KR101484090B1 - Method of fabricating carbon nanotube-graphene composite and carbon nanotube-graphene composite fabricated by the same - Google Patents

Method of fabricating carbon nanotube-graphene composite and carbon nanotube-graphene composite fabricated by the same Download PDF

Info

Publication number
KR101484090B1
KR101484090B1 KR20130117295A KR20130117295A KR101484090B1 KR 101484090 B1 KR101484090 B1 KR 101484090B1 KR 20130117295 A KR20130117295 A KR 20130117295A KR 20130117295 A KR20130117295 A KR 20130117295A KR 101484090 B1 KR101484090 B1 KR 101484090B1
Authority
KR
South Korea
Prior art keywords
graphene
carbon nanotube
mixture
graphene composite
carbon
Prior art date
Application number
KR20130117295A
Other languages
Korean (ko)
Inventor
윤동명
권순근
권지민
김민석
박영민
Original Assignee
코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝정밀소재 주식회사 filed Critical 코닝정밀소재 주식회사
Priority to KR20130117295A priority Critical patent/KR101484090B1/en
Priority to PCT/KR2014/009154 priority patent/WO2015050352A1/en
Application granted granted Critical
Publication of KR101484090B1 publication Critical patent/KR101484090B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

The present invention relates to a method of manufacturing a carbon nanotube-graphene composite and a carbon nanotube-graphene composite manufactured thereby and, more specifically, to a method of manufacturing a carbon nanotube-graphene composite capable of manufacturing a carbon nanotube-graphene composite having excellent conductivity and electron mobility by controlling carbon nanotubes in order to form a structure connected in a direction perpendicular to a graphene flake in which conductivity is excellent, which is a structure standing up from the surface of the graphene flake on a flat surface, and to a carbon nanotube-graphene composite manufactured thereby. To do this end, the present invention provides the method of manufacturing a carbon nanotube-graphene composite comprising: a mixture manufacturing step of manufacturing a mixture of graphene oxide and a catalyst; and a mixture heat treating step of forming carbon nanotubes from the catalyst distributed on the surface of the graphene oxide reduced in the mixture manufacturing step and the carbon nanotube-graphene composite manufactured thereby.

Description

탄소나노튜브―그래핀 복합체 제조방법 및 이에 의해 제조된 탄소나노튜브―그래핀 복합체{METHOD OF FABRICATING CARBON NANOTUBE―GRAPHENE COMPOSITE AND CARBON NANOTUBE―GRAPHENE COMPOSITE FABRICATED BY THE SAME}TECHNICAL FIELD [0001] The present invention relates to a carbon nanotube-graphene composite, and a carbon nanotube-graphene composite produced by the method and a carbon nanotube-

본 발명은 탄소나노튜브-그래핀 복합체 제조방법 및 이에 의해 제조된 탄소나노튜브-그래핀 복합체에 관한 것으로서 더욱 상세하게는 탄소나노튜브가, 전기 전도도가 우수한 방향인 그래핀 플레이크에 수직한 방향으로 연결되는 구조, 즉, 탄소나노튜브가 평면 상의 그래핀 플레이크의 표면으로부터 기립된 구조를 이루도록 제어함으로써, 우수한 전기 전도도 및 전자 이동도를 갖는 탄소나노튜브-그래핀 복합체를 제조할 수 있는 탄소나노튜브-그래핀 복합체 제조방법 및 이에 의해 제조된 탄소나노튜브-그래핀 복합체에 관한 것이다.
The present invention relates to a method for manufacturing a carbon nanotube-graphene composite and a carbon nanotube-graphene composite produced thereby, and more particularly, to a carbon nanotube-graphene composite having a carbon nanotube structure in a direction perpendicular to a graphene flake Carbon nanotubes capable of producing carbon nanotube-graphene composites having excellent electrical conductivity and electron mobility by controlling the structure in which the carbon nanotubes are connected to each other so as to form a structure in which the carbon nanotubes are erected from the surface of the plane graphene flake - graphene composite and a carbon nanotube-graphene composite produced thereby.

일반적으로, 전기 이중층 커패시터와 연료전지 등과 같은 에너지 저장용 매체의 전극 소재는 전해질 이온의 이동 통로가 확보되고, 표면에 흡착할 수 있는 면적(유효 비표면적)이 넓으면 우수한 특성을 발현한다. 또한, 이러한 전극 소재는 전기 전도도가 우수할수록 용량 특성이 향상된다. 예를 들어, 종래에는 카본블랙 등 전기 전도도가 높은 물질을 혼합하여 전극 소재로 사용하였다.Generally, the electrode material of an energy storage medium such as an electric double layer capacitor and a fuel cell exhibits excellent characteristics when the passage area of the electrolyte ion is ensured and the area (effective specific surface area) capable of adsorbing on the surface is wide. In addition, capacity of the electrode material is improved as the electric conductivity is better. For example, conventionally, a material having high electrical conductivity such as carbon black is mixed and used as an electrode material.

한편, 그래핀과 탄소나노튜브는 구리의 100배 이상의 우수한 전기 전도도와 큰 비표면적을 갖는 물질로 각광받고 있다. 에너지 저장용 매체의 전극 소재로 사용하기 위해, 이러한 그래핀과 탄소나노튜브 등과 같은 나노물질을 구조화할 경우, 전해액 이온의 이동이 용이한 기공구조를 확보할 수 있을 뿐만 아니라, 전기 전도도가 뛰어나 전자의 이동이 원활하여, 용량 특성이 극대화될 수 있다.On the other hand, graphene and carbon nanotubes are attracting attention as materials having an excellent electrical conductivity and a large specific surface area of 100 times or more that of copper. When structuring nanomaterials such as graphene and carbon nanotubes for use as an electrode material for an energy storage medium, not only is it possible to secure a pore structure that facilitates the movement of electrolyte ions, So that the capacity characteristic can be maximized.

이에 따라, 종래에는 에너지 저장용 매체의 전극 소재로 탄소나노튜브-그래핀 복합체를 제조하였다. 하지만, 종래의 탄소나노튜브-그래핀 복합체의 구조에서는 그래핀에 탄소나노튜브가 형성되어 있는 방향이 탄소나노튜브에서 전자가 이동하는 방향과 일치하지 않아, 전자의 이동이 원활하지 않은 문제점이 있었다.Accordingly, carbon nanotube-graphene composites have been conventionally prepared as electrode materials for energy storage media. However, in the conventional structure of the carbon nanotube-graphene composite, the direction in which the carbon nanotubes are formed in graphene does not coincide with the direction in which the electrons move in the carbon nanotubes, and the movement of electrons is not smooth .

일본 공개특허공보 제2012-199305호(2012.10.18.)Japanese Laid-Open Patent Publication No. 2012-199305 (Oct. 18, 2012)

본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 탄소나노튜브가, 전기 전도도가 우수한 방향인 그래핀 플레이크에 수직한 방향으로 연결되는 구조, 즉, 탄소나노튜브가 평면 상의 그래핀 플레이크의 표면으로부터 기립된 구조를 이루도록 제어함으로써, 우수한 전기 전도도 및 전자 이동도를 갖는 탄소나노튜브-그래핀 복합체를 제조할 수 있는 탄소나노튜브-그래핀 복합체 제조방법 및 이에 의해 제조된 탄소나노튜브-그래핀 복합체를 제공하는 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a structure in which carbon nanotubes are connected to a graphene flake in a direction perpendicular to the direction of electrical conductivity, A method of manufacturing a carbon nanotube-graphene composite capable of producing a carbon nanotube-graphene composite having excellent electrical conductivity and electron mobility by controlling the nanotube to have a structure rising from the surface of graphene flake in a plane, and And to provide a carbon nanotube-graphene composite produced thereby.

이를 위해, 본 발명은, 산화 그래핀과 촉매의 혼합물을 제조하는 혼합물 제조단계 및 상기 혼합물을 열처리하여, 상기 혼합물 제조단계 시 환원된 상기 산화 그래핀 표면에 분포되어 있는 상기 촉매로부터 탄소나노튜브를 형성시키는 혼합물 열처리단계를 포함하는 것을 특징으로 하는 탄소나노튜브-그래핀 복합체 제조방법을 제공한다.To this end, the present invention relates to a method for producing carbon nanotubes, comprising the steps of: preparing a mixture to prepare a mixture of oxidized graphene and a catalyst; and heat-treating the mixture to remove carbon nanotubes from the catalyst, A carbon nanotube-graphene composite, and a carbon nanotube-graphene composite.

여기서, 상기 혼합물 열처리단계에서는 상기 혼합물을 600~900℃로 열처리할 수 있다.Here, in the heat treatment step of the mixture, the mixture may be heat treated at 600 to 900 ° C.

이때, 상기 혼합물 열처리단계는 비활성 분위기에서 진행될 수 있다.At this time, the heat treatment of the mixture may proceed in an inert atmosphere.

또한, 상기 혼합물 제조단계 전, 상기 산화 그래핀을 제조하는 산화 그래핀 제조단계를 더 포함할 수 있다.Further, the method may further include a step of preparing the oxidized graphene to produce the oxidized graphene before the step of preparing the mixture.

이때, 상기 산화 그래핀 제조단계는, 흑연을 산처리하여 산화 흑연을 만드는 제1 과정, 및 상기 산화 흑연으로부터 상기 산화 그래핀을 층 분리시키는 제2 과정을 포함할 수 있다.At this time, the graphene graining step may include a first step of acid-treating graphite to produce oxidized graphite, and a second step of layer-separating the graphene oxide from the oxidized graphite.

또한, 상기 제2 과정에서는 용매에 상기 산화 흑연을 첨가한 후 액상 초음파 처리할 수 있다.Further, in the second step, the graphite oxide may be added to the solvent, followed by liquid-phase sonication.

그리고 상기 혼합물 제조단계에서는 상기 산화 그래핀을 포함하는 수용액에 상기 촉매를 넣고 교반할 수 있다.In the preparation of the mixture, the catalyst may be added to an aqueous solution containing the graphene oxide and stirred.

이때, 상기 혼합물 제조단계에서는 상기 촉매를 용매에 용해시킨 후 상기 수용액에 첨가할 수 있다.At this time, in the preparation of the mixture, the catalyst may be dissolved in a solvent and then added to the aqueous solution.

또한, 상기 혼합물 제조단계에서는 상기 교반 후 상기 수용액을 필터링 및 건조할 수 있다.Further, in the step of preparing the mixture, the aqueous solution may be filtered and dried after the stirring.

그리고 상기 혼합물 열처리단계 후, 만들어진 탄소나노튜브-그래핀 복합체를 산처리 및 건조할 수 있다.After the heat treatment of the mixture, the carbon nanotube-graphene composite thus produced can be treated with an acid and dried.

아울러, 상기 혼합물 열처리단계에서는 환원된 상기 산화 그래핀의 표면으로부터 기립된 구조를 이루도록 상기 탄소나노튜브를 형성시킬 수 있다.The carbon nanotubes may be formed so as to have a structure rising from the surface of the oxidized graphene reduced in the mixing heat treatment step.

한편, 본 발명은, 환원된 산화 그래핀으로 이루어진 그래핀 플레이크 및 평면 상의 상기 그래핀 플레이크의 표면으로부터 기립된 구조를 이루도록 형성되는 적어도 하나의 탄소나노튜브를 포함하는 것을 특징으로 하는 탄소나노튜브-그래핀 복합체를 제공한다.According to another aspect of the present invention, there is provided a carbon nanotube-carbon nanotube composite material, which comprises a graphene flake made of reduced oxidized graphene and at least one carbon nanotube formed so as to have a structure rising from the surface of the graphene flake on a plane, Graphene composite.

여기서, 상기 탄소나노튜브는 1~100㎚ 길이로 형성될 수 있다.Here, the carbon nanotubes may have a length of 1 to 100 nm.

또한, 상기 그래핀 플레이크와 상기 탄소나노튜브는 일 방향을 따라 순차 반복적으로 적층된 구조를 이룰 수 있다.
In addition, the graphene flake and the carbon nanotubes may be sequentially and repeatedly laminated along one direction.

본 발명에 따르면, 탄소나노튜브가, 전기 전도도가 우수한 방향인 그래핀 플레이크에 수직한 방향으로 연결되는 구조, 즉, 탄소나노튜브가 평면 상의 그래핀 플레이크의 표면으로부터 기립된 구조를 이루도록 제어함으로써, 우수한 전기 전도도 및 전자 이동도를 갖는 탄소나노튜브-그래핀 복합체를 제조할 수 있고, 이를 전극 소재로 채용한 연료 전지의 고용량, 고출력 구현이 가능하다.According to the present invention, by controlling the structure in which the carbon nanotubes are connected in a direction perpendicular to the graphene flake having a good electrical conductivity, that is, the carbon nanotubes are structured so as to stand up from the surface of the plane graphene flake, A carbon nanotube-graphene composite having excellent electrical conductivity and electron mobility can be produced, and a high capacity and high output of a fuel cell employing it as an electrode material can be realized.

또한, 본 발명에 따르면, 유독 기체, 고압 장치 및 전자기파 없이, 오직, 비활성 분위기 하에서 열을 가해줌으로써, 전극 소재로 적용 시 전해액의 이동 공간을 확보해주고 전자의 이동이 원활한 구조를 이루는 탄소나노튜브를 형성할 수 있다.
In addition, according to the present invention, it is possible to provide a carbon nanotube which ensures a moving space of an electrolytic solution when applied as an electrode material by applying heat only in an inert atmosphere without toxic gas, high pressure device and electromagnetic wave, .

도 1은 본 발명의 실시 예에 따른 탄소나노튜브-그래핀 복합체 제조방법을 나타낸 공정 순서도.
도 2는 본 발명의 실시 예에 따른 탄소나노튜브-그래핀 복합체 제조방법을 통해 제조된 탄소나노튜브-그래핀 복합체를 나타낸 모식도.
도 3 및 도 4는 본 발명의 실시 예에 따른 탄소나노튜브-그래핀 복합체 제조방법을 통해 제조된 탄소나노튜브-그래핀 복합체의 표면을 배율을 달리하여 주자전자현미경으로 촬영한 사진들.
도 5는 본 발명의 실시 예에 따라 제조된 탄소나노튜브-그래핀 복합체와 종래기술에 따라 제조된 탄소나노튜브-그래핀 복합체를 비교하여 나타낸 모식도.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a process for producing a carbon nanotube-graphene composite according to an embodiment of the present invention; FIG.
FIG. 2 is a schematic view showing a carbon nanotube-graphene composite produced by the method of manufacturing a carbon nanotube-graphene composite according to an embodiment of the present invention.
FIGS. 3 and 4 are photographs of a surface of a carbon nanotube-graphene composite prepared by a method of manufacturing a carbon nanotube-graphene composite according to an embodiment of the present invention, the surface being photographed with a magnifying power electron microscope.
FIG. 5 is a schematic view showing a carbon nanotube-graphene composite prepared according to an embodiment of the present invention and a carbon nanotube-graphene composite prepared according to the prior art.

이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 탄소나노튜브-그래핀 복합체 제조방법 및 이에 의해 제조된 탄소나노튜브-그래핀 복합체에 대해 상세히 설명한다.Hereinafter, a method for manufacturing a carbon nanotube-graphene composite according to an embodiment of the present invention and a carbon nanotube-graphene composite manufactured by the method will be described in detail with reference to the accompanying drawings.

아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.
In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

도 1 및 도 2에 도시한 바와 같이, 본 발명의 실시 예에 따른 탄소나노튜브-그래핀 복합체 제조방법은, 전기 이중층 커패시터나 연료전지 등과 같은 에너지 저장용 매체의 전극 소재로 사용되는 탄소나노튜브-그래핀 복합체(100)를 제조하기 위한 방법이다. 이러한 탄소나노튜브-그래핀 복합체 제조방법은 혼합물 제조단계(S1) 및 혼합물 열처리단계(S2)를 포함한다.
As shown in FIGS. 1 and 2, the carbon nanotube-graphene composite manufacturing method according to an embodiment of the present invention is a method of manufacturing carbon nanotube-graphene composites, which is used as an electrode material of an energy storage medium such as an electric double layer capacitor, - graphene composite (100). Such a method for producing a carbon nanotube-graphene composite includes a mixture preparation step (S1) and a mixture heat treatment step (S2).

먼저, 혼합물 제조단계(S1)는 산화 그래핀(graphene oxide)과 촉매의 혼합물을 제조하는 단계이다. 혼합물 제조단계(S1)에서는 먼저, 친수성인 산화 그래핀을 물에 분산시킨다. 이때, 본 발명의 실시 예에서는 탄소 소스를 포함하는 유기용매, 예컨대, 벤젠, 톨루엔, 아세톤 등을 혼합하지 않는다. 그 다음, 이러한 수용액에 촉매를 넣고 교반한다. 이때, 혼합물 제조단계(S1)에서는 물과 같은 용매에 촉매를 용해시킨 후 산화 그래핀이 분산되어 있는 수용액에 첨가한다.First, the mixture preparation step (S1) is a step of preparing a mixture of graphene oxide and a catalyst. In the mixture preparation step (S1), first, hydrophilic graphene oxide is dispersed in water. At this time, in the embodiment of the present invention, an organic solvent including a carbon source such as benzene, toluene, and acetone is not mixed. The catalyst is then added to this aqueous solution and stirred. At this time, in the mixture preparation step (S1), the catalyst is dissolved in a solvent such as water and then added to an aqueous solution in which the graphene oxide is dispersed.

본 발명의 실시 예에서는 탄소나노튜브(CNT) 성장을 위한 시드(seed) 역할을 하는 촉매로 산화철(Fe(Ⅲ))을 사용할 수 있다. 이에 따라, 혼합물 제조단계(S1)에서는 예컨대, 10μM 농도로 산화철(Fe(Ⅲ))을 물에 용해시킬 수 있다. 또한, 본 발명의 실시 예에서는 산화 그래핀을 환원시키기 위해, 산화철(Fe(Ⅲ))과 함께 환원제인 하이드록실아민(hydroxylamine)도 용해시킨 후 산화 그래핀이 분산되어 있는 수용액에 첨가할 수 있다. 예를 들어, 혼합물 제조단계(S1)에서는 하이드록실아민을 400μM 농도로 용해시킨 후 10μM 농도의 산화철(Fe(Ⅲ)) 용액과 함께 산화 그래핀이 분산되어 있는 수용액에 첨가할 수 있다.In the embodiment of the present invention, iron oxide (Fe (III)) may be used as a catalyst serving as a seed for growing carbon nanotubes (CNTs). Thus, in the mixture preparation step (S1), iron oxide (Fe (III)) can be dissolved in water, for example, at a concentration of 10 μM. Further, in the embodiment of the present invention, in order to reduce the graphene oxide, hydroxylamine (hydroxylamine) as a reducing agent together with iron oxide (Fe (III)) may be dissolved and then added to an aqueous solution in which oxidized graphene is dispersed . For example, in the preparation step S1 of the mixture, the hydroxylamine may be dissolved at a concentration of 400 μM and then added to an aqueous solution in which oxidized graphene is dispersed together with a 10 μM iron (Fe (III)) solution.

그리고 혼합물 제조단계(S1)에서는 산화 그래핀이 분산되어 있는 수용액에 첨가된 산화철(Fe(Ⅲ)) 촉매를 고르게 분산시키기 위해, 초음파를 이용하여 교반할 수 있다. 그 다음, 혼합물 제조단계(S1)에서는 교반시킨 수용액을 필터링하여, 혼합물로부터 물을 제거한 후, 이를 오븐을 통해 건조시키는데, 80℃로 유지되는 오븐에서 대략 1시간 동안 건조시키는 것이 바람직하다.In the mixture preparation step (S1), ultrasonic waves may be used to disperse the iron oxide (Fe (III)) catalyst added to the aqueous solution in which the graphene oxide is dispersed evenly. Then, in the mixture preparation step (S1), the stirred aqueous solution is filtered to remove water from the mixture, which is then dried through an oven, preferably in an oven maintained at 80 DEG C for about 1 hour.

한편, 본 발명의 실시 예에 따른 탄소나노튜브-그래핀 복합체 제조방법은 혼합물 제조단계(S1) 전, 산화 그래핀을 제조하는 산화 그래핀 제조단계를 더 포함할 수 있다. 산화 그래핀 제조단계에서는 먼저, 흑연(graphite)을 산처리(Hummer's method)하여, 표면에 하이드록시기(hydroxyl group), 에폭시드기(epoxide group) 및 카르복시기(carbixylic group)를 갖는 산화 흑연을 만든다. 그 다음, 만들어진 산화 흑연으로부터의 층 분리를 통해 산화 그래핀을 얻는다. 이때, 층 분리 공정은 용매인 증류수에 산화 흑연을 대략 0.1g/L~1g/L 농도로 첨가한 후 액상 초음파 처리하는 방식으로 진행될 수 있다.
Meanwhile, the method of manufacturing a carbon nanotube-graphene composite according to an embodiment of the present invention may further include a step of preparing an oxidized graphene to prepare the oxidized graphene before the preparation of the mixture (S1). In the oxide graphene manufacturing step, graphite is first subjected to an acid treatment (Hummer's method) to produce graphite oxide having a hydroxyl group, an epoxide group and a carbixylic group on its surface. Then, graphene oxide is obtained through layer separation from the produced graphite oxide. At this time, the layer separation process may be performed by adding liquid graphite to the distilled water as a solvent at a concentration of about 0.1 g / L to 1 g / L, followed by liquid-phase sonication.

다음으로, 혼합물 열처리단계(S2)는 혼합물 제조단계(S1) 시 환원된 산화 그래핀, 즉, 그래핀 플레이크(graphene flake)(110) 표면에 분포되어 있는 촉매로부터 탄소나노튜브(120)를 형성시키기 위해, 혼합물을 열처리하는 단계이다. 본 발명의 실시 예에 따른 혼합물 열처리단계(S2)에서는 메탄이나 아세틸렌 등의 탄화가스와 같은 유독한 기체를 사용하지 않고, 특수한 고압의 장치나 전자기파의 사용 없이, 오직, 비활성 분위기 하에서 혼합물에 열을 가해주는 공정을 통해, 그래핀 플레이크(110) 표면에 짧은 길이의 탄소나노튜브(120)를 형성한다. 이에 따라, 혼합물 열처리단계(S2)에서는 예컨대, 질소 가스를 충분히 흘려준 소성로 내에서 혼합물을 600~900℃로 열처리한다.Next, the heat treatment step S2 of forming the mixture forms carbon nanotubes 120 from the oxidized graphene, that is, the catalyst distributed on the surface of the graphene flake 110, during the preparation of the mixture S1 , The mixture is heat-treated. In the heat treatment step (S2) of the mixture according to the embodiment of the present invention, only heat is applied to the mixture in an inert atmosphere without using a toxic gas such as methane or acetylene or a toxic gas such as special high-pressure devices or electromagnetic waves A carbon nanotube 120 having a short length is formed on the surface of the graphene flake 110 through a process to be performed. Accordingly, in the mixture heat treatment step (S2), for example, the mixture is heat-treated at 600 to 900 占 폚 in a sintering furnace in which nitrogen gas is sufficiently flowed.

도 2에 도시한 바와 같이, 비활성 분위기 하에서 600~900℃로 혼합물을 열처리하게 되면, 혼합물 내 그래핀 플레이크(110)의 손상된 탄소(defect)가 기화된다. 그리고 이와 같이 기화된 탄소는 그래핀 플레이크(110)의 표면에 분포되어 있는 촉매로부터 탄소나노튜브(120)로 형성되고, 이에 따라, 탄소나노튜브-그래핀 복합체(100)가 제조된다.As shown in FIG. 2, when the mixture is heat-treated at 600 to 900 DEG C under an inert atmosphere, the damaged carbon fibers of the graphene flakes 110 in the mixture are vaporized. The thus-vaporized carbon is formed from the catalyst distributed on the surface of the graphene flake 110 to the carbon nanotubes 120, whereby the carbon nanotube-graphene composite 100 is produced.

한편, 혼합물 열처리단계(S2) 후, 제조된 탄소나노튜브-그래핀 복합체(100)로부터 촉매를 제거하기 위해, 만들어진 탄소나노튜브-그래핀 복합체(100)를 산처리 및 건조할 수 있다. 구체적으로, 탄소나노튜브-그래핀 복합체(100)를 마일드한 산용액에 담가두었다가, 120도 이상의 온도에서 건조시킬 수 있다.
On the other hand, after the heat treatment step (S2), the carbon nanotube-graphene composite 100 produced can be treated with an acid and dried to remove the catalyst from the carbon nanotube-graphene composite 100 thus prepared. Specifically, the carbon nanotube-graphene composite 100 may be immersed in a mild acid solution and then dried at a temperature of 120 degrees or more.

실시 예1Example 1

산화 그래핀과, 산화철(Fe(Ⅲ)) 및 하이드록실아민을 혼합한 후, 이를 질소기체 분위기에서 900℃로 2시간 소성하여 탄소나노튜브-그래핀 복합체를 제조하였고, 이의 표면을 주사전자현미경(SEM)으로 분석하였다.After mixing the graphene oxide, iron oxide (Fe (III)) and hydroxylamine, the carbon nanotube-graphene composite was fired at 900 ° C for 2 hours in a nitrogen gas atmosphere to prepare a carbon nanotube-graphene composite. (SEM).

도 3은 제조한 탄소나노튜브-그래핀 복합체의 표면을 10,000배로 확대한 사진이고, 도 4는 제조한 탄소나노튜브-그래핀 복합체의 표면을 50,000배로 확대한 사진이다. 도 3의 주사전자현미경 사진에서 보여지는 바와 같이, 산화 그래핀의 표면에 짧은 길이의 탄소나노튜브가 형성되어 고르게 분포되어 있는 것을 확인할 수 있다. 또한, 탄소나노튜브-그래핀 복합체의 표면으로부터 관찰 각도를 45도로 틸트(tilt)하여 관찰해보면(도 4), 산화 그래핀의 표면에 고르게 점으로 보이는 물질, 즉, 탄소나노튜브가 100㎚ 이하의 길이를 가지고 있음을 확인할 수 있다.
FIG. 3 is a photograph of the surface of the carbon nanotube-graphene composite produced at a magnification of 10,000 times, and FIG. 4 is a photograph of enlarging the surface of the carbon nanotube-graphene composite at a magnification of 50,000. As shown in the scanning electron micrograph of FIG. 3, it can be seen that carbon nanotubes of short length are formed on the surface of the graphene oxide and are uniformly distributed. Further, when the observation angle of the carbon nanotube-graphene composite from the surface is observed at a tilt of 45 degrees (FIG. 4), it is confirmed that the material showing uniform dots on the surface of the oxidized graphene, that is, Of the total length.

상술한 바와 같이, 본 발명의 실시 예에 따른 탄소나노튜브-그래핀 복합체 제조방법을 통해 제조된 탄소나노튜브-그래핀 복합체(100)는 환원된 산화 그래핀으로 이루어진 그래핀 플레이크(110) 및 평면 상의 그래핀 플레이크(110)의 표면으로부터 기립된 구조를 이루도록 형성된 적어도 하나의 탄소나노튜브(120)를 포함하여 형성된다. 이때, 그래핀 플레이크(110)와 탄소나노튜브(120)는 일 방향을 따라 순차 반복저긍로 적층된 구조를 이룬다. 또한, 탄소나노튜브(120)는 그래핀 플레이크(110)의 표면으로부터 1~100㎚ 길이(혹은 높이)로 형성된다. 이와 같이, 탄소나노튜브(120)가 환원된 산화 그래핀인 그래핀 플레이크(110)의 표면으로부터 기립된 구조를 이루면, 연료 전지의 전극 소재로 적용되는 경우, 전해액 이온이 이동하기에 충분한 공간을 확보할 수 있다.
As described above, the carbon nanotube-graphene composite 100 manufactured by the method of manufacturing a carbon nanotube-graphene composite according to an embodiment of the present invention includes a graphene flake 110 composed of reduced oxidized graphene, And at least one carbon nanotube 120 formed to have a standing structure from the surface of the planar graphene flake 110. At this time, the graphene flakes 110 and the carbon nanotubes 120 are sequentially and repeatedly stacked along one direction. In addition, the carbon nanotubes 120 are formed to have a length (or height) of 1 to 100 nm from the surface of the graphene flake 110. When the carbon nanotubes 120 are structured so as to stand up from the surface of the graphene flake 110, which is the reduced graphene graphene, when applied to the electrode material of the fuel cell, a space sufficient for the electrolyte ions to move .

한편, 도 5는 본 발명의 실시 예에 따라 제조된 탄소나노튜브-그래핀 복합체(a)와 종래기술에 따른 탄소나노튜브-그래핀 복합체(b)를 비교하여 나타낸 모식도이다. 도 5에 도시한 바와 같이, 본 발명의 실시 예에 따라 제조된 탄소나노튜브-그래핀 복합체(a)의 경우, 그래핀 플레이크(110)에 탄소나노튜브(120)가 형성되어 있는 방향이 탄소나노튜브(120)에서 전자가 이동하는 방향과 일치, 즉, 탄소나노튜브(120)가, 전기 전도도가 우수한 방향인 그래핀 플레이크(110)에 수직방향으로 연결되므로, 전자의 이동이 원활할 수 있고, 이에 따라, 이를 전극 소재로 채용하는 연료 전지의 고용량, 고출력 구현이 가능해진다. 이에 반해, 종래기술에 따른 탄소나노튜브-그래핀 복합체(b)의 경우에는 그래핀에 탄소나노튜브가 형성되어 있는 방향이 탄소나노튜브에서 전자가 이동하는 방향과 일치하지 않아, 본 발명의 실시 예에 따른 탄소나노튜브-그래핀 복합체(a)에 비해, 전자의 이동이 원활하게 이루어지지 않게 된다. 이에 따라, 본 발명의 실시 예에 따라 제조된 탄소나노튜브-그래핀 복합체(a)는 종래기술에 따른 탄소나노튜브-그래핀 복합체(b)에 비해 상대적으로 우수한 전기적 특성을 갖게 된다.
FIG. 5 is a schematic view illustrating a carbon nanotube-graphene composite (a) produced according to an embodiment of the present invention and a carbon nanotube-graphene composite (b) according to the prior art. 5, in the case of the carbon nanotube-graphene composite (a) produced according to the embodiment of the present invention, the direction in which the carbon nanotubes 120 are formed in the graphene flake 110 is carbon Since the carbon nanotubes 120 are connected to the graphene flake 110 in a direction perpendicular to the direction in which the electrons move in the nanotubes 120, that is, the carbon nanotubes 120 have a good electrical conductivity, Thus, it is possible to realize a high capacity and high output of the fuel cell employing the fuel cell as an electrode material. On the other hand, in the case of the carbon nanotube-graphene composite (b) according to the prior art, the direction in which the carbon nanotubes are formed in graphene does not coincide with the direction in which electrons move in the carbon nanotubes. Compared with the carbon nanotube-graphene composite (a) according to the example, electrons can not move smoothly. Accordingly, the carbon nanotube-graphene composite (a) produced according to the embodiment of the present invention has a relatively excellent electrical characteristic as compared with the carbon nanotube-graphene composite (b) according to the prior art.

이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.While the invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. This is possible.

그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited by the described embodiments, but should be determined by the scope of the appended claims as well as the appended claims.

100: 탄소나노튜브-그래핀 복합체 110: 그래핀 플레이크
120: 탄소나노튜브
100: carbon nanotube-graphene composite 110: graphene flake
120: Carbon nanotubes

Claims (14)

산화 그래핀과 촉매의 혼합물을 제조하는 혼합물 제조단계; 및
상기 혼합물을 열처리하여, 상기 혼합물 제조단계 시 환원된 상기 산화 그래핀 표면에 분포되어 있는 상기 촉매로부터 탄소나노튜브를 형성시키는 혼합물 열처리단계;
를 포함하되,
상기 혼합물 열처리단계에서는 비활성 분위기 하에서 상기 혼합물을 600~900℃로 열처리하여, 환원된 상기 산화 그래핀의 탄소를 기화시키고,
기화된 상기 탄소는 상기 촉매로부터 상기 탄소나노튜브로 형성되는 것을 특징으로 하는 탄소나노튜브-그래핀 복합체 제조방법.
Preparing a mixture to produce a mixture of oxidized graphene and a catalyst; And
A heat treatment step of heat-treating the mixture to form carbon nanotubes from the catalyst distributed on the surface of the oxidized graphene reduced during the preparation of the mixture;
, ≪ / RTI &
In the heat treatment of the mixture, the mixture is heat-treated at 600 to 900 ° C. in an inert atmosphere to vaporize the carbon of the reduced graphene oxide,
Wherein the vaporized carbon is formed of the carbon nanotubes from the catalyst.
삭제delete 삭제delete 제1항에 있어서,
상기 혼합물 제조단계 전, 상기 산화 그래핀을 제조하는 산화 그래핀 제조단계를 더 포함하는 것을 특징으로 하는 탄소나노튜브-그래핀 복합체 제조방법.
The method according to claim 1,
Further comprising the step of preparing an oxidized graphene to produce the oxidized graphene before the step of preparing the mixture.
제4항에 있어서,
상기 산화 그래핀 제조단계는,
흑연을 산처리하여 산화 흑연을 만드는 제1 과정, 및
상기 산화 흑연으로부터 상기 산화 그래핀을 층 분리시키는 제2 과정을 포함하는 것을 특징으로 하는 탄소나노튜브-그래핀 복합체 제조방법.
5. The method of claim 4,
The step of preparing the oxide grains comprises:
A first step of acid-treating graphite to produce graphite oxide, and
And a second step of separating the graphene oxide from the oxidized graphite. The method of manufacturing a carbon nanotube-graphene composite according to claim 1,
제5항에 있어서,
상기 제2 과정에서는 용매에 상기 산화 흑연을 첨가한 후 액상 초음파 처리하는 것을 특징으로 하는 탄소나노튜브-그래핀 복합체 제조방법.
6. The method of claim 5,
Wherein the graphite oxide is added to the solvent and then subjected to liquid ultrasonic treatment in the second step.
제1항에 있어서,
상기 혼합물 제조단계에서는 상기 산화 그래핀을 포함하는 수용액에 상기 촉매를 넣고 교반하는 것을 특징으로 하는 탄소나노튜브-그래핀 복합체 제조방법.
The method according to claim 1,
Wherein the catalyst is placed in an aqueous solution containing the oxidized graphene in the step of preparing the mixture, followed by stirring the carbon nanotube-graphene composite.
제7항에 있어서,
상기 혼합물 제조단계에서는 상기 촉매를 용매에 용해시킨 후 상기 수용액에 첨가하는 것을 특징으로 하는 탄소나노튜브-그래핀 복합체 제조방법.
8. The method of claim 7,
Wherein the catalyst is dissolved in a solvent and added to the aqueous solution in the step of preparing the mixture.
제8항에 있어서,
상기 혼합물 제조단계에서는 상기 교반 후 상기 수용액을 필터링 및 건조하는 것을 특징으로 하는 탄소나노튜브-그래핀 복합체 제조방법.
9. The method of claim 8,
Wherein the aqueous solution is filtered and dried in the step of preparing the mixture, after the stirring.
제1항에 있어서,
상기 혼합물 열처리단계 후, 만들어진 탄소나노튜브-그래핀 복합체를 산처리 및 건조하는 것을 특징으로 하는 탄소나노튜브-그래핀 복합체 제조방법.
The method according to claim 1,
Wherein the carbon nanotube-graphene composite is treated with an acid and dried after the heat treatment of the mixture.
제1항에 있어서,
상기 혼합물 열처리단계에서는 환원된 상기 산화 그래핀의 표면으로부터 기립된 구조를 이루도록 상기 탄소나노튜브를 형성시키는 것을 특징으로 하는 탄소나노튜브-그래핀 복합체 제조방법.
The method according to claim 1,
Wherein the carbon nanotubes are formed so as to form a standing structure from the surface of the oxidized graphene reduced in the mixing heat treatment step.
삭제delete 삭제delete 삭제delete
KR20130117295A 2013-10-01 2013-10-01 Method of fabricating carbon nanotube-graphene composite and carbon nanotube-graphene composite fabricated by the same KR101484090B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20130117295A KR101484090B1 (en) 2013-10-01 2013-10-01 Method of fabricating carbon nanotube-graphene composite and carbon nanotube-graphene composite fabricated by the same
PCT/KR2014/009154 WO2015050352A1 (en) 2013-10-01 2014-09-30 Method for preparing carbon nanotube-graphene composite, and carbon nanotube-graphene composite prepared thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130117295A KR101484090B1 (en) 2013-10-01 2013-10-01 Method of fabricating carbon nanotube-graphene composite and carbon nanotube-graphene composite fabricated by the same

Publications (1)

Publication Number Publication Date
KR101484090B1 true KR101484090B1 (en) 2015-01-19

Family

ID=52590882

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130117295A KR101484090B1 (en) 2013-10-01 2013-10-01 Method of fabricating carbon nanotube-graphene composite and carbon nanotube-graphene composite fabricated by the same

Country Status (2)

Country Link
KR (1) KR101484090B1 (en)
WO (1) WO2015050352A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179790A1 (en) * 2016-04-15 2017-10-19 한국과학기술원 Method for preparing carbon nanotubes and graphene
KR20180090462A (en) 2017-02-03 2018-08-13 주식회사 엘지화학 Method for preparing carbon nano tube fiber and carbon nano tube prepared by the same
KR20180128611A (en) 2017-05-24 2018-12-04 대주전자재료 주식회사 Graphene-Carbon Nanotube Composites and Manufacturing Method Thereof
KR20190076943A (en) 2019-06-24 2019-07-02 대주전자재료 주식회사 Graphene-Carbon Nanotube Composites and Manufacturing Method Thereof
CN113213455A (en) * 2021-05-13 2021-08-06 无锡纤发新材料科技有限公司 Microwave-assisted method for rapidly preparing magnetic graphene multi-dimensional hybrid material
KR20210128176A (en) 2020-04-16 2021-10-26 주식회사 그래핀올 Method for Preparing Graphene-Carbon Nanotube Composite
KR20220092135A (en) 2020-12-24 2022-07-01 (주)카본티앤씨 Method of producing graphene-carbon nanotube composite

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178117A1 (en) * 2015-05-06 2016-11-10 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
CN110229465A (en) * 2019-05-16 2019-09-13 宿迁南航新材料与装备制造研究院有限公司 A kind of polymer matrix composite of graphene/carbon nano-tube and preparation method thereof
CN113113622B (en) * 2021-03-16 2022-01-28 国家电投集团氢能科技发展有限公司 Fuel cell catalyst layer slurry and preparation method and application thereof
CN113800503A (en) * 2021-08-30 2021-12-17 兰州大学 Porous graphene-loaded iron oxide composite negative electrode material and preparation method and application thereof
CN114162876B (en) * 2021-12-10 2022-06-10 盐城工学院 Preparation method and application of Co9S8@ carbon nanotube @ graphene composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084627A (en) * 2010-01-18 2011-07-26 인제대학교 산학협력단 A carbon-based nano composite of novel structure and the method of preparing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101081299B1 (en) * 2009-08-03 2011-11-08 인제대학교 산학협력단 A corbon-based nano composite of novel structure and the method of preparing the same
JP5742335B2 (en) * 2011-03-18 2015-07-01 富士通株式会社 Semiconductor device
EP2780124B1 (en) * 2011-11-18 2023-05-17 William Marsh Rice University Graphene-carbon nanotube hybrid materials and use as electrodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084627A (en) * 2010-01-18 2011-07-26 인제대학교 산학협력단 A carbon-based nano composite of novel structure and the method of preparing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179790A1 (en) * 2016-04-15 2017-10-19 한국과학기술원 Method for preparing carbon nanotubes and graphene
KR20180090462A (en) 2017-02-03 2018-08-13 주식회사 엘지화학 Method for preparing carbon nano tube fiber and carbon nano tube prepared by the same
US11136711B2 (en) 2017-02-03 2021-10-05 Lg Chem, Ltd. Method for preparing carbon nanotube fiber and carbon nanotube fiber prepared thereby
KR20180128611A (en) 2017-05-24 2018-12-04 대주전자재료 주식회사 Graphene-Carbon Nanotube Composites and Manufacturing Method Thereof
KR20190076943A (en) 2019-06-24 2019-07-02 대주전자재료 주식회사 Graphene-Carbon Nanotube Composites and Manufacturing Method Thereof
KR20210128176A (en) 2020-04-16 2021-10-26 주식회사 그래핀올 Method for Preparing Graphene-Carbon Nanotube Composite
KR20220092135A (en) 2020-12-24 2022-07-01 (주)카본티앤씨 Method of producing graphene-carbon nanotube composite
CN113213455A (en) * 2021-05-13 2021-08-06 无锡纤发新材料科技有限公司 Microwave-assisted method for rapidly preparing magnetic graphene multi-dimensional hybrid material

Also Published As

Publication number Publication date
WO2015050352A1 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
KR101484090B1 (en) Method of fabricating carbon nanotube-graphene composite and carbon nanotube-graphene composite fabricated by the same
Oliveira et al. Thermally reduced graphene oxide: synthesis, studies and characterization
Chen et al. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors
Rajagopalan et al. Reduced chemically modified graphene oxide for supercapacitor electrode
Li et al. High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions
Liu et al. Elemental superdoping of graphene and carbon nanotubes
Zhang et al. Porous Co3O4 nanorods–reduced graphene oxide with intrinsic peroxidase-like activity and catalysis in the degradation of methylene blue
Xu et al. Graphene oxide quantum dot-derived nitrogen-enriched hybrid graphene nanosheets by simple photochemical doping for high-performance supercapacitors
Zhu et al. Magnetocapacitance in magnetic microtubular carbon nanocomposites under external magnetic field
Wang et al. Intertwined Nanocarbon and Manganese Oxide Hybrid Foam for High‐Energy Supercapacitors
WO2014021257A1 (en) Method for producing composite film comprising graphene and carbon nanotubes
Cao et al. Synthesis of dispersible mesoporous nitrogen-doped hollow carbon nanoplates with uniform hexagonal morphologies for supercapacitors
JP2010053033A (en) Method for manufacturing carbon nanotube/polymer composite
Tian et al. Preparation and electrochemical capacitance of graphene/titanium nitride nanotube array
Babu et al. Facile synthesis of graphene/N-doped carbon nanowire composites as an effective electrocatalyst for the oxygen reduction reaction
US9567225B2 (en) Single-step, solvent-free, catalyst-free preparation of holey carbon allotropes
Pei et al. Three-dimensional nitrogen and sulfur co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced rechargeable lithium-ion batteries
Wang et al. Nitrogen-doped graphene prepared by a millisecond photo-thermal process and its applications
Lee et al. Understanding the impact of the morphology, phase structure, and mass fraction of MnO2 within MnO2/reduced graphene oxide composites for supercapacitor applications
Aawani et al. Exfoliation of graphite in various electrolytes and preparation of graphene films via electrochemical approach
Fang et al. Enhanced ferromagnetic properties of N2 plasma-treated carbon nanotubes
Zhao et al. Realizing Highly‐Ordered Laser‐Reduced Graphene for High‐Performance Flexible Microsupercapacitor
Kumar et al. Universal strategy for reversing aging and defects in graphene oxide for highly conductive graphene aerogels
CN107230814B (en) Metal-air battery and method for manufacturing same
Kim et al. Stacking‐Controlled Assembly of Cabbage‐Like Graphene Microsphere for Charge Storage Applications

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171222

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181219

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191219

Year of fee payment: 6