KR20200046976A - flexible actuator manufacturing method with carbon nanotube-graphene tube material applied - Google Patents

flexible actuator manufacturing method with carbon nanotube-graphene tube material applied Download PDF

Info

Publication number
KR20200046976A
KR20200046976A KR1020180128857A KR20180128857A KR20200046976A KR 20200046976 A KR20200046976 A KR 20200046976A KR 1020180128857 A KR1020180128857 A KR 1020180128857A KR 20180128857 A KR20180128857 A KR 20180128857A KR 20200046976 A KR20200046976 A KR 20200046976A
Authority
KR
South Korea
Prior art keywords
graphene
carbon nanotube
cnt
tube
graphene tube
Prior art date
Application number
KR1020180128857A
Other languages
Korean (ko)
Other versions
KR102137321B1 (en
Inventor
전민현
박민정
박성준
김주희
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Priority to KR1020180128857A priority Critical patent/KR102137321B1/en
Publication of KR20200046976A publication Critical patent/KR20200046976A/en
Application granted granted Critical
Publication of KR102137321B1 publication Critical patent/KR102137321B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H01L41/187
    • H01L41/047
    • H01L41/113
    • H01L41/193
    • H01L41/29
    • H01L41/316
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for manufacturing a flexible actuator applied with carbon nanotube (CNT)-graphene tube material, which comprises a first step of synthesizing a metal catalyst in a nanowire form, and producing the same in a powder form; a second step of growing graphene on the surface of the metal nanowire through chemical vapor deposition, and further growing CNT through the chemical vapor deposition by spraying metal catalyst particles on the surface thereof; a third step of removing the metal nanowire to produce a CNT-graphene tube form; a fourth step of performing a casting process by adding the CNT-graphene tube to an ionic polymer solution to produce a film in which the CNT-graphene tube and the ionic polymer are mixed; and a fifth step of attaching CNT-graphene tube electrodes on both sides of the film, in which the CNT-graphene tube and the ionic polymer are mixed, to finally produce an electroactive polymer flexible actuator added with the CNT-graphene tube material. According to the present invention, an effective driving characteristic as an electrode of a driver can be provided by improving an electron transmission characteristic.

Description

탄소나노튜브-그래핀 튜브 재료가 적용된 유연구동기 제조방법 { flexible actuator manufacturing method with carbon nanotube-graphene tube material applied }{Flexible actuator manufacturing method with carbon nanotube-graphene tube material applied}

본 발명은 탄소나노튜브-그래핀 튜브 재료가 적용된 유연구동기 제조방법에 관한 것으로, 본 발명에서 제시하는 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 재료를 전기 활성 고분자 유연구동기의 고분자 층에 삽입하여 구동력 향상과 발생하는 열을 흡수 시킬 수 있을 뿐 아니라, 탄소계 전극만을 이용하여 기존의 금속전극을 대체하고, 금속 못지않은 전자전달 특성을 가지고 있어 우수한 전극으로도 사용 가능고, 이를 통해 유연구동기의 큰 굽힘 변형을 얻는 동시에 큰 힘을 낼 수 있는 효과를 가지는 금속이 포함되지 않는 탄소나노튜브-그래핀 튜브 재료가 적용된 유연구동기 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a research reactor in which a carbon nanotube-graphene tube material is applied, and an electroactive polymer is used for a carbon nanotube (CNT) -graphene tube material proposed in the present invention. It can be inserted into the polymer layer of the R & D unit to improve driving force and absorb generated heat. It can replace the existing metal electrode using only carbon-based electrodes, and has excellent electron transport properties as well as metal, so it can be used as an excellent electrode. It is possible, through this, to obtain a large bending deformation of the oil research unit, and at the same time, to a method for manufacturing the oil research unit unit to which a carbon nanotube-graphene tube material containing no metal having an effect capable of generating a large force is applied.

최근 이온 폴리머 금속 복합체(Ionic Polymer-Metal Composites, IPMCs)는 이온전달 특성이 우수한 이온성고분자 전해질 막의 상하 양면에 전자전달 특성이 우수한 금속전극이 입혀진 커패시터 구조로 이루어져 있으며, 낮은 전기 구동 포텐셜과, 큰 변형과 경량으로 가장 인기 있는 전기활성고분자 구동기 중 하나이다.Recently, Ionic Polymer-Metal Composites (IPMCs) consist of a capacitor structure coated with metal electrodes with excellent electron transport properties on both sides of the ionic polymer electrolyte membrane with excellent ion transport properties, low electric drive potential, and large It is one of the most popular electroactive polymer actuators due to its deformation and light weight.

이러한 이온 폴리머 금속 복합물은 의료용 로봇 구동기, 생체모방 센서 및 인공근육에 적합한 구동기로 많은 연구가 이루어지고 있다. 유연 구동 변위특성을 가지는 IPMC는 낮은 구동전압에 비해 상대적으로 큰 변위를 가지며, 구동기 질량에 비해 큰 전달력을 갖는다. 또한, 변위에 비해 빠른 반응주파수가 출력되며, 공기 중이나 물에서도 구동이 가능하여, 제조공정에 따라 자유로운 형태로 구현할 수 있다.Many researches have been conducted on these ionic polymer metal complexes as medical robot drivers, biomimetic sensors, and drivers suitable for artificial muscles. IPMC having flexible driving displacement characteristics has a relatively large displacement compared to a low driving voltage, and has a large transmission force compared to a driver mass. In addition, the reaction frequency is faster than the displacement, and it can be driven in air or water, so it can be implemented freely according to the manufacturing process.

종래특허기술로서, 등록특허공보 등록번호 10-1703516호에는 전극의 제조 방법에 있어서, 전자빔 증발기(E-beam Evaporator)에서 이산화규소(SiO2) 희생층(Sacrificial Layer) 위에 금속 촉매(MetallicCatalyst)를 증착한 후 CVD(Chemical Vapor Deposition) 장비에서 상기 금속 촉매 위에 탄소나노튜브(CNT:Carbon Nanotube)를 성장시키는 성장 과정; 수조 내의 증류수(Di-Water) 상에서 불화수소(HF)를 이용하여 상기 이산화규소(SiO2) 희생층을 제거하는 제거과정; 상기 수조 내의 상기 증류수의 표면 상에 상기 탄소나노튜브(CNT)가 분자간의 거리를 유지하면서 뜬 상태에서, 상기 증류수의 표면 아래로 탄소섬유직물(Carbon Fiber Woven Fabric)이 얹혀진 이산화규소(SiO2) 임시층(Temporary Layer)을 담금하는 담금 과정; 상기 수조 내의 상기 증류수 상에서 상기 탄소섬유직물 위에 상기 탄소나노튜브(CNT)를 적층(Laminating)한 후 상기 이산화규소(SiO2) 임시층을 상기 증류수 밖으로 꺼내는 전사(Transfer) 과정; 및 상기 탄소섬유직물을 진공 오븐(Vacuum Furnace)에서 기 설정된 온도 및 시간만큼 건조시킨 후 진공 열처리(Vacuum Annealing)하여 상기 탄소섬유직물과 상기 탄소나노튜브(CNT)가 구조를 유지하도록 하는 접합 상태로 만드는 접합 과정을 포함하고, 상기 전사 과정에서 상기 이산화규소(SiO2) 임시층 위에 적층되어 있는 상기 탄소섬유직물은 니켈(Ni) 원자를 박막(Thin-Film) 형태로 300 nm ~ 600 nm 두께를 갖도록 증착하여 열처리한 상태이며, 상기 접합 과정은 상기 탄소섬유직물을 상기 진공 오븐에서 80 ℃로 1시간 이내로 건조 시킨 후 1000 ℃ 이내에서 10 ~ 15 분 동안 강화 어닐링을 수행하는 것을 특징으로 하는 탄소섬유직물/탄소나노튜브 전극의 제조 방법이 공개되어 있다.As a conventional patent technology, in the method of manufacturing an electrode in Patent No. 10-1703516, a metal catalyst (MetallicCatalyst) is deposited on a sacrificial layer of silicon dioxide (SiO2) in an E-beam evaporator. After the growth process of growing a carbon nanotube (CNT: Carbon Nanotube) on the metal catalyst in a chemical vapor deposition (CVD) equipment; A removal process of removing the silicon dioxide (SiO2) sacrificial layer using hydrogen fluoride (HF) on di-water in a water tank; On the surface of the distilled water in the water tank, while the carbon nanotubes (CNT) float while maintaining the distance between molecules, silicon dioxide (SiO2) temporarily coated with carbon fiber fabric under the surface of the distilled water A immersion process for immersing the temporary layer; Laminating the carbon nanotubes (CNT) on the carbon fiber fabric on the distilled water in the water tank, and then transferring the temporary layer of silicon dioxide (SiO2) out of the distilled water; And drying the carbon fiber fabric in a vacuum oven (Vacuum Furnace) for a predetermined temperature and time, followed by vacuum annealing to maintain the structure of the carbon fiber fabric and the carbon nanotubes (CNT). Including the bonding process to make, the carbon fiber fabric laminated on the silicon dioxide (SiO2) temporary layer in the transfer process, the nickel (Ni) atoms in the form of a thin film (Thin-Film) to have a thickness of 300 nm ~ 600 nm It is a heat-treated state by vapor deposition, and the bonding process is characterized in that the carbon fiber fabric is dried at 80 ° C. within 1 hour in the vacuum oven, and then reinforced annealing is performed at 1000 ° C. for 10 to 15 minutes. / A method for manufacturing carbon nanotube electrodes has been disclosed.

또한, 공개특허공보 공개번호 10-2017-0092122 음극 집전체; 상기 음극 집전체의 적어도 일면에 형성되어 있고, 그래핀(graphene) 및 탄소 나노 튜브(carbon nano tube, CNT)로 구성된 도전성 카본과, 상기 도전성 카본, 집전체 및 하기 음극 합제층의 구성요소들을 결착시키는 제 1바인더를 포함하고, 0.3 ㎛ 내지 2 ㎛의 두께를 가지는 프라이머층; 및 상기 프라이머층 상에 위치하고, 음극 활물질과, 상기 음극 활물질 입자들 사이의 결착을 위한 제 2 바인더를 포함하는 음극 합제층; 을 포함하는 것을 특징으로 하는 이차전지용 음극이 공개되어 있다.In addition, Publication No. 10-2017-0092122 negative electrode current collector; It is formed on at least one surface of the negative electrode current collector, and binds the conductive carbon composed of graphene and carbon nano tube (CNT), and the components of the conductive carbon, the current collector, and the negative electrode mixture layer below. A primer layer containing a first binder, and having a thickness of 0.3 μm to 2 μm; And a second binder for binding between the negative electrode active material and the negative electrode active material particles, located on the primer layer; A negative electrode for a secondary battery, characterized in that it comprises a.

그러나 전기활성 고분자의 전극으로는 백금, 금, 금속 합금 등과 같은 여러 가지의 벌크 금속 전극들이 사용되는데 이 들은 너무 고가이고 촉매 작용이 일어나는 표면적을 증가시키기 어렵다. 또한 기존 IPMCs에 재료와 공정 상의 문제로 표면에 크랙이 존재하게 되고, 인가된 전압에 의해 이온성 고분자 층 내의 이온 수화물들이 전기분해가 되며, 금속 전극의 크랙을 통해 증발한다. 또한 인가전압으로 발생되는 열에 의하여 더욱더 수분증발을 더 많이 일어나게 된다. 전극 표면에 결함과 고분자 내부 물 손실은 이온성고분자의 동작 제어를 어렵게 하고, 유연 구동기의 구동 특성을 저하시키며 또한 인가전압의 주파수 범위를 제한하기 때문에, 유연 구동기의 산업적 응용을 크게 방해하는 요소 중 하나이다. 더하여 IPMCs는 구동변위가 큰 데 비해 매우 낮는 구동력을 가지고 있다. 그렇기 때문에 값싼 전극을 사용하는 것과 표면의 crack을 없애는 것이 필요하고, 구동력을 향상시키는 것이 필요하다.However, as the electrode of the electroactive polymer, various bulk metal electrodes such as platinum, gold, and metal alloys are used, which are too expensive and difficult to increase the catalytic surface area. In addition, cracks exist on the surface due to material and process problems in the existing IPMCs, and ion hydrates in the ionic polymer layer are electrolyzed by the applied voltage, and evaporate through cracks in the metal electrode. In addition, more and more moisture evaporation occurs due to heat generated by the applied voltage. Defects on the electrode surface and water loss inside the polymer make it difficult to control the operation of the ionic polymer, degrade the driving characteristics of the flexible actuator, and also limit the frequency range of the applied voltage. It is one. In addition, IPMCs have a very low driving force compared to a large driving displacement. For this reason, it is necessary to use cheap electrodes and to eliminate cracks on the surface, and it is necessary to improve the driving force.

따라서 본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로, 본 발명에서 제시하는 탄소나노튜브-그래핀 튜브 재료가 적용된 유연구동기의 고분자 층에 삽입하여 구동력 향상과 발생하는 열을 흡수 시킬 수 있을 뿐 아니라, 탄소계 전극만을 이용하여 기존의 금속전극을 대체하고, 금속 못지않은 전자전달 특성을 가지고 있어 우수한 전극으로도 사용 가능하다. 이를 통해 유연구동기의 큰 굽힘 변형을 얻는 동시에 큰 힘을 낼 수 있는 효과를 가지는 금속이 포함되지 않는 탄소나노튜브-그래핀 튜브 재료가 적용된 유연구동기 제조방법을 제공하고자 하는 것이다.Therefore, the present invention has been devised to solve the above problems, and can be inserted into the polymer layer of the research reactor to which the carbon nanotube-graphene tube material proposed in the present invention is applied to improve driving force and absorb generated heat. In addition, it replaces the existing metal electrode using only the carbon-based electrode, and has the same electron transfer characteristics as the metal, so it can be used as an excellent electrode. Through this, it is intended to provide a method for manufacturing a research reactor in which a carbon nanotube-graphene tube material that does not contain a metal having an effect capable of generating a large force while simultaneously obtaining a large bending deformation of the researcher unit is applied.

본발명은 탄소나노튜브-그래핀 튜브 재료가 적용된 유연구동기 제조방법에 관한 것으로, 나노 와이어 형태의 금속 촉매를 합성하고, 이를 파우더 형태로 제작하는 1단계;The present invention relates to a method for manufacturing a research reactor in which a carbon nanotube-graphene tube material is applied, the first step of synthesizing a metal catalyst in the form of a nanowire and preparing it in powder form;

화학기상증착법을 통해 금속 나노 와이어의 표면에 그래핀(graphene)을 성장시키고, 추가로 그 표면에 금속 촉매 입자를 뿌려 화학기상증착법을 통해 CNT를 추가 성장 시키는 2단계;A second step of growing graphene on the surface of the metal nanowire through a chemical vapor deposition method, and further growing CNTs by chemical vapor deposition by spraying metal catalyst particles on the surface;

금속 나노 와이어를 제거하여, 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 형태가 제작되는 3단계;Removing the metal nanowires, the carbon nanotube (CNT, Carbon nanotube) -graphene (graphene) tube (tube) is produced in three steps;

탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube)를 이온성고분자 용액 내에 첨가하여 주조(casting) 공정을 진행하고, 이 공정을 통해 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube)와 이온성고분자가 혼합된 film이 제조되는 4단계;Carbon nanotube (CNT, Carbon nanotube)-Graphene tube (tube) is added to the ionic polymer solution to carry out a casting process, and through this process, carbon nanotube (CNT, Carbon nanotube)- A fourth step in which a film in which a graphene tube and an ionic polymer are mixed is prepared;

상기 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube)와 이온성고분자가 혼합된 필름(film)의 양쪽 면에 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 전극을 부착시켜 최종적으로 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 물질이 첨가된 전기활성고분자 유연구동기를 제작하는 5단계;로 이루어지는 것을 특징으로 한다.The carbon nanotube (CNT, Carbon nanotube)-Graphene tube (CNT, Carbon nanotube) on both sides of the film (film) is a mixture of ionic polymer (CNT, Carbon nanotube)-graphene (graphene) It is characterized in that it consists of 5 steps to fabricate an electroactive polymer research reactor with carbon nanotube (CNT) -graphene tube material added by attaching a tube electrode. .

따라서 본발명은 값 싸고, 플렉시블하며 표면에 결함이 없고, 전극의 산화방지와 구조적으로 높은 전류 밀도를 가지고 있어 전자전달 특성을 우수하게 하여 구동기의 전극으로서 효과적인 구동 특성을 제공하고자 한다. Therefore, the present invention is inexpensive, flexible, and has no defects on the surface, and has a high current density structurally and prevents oxidation of the electrode, thereby providing excellent driving characteristics as an electrode of the driver.

이에 따라 같은 전압과 주파수에서 더 빠른 응답특성과 구동력 특성을 보이는 현저한 효과가 있다.Accordingly, there is a remarkable effect showing faster response characteristics and driving force characteristics at the same voltage and frequency.

도 1은 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 구조도
도 2는 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 물질이 첨가된 전기활성 고분자 유연구동기 설명도
1 is a carbon nanotube (CNT, Carbon nanotube)-graphene (graphene) tube (tube) structure diagram
Figure 2 is a carbon nanotube (CNT, Carbon nanotube)-graphene (graphene) tube (tube) material is added to the electroactive polymer flow research explanatory diagram

본발명은 탄소나노튜브-그래핀 튜브 재료가 적용된 유연구동기 제조방법에 관한 것으로, 나노 와이어 형태의 금속 촉매를 합성하고, 이를 파우더 형태로 제작하는 1단계;The present invention relates to a method for manufacturing a research reactor in which a carbon nanotube-graphene tube material is applied, the first step of synthesizing a metal catalyst in the form of a nanowire and preparing it in powder form;

화학기상증착법을 통해 금속 나노 와이어의 표면에 그래핀(graphene)을 성장시키고, 추가로 그 표면에 금속 촉매 입자를 뿌려 화학기상증착법을 통해 탄소나노튜브(CNT, Carbon nanotube)를 추가 성장 시키는 2단계;The second step of growing graphene on the surface of metal nanowires through chemical vapor deposition, and additionally growing carbon nanotubes (CNTs) through chemical vapor deposition by spraying metal catalyst particles on the surface. ;

금속 나노 와이어를 제거하여, 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 형태가 제작되는 3단계;Removing the metal nanowires, the carbon nanotube (CNT, Carbon nanotube) -graphene (graphene) tube (tube) is produced in three steps;

탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube)를 이온성고분자 용액 내에 첨가하여 캐스팅(casting) 공정을 진행하고, 이 공정을 통해 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube)와 이온성고분자가 혼합된 필름(film)이 제조되는 4단계;Carbon nanotube (CNT, Carbon nanotube)-Graphene tube (tube) is added to the ionic polymer solution to perform the casting process, and through this process, carbon nanotube (CNT, Carbon nanotube)- A fourth step in which a film of a graphene tube and an ionic polymer are prepared;

상기 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube)와 이온성고분자가 혼합된 필름(film)의 양쪽 면에 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 전극을 부착시켜 최종적으로 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 물질이 첨가된 전기활성고분자 유연구동기를 제작하는 5단계;로 이루어지는 것을 특징으로 한다.Carbon nanotubes (CNT, Carbon nanotube)-Graphene (graphene) tube and carbon nanotubes (CNT, carbon nanotube)-graphene (graphene) on both sides of the film (ionic film) It is characterized in that it consists of 5 steps to fabricate an electroactive polymer research reactor with carbon nanotube (CNT) -graphene tube material added by attaching a tube electrode. .

또한, 상기 3단계는 열처리를 통해 금속 나노 와이어를 제거하는 것을 특징으로 한다.In addition, the third step is characterized in that the metal nanowires are removed through heat treatment.

또한, 상기 5단계에서 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 전극을 별도 제조한 후 부착하는 것을 특징으로 한다.In addition, in step 5, the carbon nanotube (CNT, carbon nanotube)-graphene (graphene) tube (tube) electrode is separately manufactured and attached.

본발명을 첨부도면에 의해 상세히 설명하면 다음과 같다. 도 1은 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 구조도, 도 2는 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 물질이 첨가된 전기활성 고분자 유연구동기 설명도이다.The present invention will be described in detail with reference to the accompanying drawings. 1 is a carbon nanotube (CNT, Carbon nanotube)-graphene (graphene) tube (tube) structure diagram, Figure 2 is a carbon nanotube (CNT, Carbon nanotube)-graphene (graphene) tube (tube) material is added It is an explanatory diagram of the electroactive polymer oil research motivation.

본 발명은 기존의 귀금속 전극을 대체하여 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 물질을 사용하여, 값 싸고, 플렉시블하며 표면에 결함이 없고, 전극의 산화방지와 구조적으로 높은 전류 밀도를 가지고 있어 전자전달 특성을 우수하게 하여 구동기의 전극으로서 효과적인 구동 특성을 제공하고자 한다. 그리고 이온성 고분자는 기존의 탄소나노튜브(CNT, Carbon nanotube) 및 그래핀(graphene)이 가지는 뭉치는 현상을 완화시킬 수 있으며, 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 물질은 고분자 내에서 분산이 잘 일어날 수 있다. 또한 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 물질의 강성이 강한 특징을 이용하여 이를 이온성 고분자 층에 삽입해 강성을 증가시켜 구동력을 효과적으로 향상시킬 수 있으며, 이에 따라 같은 전압과 주파수에서 더 빠른 응답특성과 구동력 특성을 보일 수 있다.The present invention uses a carbon nanotube (CNT) -graphene tube material to replace the existing noble metal electrode, and is inexpensive, flexible, free from defects on the surface, and prevents electrode oxidation. It is intended to provide effective driving characteristics as an electrode of a driver by having a high current density structurally and making excellent electron transfer characteristics. And the ionic polymer can alleviate the agglomeration of existing carbon nanotubes (CNT, Carbon nanotube) and graphene, and carbon nanotube (CNT, carbon nanotube) -graphene tube ( The material of the tube) can be easily dispersed in the polymer. In addition, the carbon nanotube (CNT, carbon nanotube) -graphene (graphene) tube (tube) using the strong characteristics of the material by inserting it into the ionic polymer layer to increase the rigidity can effectively improve the driving force, thereby Therefore, it is possible to exhibit faster response characteristics and driving force characteristics at the same voltage and frequency.

본 발명을 달성하기 위해 탄소나노튜브-그래핀 튜브 재료가 적용된 유연구동기 제조방법은 가장 먼저 나노 와이어 형태의 금속 촉매를 합성하고, 이를 파우더 형태로 제작한다. 이후, 화학기상증착법을 통해 금속 나노 와이어의 표면에 그래핀(graphene)을 성장시키고, 추가로 그 표면에 금속 촉매 입자를 뿌려 화학기상증착법을 통해 CNT를 추가 성장 시킨다. 그 다음 열처리를 통해 금속 나노 와이어를 제거하여, 최종적으로 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 형태가 제작된다. 이를 이온성고분자 용액 내에 첨가하여 주조(casting) 공정을 진행하고, 이 공정을 통해 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube)와 이온성고분자가 혼합된 필름(film)이 제조된다. 또한 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 재료를 전극으로 형성하고 앞에서 제작된 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube)와 이온성고분자가 혼합된 필름(film)의 양쪽 면에 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 전극을 부착시켜 최종적으로 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 물질이 첨가된 전기활성고분자 유연구동기를 제작한다.In order to achieve the present invention, the method of manufacturing a research reactor in which carbon nanotube-graphene tube material is applied is the first to synthesize a metal catalyst in the form of a nanowire, and to prepare it in powder form. Thereafter, graphene is grown on the surface of the metal nanowire through a chemical vapor deposition method, and CNTs are further grown through a chemical vapor deposition method by further spraying metal catalyst particles on the surface. Then, the metal nanowire is removed through heat treatment, and finally, a carbon nanotube (CNT) -graphene tube shape is produced. This is added to the ionic polymer solution to carry out a casting process, and through this process, a film in which a carbon nanotube (CNT) -graphene tube and an ionic polymer are mixed (film) ) Is prepared. In addition, carbon nanotube (CNT, carbon nanotube) -graphene tube material is formed as an electrode, and the carbon nanotube (CNT, carbonene tube) -graphene tube and ion produced above are formed. Carbon nanotube (CNT) -graphene tube electrodes are attached to both sides of the film in which the sex polymer is mixed, and finally, carbon nanotube (CNT, carbon nanotube) -graphene (graphene) Electroactive polymers with added tube material are prepared.

따라서 본발명은 값 싸고, 플렉시블하며 표면에 결함이 없고, 전극의 산화방지와 구조적으로 높은 전류 밀도를 가지고 있어 전자전달 특성을 우수하게 하여 구동기의 전극으로서 효과적인 구동 특성을 제공하고자 한다.Therefore, the present invention is inexpensive, flexible, and has no defects on the surface, and has an excellent oxidation resistance and structurally high current density, thereby providing excellent driving characteristics as an electrode of the driver.

이에 따라 같은 전압과 주파수에서 더 빠른 응답특성과 구동력 특성을 보이는 현저한 효과가 있다.Accordingly, there is a remarkable effect showing faster response characteristics and driving force characteristics at the same voltage and frequency.

10 : 탄소나노튜브(CNT, Carbon nanotube)
20 : 그래핀(graphene)
30 : 이온 폴리머(Ionic Polymer)
40 : 전극
10: Carbon nanotube (CNT, Carbon nanotube)
20: graphene
30: Ionic polymer (Ionic Polymer)
40: electrode

Claims (3)

나노 와이어 형태의 금속 촉매를 합성하고, 이를 파우더 형태로 제작하는 1단계;
화학기상증착법을 통해 금속 나노 와이어의 표면에 그래핀(graphene)을 성장시키고, 추가로 그 표면에 금속 촉매 입자를 뿌려 화학기상증착법을 통해 탄소나노튜브(CNT, Carbon nanotube)를 추가 성장 시키는 2단계;
금속 나노 와이어를 제거하여, 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 형태가 제작되는 3단계;
탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube)를 이온성고분자 용액 내에 첨가하여 주조(casting) 공정을 진행하고, 이 공정을 통해 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube)와 이온성고분자가 혼합된 필름(film)이 제조되는 4단계;
상기 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube)와 이온성고분자가 혼합된 필름(film)의 양쪽 면에 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 전극을 부착시켜 최종적으로 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 물질이 첨가된 전기활성고분자 유연구동기를 제작하는 5단계;로 이루어지는 것을 특징으로 하는 탄소나노튜브-그래핀 튜브 재료가 적용된 유연구동기 제조방법
The first step of synthesizing a metal catalyst in the form of a nanowire, and producing it in powder form;
The second step of growing graphene on the surface of metal nanowires through chemical vapor deposition, and additionally growing carbon nanotubes (CNTs) through chemical vapor deposition by spraying metal catalyst particles on the surface. ;
Removing the metal nanowires, the carbon nanotube (CNT, Carbon nanotube) -graphene (graphene) tube (tube) is produced in three steps;
Carbon nanotube (CNT, Carbon nanotube)-Graphene tube (tube) is added to the ionic polymer solution to carry out a casting process, and through this process, carbon nanotube (CNT, Carbon nanotube)- A fourth step in which a film of a graphene tube and an ionic polymer are prepared;
Carbon nanotubes (CNT, Carbon nanotube)-Graphene (graphene) tube and carbon nanotubes (CNT, carbon nanotube)-graphene (graphene) on both sides of the film (ionic film) It is characterized in that it consists of 5 steps to fabricate an electroactive polymer oil-molecule in which carbon nanotube (CNT) -graphene tube material is finally added by attaching a tube electrode. Carbon nanotube-graphene tube material applied research oil manufacturing method
제1항에 있어서, 상기 3단계는 열처리를 통해 금속 나노 와이어를 제거하는 것을 특징으로 하는 탄소나노튜브-그래핀 튜브 재료가 적용된 유연구동기 제조방법The method according to claim 1, wherein the third step is to remove the metal nanowire through heat treatment, wherein the carbon nanotube-graphene tube material is applied. 제2항에 있어서, 상기 5단계에서 탄소나노튜브(CNT, Carbon nanotube)-그래핀(graphene) 튜브(tube) 전극을 별도 제조한 후 부착하는 것을 특징으로 하는 탄소나노튜브-그래핀 튜브 재료가 적용된 유연구동기 제조방법The carbon nanotube-graphene tube material according to claim 2, wherein the carbon nanotube (CNT) graphene tube electrode is separately prepared and attached in step 5 above. Applied oil research motivation manufacturing method
KR1020180128857A 2018-10-26 2018-10-26 flexible actuator manufacturing method with carbon nanotube-graphene tube material applied KR102137321B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180128857A KR102137321B1 (en) 2018-10-26 2018-10-26 flexible actuator manufacturing method with carbon nanotube-graphene tube material applied

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180128857A KR102137321B1 (en) 2018-10-26 2018-10-26 flexible actuator manufacturing method with carbon nanotube-graphene tube material applied

Publications (2)

Publication Number Publication Date
KR20200046976A true KR20200046976A (en) 2020-05-07
KR102137321B1 KR102137321B1 (en) 2020-07-23

Family

ID=70733795

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180128857A KR102137321B1 (en) 2018-10-26 2018-10-26 flexible actuator manufacturing method with carbon nanotube-graphene tube material applied

Country Status (1)

Country Link
KR (1) KR102137321B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102304863B1 (en) 2021-03-02 2021-09-24 주식회사 카티스 Non-contact door control device and its operation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150054399A (en) * 2013-11-12 2015-05-20 인제대학교 산학협력단 Electrochromic flexible actuator
KR20170117804A (en) * 2016-04-14 2017-10-24 국방과학연구소 Nano-composite electrode, method of manufacturing nano-composite electrode and active polymer actuator having the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150054399A (en) * 2013-11-12 2015-05-20 인제대학교 산학협력단 Electrochromic flexible actuator
KR20170117804A (en) * 2016-04-14 2017-10-24 국방과학연구소 Nano-composite electrode, method of manufacturing nano-composite electrode and active polymer actuator having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102304863B1 (en) 2021-03-02 2021-09-24 주식회사 카티스 Non-contact door control device and its operation method

Also Published As

Publication number Publication date
KR102137321B1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
Benzigar et al. Advances on emerging materials for flexible supercapacitors: current trends and beyond
Wang et al. Recent advances in porous carbon materials for electrochemical energy storage
Lipton et al. Layer-by-layer assembly of two-dimensional materials: meticulous control on the nanoscale
Tang et al. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels
Lu et al. Carbon nanotube based fiber supercapacitor as wearable energy storage
CN108489644B (en) High-sensitivity sensor based on MXene/rGO composite three-dimensional structure
Shehzad et al. Three-dimensional macro-structures of two-dimensional nanomaterials
Chen et al. Structural design of graphene for use in electrochemical energy storage devices
Endo et al. Large-scale production of carbon nanotubes and their applications
Avasthi et al. Aligned CNT forests on stainless steel mesh for flexible supercapacitor electrode with high capacitance and power density
Sun et al. Nanoconfined construction of MoS2@ C/MoS2 core–sheath nanowires for superior rate and durable Li-ion energy storage
Sun et al. Atomic layer deposition of TiO2 on graphene for supercapacitors
Guo et al. A green approach to the synthesis of graphene nanosheets
KR101484090B1 (en) Method of fabricating carbon nanotube-graphene composite and carbon nanotube-graphene composite fabricated by the same
US20150291431A1 (en) Ultrathin graphene piece, apparatus for preparing ultrathin graphene piece, method for preparing ultrathin graphene piece, capacitor, and method of manufacturing capacitor
KR101745449B1 (en) Hierarchical architecture with nanosized metal oxide and porous graphene for lithium ion battery anode with ultra-fast charge/discharge rate and extremely robust cycle life using thereof
Wang et al. Recent progress in flexible energy storage materials for lithium-ion batteries and electrochemical capacitors: A review
Shen et al. Recent progress in binder‐free electrodes synthesis for electrochemical energy storage application
Zhu et al. Free-standing, binder-free titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries
WO2011016616A2 (en) Carbonaceous nanocomposite having novel structure and fabrication method thereof
Rasch et al. Wet-chemical assembly of 2D nanomaterials into lightweight, microtube-shaped, and macroscopic 3D networks
JP4761346B2 (en) Double-walled carbon nanotube-containing composition
JP2008266532A (en) Actuator element with highly orienting electrode using carbon nano-tube having high aspect ratio
Islam et al. Review on carbonaceous materials and metal composites in deformable electrodes for flexible lithium-ion batteries
Hua et al. General metal-ion mediated method for functionalization of graphene fiber

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right