KR20200057251A - 맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법 - Google Patents

맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법 Download PDF

Info

Publication number
KR20200057251A
KR20200057251A KR1020180141349A KR20180141349A KR20200057251A KR 20200057251 A KR20200057251 A KR 20200057251A KR 1020180141349 A KR1020180141349 A KR 1020180141349A KR 20180141349 A KR20180141349 A KR 20180141349A KR 20200057251 A KR20200057251 A KR 20200057251A
Authority
KR
South Korea
Prior art keywords
blood pressure
systolic
voltage
voltage signal
diastolic
Prior art date
Application number
KR1020180141349A
Other languages
English (en)
Other versions
KR102182600B1 (ko
Inventor
박정규
김민수
이건재
박대용
Original Assignee
주식회사 로보프린트
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 로보프린트, 한국과학기술원 filed Critical 주식회사 로보프린트
Priority to KR1020180141349A priority Critical patent/KR102182600B1/ko
Priority to US16/202,965 priority patent/US11272851B2/en
Publication of KR20200057251A publication Critical patent/KR20200057251A/ko
Application granted granted Critical
Publication of KR102182600B1 publication Critical patent/KR102182600B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors

Abstract

본 발명의 일 실시예에 따른 혈압 산출 모듈은, 압전 효과를 이용한 맥박의 전압 신호를 이용하여 수축기 혈압(systolic pressure), 이완기 혈압(diastolic pressure) 및 혈압 변화량 중 적어도 하나를 산출하기 위한 모듈로, 상기 전압 신호를 입력 받아 상기 전압 신호의 진폭을 증폭시키고 노이즈를 필터링하는 신호 전처리부; 상기 신호 전처리부에 의해 전처리된 상기 전압 신호를 디지털로 변환하여 출력하는 변환부; 및 상기 변환부에 의해 변환된 상기 전압 신호를 기초로 하여 상기 수축기 혈압, 상기 이완기 혈압 및 상기 혈압 변화량 중 적어도 하나를 산출하는 제어부;를 포함하며, 상기 제어부는, 미리 설정된 시간 동안 맥박 신호 각각에 대응되는 상기 전압 신호의 최대 전압값(VMax) 및 최소 전압값(VMin)을 추출한 후, 이를 기초로 하여 상기 수축기 혈압, 상기 이완기 혈압 및 상기 혈압 변화량 중 적어도 하나를 산출하는 것을 특징으로 할 수 있다.

Description

맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법{Pulse sensing module, blood pressure calculation module, blood pressure measuring device and method for manufacturing pulse sensing module}
본 발명은 맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법에 대한 것으로, 더욱 상세하게는 압전 물질을 통한 압전 효과로 혈압이 측정되도록 하는 맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법에 관한 것이다.
근래에 생활수준 및 건강의식이 높아지고 있어 건강검진에 대한 관심과 수요가 늘고 있다.
일반적으로, 건강검진 시 기본적인 진료는 혈압 및 맥파, 심전도, 체지방을 측정하여 이를 기초자료로 활용한다.
이를 위하여, 각 진료소에는 혈압 측정을 위한 혈압계 및 심전도 측정을 위한 심전도 측정장치, 체지방 측정을 위한 체지방 측정장치, 맥파를 측정하기 위한 가압맥파계, 혈류량을 측정하기 위한 용적맥파계 등이 각각 구비된다.
이 중 혈압 측정을 위한 혈압계는 한국등록특허 제10-1059528호에 개시된 바와 같이 피검사자의 상완에 완대 형태의 압박부를 두른 후 상완 둘레에 맞게 조이고 측정하는 방식이었다.
그런데, 이러한 방식의 혈압 측정은 피검사자 스스로 혈압을 측정하는 경우 한 손으로 완대 형태의 압박부를 조여야 한다는 점에서 불편함을 초래하였다.
또한, 근래에는 상완이 삽입되는 공간이 원형의 형태로 고정식으로 형성되고, 피검사자가 상완을 원형 공간에 삽입한 이후에 버튼을 누르면 압박대가 자동으로 부풀어 올라 상완을 조여주는 방식의 혈압 측정 장치가 사용되고 있다.
그러나, 이러한 혈압 측정 장치는 원형 공간에 상완을 삽입해야 하므로, 피검사자의 팔이 이동되어야 하는 거리가 길어지게 되어 불편함을 초래할 뿐만 아니라, 팔꿈치 또는 어깨의 거동이 불편한 피검사자의 경우에는 관절이 아닌 몸 전체를 움직여서 팔을 삽입해야 하므로, 이 또한 측정이 불편하다는 문제가 있다.
그러므로, 혈압 측정에 있어서 피검사자의 불편함을 최소화하는 동시에 간단한 방법으로 정밀하게 측정되도록 하는 혈압 측정 장치의 개발이 시급한 실정이다.
본 발명의 목적은 맥박에 대한 압전 물질의 압전 효과를 통해 혈압 측정이 가능하도록 하는 동시에 압전 효과로 인한 전압 신호와 혈압과의 관계를 명확히 규정하여 혈압 측정의 정확도를 향상시키기 위한 맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법을 제공하는 것이다.
본 발명의 일 실시예에 따른 혈압 산출 모듈은, 압전 효과를 이용한 맥박의 전압 신호를 이용하여 수축기 혈압(systolic pressure), 이완기 혈압(diastolic pressure) 및 혈압 변화량 중 적어도 하나를 산출하기 위한 모듈로, 상기 전압 신호를 입력 받아 상기 전압 신호의 진폭을 증폭시키고 노이즈를 필터링하는 신호 전처리부; 상기 신호 전처리부에 의해 전처리된 상기 전압 신호를 디지털로 변환하여 출력하는 변환부; 및 상기 변환부에 의해 변환된 상기 전압 신호를 기초로 하여 상기 수축기 혈압, 상기 이완기 혈압 및 상기 혈압 변화량 중 적어도 하나를 산출하는 제어부;를 포함하며, 상기 제어부는, 미리 설정된 시간 동안 맥박 신호 각각에 대응되는 상기 전압 신호의 최대 전압값(VMax) 및 최소 전압값(VMin)을 추출한 후, 이를 기초로 하여 상기 수축기 혈압, 상기 이완기 혈압 및 상기 혈압 변화량 중 적어도 하나를 산출하는 것을 특징으로 할 수 있다.
본 발명의 일 실시예에 따른 혈압 산출 모듈의 상기 제어부는, 상기 맥박 신호 각각에 대한 상기 전압 신호로부터 추출된 상기 최대 전압값(VMax)에 대한 평균값인 최대 전압 평균값(VMax,Avg)을 산출하고, 상기 맥박 신호 각각에 대한 상기 전압 신호로부터 추출된 상기 최대 전압값(VMax)과 상기 최소 전압값(VMin) 간의 차이에 대한 평균값인 전압 변화량 평균값(VAvg)을 산출하여, 상기 수축기 혈압, 상기 이완기 혈압 및 상기 혈압 변화량 중 적어도 하나를 산출하는 것을 특징으로 할 수 있다.
본 발명의 일 실시예에 따른 혈압 산출 모듈의 상기 제어부는, 빅데이터 분석을 기초로 한 상관관계를 기초로 하여, 상기 최대 전압 평균값(VMax,Avg) 및 상기 전압 변화량 평균값(VAvg) 각각으로부터 상기 수축기 혈압 및 혈압 변화량(P)를 산출하는 것을 특징으로 할 수 있다.
본 발명의 일 실시예에 따른 혈압 산출 모듈의 상기 빅데이터 분석을 기초로 한 최대 전압 평균값(VMax,Avg)과 수축기 혈압(Psystolic) 에 대한 상관관계는, 다음의 <조건식 1>을 만족하는 것을 특징으로 할 수 있다.
<조건식 1>
Figure pat00001
여기서, Psystolic는 수축기 혈압이고, VMax,Avg는 최대 전압 평균값이며, α 및 β는 빅데이터 분석에 의해 도출되는 상수이다.
본 발명의 일 실시예에 따른 혈압 산출 모듈의 상기 빅데이터 분석을 기초로 한 전압 변화량 평균값(VAvg)과 혈압 변화량(P)에 대한 상관관계는, 다음의 <조건식 2>을 만족하는 것을 특징으로 할 수 있다.
<조건식 2>
Figure pat00002
여기서, P는 혈압 변화량이고, VAvg은 전압 변화량 평균값이며, γ 및 δ는 빅데이터 분석에 의해 도출되는 상수이다.
본 발명의 일 실시예에 따른 혈압 산출 모듈의 상기 제어부는, 상기 수축기 혈압(Psystolic)으로부터 혈압 변화량(P)을 차감하여, 이완기 혈압(P diastolic)을 산출하는 것을 특징으로 할 수 있다.
본 발명의 다른 일 실시예에 따른 혈압 측정 장치는, 피부에 부착되어 수축기 혈압(systolic pressure), 이완기 혈압(diastolic pressure) 및 혈압 변화량 중 적어도 하나가 측정되도록 하는 장치로, 혈압 산출 모듈; 및 상기 맥박 신호 각각에 대응하여 상기 압전 효과에 의한 상기 전압 신호를 발생시키도록, 인체의 굴곡진 피부면에 대응되도록 벤딩 가능한 맥박 센싱 모듈;을 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 혈압 측정 장치는, 상기 맥박 센싱 모듈 및 상기 혈압 산출 모듈이 부착되고, 벤딩 가능하여 상기 혈압 측정 장치가 인체의 굴곡진 피부면에 밀착되게 부착되도록 하는 벤딩 모듈;을 더 포함하는 것을 특징으로 할 수 있다.
본 발명에 따른 맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법에 의하면, 맥박에 대한 압전 물질의 압전 효과를 통해 혈압 측정이 가능하도록 하여 피검사자에게 편의성을 제공해줄 수 있다.
또한, 압전 효과로 인한 전압 신호와 혈압과의 관계를 명확히 규정하여 혈압 측정의 정확도를 향상시킬 수 있다.
또한, 본 발명에 따른 혈압 측정 장치는 패치 또는 밴드 타입으로 제조 가능하여 인체의 굴곡진 피부 특성 및 인체 활동에도 불구하고 정확한 혈압 측정이 가능하도록 하는 동시에 크기 또한 소형화가 가능하여 활용폭을 극대화할 수 있다.
도 1은 본 발명의 일 실시예에 따른 혈압 측정 장치를 도시한 개략사시도 및 혈압 측정 장치가 손목에 착용되어 혈압을 측정하는데 사용되는 상황을 설명하기 위한 도면.
도 2는 본 발명의 일 실시예에 따른 혈압 측정 장치를 설명하기 위한 블록 구성도.
도 3은 본 발명에 따른 맥박 센싱 모듈을 도시한 개략사시도.
도 4는 본 발명에 따른 맥박 센싱 모듈의 제조 방법을 설명하기 위한 순서도.
도 5 내지 도 13은 본 발명에 따른 맥박 센싱 모듈의 제조 방법을 설명하기 위한 도면.
도 14는 본 발명에 따른 혈압 산출 모듈을 설명하기 위한 블록 구성도.
도 15는 본 발명에 따른 혈압 산출 모듈에 의해 전압 신호가 증폭되고 필터링된 상태를 도시한 시간에 따른 전압 신호 그래프.
도 16은 빅데이터 분석을 기초로 한 최대 전압 평균값(VMax,Avg)과 수축기 혈압(Psystolic) 에 대한 상관관계를 설명하기 위한 그래프.
도 17은 빅데이터 분석을 기초로 한 전압 변화량 평균값(VAvg)과 혈압 변화량(P)에 대한 상관관계를 설명하기 위한 그래프.
도 18은 본 발명의 일 실시예에 따른 혈압 측정 장치에 의한 혈압 측정 방법을 설명하기 위한 순서도.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본원 발명 사상 범위 내에 포함된다고 할 것이다.
또한, 각 실시예의 도면에 나타나는 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.
1. 혈압 측정 장치의 개괄
도 1은 본 발명의 일 실시예에 따른 혈압 측정 장치를 도시한 개략사시도 및 혈압 측정 장치가 손목에 착용되어 혈압을 측정하는데 사용되는 상황을 설명하기 위한 도면이며, 도 2는 본 발명의 일 실시예에 따른 혈압 측정 장치를 설명하기 위한 블록 구성도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 혈압 측정 장치(100)는 피부에 부착되어 수축기 혈압(systolic pressure), 이완기 혈압(diastolic pressure) 및 혈압 변화량 중 적어도 하나가 측정되도록 장치로, 인체 중 맥박이 감지될 수 있는 곳에 부착되는 패치형 또는 밴드형 등으로 구현될 수 있다.
상기 혈압 측정 장치(100)는 도 1(b)에 도시된 바와 같이 손목에 착용될 수 있는 밴드형으로 구현될 수 있으며, 이하에서는 상기 혈압 측정 장치(100)가 밴드형으로 구현되는 경우를 예로 들어 설명한다.
상기 혈압 측정 장치(100)는 맥박에 의한 기계적 압력으로 인하여 발생되는 전압 신호를 이용하여 혈압을 측정할 수 있으며, 이러한 압전 효과를 구현하기 위한 맥박 센싱 모듈(110)을 포함할 수 있다.
상기 맥박 센싱 모듈(110)은 피검사자의 맥박 신호를 센싱하여 상기 맥박 신호와 대응되는 전압 신호를 발생시킬 수 있으며, 상기 전압 신호는 증폭 및 필터링, 디지털화되어 수축기 혈압(systolic pressure), 이완기 혈압(diastolic pressure) 및 혈압 변화량을 산출하는데 이용될 수 있다.
상기 전압 신호에 대한 상기와 같은 과정은 혈압 산출 모듈(120)에 의해 진행될 수 있으며, 상기 혈압 산출 모듈(120)은 상기 전압 신호에 대한 분석을 위해 상기 맥박 센싱 모듈(110)과 전기적으로 연결될 수 있다.
상기 혈압 산출 모듈(120)은 빅데이터 분석을 기초로 도출된 조건식을 통해 상기 전압 신호로부터 수축기 혈압, 이완기 혈압 및 혈압 변화량을 산출할 수 있다.
한편, 상기 혈압 측정 장치(100)는 상기 혈압 산출 모듈(120)의 구동을 위한 배터리 모듈(130)을 포함할 수 있다.
상기 배터리 모듈(130)은 전원 공급이 가능하고 충전 또는 방전이 가능한 리튬 배터리 등의 배터리를 포함할 수 있으나, 반드시 이에 한정되는 것은 아니며, 상기 혈압 산출 모듈(120)을 구동시킬 수 있는 배터리라면 모두 적용 가능하다.
상기 배터리 모듈(130)은 상기 배터리를 충전하기 위한 구성요소를 포함할 수 있으며, 예를 들어, 정전류 충전을 위한 충전 IC 등을 포함할 수 있다.
또한, 상기 배터리 모듈(130)은 혈압 산출 모듈(120)를 구동시키기 위한 배터리의 출력 전압을 승압 또는 감압할 필요가 있는 경우 이를 구현하기 위한 승압 회로 및 컨버팅 회로를 포함할 수 있다.
예를 들어, 상기 배터리 모듈(130)은 배터리의 출력 전압이 3V이나 5V의 구동 전압이 필요한 경우, 3V를 5V로 승압시키기 위한 승압 회로와 5V를 -5V로 컨버팅하는 컨버팅 회로를 포함할 수 있는 것이다.
한편, 상기 혈압 측정 장치(100)는 전술한 바와 같이 패치형 또는 밴드형으로 구현되어 맥박이 감지될 수 있는 곳에 부착될 수 있는데, 부착되는 곳이 굴곡진 피부면인 경우, 혈압 측정의 정밀도가 향상되도록 벤딩 가능하여 굴곡진 피부면에 밀착되게 부착되도록 하는 벤딩 모듈(140)을 포함할 수 있다.
상기 맥박 센싱 모듈(110), 상기 혈압 산출 모듈(120) 및 상기 배터리 모듈(130)은 상기 벤딩 모듈(140)에 부착될 수 있으며, 상기 벤딩 모듈(140)은 상기 구성요소들을 지지하기 위한 구성요소일 수 있다.
상기 벤딩 모듈(140)은 손목을 감싸도록 휘어질 수 있는 유연성 및 굴곡성을 가지는 고무 재질, 합성 재료 등으로 구현될 수 있으며, 예를 들어, 상기 벤딩 모듈(140)은 폴리이미드(Polyimide), 폴리에스테르(polyester) 등으로 구현될 수 있다.
또한, 상기 벤딩 모듈(140)은 소정의 탄성을 구비하여 원래대로 복귀되는 성질을 가지는 재질로 형성될 수도 있다.
상기 맥박 센싱 모듈(110), 상기 혈압 산출 모듈(120)은 상기 벤딩 모듈(140)과 마찬가지로 소정의 유연성을 구비할 수 있으며, 이로 인해 본 발명에 따른 혈압 측정 장치(100)는 압전 효과에 의한 전압 신호의 정밀도를 향상시킬 수 있게 되어, 혈압 측정의 정확도를 극대화시킬 수 있다.
한편, 도 1(a)에서는 본 발명에 따른 혈압 측정 장치(100)가 유연성을 가지는 커버에 의해 외관이 제공되는 것을 도시하였으나, 커버는 반드시 필수적인 구성요소는 아니며, 상기 벤딩 모듈(140)이 외관을 제공할 수 있고, 상기 맥박 센싱 모듈(110), 상기 혈압 산출 모듈(120) 및 상기 배터리 모듈(130) 중 적어도 하나가 노출되도록 구현되어도 무방하다.
이하에서는 혈압 측정 장치(100)에 의해 혈압이 측정되기 위한 구성요소인 상기 맥박 센싱 모듈(110) 및 혈압 산출 모듈(120)에 대해 구체적으로 설명한다.
2. 맥박 센싱 모듈 및 이의 제조 방법
도 3은 본 발명에 따른 맥박 센싱 모듈을 도시한 개략사시도이며, 도 4는 본 발명에 따른 맥박 센싱 모듈의 제조 방법을 설명하기 위한 순서도이고, 도 5 내지 도 13은 본 발명에 따른 맥박 센싱 모듈의 제조 방법을 설명하기 위한 도면이다.
우선, 도 3을 참조하면, 본 발명에 따른 맥박 센싱 모듈(110)은 맥박에 의한 기계적 압력으로 인한 전압 신호의 발생을 위한 구성요소로, 압전층(112) 및 보호층(114) 등을 포함할 수 있다.
상기 압전층(112)은 맥박에 의한 압전 효과를 발생시키기 위한 압전 물질으로 구성된 압전 박막일 수 있으며, 상기 압전층(112)의 일면에는 서로 이격되게 배치되는 제1 전극 라인(116a) 및 제2 전극 라인(116b)이 패턴과 같이 형성될 수 있다.
상기 보호층(114)은 상기 압전층(112)에 도포되어 상기 압전층(112)을 보호하기 위한 구성요소로, 상기 제1 전극 라인(116a)의 일부 영역 및 상기 제2 전극 라인(116b)의 일부 영역이 노출되도록 하는 개구(114a, 114b)를 포함할 수 있다.
상기 개구(114a, 114b)는 상기 압전 물질의 극성 향상을 위해 상기 제1 전극 라인(116a) 및 상기 제2 전극 라인(116b)에 고전압을 인가하는 폴링 공정이 가능하도록 하고, 상기 제1 전극 라인(116a) 및 상기 제2 전극 라인(116b)이 혈압 산출 모듈(120)과 전기적으로 연결되도록 할 수 있다.
상기 개구(114a, 114b)는 상기 제1 전극 라인(116a)의 단부 및 상기 제2 전극 라인(116b)의 단부와 각각 대응되는 위치에 형성되는 제1 개구(114a) 및 제2 개구(114b)를 포함할 수 있다.
상기 보호층(114)은 자외선(UV)에 의해 경화될 수 있는 에폭시(Epoxy)로 구현될 수 있으며, 예를 들어, Bisphenol A Novolacs (phenol-formaldehyde)-based Expoy로 구성된 SU-8 계열의 negative photoresist일 수 있다.
상기 보호층(114)은 상기 제1 전극 라인(116a)의 전체 영역 중 상기 제1 개구(114a)를 통해 노출되는 상기 제1 전극 라인(116a)의 일부 영역 이외의 영역을 포위하고, 상기 제2 전극 라인(116b)의 전체 영역 중 상기 제2 개구(114b)를 통해 노출되는 상기 제2 전극 라인(116b)의 일부 영역 이외의 영역을 포위할 수 있다.
한편, 맥박 센싱 모듈(110)은 상기 압전층(112)의 형태가 유지되도록 하여 혈압 측정 장치(100)의 벤딩 모듈(140)에 안정적으로 부착되도록, 상기 압전층(112)의 타면에 접합되는 부착매개층(118)을 포함할 수 있다.
상기 부착매개층(118)은 일반적으로 투명한 플라스틱 기판인 PET(Poly(ethyl benzene-1,4-dicarboxylate) 또는 PEN (Polyethylene naphthalate)으로 구현될 수 있다.
상기 부착매개층(118)은 접합층(119)을 매개로 하여 상기 압전층(112)의 타면에 부착될 수 있으며, 상기 벤딩 모듈(140)의 벤딩에 연동되도록 벤딩 가능하여 상기 압전층(112)이 상기 벤딩 모듈(140)로부터 분리되는 것을 차단할 수 있다.
상기 접합층(119)은, 예를 들어 자외선(UV)에 경화되는 NOA(Norland Optical Adhesive) 용액 제품일 수 있으며, 스핀코팅으로 도포하여 구현될 수 있다.
여기서, 상기 혈압 측정 장치(100)는 패치형 또는 밴드형으로 구현되어 맥박이 감지될 수 있는 곳에 부착될 수 있는데, 부착되는 곳이 굴곡진 피부면인 경우에도 유연성 및 굴곡성을 가지는 벤딩 모듈(140)에 의해 굴곡진 피부면에 밀착시킬 수 있다.
이 경우, 부착매개층(118)도 유연하여 벤딩이 가능하므로, 상기 벤딩 모듈(140)의 벤딩 시 연동되어 벤딩될 수 있고, 이로 인하여 부착매개층(118)이 상기 벤딩 모듈(140)로부터 분리되는 것이 미연에 방지될 수 있으며, 결국, 상기 압전층(112)이 상기 벤딩 모듈(140)로부터 분리되는 것이 미연에 방지될 수 있다.
이하에서는 맥박 센싱 모듈(110)의 제조 방법에 대해 설명한다.
도 4를 참조하면, 상기 맥박 센싱 모듈(110)의 제조 방법은 희생기판(200)의 일면 상에 압전 물질을 이용하여 압전층(112)을 형성하는 제1 단계(S10), 상기 희생기판(200)을 상기 압전층(112)으로부터 분리하는 제2 단계(S20), 상기 압전층(112)의 형태가 유지되도록 하여 상기 혈압 측정 장치(100)의 벤딩 모듈(140)에 안정적으로 부착되도록, 상기 희생기판(200)이 분리된 상기 압전층(112)의 일면에 부착매개층(118)을 형성하는 제3 단계(S30), 상기 압전층(112)의 타면에 서로 이격되게 배치되는 제1 전극 라인(116a) 및 제2 전극 라인(116b)을 형성하는 제4 단계(S40) 및 상기 압전층(112)이 보호되도록, 상기 제1 전극 라인(116a) 및 상기 제2 전극 라인(116b)이 형성된 상기 압전층(112)의 타면에 보호층(114)을 형성하는 제5 단계(S50)를 포함할 수 있다.
여기서, 상기 제1 단계(S10)는 스트레스 감소층(300, Stress relief layer)을 형성하는 단계(S12) 및 임시 기판층(400)을 형성하는 단계(S14)를 포함할 수 있으며, 상기 제4 단계(S40)는 상기 제1 전극 라인(116a) 및 상기 제2 전극 라인(116b)을 형성하기 전에 진행되는 상기 스트레스 감소층(300) 및 상기 임시 기판층(400)을 제거하는 단계(S42)를 포함할 수 있다.
한편, 상기 맥박 센싱 모듈(110)의 제조 방법은 상기 압전 물질의 극성 향상을 위해 상기 제1 전극 라인(116a) 및 상기 제2 전극 라인(116b)에 고전압을 인가하는 폴링 공정이 진행되는 제6 단계(S60)를 더 포함할 수 있다.
이하에서는 도 5 내지 도 13을 참조하여 각 단계에 대해 구체적으로 설명하기로 하며, 설명의 편의를 위해 도면은 과장되어 표현되었음을 밝혀둔다.
도 5를 참조하면, 먼저 희생기판(200)의 일면 상에 압전 물질을 이용하여 압전 박막인 압전층(112)을 형성하는 제1 단계(S10)가 진행될 수 있다.
상기 희생기판(200)은 투명하고 고온의 열처리에도 견딜 수 있는 석영(Quarz) 또는 사파이어(Sapphire)로 구현될 수 있으며, 압전 물질에 의한 압전 박막을 성장시켜 상기 압전층(112)을 형성하기 위해 필요한 구성요소일 수 있다.
예를 들어, 상기 희생기판(200)은 상기 압전 박막의 성장을 위해 상기 압전 박막의 결정구조와 유사한 구조를 가지는 Al2O3기반의 사파이어로 구현될 수 있다.
상기 압전 물질은 페로브스카이트(perovskite) 구조를 가지는 것으로, 티탄산 지르콘산 연(PZT) 등의 물질일 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 압전 물질을 이용하여 압전 박막인 상기 압전층(112)을 형성하는 방법은 공지의 다양한 방법이 적용될 수 있으며, 예를 들면, DC/RF 스퍼터링, 에어로졸 증착법, sol-gel 용액 공정(스핀코팅 후 열처리), 스크린/잉크젯 프린팅 등의 증착 방법일 수 있다.
상기 희생기판(200)은 제2 단계(S20) 진행 시, 레이저 리프트 오프(LLO) 방식에 의해 압전 박막인 상기 압전층(112)과 분리될 수 있으며, 이를 위해 광이 투과될 수 있는 투명 기판으로 구현될 수 있다.
도 6을 참조하면, 희생기판(200)의 일면에 압전층(112)을 형성하고 나면, 이후 단계에서 발생될 수 있는 고온, 고압 및 충격 중 적어도 하나에 의한 스트레스를 완화하기 위하여 상기 희생기판(200)이 형성된 상기 압전층(112)의 일면의 반대면인 타면에 스트레스 감소층(300)을 형성하는 단계(S12)가 진행될 수 있다.
상기 스트레스 감소층(300)은 희생기판(200)을 제거하는 제2 단계(S20) 진행 시 압전 박막인 상기 압전층(112)이 고온, 고압 및 충격 등에 의한 기계적, 물리적, 열적 외력에 의한 스트레스에 의해 크랙(crack) 또는 굴곡(wrinkle) 등의 구조적 또는 재료적 변형이 발생되어 이로 이한 압전 특성 저하나 출력 전압의 부정확성 등을 미연에 방지하기 위한 구성요소일 수 있다.
상기 스트레스 감소층(300)은 자외선(UV)에 경화되는 에폭시 계열로 Bisphenol A Novolacs (phenol-formaldehyde)-based Epoxy일 수 있으며, 두께는 500nm 이상이면 충분할 수 있다.
도 7을 참조하면, 스트레스 감소층(300)이 형성되면, 이후 단계에서의 압전층(112)의 핸들링을 위해 상기 스트레스 감소층(300)의 일면에 임시 기판층(400)을 형성하는 단계(S14)가 진행될 수 있다.
상기 임시 기판층(400)은 이후 단계인 제2 단계(S20)가 진행되어 희생기판(200)이 압전층(112)으로부터 분리되고 나면, 상기 임시 기판층(400)을 제외한 전체 층의 두께는 수 μm 내외가 되며, 상기 임시 기판층(400)이 없는 이러한 두께만으로 상기 제2 단계(S20) 이후의 단계를 진행할 때, 압전 막박인 상기 압전층(112)을 핸들링하기가 사실 상 불가능하기 때문에 필요한 것이다.
물론, 스트레스 감소층(300)의 기능과 상기 임시 기판층(400)의 기능을 동시에 구현할 수 있는 단일층으로 상기 스트레스 감소층(300)을 형성하는 단계(S12)와 상기 임시 기판층(400)을 형성하는 단계(S14)를 하나의 단계로 진행할 수도 있을 것이다.
상기 임시 기판층(400)은 열 또는 자외선(UV) 등에 의해 제거될 수 있는 물질로 구현될 수 있다.
예를 들어, 상기 임시 기판층(400)은 열 팽창성 접착제 또는 자외선(UV) 에너지 빔 팽창성 접착제가 일면 또는 양면에 도포되어 있는 테이프일 수 있으며, 상기 접착제는 열 또는 자외선(UV)에 의해 용이하게 팽창하여 기화되는 특성을 가질 수 있다.
상기 접착제는 매트릭스 물질 내에 구형 또는 다른 형태의 입자가 포함되어 있는 구조를 갖는 것으로, 상기 매트릭스 물질은 폴리비닐 알코올(polyvinyl alcohol), 폴리비닐 부티랄(polyvinyl butyral), 폴리아크릴로니트릴(polyacrylonitrile), 폴리설폰(polysulfone) 등의 열가소성 물질로써, 열에 의해 용융 및 팽창하여 파열되는 특성을 가질 수 있으며, 내부에 존재하는 입자는 이소부탄(isobutene), 프로판(propane), 또는 펜탄(pentane) 등의 구조를 가지는 열팽창성 입자로써, 500 nm 내지 100 μm 정도가 바람직하며, 단일 또는 적어도 2 이상의 조합일 수 있다.
상기와 같은 접착제는 테이프의 일면 또는 양면에 도포될 수 있으며, 상기 임시 기판층(400)의 두께는 예를 들어 1 내지 500 μm 일 수 있다.
도 8을 참조하면, 제1 단계(S10) 진행을 통해 스트레스 감소층(300) 및 임시 기판층(400)이 형성되고 나면, 희생기판(200)을 압전층(112)으로부터 분리하는 제2 단계(S20)가 진행될 수 있다.
상기 희생기판(200)을 상기 압전층(112)으로부터 분리하는 방법은 기계적 박리 방법, 화학적 식각 방법 또는 전술한 레이저 리프트 오프(LLO) 방법 등일 수 있다.
예를 들어, 상기 희생기판(200)을 상기 압전층(112)으로부터 분리하는 방법이 레이저 리프트 오프(LLO) 방법인 경우, 상기 희생기판(200)은 광이 투과될 수 있는 투명 기판으로 구현되어, 상기 투명 기판을 통해 전달되는 광 에너지에 의해 제거될 수 있다.
도 9를 참조하면, 압전층(112)의 형태가 유지되도록 하여 혈압 측정 장치(100)의 벤딩 모듈(140)에 안정적으로 부착되도록, 희생기판(200)이 분리된 상기 압전층(112)의 일면에 부착매개층(118)을 형성하는 제3 단계(S30)가 진행될 수 있다.
상기 부착매개층(118)은 접합층(119)을 매개로 하여 상기 압전층(112)의 타면에 부착될 수 있다.
상기 접합층(119)은, 예를 들어 자외선(UV)에 경화되는 NOA (Norland Optical Adhesive) 용액 제품일 수 있으며, 스핀코팅으로 도포하여 구현될 수 있다.
상기 부착매개층(118)은 유연하고 벤딩이 가능할 수 있으며, 이로 인해 혈압 측정 장치(100)가 혈압 측정을 위해 굴곡진 피부면에 밀착되어 부착되는 경우, 유연성 및 굴곡성을 가지는 벤딩 모듈(140)의 벤딩과 연동되어 벤딩됨으로써, 부착매개층(118)이 상기 벤딩 모듈(140)로부터 분리되는 것이 미연에 방지될 수 있으며, 결국, 압전층(112)이 상기 벤딩 모듈(140)로부터 분리되는 것이 미연에 방지될 수 있다.
도 10 및 도 11을 참조하면, 압전층(112)의 타면에 서로 이격되게 형성되는 제1 전극 라인(116a) 및 제2 전극 라인(116b)을 형성하는 제4 단계(S40)가 진행될 수 있다.
여기서, 도 10에 도시된 바와 같이, 상기 제1 전극 라인(116a) 및 상기 제2 전극 라인(116b)을 형성하기 이전에 스트레스 감소층(300) 및 임시 기판층(400)을 제거하는 단계(S42)가 진행될 수 있으며, 이는 열 또는 자외선(UV)을 인가하는 과정을 통해 진행될 수 있다.
상기 열 또는 자외선(UV)이 인가되면, 임시 기판층(400)에 포함된 접착제는 팽창되고 기화되어 접착력이 약해지게 되며, 이후에는 물리적인 박리 작업을 통해 상기 스트레스 감소층(300) 및 상기 임시 기판층(400)을 제거할 수 있다.
여기서, 상기 스트레스 감소층(300)은 이미 경화가 완료된 상태이므로 열 또는 자외선(UV)을 인가하여도 다른 층과의 접착력 증대는 발생되지 않으며, 상기 임시 기판층(400)은 열과 자외선(UV)이 인가되어 접착제 성분이 팽창되어 기화되어도 물리적인 박리 작업을 통해 분리될 정도의 접착력은 남아있게 된다.
물리적인 박리 작업을 통해 분리될 정도의 상기 임시 기판층(400)의 접착력은 스트레스 감소층(300)이 압전층(112)에 접착되어 있는 접착력보다 크게 되어 상기 임시 기판층(400)에 대한 물리적인 박리 작업 시 상기 스트레스 감소층(300)도 동시에 제거될 수 있다.
다만, 상기 스트레스 감소층(300)의 제거와 상기 임시 기판층(400)의 제거는 반드시 동시에 진행될 필요는 없으며, 순차적으로 진행되어도 무방하다.
도 10에 도시된 바와 같이, 스트레스 감소층(300) 및 임시 기판층(400)이 제거되고 나면, 도 11에 도시된 바와 같이, 압전층(112)의 타면에 서로 이격되게 배치되는 제1 전극 라인(116a) 및 제2 전극 라인(116b)을 형성하게 된다.
상기 제1 전극 라인(116a) 및 상기 제2 전극 라인(116b)은 전극 물질을 도포한 후 공지의 반도체 공정을 통해 패턴으로 형성될 수 있다.
상기 제1 전극 라인(116a) 및 상기 제2 전극 라인(116b)은 각각 주라인과 서로 평행하게 배치되는 복수의 평행라인을 포함할 수 있으나, 라인의 배치 형태는 다양하게 변경될 수 있다.
도 12를 참조하면, 제1 전극 라인(116a) 및 제2 전극 라인(116b)이 형성되고 나면, 압전층(112)이 보호되도록, 상기 제1 전극 라인(116a) 및 상기 제2 전극 라인(116b)이 형성된 상기 압전층(112)의 타면에 보호층(114)을 형성하는 제5 단계(S50)가 진행될 수 있다.
상기 보호층(114)은 제1 개구(114a) 및 제2 개구(114b)를 구비하여 상기 제1 전극 라인(116a)의 단부 및 상기 제2 전극 라인(116b)의 단부를 노출시킬 수 있다.
여기서, 노출된 상기 제1 전극 라인(116a)의 단부 및 상기 제2 제2 전극 라인(116b)의 단부는 이후 단계에서 진행되는 폴링 공정이 가능하도록 할 수 있으며, 혈압 측정을 위한 혈압 산출 모듈(120)과의 전기적 연결을 위한 구성요소로 사용될 수 있다.
도 13을 참조하면, 보호층(114)의 형성이 완료되면, 압전 물질의 극성 향상을 위해 상기 제1 전극 라인(116a) 및 상기 제2 전극 라인(116b)에 고전압을 인가하는 폴링 공정인 제6 단계(S60)가 진행될 수 있다.
상기 폴링 공정은 압전 물질 내의 쌍극자 방향성을 부여하는 공정으로, 예를 들어, 100 kV/cm 수준의 전기장을 최소 2시간 이상 인가하여 진행될 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기와 같이 제6 단계(S60)에서의 폴링 공정, 즉, 고전압의 인가가 보호층(114)의 제1 개구(114a) 및 제2 개구(114b)를 통해 가능하게 되어, 맥박 센싱 모듈(110)을 물리적으로 충분히 보호하면서도 압전층(112)의 극성 효율을 극대화할 수 있게 된다.
다시 말하면, 고전압을 인가하는 경우 상기 보호층(114)이 존재하지 않는다면 전극 간의 전기장 효과에 의해 통전이 발생해 전극이 끊어지는 현상이 발생되나, 본 발명에서는 고전압을 인가할 수 있도록 제1 개구(114a) 및 제2 개구(114b)를 구비하는 상기 보호층(114)으로 인해 전극 간의 전기장 효과가 상쇄되도록 하여 상기와 같은 문제를 해결하여 상기 압전층(112)의 극성 효율을 향상시킬 수 있는 것이다.
상기와 같이 상기 제1 단계(S10) 내지 상기 제6 단계(S60)의 진행이 완료되게 되면, 혈압 측정 장치(100)를 구성하는 맥박 센싱 모듈(110)의 제조가 완료하게 된다.
3. 혈압 산출 모듈
도 14는 본 발명에 따른 혈압 산출 모듈을 설명하기 위한 블록 구성도이며, 도 15는 본 발명에 따른 혈압 산출 모듈에 의해 전압 신호가 증폭되고 필터링된 상태를 도시한 시간에 따른 전압 신호 그래프이다.
또한, 도 16은 빅데이터 분석을 기초로 한 최대 전압 평균값(VMax,Avg)과 수축기 혈압(Psystolic) 에 대한 상관관계를 설명하기 위한 그래프이며, 도 17은 빅데이터 분석을 기초로 한 전압 변화량 평균값(VAvg)과 혈압 변화량(P)에 대한 상관관계를 설명하기 위한 그래프이다.
우선, 도 14 내지 도 17을 참조하면, 본 발명에 따른 혈압 산출 모듈(120)은 전기적으로 연결된 맥박 센싱 모듈(110)을 통해 제공되는 압전 효과에 의한 전압 신호를 이용하여 수축기 혈압, 이완기 혈압 및 혈압 변화량 중 적어도 하나를 산출하는 모듈일 수 있다.
상기 혈압 산출 모듈(120)은 기본적으로 플렉시블 인쇄회로기판을 포함할 수 있으며, 상기 플렉시블 인쇄회로기판에는 이하에서 설명하는 기능을 수행하는 칩 등이 실장되거나 회로가 패턴화될 수 있다.
상기 플렉시블 인쇄회로기판은 벤딩 모듈(140)에 부착될 수 있으며, 이로 인해 혈압 측정 장치(100)가 혈압 측정을 위해 굴곡진 피부면에 밀착되어 부착되는 경우, 유연성 및 굴곡성을 가지는 벤딩 모듈(140)의 벤딩과 연동되어 벤딩될 수 있다.
상기 맥박 센싱 모듈(110)과 상기 혈압 산출 모듈(120) 간의 전기적 연결은 보호층(114)의 제1 개구(114a) 및 제2 개구(114b)를 통해 노출되는 제1 전극 라인(116a)의 단부 및 제2 전극 라인(116b)의 단부를 상기 플렉시블 인쇄회로기판의 단자와 전도성 물질을 이용하여 상호 연결함으로써 구현될 수 있으며, 상기 전도성 물질은 저항이 10Ω 이하인 금속성 물질인 것이 바람직할 수 있다.
한편, 상기 혈압 산출 모듈(120)은 맥박 센싱 모듈(110)에 의해 제공되는 전압 신호를 입력 받아 상기 전압 신호의 진폭을 증폭시키고 노이즈를 필터링하는 신호 전처리부(122), 상기 신호 전처리부(122)에 의해 전처리된 상기 전압 신호를 디지털로 변환하여 출력하는 변환부(124) 및 상기 변환부(124)에 의해 변환된 상기 전압 신호를 기초로 하여 상기 수축기 혈압, 상기 이완기 혈압 및 상기 혈압 변화량 중 적어도 하나를 산출하는 제어부(126)를 포함할 수 있다.
여기서, 상기 신호 전처리부(122)는 증폭부(122a)와 필터링부(122b)를 포함할 수 있으며, 상기 증폭부(122a)는 맥박 센싱 모듈(110)에 의해 제공되는 전압 신호를 증폭할 수 있으며, 상기 필터링부(124b)는 증폭된 전압 신호에 포함된 노이즈를 필터링할 수 있다.
도 15는 맥박에 의한 기계적 압력으로 인해 발생되는 전압 신호가 증폭부(122a)에 의해 증폭되고, 필터링부(122b)에 의해 노이즈가 필터링된 상태의 시간에 따른 전압 신호 그래프를 도시화하고 있다.
상기 변환부(124)는 증폭부(122a)에 의해 증폭되고 필터링부(122b)에 의해 노이즈가 필터링된 전압 신호를 디지털로 변환하는 구성요소로, 전압 신호를 아날로그에서 디지털로 변환하여 제어부(126)가 인식 가능한 전압 신호 형태로 출력하는 A/D 변환부일 수 있다.
한편, 상기 제어부(126)는 변환부(124)를 통해 디지털로 변환된 전압 신호를 기초로 하여, 상기 수축기 혈압, 상기 이완기 혈압 및 상기 혈압 변화량 중 적어도 하나를 산출할 수 있으며, 이하에서 구체적으로 설명한다.
피검사자가 혈압 측정 장치(100)를 손목에 착용한 후, 혈압 측정을 요청하면, 맥박 센싱 모듈(110)은 이에 응답하여 미리 설정된 시간 동안 맥박 신호를 센싱하고, 압전 효과에 따른 전압 신호를 혈압 산출 모듈(120)로 송신하게 된다.
여기서, 상기 미리 정해진 시간은 예를 들어 도 15에 도시된 바와 같이 15초 일 수 있으나, 반드시 이에 한정되는 것은 아니며, 다양하게 변경될 수 있다.
상기 제어부(126)는 상기 미리 설정된 시간 동안 맥박 신호 각각에 대응되는 전압 신호의 최대 전압값(VMax) 및 최소 전압값(VMin)을 추출할 수 있으며, 이후에는 상기 맥박 신호 각각에 대한 상기 전압 신호로부터 추출된 상기 최대 전압값(VMax)에 대한 평균값인 최대 전압 평균값(VMax,Avg)을 산출하고, 상기 맥박 신호 각각에 대한 상기 전압 신호로부터 추출된 상기 최대 전압값(VMax)과 상기 최소 전압값(VMin) 간의 차이에 대한 평균값인 전압 변화량 평균값(VAvg)을 산출한다.
상기 최대 전압 평균값(VMax,Avg) 및 전압 변화량 평균값(VAvg)을 산출하기 위한 <조건식 1> 및 <조건식 2>는 하기와 같다.
<조건식 1>
Figure pat00003
<조건식 2>
Figure pat00004
여기서, n은 맥박 신호의 개수이며, 도 15의 경우에는 16일 수 있다.
상기 <조건식 1> 및 상기 <조건식 2>를 통해 최대 전압 평균값(VMax,Avg) 및 전압 변화량 평균값(VAvg)를 산출하고 나면, 상기 제어부(126)는 빅데이터 분석을 기초로 한 상관관계를 기초로 하여, 상기 최대 전압 평균값(VMax,Avg) 및 상기 전압 변화량 평균값(VAvg) 각각으로부터 상기 수축기 혈압(Psystolic) 및 혈압 변화량(P)를 산출한다.
여기서, 상기 수축기 혈압(Psystolic)을 산출하기 위한 빅데이터 분석은 빅데이터 형태로 수집 및 저장된 피검사자의 정보 중 최대 전압 평균값(VMax,Avg)과 수축기 혈압(Psystolic)의 관계를 비교 분석함으로써 획득 가능할 수 있으며, 도 16은 정상인에 대한 빅데이터 분석에 의한 최대 전압 평균값(VMax,Avg)과 수축기 혈압(Psystolic)의 상관관계를 보여주고 있다.
도 16을 참조하면, 정상인의 경우 빅데이터 분석에 의한 최대 전압 평균값(VMax,Avg)과 수축기 혈압(Psystolic)의 상관관계는 하기의 <조건식 3>과 같다.
<조건식 3>
VMax,Avg = 2.20113 * 10-4 * Psystolic + 0.0033
따라서, <조건식 3>을 일반화하면, 최대 전압 평균값(VMax,Avg)과 수축기 혈압(Psystolic)의 상관관계는 하기의 <조건식 4>로 일반화될 수 있다.
<조건식 4>
Figure pat00005
여기서, Psystolic는 수축기 혈압이고, VMax,Avg는 최대 전압 평균값이며, α 및 β는 빅데이터 분석에 의해 도출되는 상수로, 정상인의 경우 α는 2.20113*10-4이고 β는 0.0033이다.
또한, 상기 혈압 변화량(P)을 산출하기 위한 빅데이터 분석은 빅데이터 형태로 수집 및 저장된 피검사자의 정보 중 전압 변화량 평균값(VAvg)과 혈압 변화량(P)의 관계를 비교 분석함으로써 획득 가능할 수 있으며, 도 17은 정상인에 대한 빅데이터 분석에 의한 전압 변화량 평균값(VAvg)과 혈압 변화량(P)의 상관관계를 보여주고 있다.
도 17을 참조하면, 정상인의 경우 빅데이터 분석에 의한 전압 변화량 평균값(VAvg)과 혈압 변화량(P)의 상관관계는 하기의 <조건식 5>와 같다.
<조건식 5>
P(mmHg) = -2196.83 * VAvg(mV) + 106.82125
따라서, <조건식 5>을 일반화하면, 전압 변화량 평균값(VAvg)과 혈압 변화량(P)의 상관관계는 하기의 <조건식 6>으로 일반화될 수 있다.
<조건식 6>
Figure pat00006
여기서, P는 혈압 변화량이고, VAvg은 전압 변화량 평균값이며, γ 및 δ는 빅데이터 분석에 의해 도출되는 상수로, 정상인의 경우 γ는 2196.83이며 δ는 106.82125이다.
한편, <조건식 4> 및 <조건식 6>에 사용되는 α, β, γ 및 δ는 빅데이터 형태로 수집 및 저장되는 피검사자의 특성에 따라 달라질 수 있으며, 예를 들어 고혈압, 저혈압, 질병군, 나이, 성별 등에 따라 달라질 수 있는 상수일 수 있다.
상기 제어부(126)는 하기의 <조건식 7>과 같이 상기 수축기 혈압(Psystolic)으로부터 혈압 변화량(P)을 차감하여, 이완기 혈압(P diastolic)을 산출할 수 있다.
<조건식 7>
Figure pat00007
상기와 같이 본 발명에 따른 혈압 산출 모듈(120)은 전기적으로 연결된 맥박 센싱 모듈(110)을 통해 제공되는 압전 효과에 의한 전압 신호를 증폭하고 필터링한 후, 디지털로 변환하고, 일련의 프로세싱을 통해 최종적으로 수축기 혈압 및 이완기 혈압을 산출하여 피검사자의 혈압 측정이 가능해지도록 한다.
또한, 빅데이터 분석에 의해 도출되는 최대 전압 평균값(VMax,Avg)과 수축기 혈압(Psystolic)의 상관관계 및 전압 변화량 평균값(VAvg)과 혈압 변화량(P)의 상관관계를 이용하여 혈압을 측정하므로, 혈압 측정의 정밀도를 향상시킬 수 있다.
본 발명의 일 실시예에 따른 혈압 측정 장치(100)는 피부에 부착이 가능한 패치형 또는 밴드형 등으로 구현될 수 있으므로, 혈압 측정에 있어서의 검사자 및 피검사자에게 편의성을 제공해줄 수 있다.
한편, 본 발명에 따른 혈압 측정 장치(100)는 제어부(126)에 의해 산출된 수축기 혈압 및 이완기 혈압을 표시하는 디스플레이 모듈을 더 포함할 수 있다.
또한, 본 발명에 따른 혈압 측정 장치(100)는 외부장치와의 인터페이싱을 지원하기 위한 장치 인터페이스가 추가 구비되어 제어부(126)에 의해 산출된 수축기 혈압 및 이완기 혈압을 외부 장치를 통해 표시되도록 할 수도 있다.
4. 혈압 측정 장치를 이용한 혈압 측정 방법 및 이 방법을 실행하기 위한 프로그램을 기록한 기록매체
도 18은 본 발명의 일 실시예에 따른 혈압 측정 장치에 의한 혈압 측정 방법을 설명하기 위한 순서도이다.
도 18을 참조하면, 본 발명의 일 실시예에 따른 혈압 측정 장치에 의한 혈압 측정 방법은, 피검사자가 혈압 측정 장치(100)를 손목에 착용한 후, 혈압 측정을 요청하면, 맥박 센싱 모듈(110)이 미리 설정된 시간 동안 맥박 신호를 센싱하고 압전 효과에 따른 전압 신호를 발생시키는 제1 단계(S100), 상기 미리 설정된 시간 동안 맥박 신호 각각에 대응되는 전압 신호의 최대 전압값(VMax) 및 최소 전압값(VMin)을 추출하는 제2 단계(S200), 상기 맥박 신호 각각에 대한 상기 전압 신호로부터 추출된 상기 최대 전압값(VMax)에 대한 평균값인 최대 전압 평균값(VMax,Avg)을 산출하고, 상기 맥박 신호 각각에 대한 상기 전압 신호로부터 추출된 상기 최대 전압값(VMax)과 상기 최소 전압값(VMin) 간의 차이에 대한 평균값인 전압 변화량 평균값(VAvg)을 산출하는 제3 단계(S300), 빅데이터 분석을 기초로 한 상관관계를 기초로 하여, 상기 최대 전압 평균값(VMax,Avg) 및 상기 전압 변화량 평균값(VAvg) 각각으로부터 상기 수축기 혈압(Psystolic) 및 혈압 변화량(P)를 산출하는 제4 단계(S400), 상기 수축기 혈압(Psystolic)으로부터 혈압 변화량(P)을 차감하여, 이완기 혈압(P diastolic)을 산출하는 제5 단계(S500) 및 산출된 결과 값을 출력하는 제6 단계(S600)를 포함할 수 있다.
여기서, 상기 제2 단계(S200) 내지 제5 단계(S500)는 혈압 산출 모듈(120)의 제어부(126)에 의해 진행될 수 있으며, 상기 제6 단계(S600)는 디스플레이 모듈 또는 외부 장치에 의해 진행될 수 있다.
그리고, 상기 2단계(S200) 이전에는 맥박 센싱 모듈(110)을 통해 제공되는 압전 효과에 의한 전압 신호를 증폭하고 필터링한 후, 디지털로 변환하는 단계가 진행될 수 있다.
한편, 상술한 혈압 측정 방법의 각 단계는 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는, ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
상기에서는 본 발명에 따른 실시예를 기준으로 본 발명의 구성과 특징을 설명하였으나 본 발명은 이에 한정되지 않으며, 본 발명의 사상과 범위 내에서 다양하게 변경 또는 변형할 수 있음은 본 발명이 속하는 기술분야의 당업자에게 명백한 것이며, 따라서 이와 같은 변경 또는 변형은 첨부된 특허청구범위에 속함을 밝혀둔다.
100: 혈압 측정 장치
110: 맥박 센싱 모듈
120: 혈압 산출 모듈
130: 배터리 모듈
140: 벤딩 모듈

Claims (8)

  1. 압전 효과를 이용한 맥박의 전압 신호를 이용하여 수축기 혈압(systolic pressure), 이완기 혈압(diastolic pressure) 및 혈압 변화량 중 적어도 하나를 산출하기 위한 혈압 산출 모듈에 있어서,
    상기 전압 신호를 입력 받아 상기 전압 신호의 진폭을 증폭시키고 노이즈를 필터링하는 신호 전처리부;
    상기 신호 전처리부에 의해 전처리된 상기 전압 신호를 디지털로 변환하여 출력하는 변환부; 및
    상기 변환부에 의해 변환된 상기 전압 신호를 기초로 하여 상기 수축기 혈압, 상기 이완기 혈압 및 상기 혈압 변화량 중 적어도 하나를 산출하는 제어부;를 포함하며,
    상기 제어부는,
    미리 설정된 시간 동안 맥박 신호 각각에 대응되는 상기 전압 신호의 최대 전압값(VMax) 및 최소 전압값(VMin)을 추출한 후, 이를 기초로 하여 상기 수축기 혈압, 상기 이완기 혈압 및 상기 혈압 변화량 중 적어도 하나를 산출하는 것을 특징으로 하는 혈압 산출 모듈.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 맥박 신호 각각에 대한 상기 전압 신호로부터 추출된 상기 최대 전압값(VMax)에 대한 평균값인 최대 전압 평균값(VMax,Avg)을 산출하고, 상기 맥박 신호 각각에 대한 상기 전압 신호로부터 추출된 상기 최대 전압값(VMax)과 상기 최소 전압값(VMin) 간의 차이에 대한 평균값인 전압 변화량 평균값(VAvg)을 산출하여, 상기 수축기 혈압, 상기 이완기 혈압 및 상기 혈압 변화량 중 적어도 하나를 산출하는 것을 특징으로 하는 혈압 산출 모듈.
  3. 제2항에 있어서,
    상기 제어부는,
    빅데이터 분석을 기초로 한 상관관계를 기초로 하여, 상기 최대 전압 평균값(VMax,Avg) 및 상기 전압 변화량 평균값(VAvg) 각각으로부터 상기 수축기 혈압 및 혈압 변화량(P)를 산출하는 것을 특징으로 하는 혈압 산출 모듈.
  4. 제3항에 있어서,
    상기 빅데이터 분석을 기초로 한 최대 전압 평균값(VMax,Avg)과 수축기 혈압(Psystolic) 에 대한 상관관계는,
    다음의 <조건식 1>을 만족하는 것을 특징으로 하는 혈압 산출 모듈.

    <조건식 1>
    Figure pat00008


    여기서, Psystolic는 수축기 혈압이고, VMax,Avg는 최대 전압 평균값이며, α 및 β는 빅데이터 분석에 의해 도출되는 상수이다.
  5. 제4항에 있어서,
    상기 빅데이터 분석을 기초로 한 전압 변화량 평균값(VAvg)과 혈압 변화량(P)에 대한 상관관계는,
    다음의 <조건식 2>을 만족하는 것을 특징으로 하는 혈압 산출 모듈.

    <조건식 2>
    Figure pat00009


    여기서, P는 혈압 변화량이고, VAvg은 전압 변화량 평균값이며, γ 및 δ는 빅데이터 분석에 의해 도출되는 상수이다.
  6. 제5항에 있어서,
    상기 제어부는,
    상기 수축기 혈압(Psystolic)으로부터 혈압 변화량(P)을 차감하여, 이완기 혈압(P diastolic)을 산출하는 것을 특징으로 하는 혈압 산출 모듈.
  7. 피부에 부착되어 수축기 혈압(systolic pressure), 이완기 혈압(diastolic pressure) 및 혈압 변화량 중 적어도 하나가 측정되도록 하는 혈압 측정 장치에 있어서,
    제1항에 따른 혈압 산출 모듈; 및
    상기 맥박 신호 각각에 대응하여 상기 압전 효과에 의한 상기 전압 신호를 발생시키도록, 인체의 굴곡진 피부면에 대응되도록 벤딩 가능한 맥박 센싱 모듈;을 포함하는 혈압 측정 장치.
  8. 제7항에 있어서,
    상기 맥박 센싱 모듈 및 상기 혈압 산출 모듈이 부착되고, 벤딩 가능하여 상기 혈압 측정 장치가 인체의 굴곡진 피부면에 밀착되게 부착되도록 하는 벤딩 모듈;을 더 포함하는 것을 특징으로 하는 혈압 측정 장치.
KR1020180141349A 2018-11-16 2018-11-16 맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법 KR102182600B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180141349A KR102182600B1 (ko) 2018-11-16 2018-11-16 맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법
US16/202,965 US11272851B2 (en) 2018-11-16 2018-11-28 Pulse sensing module, blood pressure calculation module, blood pressure measuring device and method for manufacturing pulse sensing module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180141349A KR102182600B1 (ko) 2018-11-16 2018-11-16 맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법

Publications (2)

Publication Number Publication Date
KR20200057251A true KR20200057251A (ko) 2020-05-26
KR102182600B1 KR102182600B1 (ko) 2020-11-24

Family

ID=70915206

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180141349A KR102182600B1 (ko) 2018-11-16 2018-11-16 맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법

Country Status (1)

Country Link
KR (1) KR102182600B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2802342B2 (ja) * 1992-12-05 1998-09-24 アーファウエル・メディカル・インストルメンツ・アクチェンゲゼルシャフト 血圧測定用のセンサおよびその装置
KR20130094858A (ko) * 2011-01-24 2013-08-26 가부시키가이샤 액트 메디컬 서비스 혈관 맥파 측정 시스템
KR20170106099A (ko) * 2016-03-11 2017-09-20 한국과학기술원 유연 압전 맥박 소자를 이용한 압전 맥박 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2802342B2 (ja) * 1992-12-05 1998-09-24 アーファウエル・メディカル・インストルメンツ・アクチェンゲゼルシャフト 血圧測定用のセンサおよびその装置
KR20130094858A (ko) * 2011-01-24 2013-08-26 가부시키가이샤 액트 메디컬 서비스 혈관 맥파 측정 시스템
KR20170106099A (ko) * 2016-03-11 2017-09-20 한국과학기술원 유연 압전 맥박 소자를 이용한 압전 맥박 시스템

Also Published As

Publication number Publication date
KR102182600B1 (ko) 2020-11-24

Similar Documents

Publication Publication Date Title
Ha et al. A chest‐laminated ultrathin and stretchable E‐tattoo for the measurement of electrocardiogram, seismocardiogram, and cardiac time intervals
US10932722B2 (en) Flexible and stretchable electronic device based on biocompatible film and preparation method
Jeong et al. Capacitive Epidermal Electronics for Electrically Safe, Long–Term Electrophysiological Measurements
US10582618B2 (en) Fabrication of flexible electronic devices
JP4308758B2 (ja) プリント回路ボードを有する圧電生体サウンドモニター
EP0659058B1 (en) Disposable sensing device with cutaneous conformance
US8611980B2 (en) Electrocardiograph monitoring device and connector
Dong et al. Stretchable bio-potential electrode with self-similar serpentine structure for continuous, long-term, stable ECG recordings
US20080312524A1 (en) Medical Sensor Having Electrodes and a Motion Sensor
KR101674579B1 (ko) 생체용 전극 및 이를 포함하는 생체신호 측정장치
US6551256B1 (en) Snore sensor
US20200141794A1 (en) Vibration sensor
KR101007788B1 (ko) 생체신호 측정을 위한 비접촉식 금속 전극패치 및 생체신호 측정 장치
CN113348427A (zh) 软电容式压力传感器
US20200178895A1 (en) Wireless, wearable, and soft biometric sensor
US20030236467A1 (en) Nasal vibration transducer
KR102182598B1 (ko) 맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법
WO2017117739A1 (zh) 睡眠监测系统
KR102182599B1 (ko) 맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법
KR102182600B1 (ko) 맥박 센싱 모듈, 혈압 산출 모듈, 혈압 측정 장치 및 맥박 센싱 모듈의 제조 방법
CN110831493A (zh) 双模式表皮心电图传感器
US11272851B2 (en) Pulse sensing module, blood pressure calculation module, blood pressure measuring device and method for manufacturing pulse sensing module
KR102488621B1 (ko) 생체 신호 측정 장치 및 그 사용 방법
CN109998544B (zh) 超薄柔性阵列式表面肌电电极的制备方法
CN117580502A (zh) 用于测量由人体或动物体发出的周期性生命信号的振动传感器和设备

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant