KR20200057826A - Suppression Method on Columnar Grain Growth in Wire Arc Additive Manufacturing - Google Patents

Suppression Method on Columnar Grain Growth in Wire Arc Additive Manufacturing Download PDF

Info

Publication number
KR20200057826A
KR20200057826A KR1020180139717A KR20180139717A KR20200057826A KR 20200057826 A KR20200057826 A KR 20200057826A KR 1020180139717 A KR1020180139717 A KR 1020180139717A KR 20180139717 A KR20180139717 A KR 20180139717A KR 20200057826 A KR20200057826 A KR 20200057826A
Authority
KR
South Korea
Prior art keywords
dispersion
solidification
particles
metal wire
grain growth
Prior art date
Application number
KR1020180139717A
Other languages
Korean (ko)
Other versions
KR102659714B1 (en
Inventor
정성욱
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to KR1020180139717A priority Critical patent/KR102659714B1/en
Publication of KR20200057826A publication Critical patent/KR20200057826A/en
Application granted granted Critical
Publication of KR102659714B1 publication Critical patent/KR102659714B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • B22F3/1055
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/82Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • B22F2003/1057
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention relates to a method for preventing columnar grain growth in wire arc additive manufacturing (WAAM), which is characterized in that dispersion reinforcing particles that interfere with columnar grain growth are sprayed onto the surface of a molten base of a lamination (15) in the process of forming a molded product with the lamination (15) laminated each time using a WAAM device (20). Accordingly, the columnar grain growth can be suppressed in the WAAM process and also physical properties can be adjusted through dispersion reinforcing effects.

Description

금속선 기반 적층제조의 일방향 응고 방지 방법 {Suppression Method on Columnar Grain Growth in Wire Arc Additive Manufacturing}One-way solidification prevention method of metal wire based additive manufacturing {Suppression Method on Columnar Grain Growth in Wire Arc Additive Manufacturing}

본 발명은 금속선 기반 적층제조에 관한 것으로서, 보다 구체적으로는 금속선 기반의 적층제조(WAAM, Wire Arc Additive Manufacturing)에서 제품의 품질 열화의 원인이 되는 일방향 결정립 성장을 방지하기 위한 금속선 기반 적층제조의 일방향 응고 방지 방법에 관한 것이다.The present invention relates to a metal wire-based additive manufacturing, more specifically, one-way metal wire-based additive manufacturing to prevent grain growth in one direction that causes product quality deterioration in metal-based additive manufacturing (WAAM, Wire Arc Additive Manufacturing) It relates to a method for preventing coagulation.

적층제조(Additive manufacturing, 일명 3D 프린팅)는 3D CAD 디자인에 기반을 둔 새로운 제조 방법으로써 주목받고 있다. 기존에 비해 거의 제한이 없는 디자인 자유도에 의해 다품종 소량생산에 적합한 고부가가치 제품에서 상용화가 급속도로 진행되고 있는 실정이다. 그런데, 고분자 재질의 제품에 대해서는 상용화가 깊이 진행됨에 비해 금속 재질 제품에 대해서는 적용 대상 제품/부품의 재질 및 크기에 따라 제한이 많은 실정이다. 해당 제품의 재질로 만들어진 적층제조 장치 전용의 금속 분말이 있어야 하고, 장치의 운용 범위에 따라 가공 가능한 크기의 한계도 고려해야만 한다.Additive manufacturing (aka 3D printing) is drawing attention as a new manufacturing method based on 3D CAD design. Commercialization is rapidly progressing in high value-added products suitable for small-scale production of multiple types due to design freedom with almost no limitations. However, while the commercialization of the polymer material product is progressing in depth, the metal material product has many limitations depending on the material and size of the product / part to be applied. There must be a metal powder dedicated to the additive manufacturing device made of the material of the product, and the limit of the size that can be processed according to the operating range of the device must also be considered.

금속 기반 적층제조 방법 중 금속선 기반 적층제(WAAM, Wire Arc Additive Manufacturing)의 경우 도 1과 같은 방식으로 매 층을 쌓으면서 기존 층의 결정립을 따라 성장하려는 '일방향 결정립 성장' 경향에 의해 제품의 최종 성능이 열화하는 문제점이 대두된다. 도 2를 참조하면, 일방향 결정립 응고는 적층이 진행될수록 점점 조대하게 되어, 제품의 강도와 인성을 저하시키는 요인으로 작용한다.Among metal-based additive manufacturing methods, in the case of metal wire-based additives (WAAM, Wire Arc Additive Manufacturing), the final product of the product is driven by the tendency of 'one-way grain growth' to grow along the grains of the existing layer while stacking each layer in the same manner as in FIG. The problem of deteriorating performance is emerging. Referring to FIG. 2, one-way grain coagulation becomes increasingly coarse as the lamination progresses, and serves as a factor to lower the strength and toughness of the product.

하기의 한국 등록특허공보 제1736228호는 제조한 금속 조형품에 대해 상변태 열처리를 적어도 1회 이상 실시하는 단계를 포함하여 기계적 성질이 등방성을 갖추어 인장 강도 내지 경도 등과 같은 기계적 성질 향상을 기대한다.The following Korean Registered Patent Publication No. 1736228 is expected to improve mechanical properties such as tensile strength or hardness by equipping mechanical properties with isotropy, including performing at least one phase transformation heat treatment on the manufactured metal molded product.

그러나, 이와 같은 상변태 열처리만으로 일방향 결정립 응고를 방지하기 한계성을 보인다.However, such a phase transformation heat treatment alone has a limitation in preventing grain solidification in one direction.

또 다른 한국 등록특허공보 제1806252호는 금속 분말이 함유된 원료를 이용하여 3차원 프린팅을 수행함으로써, 기계적 물성이 우수하고 높은 정밀도를 요구하는 금속 제품을 성형할 수 있는 효과를 기대한다.Another Korean Patent Publication No. 1806252 expects the effect of molding a metal product that has excellent mechanical properties and requires high precision by performing three-dimensional printing using a raw material containing metal powder.

그러나, 금속 분말 함유 조성물의 펠렛을 용융하고 가압 사출하여 프린터의 압출 헤드로 공급하는 방식으로서 일방향 결정립 응고 방지가 미흡하다.However, as a method of melting the pellets of the metal powder-containing composition and injecting them under pressure and supplying them to the extrusion head of the printer, one-way grain solidification prevention is insufficient.

한국 등록특허공보 제1736228호 "3D 프린팅 금속 조형품의 기계적 성질 향상을 위한 열처리 방법" (공개일자 : 2017.02.22.)Korean Registered Patent Publication No. 1736228, "A Heat Treatment Method for Improving the Mechanical Properties of 3D Printed Metal Sculptures" (Published: 2017.02.22.) 한국 등록특허공보 제1806252호 "금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법" (공개일자 : 2017.04.12.)Korean Registered Patent Publication No. 1806252 "3D printing method using metal powder-containing composition as raw material" (published date: 2017.04.12.)

상기와 같은 종래의 문제점들을 개선하기 위한 본 발명의 목적은, 금속선 기반의 적층제조(WAAM) 과정에서 제품 품질 열화의 주요 원인으로 작용하는 일방향 결정립 성장을 방지하기 위한 금속선 기반 적층제조의 일방향 응고 방지 방법을 제공하는 데 있다.An object of the present invention for improving the above-described conventional problems, to prevent one-way solidification of the metal-line-based layered manufacturing to prevent one-way grain growth that serves as a major cause of product quality deterioration in the process of metal-based layered manufacturing (WAAM) In providing a way.

상기 목적을 달성하기 위하여, 본 발명은 금속선 기반 적층제조의 일방향 응고를 방지하는 방법에 있어서: WAAM 장치를 이용하여 매 회 적층한 적층부로 성형품을 형성하는 과정에서, 상기 적층부의 용융된 기지 표면에 일방향 결정립 성장을 방해하는 분산강화용 입자를 분사하는 것을 특징으로 한다.In order to achieve the above object, the present invention is a method for preventing one-way solidification of a metal wire-based lamination manufacturing method: In the process of forming a molded article with a lamination part laminated each time using a WAAM device, the molten base surface is It is characterized by spraying the dispersion-enhancing particles that interfere with unidirectional grain growth.

본 발명의 세부 구성으로서, 상기 분산강화용 입자의 용융 온도는 성형품 재질의 용융 온도의 1.3배 이상으로 선택하는 것을 특징으로 한다.As a detailed configuration of the present invention, the melting temperature of the dispersion-enhancing particles is characterized in that the melting temperature of the molded article is selected to be 1.3 times or more.

본 발명의 세부 구성으로서, 상기 분산강화용 입자는 알루미나(Al2O3), 타이타니아(TiO2), 지르코니아(ZrO2), 토륨옥사이드(ThO), 이트리아(Y2O3), 텅스텐 카바이드(WC), 보론나이트라이드(BN) 중에서 선택되는 것을 특징으로 한다.As a detailed configuration of the present invention, the particles for dispersion strengthening are alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ), thorium oxide (ThO), yttria (Y 2 O 3 ), tungsten carbide (WC) and boron nitride (BN).

본 발명의 세부 구성으로서, 상기 분산강화용 입자 크기는 1회 적층 두께의 2~10% 범위로 투입되는 것을 특징으로 한다.As a detailed configuration of the present invention, the particle size for dispersion strengthening is characterized in that it is introduced in a range of 2 to 10% of the thickness of one stack.

본 발명의 세부 구성으로서, 상기 분산강화용 입자는 용융된 기지의 상부 표면적의 0.5~3%를 덮을 정도의 양으로 분사되는 것을 특징으로 한다.As a detailed configuration of the present invention, the dispersion-enhancing particles are characterized in that they are injected in an amount sufficient to cover 0.5 to 3% of the upper surface area of the molten matrix.

이상과 같이 본 발명에 의하면, 금속선 기반의 적층제조(WAAM) 과정에서 일방향 결정립 성장을 억제할 뿐 아니라, 분산 강화 효과로 인한 기계적 물성 조절도 가능한 효과를 나타낸다.According to the present invention as described above, in addition to suppressing the grain growth in one direction in the process of metal-based layered manufacturing (WAAM), it also exhibits an effect capable of controlling mechanical properties due to the dispersion strengthening effect.

도 1은 일반적인 금속선 기반의 적층제조(WAAM)를 나타내는 모식도
도 2는 도 1에 의한 일방향 결정립 응고 사례를 나타내는 사진
도 3은 도 1의 일방향 결정립 응고를 해소하기 위한 연구 사례
도 4는 본 발명에 따른 방법을 구현하기 위한 장치의 모식도
도 5는 본 발명의 일방향 결정립 성장 억제를 나타내는 모식도
1 is a schematic diagram showing a typical metal wire-based additive manufacturing (WAAM)
Figure 2 is a photograph showing an example of one-way grain coagulation according to Figure 1
3 is a study case for resolving the one-way grain coagulation of Figure 1
4 is a schematic diagram of an apparatus for implementing the method according to the present invention
Figure 5 is a schematic diagram showing the one-way grain growth inhibition of the present invention

이하, 첨부된 도면에 의거하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 금속선 기반 적층제조의 일방향 응고를 방지하는 방법에 관하여 제안한다. 3D CAD 디자인과 연계되면서 금속선 기반으로 적층제조(WAAM)하는 방식을 대상으로 하지만 반드시 이에 국한되는 것은 아니다. 본 발명은 도 2와 같이 용융 금속이 수평으로 적층되는 과정에서 수직으로 일방향 응고가 진행되는 현상을 방지함을 요체로 한다.The present invention proposes a method for preventing one-way solidification of a metal wire based laminate manufacturing. It is targeted for the method of additive manufacturing (WAAM) based on metal wires in connection with 3D CAD design, but is not limited thereto. The present invention is to prevent the phenomenon that one-way solidification proceeds vertically in the process of the molten metal is horizontally stacked as shown in FIG.

본 발명에 따르면 WAAM 장치(20)를 이용하여 매 회 적층한 적층부(15)로 성형품을 형성하는 과정을 거친다. 도 3과 같이 베이스(10) 상에 적층부(15)가 형성되면서 성형품이 완성되며, 양산에 있어서 도 4와 같은 WAAM 장치(20)가 사용될 수 있다. 선박 건조 현장에서 WAAM 장치(20)를 이용한 성형품은 프로펠러를 비롯한 기자재에서 복잡한 선체까지 적용 범위가 확대된다. 다만 성형품의 주요 하자 요인인 적층부(15)의 일방향 응고를 방지하기 위한 양산 기술이 시급하다.According to the present invention, a process of forming a molded product is performed by using the WAAM device 20 to stack the stacked portions 15 each time. 3, the molded article is completed while the stacked portion 15 is formed on the base 10, and the WAAM device 20 shown in FIG. 4 may be used in mass production. In the shipbuilding site, the range of application of the molded article using the WAAM device 20 to equipments including propellers to complex hulls is expanded. However, mass production technology for preventing one-way solidification of the stacked portion 15, which is a major defect factor of the molded article, is urgent.

도 3을 참조하면, 매회 적층을 하면서 가압롤러(25)를 사용하여 각 층(layers) 표면의 미세구조를 흐트려 뜨려 다음 층의 응고에 있어서 일방향 응고의 시드(seed)가 되지 않도록 하고 있다. 이는 이전 적층 표면과 내부 기지의 결정립 방향을 단절시켜 다음에 적층되는 액상 금속을 강제로 새로운 응고 시작점에서 비평형 응고가 되도록 하는 방법이라 할 수 있다. 이러한 방법에 의해 적층 방향에 대한 일방향 응고가 감소함이 확인되지만, 양산에 있어서 가압롤러(25)는 현실적으로 적용하기 용이하지 않아 개선을 요한다.Referring to FIG. 3, while stacking each time, the pressure roller 25 is used to disperse the microstructure of the surface of each layer to prevent seeding of one-way solidification in solidification of the next layer. This can be said to be a method of breaking the grain direction of the previous lamination surface and the inner matrix to force the liquid metal to be deposited next to become non-equilibrium solidification at a new solidification starting point. Although it is confirmed that the one-way solidification with respect to the lamination direction is reduced by this method, in mass production, the pressure roller 25 is not easy to apply realistically and requires improvement.

본 발명에 따르면, 상기 적층부(15)의 용융된 기지 표면에 일방향 결정립 성장을 방해하는 분산강화용 입자를 분사하는 것을 특징으로 한다. WAAM 장치(20)는 피딩되는 금속선을 레이저 또는 일렉트론 빔을 열원으로 가열하면서 적층부(15)를 형성한다. 적층부(15)를 형성하는 방식은 종래와 동일성을 유지하지만 매 회 적층 직후의 표면에 분산강화용 입자(40)를 뿌리도록 한다. 도 4에서 열원에 인접하여 분사기(30)가 설치되고, 분사기(30)에는 공급기(35)가 연결된다. 분사기(30)는 노즐에 분사 압력 및 양을 조절하는 기능품을 연결하여 구성된다. 공급기(35)는 분산강화용 입자를 저장하는 탱크에 입자를 압송하는 기능품을 연결하여 구성된다.According to the present invention, it is characterized in that the dispersion-strengthening particles for preventing the grain growth in one direction are sprayed on the molten matrix surface of the stacked portion 15. The WAAM device 20 forms a stack 15 while heating the metal wire to be fed with a laser or an electron beam as a heat source. The method of forming the stacked portion 15 maintains the same identity as the prior art, but allows the particles 40 for dispersion strengthening to be sprayed on the surface immediately after stacking each time. In FIG. 4, an injector 30 is installed adjacent to a heat source, and an injector 30 is connected to an injector 30. The injector 30 is constituted by connecting a nozzle to a function product that adjusts the injection pressure and amount. The feeder 35 is configured by connecting a functional product that pressurizes particles to a tank that stores particles for dispersion strengthening.

본 발명의 세부 구성으로서, 상기 분산강화용 입자의 용융 온도는 성형품 재질의 용융 온도의 1.3배 이상으로 선택하는 것을 특징으로 한다. 입자의 용융 온도가 성형품, 즉 적층 금속 재료의 용융 온도와 유사하거나 낮을 경우 결정립계 피닝(pinning) 역할을 하지 못하고 기지에 녹아버리게 되어 표면에서의 일방향 응고의 시작점 역할을 할 수 없게 된다. 일방향 응고의 시작점이 생성되지 않으면 전술하듯이 적층부(15)의 층간에 걸쳐 일방향 응고가 진행된다.As a detailed configuration of the present invention, the melting temperature of the dispersion-enhancing particles is characterized in that the melting temperature of the molded article is selected to be 1.3 times or more. When the melting temperature of the particles is similar to or lower than the melting temperature of the molded article, that is, the laminated metal material, it does not function as a grain boundary pinning and melts at the base, and thus cannot serve as a starting point for one-way solidification at the surface. If the starting point of one-way solidification is not generated, one-way solidification proceeds across the layers of the stacked portion 15 as described above.

본 발명의 세부 구성으로서, 상기 분산강화용 입자는 알루미나(Al2O3), 타이타니아(TiO2), 지르코니아(ZrO2), 토륨옥사이드(ThO), 이트리아(Y2O3), 텅스텐 카바이드(WC), 보론나이트라이드(BN) 중에서 선택되는 것을 특징으로 한다. 성형품의 적층 기지 재료의 재질에 따라 제반 조건에 맞는 분산 강화용 화합물을 선택하여 적용한다. 특히 이트리아(Y2O3)는 적층 금속 재질의 종류에 무관하게 고른 효능을 발현한다. 알루미나(Al2O3), 토륨옥사이드(ThO), 이트리아(Y2O3)는 성형품의 내열성과 내산화성을 높이는 역할도 한다. 분산강화용 입자는 상기 성분을 2가지 이상 혼합하여 사용하는 것도 가능하다.As a detailed configuration of the present invention, the particles for dispersion strengthening are alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ), thorium oxide (ThO), yttria (Y 2 O 3 ), tungsten carbide (WC) and boron nitride (BN). Depending on the material of the laminated base material of the molded article, a compound for strengthening dispersion suitable for various conditions is selected and applied. In particular, itria (Y 2 O 3 ) exhibits an even effect regardless of the type of the laminated metal material. Alumina (Al 2 O 3 ), thorium oxide (ThO), and yttria (Y 2 O 3 ) also serve to increase the heat resistance and oxidation resistance of the molded article. The dispersion-enhancing particles may be used by mixing two or more of the above components.

본 발명의 세부 구성으로서, 상기 분산강화용 입자 크기는 1회 적층 두께의 2~10% 범위로 투입되는 것을 특징으로 한다. 분산강화용 입자의 크기는 분말 기반 적층제조(powder-base AM)에 사용되는 분말에 준하는 규격을 적용한다. 분말형 적층제조 상용품을 기준으로 하는 경우 대략 15~30 micron 범위의 크기이다. 입자의 크기가 너무 작으면 기지에 박혀 들어가서 표면에서의 결정립계 피닝(pinning) 효과가 감소할 수 있고, 너무 크면 분산강화용 입자 표면과 기지 재료 사이에서 미접합면 또는 비정합면이 생기면서 결함으로 작용할 가능성이 커지게 된다.As a detailed configuration of the present invention, the particle size for dispersion strengthening is characterized in that it is introduced in a range of 2 to 10% of the thickness of one stack. The size of the particle for dispersion strengthening is applied to the standard according to the powder used in powder-based additive manufacturing (powder-base AM). When it is based on the powder-type laminate manufacturing commercial product, the size is approximately 15 to 30 micron. If the particle size is too small, it may be embedded in the matrix and the grain boundary pinning effect on the surface may be reduced. If it is too large, an unbonded surface or a mismatched surface may be formed between the particle surface for dispersion strengthening and the matrix material, resulting in defects. The probability of action increases.

분말 기반 적층제조용 장비를 사용하는 것으로 가정하면, 분말과 비슷한 크기의 분산강화용 입자가 응고의 시작점이 될 경우 열역학적으로 발생할 수 있는 최소 결정립 사이즈와 비슷한 크기가 됨으로써 성형품의 결정립 크기 조절도 가능하게 된다.Assuming that powder-based additive manufacturing equipment is used, if the particles for dispersion strengthening similar in size to the powder become the starting point of solidification, the size of the grains of the molded product can be adjusted by being similar to the minimum grain size that can occur thermodynamically. .

본 발명의 세부 구성으로서, 상기 분산강화용 입자는 용융된 기지의 상부 표면적의 0.5~3%를 덮을 정도의 양으로 분사되는 것을 특징으로 한다. 분사되는 입자는 적층 표면 전체에 가급적 균일하게 분포해야 하는데, 적층 상부 표면적의 0.5~3%를 덮을 정도의 양이 적당하다. 입자의 분사량이 너무 적으면 결정립계 피닝(pinning) 효과가 감소할 것이고, 분사량이 너무 많으면 입자끼리 뭉쳐서 내부 결함으로 작용하게 된다.As a detailed configuration of the present invention, the dispersion-enhancing particles are characterized in that they are injected in an amount sufficient to cover 0.5 to 3% of the upper surface area of the molten matrix. The particles to be sprayed should be distributed as uniformly as possible over the entire surface of the lamination, and an amount sufficient to cover 0.5 to 3% of the surface area of the lamination is appropriate. If the injection amount of the particles is too small, the grain boundary pinning effect will decrease, and if the injection amount is too large, the particles aggregate together to act as internal defects.

어느 경우에나, 전술한 분산강화용 입자의 조건은 성형품을 이루는 금속의 재질에 따라 달라진다.In any case, the conditions for the above-mentioned particles for dispersion strengthening depend on the material of the metal constituting the molded article.

본 발명에서 분산강화용 입자의 재질은 다음 적층 시 비평형 응고의 시작점이 되면서 동시에 결정립계 피닝(pinning)에 의한 재질 강화 효과도 기대할 수 있다. 이는 기존의 산화물 분산 강화(ODS, Oxide Dispersion Strengthening)와 동일한 효과를 나타내는데, 각 적층의 경계면에서 국부적인 분산강화가 됨으로써, 제품 전체의 강도 증가가 가능하게 된다. 또한 분사하는 입자의 크기 및 분사량을 조절함으로써 강화 정도를 조절할 수 있다.In the present invention, the material for the dispersion-enhancing particles can be expected to be the starting point of non-equilibrium solidification during the next lamination and at the same time, the material strengthening effect by grain boundary pinning. This has the same effect as the existing oxide dispersion strengthening (ODS, Oxide Dispersion Strengthening), and it is possible to increase the strength of the entire product by being locally dispersed strengthening at the interface of each stack. In addition, the degree of strengthening can be controlled by controlling the size and amount of the particles to be injected.

도 5를 참조하면, 본 발명은 금속선 기반의 적층제조(WAAM)에 있어서 적층부(15)의 층간 응고가 단절되어 일방향 결정립 성장을 억제함을 알 수 있다. 물론 분산 강화 효과로 인한 기계적 물성 조절도 가능하게 된다.Referring to FIG. 5, it can be seen that the present invention suppresses the growth of one-way grains by breaking the interlayer solidification of the stacked portion 15 in the metal wire-based stack manufacturing (WAAM). Of course, it is also possible to control the mechanical properties due to the dispersion strengthening effect.

본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음이 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다 해야 할 것이다.It is apparent to those skilled in the art that the present invention is not limited to the described embodiments, and can be variously modified and modified without departing from the spirit and scope of the present invention. Therefore, such modifications or modifications will have to belong to the claims of the present invention.

10: 베이스 15: 적층부
20: WAAM 장치 25: 가압롤러
30: 분사기 35: 공급기
40: 분산강화용 입자
10: base 15: lamination
20: WAAM device 25: Pressurized roller
30: injector 35: feeder
40: dispersion strengthening particles

Claims (5)

금속선 기반 적층제조의 일방향 응고를 방지하는 방법에 있어서:
WAAM 장치(20)를 이용하여 매 회 적층한 적층부(15)로 성형품을 형성하는 과정에서,
상기 적층부(15)의 용융된 기지 표면에 일방향 결정립 성장을 방해하는 분산강화용 입자를 분사하는 것을 특징으로 하는 금속선 기반 적층제조의 일방향 응고 방지 방법.
In a method for preventing one-way solidification of a metal wire based laminate manufacturing:
In the process of forming a molded article with the laminated portion 15 stacked each time using the WAAM device 20,
Method for preventing solidification of a metal wire based lamination manufacturing method, characterized by spraying particles for dispersion strengthening that interfere with one-way grain growth on the molten matrix surface of the lamination part (15).
청구항 1에 있어서,
상기 분산강화용 입자의 용융 온도는 성형품 재질의 용융 온도의 1.3배 이상으로 선택하는 것을 특징으로 하는 금속선 기반 적층제조의 일방향 응고 방지 방법.
The method according to claim 1,
Method for preventing solidification of a metal wire-based laminate manufacturing method, characterized in that the melting temperature of the particles for dispersion strengthening is selected to be 1.3 times or more than the melting temperature of the molded article material.
청구항 1에 있어서,
상기 분산강화용 입자는 알루미나(Al2O3), 타이타니아(TiO2), 지르코니아(ZrO2), 토륨옥사이드(ThO), 이트리아(Y2O3), 텅스텐 카바이드(WC), 보론나이트라이드(BN) 중에서 선택되는 것을 특징으로 하는 금속선 기반 적층제조의 일방향 응고 방지 방법.
The method according to claim 1,
The dispersion-enhancing particles are alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ), thorium oxide (ThO), yttria (Y 2 O 3 ), tungsten carbide (WC), boron nitride (BN) one-way solidification prevention method of the metal wire-based laminate manufacturing, characterized in that selected from.
청구항 1에 있어서,
상기 분산강화용 입자 크기는 1회 적층 두께의 2~10% 범위로 투입되는 것을 특징으로 하는 금속선 기반 적층제조의 일방향 응고 방지 방법.
The method according to claim 1,
The particle size for dispersion strengthening is a method of preventing solidification in one direction of a metal wire-based layered manufacturing, characterized in that it is introduced in a range of 2 to 10% of the thickness of the layer once.
청구항 1에 있어서,
상기 분산강화용 입자는 용융된 기지의 상부 표면적의 0.5~3%를 덮을 정도의 양으로 분사되는 것을 특징으로 하는 금속선 기반 적층제조의 일방향 응고 방지 방법.
The method according to claim 1,
The dispersion-enhancing particles are sprayed in an amount sufficient to cover 0.5 to 3% of the upper surface area of the molten matrix.
KR1020180139717A 2018-11-14 2018-11-14 Suppression Method on Columnar Grain Growth in Wire Arc Additive Manufacturing KR102659714B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180139717A KR102659714B1 (en) 2018-11-14 2018-11-14 Suppression Method on Columnar Grain Growth in Wire Arc Additive Manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180139717A KR102659714B1 (en) 2018-11-14 2018-11-14 Suppression Method on Columnar Grain Growth in Wire Arc Additive Manufacturing

Publications (2)

Publication Number Publication Date
KR20200057826A true KR20200057826A (en) 2020-05-27
KR102659714B1 KR102659714B1 (en) 2024-04-23

Family

ID=70910790

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180139717A KR102659714B1 (en) 2018-11-14 2018-11-14 Suppression Method on Columnar Grain Growth in Wire Arc Additive Manufacturing

Country Status (1)

Country Link
KR (1) KR102659714B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240031746A (en) 2022-09-01 2024-03-08 국립창원대학교 산학협력단 Wire arc additive manufacturing system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170080508A1 (en) * 2015-09-21 2017-03-23 Siemens Energy, Inc. Formation and repair of oxide dispersion strengthened alloys by alloy melting with oxide injection
KR101736228B1 (en) 2015-08-11 2017-05-17 한국생산기술연구원 Heat treatment method for improving mechanical property of metal product manufactured by 3D printing
KR101806252B1 (en) 2015-10-02 2017-12-07 주식회사 쓰리디컨트롤즈 Three dimensional printing method using metal powder-containing composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736228B1 (en) 2015-08-11 2017-05-17 한국생산기술연구원 Heat treatment method for improving mechanical property of metal product manufactured by 3D printing
US20170080508A1 (en) * 2015-09-21 2017-03-23 Siemens Energy, Inc. Formation and repair of oxide dispersion strengthened alloys by alloy melting with oxide injection
KR101806252B1 (en) 2015-10-02 2017-12-07 주식회사 쓰리디컨트롤즈 Three dimensional printing method using metal powder-containing composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240031746A (en) 2022-09-01 2024-03-08 국립창원대학교 산학협력단 Wire arc additive manufacturing system and method

Also Published As

Publication number Publication date
KR102659714B1 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
US20210163364A1 (en) 3d printing material, preparation method and use thereof
EP3436618B1 (en) Sputtering target assembly having a graded interlayer and methods of making
KR101780465B1 (en) 3-Dimensional manufacturing method for the metallic materials using 3D printing with controlling the microstructure
KR101851488B1 (en) Method for producing laminate, and laminate
JP6531954B2 (en) Method of manufacturing three-dimensional shaped object and three-dimensional shaped object
US9370789B2 (en) Method for producing a component by direct laser depositioning using first and second lasers operated at different powers
CN107931609B (en) Preparation method of TiAl alloy turbine blade
US20180323047A1 (en) Sputter target backing plate assemblies with cooling structures
US20070040291A1 (en) Optical element forming mold and manufacturing method thereof
KR20200057826A (en) Suppression Method on Columnar Grain Growth in Wire Arc Additive Manufacturing
TW201910104A (en) A nozzle containing at least one static mixing element prepared by a selective laser melting (slm) process
KR20210141172A (en) A liquid direct 3d printer and 3d printing method using the same
Nayak et al. Effect of process parameters on the mechanical behavior of FDM and DMLS build parts
CN116535220A (en) Degreasing sintering method of silicon nitride ceramic powder product
Sadaf et al. Advancements in metal additive manufacturing: a comprehensive review of material extrusion with highly filled polymers
JP2020063478A (en) Method for laminating cured layer and method for manufacturing laminated molding
TW201536960A (en) Ceramic thermal sprayed-film coated member and member for semiconductor manufacturing device
WO2019001788A1 (en) Cmc turbine component with thermal barrier coating, and production method for same
KR20190119199A (en) Forming method for three-dimensional object using feedstock comprising sublimative composition
KR20200072582A (en) Diamond-polymer composite filament for fdm 3d printer and manufacturing method of the same
Korotchenko et al. Research of 3d printing modes of feedstock for metal injection molding
EP3297825B1 (en) Silicide-based composite material and process for producing the same
Sadaf et al. Comparative analysis of binder systems in copper feedstocks for metal extrusion additive manufacturing and metal injection moulding
JP7336843B2 (en) Powder material for powder additive manufacturing and powder additive manufacturing method
JP2019081958A (en) Sintering shaping method, liquid binder, and sintered shaped article

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant