culture medium additives for culturing microalgae. More particularly, it has been confirmed that Synechocystis 6803 cells of microalgae, which are cultured in a culture medium treated with titanium dioxide (TiO_2) nanoparticles, have an effect of increasing an amount of producing phycobiliproteins and thylakoid membrane lipids without a change in cell growth compared to a control group so the method for treating titanium dioxide (TiO_2) nanoparticles may be provided as a method for culturing microalgae, which can easily mass-produce phycobiliproteins at a relatively low cost.

Description

티타늄디옥사이드 나노입자를 이용한 미세조류 배양방법{Cultivating method of microalgae using titanium dioxide nano particles}Culture method of microalgae using titanium dioxide nanoparticles {Cultivating method of microalgae using titanium dioxide nanoparticles}

본 발명은 티타늄디옥사이드(titanium dioxide; TiO2) 나노입자를 이용한 미세조류 배양방법 및 미세조류 배양용 배지 첨가제에 관한 것이다.The present invention relates to a method for culturing microalgae using titanium dioxide (Titanium dioxide; TiO 2 ) nanoparticles and a medium additive for culturing microalgae.

미세조류(Microalgae)는 해양 생태계의 생산자로서 스스로 광합성을 하는 단세포 생물로, 그 종류가 수십만에 이르고, 성장 환경에 따라 다양한 생리활성 물질을 만들어 낸다. 특히 심해저나 용암지대 등 극한의 환경에서 자라는 미세조류에서는 육상에는 없는 새로운 기능성 물질이 발견되기도 한다.Microalgae are producers of marine ecosystems and are single-celled organisms that photosynthesize themselves, reaching hundreds of thousands of species and producing various bioactive substances according to their growth environment. In particular, microalgae that grow in extreme environments, such as deep seabeds or lava fields, have found new functional substances that are not found on land.

이러한 미세조류는 단위면적당 유입되는 태양에너지의 10%까지 고정할 수 있는 높은 광합성 효율로 인해 안정적인 바이오매스 생산이 가능하고, 전 세계적으로 식품 및 바이오 연료로서의 활용가능성에 의해 연간 약 1,400만 톤이 생산되고 있으며, 바이오 연료뿐만 아니라 기능성 식품, 의약용 물질, 사료 등의 고부가 유용물질의 재료로 활용 가능성이 점차 커지고 있는 추세이다.These microalgae can produce stable biomass due to high photosynthetic efficiency that can fix up to 10% of the incoming solar energy per unit area, and produce about 14 million tons per year due to their availability as food and biofuels worldwide. It is becoming a trend that the possibility of utilization as a material of high value-added useful substances such as functional foods, medicinal substances, and feed as well as biofuels is gradually increasing.

특히, 항산화효소, 카로티노이드, 피코빌리단백질, 클로로필, 루테인, 아스타잔틴 등 천연 생리활성 물질을 활용한 건강식품, 화장품, 의료소재 및 의약품으로 개발하고자 하는 노력이 전 세계적으로 활발히 이루어지고 있다.In particular, efforts to develop into health foods, cosmetics, medical materials and medicines utilizing natural bioactive substances such as antioxidant enzymes, carotenoids, picobili proteins, chlorophyll, lutein, and astaxanthin are being actively conducted worldwide.

피코빌리단백질(phycobiliproteins)은 열린 고리 테트라피롤의 구조를 갖는 광 수집 단백질로서, 시아노박테리아, 홍조류 및 은편모조류에 의해 생산된다. 세포 내 틸라코이드 막에 존재하며, 수용성 단백질로 흡광도에 따라 피코시아닌(phycocyanin, C-PC), 피코에리스린(phycoerythrin, PE) 및 알로피코시아닌(allophycocyanin, APC)으로 구분된다.Picobiliproteins (phycobiliproteins) are light collecting proteins with the structure of open ring tetrapyrrole, produced by cyanobacteria, red algae and silver flagella. It is present in the intracellular thylakoid membrane, and is a water-soluble protein and is classified into phycocyanin (C-PC), phycoerythrin (PE), and allophycocyanin (APC) according to absorbance.

피코빌리단백질은 색감이 진하며, 수용성의 단백질이기 때문에 식품, 화장품, 의약 분야에서 천연 착색제로 이용 가능하다. 그 중 피코시아닌은 아이스크림이나 화장품의 천연색소 및 형광 마커로 이용되고 있으며, 항산화, 항염증 및 항암 효과에 대한 연구가 보고되고 있다.Picobili protein has a rich color and is a water-soluble protein, so it can be used as a natural colorant in food, cosmetics, and medicine. Among them, phycocyanin is used as a natural pigment and fluorescent marker in ice cream and cosmetics, and research on antioxidant, anti-inflammatory and anti-cancer effects has been reported.

그러나 피코빌리단백질의 배양이 까다롭고 세포 내 단백질의 함량이 높지 않아 생산 단가가 높고 산업화가 어려운 상황이다. 이러한 문제점을 해결하기 위하여, 균주 개량 및 배양공정의 개발을 통하여 세포 내 피코빌리단백질의 함량을 높일 수 있는 연구 개발이 필요한 실정이다.However, the cultivation of picobili protein is difficult and the protein content in the cell is not high, so the production cost is high and industrialization is difficult. In order to solve these problems, research and development is needed to increase the content of picobili proteins in cells through strain improvement and development of a culture process.

한국공개특허 제10-2016-0045168 (2016.04.27. 공개)Korean Patent Publication No. 10-2016-0045168 (published on April 27, 2016)

본 발명은 미세조류 세포 내 피코빌리단백질의 함량을 증가시키기 위해, 티타늄디옥사이드(titanium dioxide; TiO2) 나노입자가 포함된 배지에서 미세조류를 배양하는 방법 및 미세조류 배양용 배지첨가제를 제공하고자 한다.The present invention is to provide a method for culturing microalgae in a medium containing titanium dioxide (TiO 2 ) nanoparticles and a medium additive for culturing microalgae in order to increase the content of picobili proteins in microalgal cells. .

본 발명은 티타늄디옥사이드(titanium dioxide; TiO2) 나노입자가 포함된 배지에서 미세조류 균체를 배양하는 단계를 포함하는 미세조류 배양방법을 제공한다.The present invention provides a method for culturing microalgae comprising culturing microalgae bacterial cells in a medium containing titanium dioxide (TiO 2 ) nanoparticles.

또한, 본 발명은 티타늄디옥사이드(titanium dioxide; TiO2) 나노입자를 유효성분으로 함유하는 미세조류 배양용 배지첨가제를 제공한다.In addition, the present invention provides a medium additive for culturing microalgae containing titanium dioxide (Titanium dioxide; TiO 2 ) nanoparticles as an active ingredient.

본 발명에 따르면, 티타늄디옥사이드(TiO2) 나노입자가 처리된 배지에서 배양된 미세조류 시네코시스티스 6803 세포는 대조군과 비교하여 세포 성장의 변화 없이 피코빌리단백질 및 틸라코이드 막의 지질 생산량을 증가시키는 효과가 확인됨에 따라, 상기 티타늄디옥사이드(TiO2) 나노입자 처리방법은 상대적으로 낮은 가격으로 손쉽게 피코빌리단백질을 대량생산할 수 있는 미세조류 배양방법으로 제공될 수 있다.According to the present invention, microalgae synocytis 6803 cells cultured in a medium treated with titanium dioxide (TiO 2 ) nanoparticles have an effect of increasing the lipid production of the picobiliprotein and thylakoid membranes without changing cell growth compared to the control group. As confirmed, the titanium dioxide (TiO 2 ) nanoparticle treatment method may be provided as a microalgal culture method that can easily mass-produce picobili proteins at a relatively low price.

도 1은 대조군 및 TiO2 처리조건에서 배양된 시네코시스티스 6803의 성장을 확인한 결과이다.1 is a result of confirming the growth of Synocysis 6803 cultured in the control and TiO2 treatment conditions.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명자들은 미세조류 세포 내 낮은 함량의 피코빌리단백질의 생산량을 증가시키기 위한 방법을 연구하던 중 티타늄디옥사이드(titanium dioxide; TiO2) 나노입자 처리를 통한 미세조류 배양 방법이 낮은 가격으로 손쉽게 피코빌리단백질의 생산량을 향상시키는 효과를 나타내는 것을 확인함에 따라 본 발명을 완성하였다.The present inventors are studying a method for increasing the production of a low content of picobili protein in microalgal cells. The microalgal culture method through the treatment of titanium dioxide (TiO 2 ) nanoparticles is easily available at a low price. The present invention was completed by confirming that it exhibits an effect of improving the production amount.

본 발명은 티타늄디옥사이드(titanium dioxide; TiO2) 나노입자가 포함된 배지에서 미세조류 균체를 배양하는 단계를 포함하는 미세조류 배양방법을 제공할 수 있다.The present invention can provide a method for culturing microalgae comprising culturing microalgae cells in a medium containing titanium dioxide (TiO 2 ) nanoparticles.

상기 티타늄디옥사이드(TiO2) 나노입자는 배지 총 100 중량부에 대하여, 10-5 내지 10-1 중량부로 포함될 수 있다.The titanium dioxide (TiO 2 ) nanoparticles may be included in 10 -5 to 10 -1 parts by weight based on 100 parts by weight of the medium.

상기 미세조류 균체는 티타늄디옥사이드(TiO2) 나노입자가 포함된 배지에서 1 내지 20일간 배양될 수 있다.The microalgae cells may be cultured for 1 to 20 days in a medium containing titanium dioxide (TiO 2 ) nanoparticles.

상기 미세조류 균체는 시네코시스티스 속(Synechocystis sp.), 클로렐라 속(Chlorella sp.), 두날리엘라 속(Dunaliella sp.) 및 클라미도모나스 속(Chlamydomonas sp.)으로 이루어진 군에서 선택될 수 있다.The microalgae microbial cell may be selected from the group consisting of the genera Synechocystis sp., Chlorella sp., Dunaliella sp. And Chlamydomonas sp. .

보다 바람직하게는 시네코시스티스 PCC 6803 (Synechocystis sp. PCC 6803)일 수 있다.More preferably, it may be Sinechocystis PCC 6803 (Synechocystis sp.PCC 6803).

상기 미세조류 배양방법은 미세조류 균체 내 피코빌리단백질 (phycobiliproteins), 엽록체 및 지질 생산을 증가시킬 수 있다.The microalgae culture method can increase the production of phycobiliproteins, chloroplasts and lipids in microalgae cells.

상기 피코빌리단백질은 피코시아닌(phycocyanin, PC), 피코에리스린(phycoerythrin, PE) 및 알로피코시아닌(allophycocyanin, APC)으로 이루어진 군에서 선택되는 것일 수 있다.The picobili protein may be selected from the group consisting of phycocyanin (PC), phycoerythrin (PE), and allophycocyanin (APC).

상기 지질은 포스파티딜글리세롤 (phosphatidylglycerols; PGs), 모노갈락토실리디아실글리세롤 (monogalactosyldiacylglycerols; MGDGs) 및 술포퀴노보실디아실글리세롤 (sulfoquinovosyldiacylglycerol; SQDGs)로 이루어진 군에서 선택되는 것일 수 있다.The lipid may be selected from the group consisting of phosphatidylglycerols (PGs), monogalactosyldiacylglycerols (MGDGs) and sulfoquinovosyldiacylglycerols (SQDGs).

본 발명의 실시예에 따르면, 시네코시스티스 6803 세포에 TiO2 나노입자 (25 mg/L)를 처리한 후 8일 및 16일째 시네코시스티스 6803 배양물 내 피코빌리단백질(PC, APC 및 PE) 생산량을 확인한 결과, 표 1과 같이 TiO2 나노입자 처리 후 8일째 실험군에서는 피코빌리단백질 중 피코시아닌(phycocyanin, PC) 및 알로피코시아닌(allophycocyanin, APC)의 함량이 각각 33.8% 및 55.0% 유의적으로 증가되었으며, TiO2 나노입자 처리 후 16일째에는 APC의 함량이 22.4% 증가된 것을 확인할 수 있었다. 또한, 피코에리스린(phycoerythrin, PE) 함량은 TiO2 나노입자 처리 후 8일째 및 16일째에 약간 증가하였다.According to an embodiment of the present invention, picobiliproteins (PC, APC, and PE) in the Synocysis 6803 culture on the 8th and 16th days after treatment with TiO 2 nanoparticles (25 mg / L) in the Synocysis 6803 cells As a result of confirming the production amount, as shown in Table 1, in the experimental group on the 8th day after treatment with TiO 2 nanoparticles, the contents of phycocyanin (PC) and allophycocyanin (allophycocyanin, APC) in the picobili protein were 33.8% and 55.0%, respectively. Significantly increased, it was confirmed that the APC content increased by 22.4% on the 16th day after the TiO 2 nanoparticle treatment. In addition, the phycoerythrin (PE) content increased slightly on the 8th and 16th days after treatment with TiO 2 nanoparticles.

본 발명의 PC 및 PE는 피코빌리좀 간상체에 위치하여 양자를 생산하고 APC로 에너지를 전달하는 역할을 하며, 알파 및 베타 서브유니트를 가진 APC는 상기 서브유니트로 에너지를 모아 틸라코이드막 내 엽록소로 전달하는 역할을 하는 피코빌리좀의 매우 중요한 중심 성분으로, 본 발명에 따른 TiO2 나노입자 처리는 엽록소로 에너지를 전달하는 과정에 있어서 매우 영향을 주어 APC 함량을 증가시키는 것이 확인되었다. PE는 매우 유연한 피코빌리단백질로, 환경 변화에 대한 기관 적응의 결과이다.PC and PE of the present invention is located in the picobilisome rod, producing both and transferring energy to APC, APC having alpha and beta subunits collects energy as the subunit and transfers it to chlorophyll in the thylakoid membrane As a very important central component of the picobilisome that plays a role, it was confirmed that the TiO 2 nanoparticle treatment according to the present invention greatly influences the process of transferring energy to chlorophyll and increases APC content. PE is a highly flexible picobili protein, a result of organ adaptation to environmental changes.

또한, 본 발명의 다른 실시예에 따르면, TiO2 나노입자를 처리하여 배양한 시네코시스티스 6803 세포와 대조군 시네코시스티스 6803 세포의 대사산물을 GC-MS 분석을 수행하여 포괄적으로 정량화한 결과, 표 3과 같이 총 34 지질 종이 확인되었으며, 특히 8일째에 MGDGs (18:2/18:3, 18:2/18:2, 18:1/18:2), PG (16:0/16:1) 및 SQDGs (16:0/16:1, 16:0:18:4)의 상대적 수준이 유의하게 증가된 것을 확인할 수 있었다.In addition, according to another embodiment of the present invention, as a result of comprehensive quantification of metabolites of Synecoctistis 6803 cells cultured by treating TiO 2 nanoparticles and control Synecosistis 6803 cells by GC-MS analysis, the table A total of 34 lipid species were identified as 3, especially MGDGs on day 8 (18: 2/18: 3, 18: 2/18: 2, 18: 1/18: 2), PG (16: 0/16: 1) ) And SQDGs (16: 0/16: 1, 16: 0: 18: 4).

본 발명의 MGDG, SQDG 및 PG는 시아노박테리아 및 고등 식물에서 광 의존성 광합성이 이루어지는 틸라코이드 막의 주성분으로 알려져있다.The MGDG, SQDG and PG of the present invention are known to be the main components of the thylakoid membrane in which photo-dependent photosynthesis is achieved in cyanobacteria and higher plants.

또한, 본 발명은 티타늄디옥사이드(titanium dioxide; TiO2) 나노입자를 유효성분으로 함유하는 미세조류 배양용 배지첨가제를 제공할 수 있다.In addition, the present invention can provide a medium additive for culturing microalgae containing titanium dioxide (Titanium dioxide; TiO 2 ) nanoparticles as an active ingredient.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help understanding of the present invention. However, the following examples are merely illustrative of the contents of the present invention, and the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

<< 실험예Experimental Example 1> 배양 조건 및  1> culture conditions and TiOTiO 22 NPsNPs 처리 process

시네코시스티스 속 PCC 6803(Synechocystis sp. PCC 6803)을 Pasteur Culture Collection, Pasteur Institute (Paris, France)에서 얻었다.Synechocystis sp.PCC 6803 was obtained from the Pasteur Culture Collection, Pasteur Institute (Paris, France).

진탕배양기(NEX220SRL, Nexus Technologies, Seoul, Republic of Korea)를 이용하여 상기 균주를 30 ± 1℃에서 120 rpm으로 배양하였으며, 배양기간 동안 40 μmol 광자 m-2 s-1 형광등을 16:8 시간 낮/밤 주기로 조사하였다.The strain was cultured at 30 ± 1 ° C. at 120 rpm using a shake incubator (NEX220SRL, Nexus Technologies, Seoul, Republic of Korea), and during the incubation period, 40 μmol photon m -2 s -1 fluorescent light was lowered for 16: 8 hours. / Investigate at night cycle.

코발트와 함께 금속염 혼합물 A5(trace metal mix A5) 1 mL/L, 시트르산철암모늄(ammonium iron citrate) 6 mg/L, Na2CO3 20 mg/L 및 K2HPO4 30.5 mg/L이 포함된 블루-그린 배지(BG11, Sigma-Aldrich, St. Louis, MO, USA)에서 세포를 배양하고 일반적인 방법으로 매주 새로운 배지로 계대배양하여 500 μL의 스톡 배양물을 200 mL의 삼각 플라스크 내 40 mL 배지에 접종하였다.Metal salt mixture A5 (trace metal mix A5) with cobalt 1 mL / L, ammonium iron citrate 6 mg / L, Na 2 CO 3 20 mg / L and K 2 HPO 4 30.5 mg / L Cells were cultured in blue-green medium (BG11, Sigma-Aldrich, St. Louis, MO, USA) and subcultured with fresh medium every week in the usual way to transfer 500 μL of stock culture into a 200 mL Erlenmeyer flask in a 200 mL Erlenmeyer flask Was inoculated.

TiO2 나노입자(NPs)를 처리하기 위해, 500 μL의 스톡 배양물을 250 mL 삼각플라스크 내 TiO2 나노입자 스톡 용액 2.5 mL과 대조군으로 동량의 증류수가 포함된 배지 100 mL에 접종하여 배양하였다.To process TiO 2 nanoparticles (NPs), 500 μL of stock culture was inoculated into 2.5 mL of TiO 2 nanoparticle stock solution in a 250 mL Erlenmeyer flask and 100 mL of medium containing the same amount of distilled water as a control.

상기 TiO2 나노입자는 Sigma-Aldrich (CAS No. 1317-70-0, particle size: < 25 nm, anatase)에서 얻었으며, TiO2 나노입자 스톡 용액 1 g/L를 증류수에 넣고 울트라소니케이터(JAC-2010, Kodo, Hwaseong, Korea)를 이용하여 1시간 동안 초음파처리하여 나노입자 분산물을 준비하였다.The TiO 2 nanoparticles were obtained from Sigma-Aldrich (CAS No. 1317-70-0, particle size: <25 nm, anatase), and 1 g / L of a TiO 2 nanoparticle stock solution was added to distilled water and ultrasonicator. (JAC-2010, Kodo, Hwaseong, Korea) was used to sonicate for 1 hour to prepare a nanoparticle dispersion.

실험 전(0 일) 나노입자 분산물(2.5 mL)을 TiO2 나노입자 처리 실험군에 TiO2 나노입자를 25 mg/L 농도로 첨가하였으며, 대조군에는 동량의 증류수를 첨가하였다.Experiment before (day 0) was a nano-TiO 2 particles are added to 25 mg / L concentration of the nanoparticle dispersion (2.5 mL) to TiO 2 nanoparticles treated experimental group, control group was added to an equal volume of distilled water.

각 처리군은 3회 반복 수행되었으며, TiO2 나노입자 처리 후, 시네코시스티스 6803 세포를 0일(대조군), 8일째 및 16일째 수집하였다.Each treatment group was repeatedly performed three times, and after treatment with TiO 2 nanoparticles, Synocysis 6803 cells were collected on Day 0 (control), Day 8, and Day 16.

동결건조기(FDU-1200, EYELA, Miyagi, Japan)를 이용하여 수집된 세포를 건조시키고, 추후 분석을 위해 -80℃에서 저장하였다.The collected cells were dried using a freeze dryer (FDU-1200, EYELA, Miyagi, Japan) and stored at -80 ° C for further analysis.

<< 실험예Experimental Example 2> 세포 성장 확인 2> Confirm cell growth

시네코시스티스 6803 세포의 성장 분석을 통하여 TiO2 나노입자의 영향을 확인하기 위해, 세포 배양물 200 μL를 96 웰 플레이트(Corning Inc., Corning, NY, USA)에 옮겨 담고 microplate spectrophotometer (xMarkTM, BIO-RAD, California, USA)를 이용하여 730 nm에서 광학 밀도(optical densities; OD)를 확인하였다.To confirm the effect of TiO 2 nanoparticles through the growth analysis of Synocysis 6803 cells, 200 μL of cell culture was transferred to a 96 well plate (Corning Inc., Corning, NY, USA) and a microplate spectrophotometer (xMarkTM, BIO) -RAD, California, USA) to confirm optical densities (OD) at 730 nm.

OD를 매일 세 번 반복측정하여, 생물학적 및 분석학적 복제의 평균을 기준으로 계산하였다.OD was measured three times daily, and calculated based on the average of biological and analytical replicates.

<< 실험예Experimental Example 3> 엽록소(Chlorophyll) 함량 확인 3> Check chlorophyll content

이전에 보고된 방법에 따라(18), 시네코시스티스 6803 배양물 내 엽록소 함량을 확인하였다.According to the previously reported method (18), the chlorophyll content in the Synecesistis 6803 culture was confirmed.

간략하게, 각 시료의 세포 현탁액 1 mL를 4℃, 10,000×g로 10분간 원심분리하여 상층액을 제거하고 펠렛을 얻었다.Briefly, 1 mL of the cell suspension of each sample was centrifuged at 4 ° C. and 10,000 × g for 10 minutes to remove the supernatant and to obtain a pellet.

상기 펠렛에 메탄올 0.9 mL을 첨가하여 4℃에서 1시간 동안 냉각시킨 후 4℃, 10,000×g로 10분간 원심분리하고, 665 nm에서 메탄올 추출물의 흡광도와 하기 계산식을 이용하여 엽록소 함량을 계산하였다.After adding 0.9 mL of methanol to the pellet, cooled at 4 ° C. for 1 hour, centrifuged at 4 ° C. and 10,000 × g for 10 minutes, and the chlorophyll content was calculated using the absorbance of the methanol extract at 665 nm and the following formula.

Figure pat00001
Figure pat00001

<< 실험예Experimental Example 4>  4> 피코빌리단백질Picobili protein (( PhycobiliproteinsPhycobiliproteins ) 함량 확인) Check the content

이전에 보고된 방법에 따라(Hong, S. J. et al., Biotechnol. Bioprocess Eng. 2008), 시네코시스티스 6803 배양물 (1 mL 세포 현탁액) 내 피코빌리단백질 함량을 확인하였다. 피코시아닌(PC), 알로피코시아닌(APC) 및 피코에리트린(PE)의 함량을 하기 계산식 2, 3 및 4를 이용하여 계산하였다.According to the previously reported method (Hong, S. J. et al., Biotechnol. Bioprocess Eng. 2008), the picobiliprotein content in the Synocysis 6803 culture (1 mL cell suspension) was confirmed. The contents of phycocyanin (PC), allopicocyanin (APC) and phycoerythrin (PE) were calculated using the following equations 2, 3 and 4.

Figure pat00002
Figure pat00002

<< 실험예Experimental Example 5>  5> GCGC -MS를 이용한 종합적인 대사물질 확인-Comprehensive metabolite identification using MS

이전에 보고된 방법에 따라(Kim, J. Y. et al., PLoS One 2017), 동결 건조된 시네코시스티스 6803 배양물을 시료로 칭량하고, GC-MS를 이용하여 각각 10 mg의 샘플의 종합적인 대사물질 분석을 수행하였다.According to the previously reported method (Kim, JY et al., PLoS One 2017), the freeze-dried Synocysis 6803 culture was weighed into a sample, and the total metabolism of each 10 mg sample was measured using GC-MS. Material analysis was performed.

<< 실험예Experimental Example 6>  6> DIDI -MS를 이용한 지방종 확인-Confirmation of lipoma using MS

이전에 보고된 방법에 따라(Kim, S. H. et al., Food Chem. 2016), 동결 건조된 시네코시스티스 6803 배양물을 시료로 칭량하고, DI-MS를 이용하여 각각 5 mg의 샘플의 순수한 지방종을 분석하였다.According to the previously reported method (Kim, SH et al., Food Chem. 2016), freeze-dried Synocysis 6803 cultures were weighed into samples and pure lipomas of 5 mg of samples each using DI-MS. Was analyzed.

<< 실험예Experimental Example 7> ICP-MS를 이용한 미량원소 확인 7> Trace element identification using ICP-MS

6000K에서 작동하는 아르곤 플라즈마가 장착된 NexION 350D ICP-mass spectrometer를 이용하여 ICP-MS(an inductively coupled plasma mass spectrometry)를 측정하여 시네코시스티스 6803 세포에서 Fe, Mg, Ti, Mn 및 Zn의 함량을 확인하였다.An inductively coupled plasma mass spectrometry (ICP-MS) was measured using a NexION 350D ICP-mass spectrometer equipped with an argon plasma operating at 6000K to determine the content of Fe, Mg, Ti, Mn, and Zn in Synecesis 6803 cells. Confirmed.

각 분석을 위해, 동결 건조된 시네코시스티스 6803 세포 10 mg을 질산 8 mL에 첨가하여 30분간 분해시키고 전처리 시료의 최종 중량이 15 g이 되도록 조절하였다.For each analysis, 10 mg of freeze-dried Synocysis 6803 cells were added to 8 mL of nitric acid to digest for 30 minutes and adjusted to a final weight of the pretreated sample of 15 g.

마지막으로 ICP-MS 분석 전 모든 시료를 Fe 및 Mg에 대하여 100배 희석하였으며, Ti, Mn 및 Zn은 10배 희석하여 매트릭스의 영향을 최소화하고 염 형성을 방지하였다.Finally, before ICP-MS analysis, all samples were diluted 100-fold with respect to Fe and Mg, and Ti, Mn and Zn were diluted 10-fold to minimize the influence of the matrix and prevent salt formation.

각 시료를 2회 측정하고 평균 ± 표준편차(SD)로 데이터 값을 나타내었다.Each sample was measured twice and the data values are expressed as mean ± standard deviation (SD).

<< 실시예Example 1>  1> TiOTiO 22 나노입자 처리에 의한 세포 성장 및 엽록소 함량 증가 효과 확인 Confirm the effect of cell growth and chlorophyll content increase by nanoparticle treatment

시네코시스티스 6803 세포 성장에 있어서, TiO2 나노입자 처리에 의한 영향을 확인하기 위해, 16일 동안 매일 변화를 확인하였다. In Synocystis 6803 cell growth, changes were checked daily for 16 days to confirm the effect of TiO 2 nanoparticle treatment.

그 결과, 도 1과 같이 TiO2 나노입자가 처리된 세포군과 처리되지 않은 대조군 세포의 성장 특징에 대한 차이점은 나타나지 않았다.As a result, as shown in FIG. 1, there was no difference in growth characteristics between the treated cell group treated with TiO 2 nanoparticles and the untreated control cell.

상기 결과로부터 TiO2 나노입자 노출은 시네코시스티스 6803 세포 성장에 큰 영향을 미치지 않는 것으로 확인되었으며, 이는 북아메리카 조류 10종의 TiO2 나노입자 노출에 대한 연구에서 TiO2 나노입자 노출은 조류성장에 영향을 주지 않는다는 연구결과와 일치한다.TiO 2 nanoparticles exposed from the resulting cine Cauchy seutiseu was that it does not have a significant impact on the 6803 cell growth, which affect the TiO 2 nanoparticles exposed in the study of the TiO 2 nanoparticles exposure of 10 kinds of North American birds algae growth It is consistent with the research results that do not give.

또한, TiO2 나노입자 처리에 따른 시네코시스티스 6803의 엽록소 함량 변화에 확인하였다.In addition, it was confirmed in the change in the chlorophyll content of Synocysistis 6803 according to the TiO 2 nanoparticle treatment.

그 결과, 표 1과 같이 TiO2 나노입자 처리 후 처음 8일 동안 시네코시스티스 6803의 엽록소 함량의 변화가 나타나지 않은 것이 확인된 반면, 처리 16일 후 엽록소 함량이 62.2% 증가된 것을 확인할 수 있었다.As a result, as shown in Table 1, it was confirmed that there was no change in chlorophyll content of Synocysistis 6803 for the first 8 days after TiO 2 nanoparticle treatment, while it was confirmed that chlorophyll content increased 62.2% after 16 days of treatment.

미세조류 세포는 TiO2 나노입자의 큰 응집체에 갇히기 때문에 이용 가능성이 제한되고 결과적으로 조류세포의 성장이 억제될 수 있다.Since microalgae cells are trapped in large aggregates of TiO 2 nanoparticles, their availability is limited and as a result, algal cell growth can be inhibited.

그러나 본 발명에 따른 TiO2 나노입자 처리를 통한 시네코시스티스 6803 배양은 엽록체 활동의 기능을 향상시키는 데 중요한 역할을 하여 시네코시스티스 6803의 엽록체 함량을 증가시키는 것으로 확인되었다.However, it was confirmed that the cultivation of Synocysis 6803 through the TiO 2 nanoparticle treatment according to the present invention plays an important role in improving the function of chloroplast activity, thereby increasing the chloroplast content of Synocysis 6803.

Figure pat00003
Figure pat00003

<< 실시예Example 2> 2> TiOTiO 22 나노입자 처리에 의한  By nanoparticle treatment 피코빌리단백질Picobili protein 함량 증가 효과 확인 Check the effect of increasing content

시네코시스티스 6803의 피코빌리단백질 함량에 미치는 TiO2 나노입자의 영향을 확인하기 위해, 시네코시스티스 6803 세포에 TiO2 나노입자를 처리한 후 8일 및 16일째 시네코시스티스 6803 배양물 내 피코빌리단백질(PC, APC 및 PE) 생산량을 확인하였다.In order to confirm the effect of TiO 2 nanoparticles on the Picobili protein content of Synocystis 6803, after treatment with TiO 2 nanoparticles on Synocystis 6803 cells, picobilis in the Synocystis 6803 culture on days 8 and 16 Protein (PC, APC and PE) production was confirmed.

그 결과, 표 1과 같이 대조군과 비교하여 TiO2 나노입자가 처리된 실험군에서 피코빌리단백질 생산량이 증가하였다. 보다 상세하게 TiO2 나노입자 처리 후 8일째 실험군에서는 피코빌리단백질 중 피코시아닌(phycocyanin, PC) 및 알로피코시아닌(allophycocyanin, APC)의 함량이 각각 33.8% 및 55.0% 유의적으로 증가되었으며, TiO2 나노입자 처리 후 16일째에는 APC의 함량이 22.4% 증가된 것을 확인할 수 있었다. 피코에리스린(phycoerythrin, PE) 함량은 TiO2 나노입자 처리 후 8일째 및 16일째에도 유의적이지는 않지만 약간 증가하는 것이 확인되었다.As a result, as shown in Table 1, compared to the control group, the amount of picobiliprotein production increased in the experimental group treated with TiO 2 nanoparticles. In more detail, in the experimental group on the 8th day after the treatment with TiO 2 nanoparticles, the contents of phycocyanin (PC) and allophycocyanin (allophycocyanin, APC) among the picobili proteins were significantly increased by 33.8% and 55.0%, respectively. On the 16th day after the TiO 2 nanoparticle treatment, it was confirmed that the APC content increased by 22.4%. The phycoerythrin (PE) content was found to increase slightly, although not significantly, on the 8th and 16th days after the TiO 2 nanoparticle treatment.

TiO2 나노입자가 미세조류 배양에 있어서, 피코빌리단백질의 함량을 증가시킨 방법으로 몇 가지 가능한 설명이 있다.There are several possible explanations for the method in which the TiO 2 nanoparticles have increased the content of picobili protein in the culture of microalgae.

첫 번째, TiO2 나노입자에 의한 산화스트레스에 대한 보호 반응으로 시네코시스티스 6803 세포 내에서 항산화물질인 피코빌리단백질의 함량을 증가시키는 것일 수 있다.First, as a protective reaction against oxidative stress by TiO 2 nanoparticles, it may be to increase the content of picobiliprotein, an antioxidant, in the Synocysis 6803 cells.

피코빌리단백질은 중요한 광합성 색소 단백질로 미세조류 및 시아노박테리아에 존재하며 항산화제로서의 기능이 알려져있다.Picobili protein is an important photosynthetic pigment protein that is present in microalgae and cyanobacteria and is known for its function as an antioxidant.

TiO2 나노입자는 활성 산소종을 생성함으로써, 미세조류 세포에 항산화 스트레스를 유도함에 따라, 미세조류는 색소, 글루타티온, 아스코르빅산 및 페놀 화합물과 같은 항산화 성분들을 합성하여 세포 손상을 예방한다. As TiO 2 nanoparticles induce antioxidant stress in microalgal cells by generating reactive oxygen species, microalgae prevent cell damage by synthesizing antioxidant components such as pigments, glutathione, ascorbic acid, and phenolic compounds.

두 번째, TiO2 나노입자의 빛 차단 효과에 따른 광합성 억제에 대한 보상효과로 시네코시스티스 6803 세포 내 피코빌리단백질 함량이 증가될 수 있다.Second, as a compensation effect for photosynthesis inhibition according to the light blocking effect of the TiO 2 nanoparticles, the content of picobili protein in the Synocystis 6803 cell may be increased.

나노입자의 내재화 또는 세포표면 결합은 광합성에 대한 광 가동률을 감소시키는 반면, 광 가동률을 증가시키기 위해 빛을 흡수하는 광합성 색소 함량을 증가시킬 수 있다. Internalization of nanoparticles or cell surface binding may decrease the light utilization rate for photosynthesis, while increasing the photosynthetic pigment content that absorbs light to increase the light utilization rate.

따라서, TiO2 나노입자의 조절작용은 단백질 이용을 촉진시키고, 시네코시스티스 6803 세포 내 피코빌리단백질의 생산을 증가시킬 수 있다.Thus, the modulating action of TiO 2 nanoparticles can promote protein utilization and increase the production of picobili proteins in the Synocystis 6803 cells.

<< 실시예Example 3>  3> TiOTiO 22 나노입자 처리에 의한  By nanoparticle treatment 시네코시스티스Synecesis 6803 세포 내 포괄적인 대사물 및 손상되지 않은  6803 Comprehensive metabolites and intact cells 지질종Geological species 프로파일 확인 Profile Check

TiO2 나노입자를 처리하여 배양한 시네코시스티스 6803 세포와 대조군 시네코시스티스 6803 세포의 대사산물을 GC-MS 분석을 수행하여 포괄적으로 정량화하였다.Metabolic products of Synocystis 6803 cells cultured by treating TiO 2 nanoparticles and control Synecesistis 6803 cells were comprehensively quantified by performing GC-MS analysis.

그 결과, 표 2와 같이 27개의 대사물질이 확인되었으며, 알콜, 아미노산, 지방산, 유기산 및 당와 같은 다른 범주로 분류되었다.As a result, as shown in Table 2, 27 metabolites were identified and classified into different categories such as alcohol, amino acid, fatty acid, organic acid, and sugar.

대조군과 TiO2 나노입자 처리군의 시료 간에 피롤리돈카복실산(pyroglutamic acid), 트레오닌(threonine), 리놀릭산(linoleic acid), 리놀레익산(linolenic acid), 펜타데카논산(pentadecanoic acid), 락틱산(lactic acid), 숙신산(succinic acid) 및 멜리바이오스(melibiose)와 같은 8개의 대사물질은 상대적인 수준 차이를 나타내었으며, 시네코시스티스 6803 세포 배양에 있어서, TiO2 나노입자 처리에 의한 각 대사물질군의 변화는 나타나지 않았다.Between the control group and the sample of the TiO 2 nanoparticle treatment group, pyrrolidone carboxylic acid, threonine, linoleic acid, linolenic acid, pentadecanoic acid, lactic acid Eight metabolites, such as (lactic acid), succinic acid, and melibiose, showed a relative level difference, and in the Synocystis 6803 cell culture, each metabolite group was treated with TiO 2 nanoparticles No change was seen.

또한, DI-MS 분석을 통하여 TiO2 나노입자가 처리에 대한 반응으로 시네코시스티스 6803 세포 내 손상되지 않은 지질종의 다양성을 확인하였다.In addition, through the DI-MS analysis, diversity of the intact lipid species in the Synocysis 6803 cells was confirmed in response to treatment with TiO 2 nanoparticles.

그 결과, 표 3을 참고하면 다음과 같은 총 34 지질 종이 확인되었다: 5 포스파티딜글리세롤 (phosphatidylglycerols; PGs), 1 포스파티딜이노시톨 (phosphatidylinositol; PI), 7 모노갈락토실리디아실글리세롤 (monogalactosyldiacylglycerols; MGDGs), 3 디갈락토실디아실글리세롤 (digalactosyldiacylglycerol; DGDGs), 16 술포퀴노보실디아실글리세롤 (sulfoquinovosyldiacylglycerol; SQDGs) 및 2 피틸 유도체 (phytyl derivatives). As a result, referring to Table 3, a total of 34 lipid species were identified as follows: 5 phosphatidylglycerols (PGs), 1 phosphatidylinositol (PI), 7 monogalactosyldiacylglycerols (MGDGs), 3 digalactosyldiacylglycerols (DGDGs), 16 sulfoquinovosyldiacylglycerols (SQDGs) and 2 phytyl derivatives.

대부분의 순수한 지질종의 상대적 수준은 대조군과 TiO2 나노입자 처리 후 8일 및 16일째의 실험군에서 실험 0일째보다 높은 것을 확인할 수 있었다.It was confirmed that the relative level of most pure lipid species was higher than that of the control group and the experimental group on the 8th and 16th days after the TiO 2 nanoparticle treatment.

특히, TiO2 나노입자 처리 8일째에 MGDGs (18:2/18:3, 18:2/18:2, 18:1/18:2), PG (16:0/16:1) 및 SQDGs (16:0/16:1, 16:0:18:4)의 상대적 수준이 유의하게 증가되었다.In particular, MGDGs the TiO 2 nanoparticle treatment day 8 (18: 2/18: 3, 18 : 2/18: 2, 18: 1/18: 2), PG (16: 0/16: 1) and SQDGs ( The relative levels of 16: 0/16: 1 and 16: 0: 18: 4) were significantly increased.

시아노박테리아 및 고등 식물에서 MGDG, DGDG, SQDG 및 PG는 광 의존성 광합성이 이루어지는 틸라코이드 막의 주성분으로 알려져있다.In cyanobacteria and higher plants, MGDG, DGDG, SQDG and PG are known to be the main components of the thylakoid membrane, which undergoes photo-dependent photosynthesis.

MGDG는 애기장대의 광합성 기관을 구성하는 것으로 보고되어 졌으며, SQDG는 녹조류인 클라미도모나스(Chlamydomonas reinhardtii)의 광계 I 보다 광계 II의 활성에 기여하며, 시네코시스티스 6803에서는 염색체 DNA 복제를 위한 역할을 수행하는 것으로 알려져있다. It has been reported that MGDG constitutes the photosynthetic organ of Arabidopsis thaliana, and SQDG contributes to activity of photosystem II than photosystem I of Chlamydomonas reinhardtii, a green algae, and plays a role for chromosomal DNA replication in Synocysis 6803. It is known to perform.

또한, PG는 시네코시스티스의 주요 광합성 활성을 위한 필수적인 지질 종으로 알려져 있으며, PG의 결핍은 시네코시스티스 PCC 7942/ΔcdsA 변이종에서 엽록소 함량을 감소시키고 산소 전개 광 시스템 II를 억제시키는 것으로 보고되었다41,42.In addition, PG is known to be an essential lipid species for the main photosynthetic activity of Synocysis, and a deficiency of PG has been reported to reduce chlorophyll content and inhibit oxygen evolution photosystem II in Synocysis PCC 7942 / ΔcdsA mutants41 , 42.

이와 유사하게 본 발명의 실험결과에서도 TiO2 나노입자 처리 16일 후 유의한 시네코시스티스 6803의 엽록소 함량 증가는 TiO2 나노입자 처리에 의한 PG 증가에 의한 것으로 확인되었다.Similarly, increasing the chlorophyll content of a cine Cauchy seutiseu 6803 significantly in the experimental results of the invention TiO 2 nanoparticles treated 16 days after it was confirmed that by increasing PG by the TiO 2 nanoparticle treatment.

또한, 배양 8일째 MGDG, PG 및 SQDG의 상대적 수준증가 역시 피코빌리단백질의 함량 증가와 관련있는 것이 확인되었다. In addition, it was confirmed that the relative level increase of MGDG, PG and SQDG on the 8th day of culture was also related to an increase in the content of picobili proteins.

광합성은 틸라코이드 막 내 피코빌리솜, 산성 지방 및 조효소의 세트 간의 복잡한 상호작용에 의한 것으로, TiO2 나노입자 처리는 피코빌리단백질(APC, PC)과 산성 지방(MGDG, SQDG, 및 PG)을 증가시킴으로써 시네코시스티스 6803 배양에서 광합성을 향상시키는 중요한 역할을 하는 것이 확인되었다.Photosynthesis is due to a complex interaction between a set of picobilisomes, acidic fats and coenzymes in a thylakoid membrane, and TiO 2 nanoparticle treatment increases picobiliproteins (APC, PC) and acidic fats (MGDG, SQDG, and PG) By doing so, it was confirmed that it plays an important role in enhancing photosynthesis in the Synocysis 6803 culture.

상기 결과는 시네코시스티스 6803에서 TiO2 나노입자 처리에 의한 순수한 지질 종의 변화와 지질종과 피코빌리단백질간의 상관관계를 최초로 확인된 것이다.The results are the first to confirm the correlation between the lipid species and the picobiliprotein and the change of the pure lipid species by treatment with TiO 2 nanoparticles in Synecesistis 6803.

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

<< 실시예Example 4>  4> TiOTiO 22 나노입자에 의해 유도되는  Induced by nanoparticles Ti의Ti's 전좌Translocation 및 Fe, Mg, Mn 및 Zn 농도 변화 확인 And Fe, Mg, Mn and Zn concentration changes

ICP-MS를 이용하여 8일째 및 16일째 Ti, Fe, Mg, Mn 및 Zn 세포 내 농도를 확인하여 TiO2 나노입자 처리에 의한 영향을 확인하였다.The concentrations of Ti, Fe, Mg, Mn, and Zn cells on the 8th and 16th day were checked using ICP-MS to confirm the effect of TiO 2 nanoparticle treatment.

그 결과, 표 4와 같이 세포 내 Ti 수준은 TiO2 나노입자를 배지에 처리한 후 8 및 16일째 유의하게 증가된 것을 확인할 수 있었다.As a result, as shown in Table 4, it was confirmed that the Ti level in the cells was significantly increased on the 8th and 16th days after the TiO 2 nanoparticles were treated in the medium.

상기 결과로부터 TiO2 나노입자 처리에 의해 Ti가 시네코시스티스 6803 세포로 전좌된 것이 확인되었다.From the above results, it was confirmed that Ti was translocated to Synocysis 6803 cells by treatment with TiO 2 nanoparticles.

최근 연구에서 미세조류 내 TiO2 나노입자의 응집과 세포 내로의 전위가 보고되었으며, 본 발명에서는 TiO2 나노입자 처리 8일 후 Fe, Mg, Mn 및 Zn의 농도가 유의하게 감소하였으며, Fe, Mn 및 Zn는 16일 후에도 감소되었다. In a recent study, aggregation of TiO 2 nanoparticles in microalgae and dislocation into cells were reported. In the present invention, the concentrations of Fe, Mg, Mn, and Zn were significantly reduced after 8 days of TiO 2 nanoparticle treatment, and Fe, Mn And Zn was also reduced after 16 days.

Fe는 미세조류에 있어서, 세포 성장과 피코빌리단백질 합성을 유지시키는 중요한 인자로 알려져 왔다. Fe has been known to be an important factor in maintaining cell growth and picobili protein synthesis in microalgae.

Kuchmina의 연구에서는 피코빌리단백질의 헴(heme) 생합성에서 필수적인 효소로 철결합효소를 보고하였으며, Mg 또한 미세조류 내 지방산 증가와 엽록소 및 MGDG의 생합성에 중요한 인자인 것으로 보고되었으며, Mn과 Zn은 식물과 미세조류의 광합성계에 중요한 역할을 하는 것으로 확인되었다.Kuchmina's study reported iron binding enzyme as an essential enzyme in heme biosynthesis of picobili proteins, and Mg was also reported to be an important factor in increasing fatty acids in microalgae and biosynthesis of chlorophyll and MGDG. It has been confirmed that it plays an important role in the photosynthesis system of superalgae.

TiO2 나노입자 처리는 시네코시스티스 6803 세포의 엽록소, 피코빌리단백질, 순수한 지질종(주로 MGDG) 수준 및 광 시스템 활성을 증가시키기 위해서 Fe, Mg, Mn, 및 Zn의 이용을 촉진시키는 것으로 확인되었다.TiO 2 nanoparticle treatment has been found to promote the use of Fe, Mg, Mn, and Zn to increase chlorophyll, picobiliprotein, and pure lipid species (mainly MGDG) levels and light system activity of Synocytistis 6803 cells. .

Figure pat00006
Figure pat00006

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since the specific parts of the present invention have been described in detail above, for those skilled in the art, it is clear that such specific technology is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (8)

티타늄디옥사이드(titanium dioxide; TiO2) 나노입자가 포함된 배지에서 미세조류 균체를 배양하는 단계를 포함하는 미세조류 배양방법.Method for culturing microalgae comprising culturing microalgae cells in a medium containing titanium dioxide (TiO 2 ) nanoparticles. 청구항 1에 있어서, 상기 티타늄디옥사이드(TiO2) 나노입자는 배지 총 100 중량부에 대하여, 10-5 내지 10-1 중량부로 포함되는 것을 특징으로 하는 미세조류 배양방법.The method according to claim 1, wherein the titanium dioxide (TiO 2 ) nanoparticles, microalgae culture method, characterized in that contained in 10 to 5 to 10 -1 parts by weight based on 100 parts by weight of the medium. 청구항 1에 있어서, 상기 미세조류 균체는 티타늄디옥사이드(TiO2) 나노입자가 포함된 배지에서 1 내지 20일간 배양되는 것을 특징으로 하는 미세조류 배양방법.The method according to claim 1, wherein the microalgae cells are cultured microalgae, characterized in that cultured for 1 to 20 days in a medium containing titanium dioxide (TiO 2 ) nanoparticles. 청구항 1에 있어서, 상기 미세조류 균체는 시네코시스티스 속(Synechocystis sp.), 클로렐라 속(Chlorella sp.), 두날리엘라 속(Dunaliella sp.) 및 클라미도모나스 속(Chlamydomonas sp.)으로 이루어진 군에서 선택되는 것을 특징으로 하는 미세조류 배양방법.The method according to claim 1, wherein the microalgae is a group consisting of the genus Synechocytistis (Synechocystis sp.), Chlorella sp., Dunaliella sp. And Chlamydomonas sp. Microalgae culture method, characterized in that selected from. 청구항 1에 있어서, 상기 미세조류 배양방법은 미세조류 균체 내 피코빌리단백질 (phycobiliproteins) 및 지질 생산을 증가시키는 것을 특징으로 하는 미세조류 배양방법.The method according to claim 1, wherein the method of culturing the microalgae is a method of cultivating microalgae, characterized by increasing the production of phycobiliproteins and lipids in microalgae cells. 청구항 5에 있어서, 상기 피코빌리단백질은 피코시아닌(phycocyanin, PC), 피코에리스린(phycoerythrin, PE) 및 알로피코시아닌(allophycocyanin, APC)으로 이루어진 군에서 선택되는 것을 특징으로 하는 미세조류 배양방법.The method according to claim 5, wherein the picobili protein is selected from the group consisting of phycocyanin (phycocyanin, PC), phycoerythrin (PE), and allopicocyanin (allophycocyanin, APC) microalgae culture. Way. 청구항 5에 있어서, 상기 지질은 포스파티딜글리세롤 (phosphatidylglycerols; PGs), 모노갈락토실리디아실글리세롤 (monogalactosyldiacylglycerols; MGDGs) 및 술포퀴노보실디아실글리세롤 (sulfoquinovosyldiacylglycerol; SQDGs)로 이루어진 군에서 선택되는 것을 특징으로 하는 미세조류 배양방법.The method according to claim 5, wherein the lipid is selected from the group consisting of phosphatidylglycerols (phosphatidylglycerols; PGs), monogalactosyldiacylglycerols (MGDGs) and sulfoquinovosyldiacylglycerols (SQDGs). Microalgae culture method. 티타늄디옥사이드(titanium dioxide; TiO2) 나노입자를 유효성분으로 함유하는 미세조류 배양용 배지첨가제.Titanium dioxide (Titanium dioxide; TiO 2 ) medium additive for culturing microalgae containing nanoparticles as an active ingredient.
KR1020180143488A 2018-11-20 2018-11-20 Cultivating method of microalgae using titanium dioxide nano particles KR102119145B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180143488A KR102119145B1 (en) 2018-11-20 2018-11-20 Cultivating method of microalgae using titanium dioxide nano particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180143488A KR102119145B1 (en) 2018-11-20 2018-11-20 Cultivating method of microalgae using titanium dioxide nano particles

Publications (2)

Publication Number Publication Date
KR20200058862A true KR20200058862A (en) 2020-05-28
KR102119145B1 KR102119145B1 (en) 2020-06-04

Family

ID=70920297

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180143488A KR102119145B1 (en) 2018-11-20 2018-11-20 Cultivating method of microalgae using titanium dioxide nano particles

Country Status (1)

Country Link
KR (1) KR102119145B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862210A (en) * 2021-05-11 2021-12-31 苏州吉态来胺生物科技有限公司 Method for promoting high yield of astaxanthin by phaffia rhodozyma

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160045168A (en) 2014-10-16 2016-04-27 서강대학교산학협력단 The production of high purity phycocyanin from cycanobacterium Spirullina platensis using LEDs based two-stage cultivation
KR20170036849A (en) * 2015-09-18 2017-04-03 김종덕 A method of disrupturing microalgae

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160045168A (en) 2014-10-16 2016-04-27 서강대학교산학협력단 The production of high purity phycocyanin from cycanobacterium Spirullina platensis using LEDs based two-stage cultivation
KR20170036849A (en) * 2015-09-18 2017-04-03 김종덕 A method of disrupturing microalgae

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ecotoxicology and Environmental Safety., 2018, Vol. 161, pp. 497-506* *
Korean J. Chem. Eng., 2014, Vol. 31, pp. 861-867 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862210A (en) * 2021-05-11 2021-12-31 苏州吉态来胺生物科技有限公司 Method for promoting high yield of astaxanthin by phaffia rhodozyma
CN113862210B (en) * 2021-05-11 2024-05-03 苏州吉态来胺生物科技有限公司 Method for promoting Phaffia rhodozyma to produce astaxanthin in high yield

Also Published As

Publication number Publication date
KR102119145B1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
Bhattacharjya et al. Bioprospecting of marine diatoms Thalassiosira, Skeletonema and Chaetoceros for lipids and other value-added products
Xu et al. The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30
Ferreira et al. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus
Liu et al. Microbial production and applications of 5-aminolevulinic acid
Hunt et al. Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana
Garbayo et al. Identification and physiological aspects of a novel carotenoid‐enriched, metal‐resistant microalga isolated from an acidic river in huelva (spain) 1
Gallego-Cartagena et al. Effect of stressful conditions on the carotenogenic activity of a Colombian strain of Dunaliella salina
Ramos-Ibarra et al. Azospirillum brasilense-microalga interaction increases growth and accumulation of cell compounds in Chlorella vulgaris and Tetradesmus obliquus cultured under nitrogen stress
Santos et al. Update on the application of magnetic fields to microalgal cultures
Lin et al. High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcus sp. PCC7002 for antioxidation, antibacterial and lead adsorption
Luo et al. Molybdenum disulfide nanoparticles concurrently stimulated biomass and β-carotene accumulation in Dunaliella salina
Zahra et al. Phycobiliproteins production enhancement and lipidomic alteration by titanium dioxide nanoparticles in Synechocystis sp. PCC 6803 culture
Salbitani et al. Microalgae cross-fertilization: Short-term effects of Galdieria phlegrea extract on growth, photosynthesis and enzyme activity of Chlorella sorokiniana cells
Nutakor et al. Enhancing astaxanthin yield in Phaffia rhodozyma: current trends and potential of phytohormones
KR102119145B1 (en) Cultivating method of microalgae using titanium dioxide nano particles
Cordeiro et al. Simultaneous application of mixotrophic culture and magnetic fields as a strategy to improve Spirulina sp. LEB 18 phycocyanin synthesis
Palacios et al. The immediate effect of riboflavin and lumichrome on the mitigation of saline stress in the microalga Chlorella sorokiniana by the plant-growth-promoting bacterium Azospirillum brasilense
Saxena et al. Mass cultivation of marine diatoms using local salts and its impact on growth and productivity
Dejsungkranont et al. Simultaneous production of C‐phycocyanin and extracellular polymeric substances by photoautotrophic cultures of Arthrospira platensis
Ouyang et al. Global metabolomics reveals that vibrio natriegens enhances the growth and paramylon synthesis of Euglena gracilis
Kim et al. Application of electrical treatment on Euglena gracilis for increasing paramylon production
Liu et al. Enhancement of lipid productivity in green microalgae Chlorella sp. via fast neutron irradiation
Goswami et al. Valorisation of organic carbons and organo-solvents by mixotrophic cultivation of methylotrophic Tetraselmis indica for enhanced biomolecules production
Ryabushko et al. Effect of nitrogen on fucoxanthin accumulation in the diatom Cylindrotheca closterium (Ehrenb.) Reimann et Lewin
Xie et al. Effects of six phytohormones on the growth behavior and cellular biochemical components of Chlorella vulgaris 31

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right