KR20200039548A - 자동차의 블라인드 스팟 모니터링을 위한 학습 방법과 테스팅 방법, 및 이를 이용한 학습 장치와 테스팅 장치 - Google Patents
자동차의 블라인드 스팟 모니터링을 위한 학습 방법과 테스팅 방법, 및 이를 이용한 학습 장치와 테스팅 장치 Download PDFInfo
- Publication number
- KR20200039548A KR20200039548A KR1020190105496A KR20190105496A KR20200039548A KR 20200039548 A KR20200039548 A KR 20200039548A KR 1020190105496 A KR1020190105496 A KR 1020190105496A KR 20190105496 A KR20190105496 A KR 20190105496A KR 20200039548 A KR20200039548 A KR 20200039548A
- Authority
- KR
- South Korea
- Prior art keywords
- vehicle
- observed
- information
- layer
- blind spot
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 238000012544 monitoring process Methods 0.000 title claims abstract description 40
- 238000012360 testing method Methods 0.000 title claims description 282
- 238000000605 extraction Methods 0.000 claims abstract description 50
- 238000012549 training Methods 0.000 claims abstract description 41
- 238000001514 detection method Methods 0.000 claims abstract description 40
- 238000013528 artificial neural network Methods 0.000 claims abstract description 38
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 31
- 238000011176 pooling Methods 0.000 claims description 34
- 238000004364 calculation method Methods 0.000 claims description 25
- 238000012795 verification Methods 0.000 claims description 25
- 238000012790 confirmation Methods 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 23
- 238000004891 communication Methods 0.000 claims description 13
- 238000012545 processing Methods 0.000 abstract description 2
- 238000004422 calculation algorithm Methods 0.000 description 15
- 238000012706 support-vector machine Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 6
- 238000003066 decision tree Methods 0.000 description 5
- 238000013135 deep learning Methods 0.000 description 5
- 238000010998 test method Methods 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/7715—Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/217—Validation; Performance evaluation; Active pattern learning techniques
-
- G06K9/3233—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
- G06V10/464—Salient features, e.g. scale invariant feature transforms [SIFT] using a plurality of salient features, e.g. bag-of-words [BoW] representations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/776—Validation; Performance evaluation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/167—Driving aids for lane monitoring, lane changing, e.g. blind spot detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/01—Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
- Traffic Control Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
본 발명은 기준 자동차의 하나 이상의 블라인드 스팟 모니터링을 위한 CNN(Convolutional Neural Network)의 학습 방법에 있어서, 학습 장치가, 검출기로 하여금 트레이닝 이미지에 포함된 관찰 대상 자동차에 대한 클래스 정보 및 위치 정보를 출력하도록 하는 단계; 단서 정보 추출 레이어로 하여금 상기 출력된 정보들을 사용하여 상기 관찰 대상 자동차에 대한 단서 정보를 출력하도록 하며, 블라인드 스팟 확인용 FC 레이어로 하여금 상기 단서 정보 또는 이를 가공한 값을 이용한 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 블라인드 스팟에 위치하는지 여부를 판단하도록 하는 단계; 및 상기 판단의 결과를 그에 대응되는 제1 GT와 비교하여 획득한 블라인드 스팟 로스값을 백프로퍼게이션하여 상기 블라인드 스팟 확인용 FC 레이어의 파라미터를 학습하며, 상기 클래스 정보 및 상기 위치 정보를 그에 대응되는 제2 GT와 비교하여 획득한 자동차 검출 로스값을 백프로퍼게이션하여 상기 검출기의 파라미터를 학습하는 단계;를 포함하는 학습 방법이 개시된다.
Description
본 발명은 기준 자동차의 하나 이상의 블라인드 스팟 모니터링을 위한 CNN(Convolutional Neural Network)의 학습 방법에 관한 것으로; 보다 상세하게는, 상기 기준 자동차의 상기 블라인드 스팟 모니터링을 위한 상기 CNN의 상기 학습 방법에 있어서, (a) 상기 기준 자동차에서 촬영된 적어도 하나의 영상 이미지에 대응되는 트레이닝 이미지가 입력되면, 상기 기준 자동차의 검출기로 하여금 상기 트레이닝 이미지에 포함된 관찰 대상 자동차에 대한 클래스 정보 및 위치 정보를 출력하도록 하는 단계; (b) 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 사용하여 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 하나 이상의 단서 정보를 출력하도록 하며, 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 단서 정보 또는 이를 가공한 값을 사용하여 하나 이상의 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 판단 결과를 출력하도록 하는 단계; 및 (c) 제1 로스 레이어로 하여금 상기 판단 결과를 그에 대응하는 제1 GT와 비교하여 하나 이상의 블라인드 스팟 로스값을 생성하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 하나 이상의 파라미터를 학습하며, 제2 로스 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 그에 대응하는 제2 GT와 비교하여 하나 이상의 자동차 검출 로스값을 생성하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기의 하나 이상의 파라미터를 학습하는 단계;를 포함하는 것을 특징으로 하는 학습 방법과 테스팅 방법, 및 이를 이용한 학습 장치와 테스팅 장치에 관한 것이다.
일반적으로 운전자가 자동차를 운행 중 차선변경을 할 때 측면 및 후방을 관찰하여 시야를 확보할 수 있도록 자동차의 양측에 사이드미러가 설치되어 있고 실내 전면 중앙부에 룸미러가 설치되어 있다.
사이드미러는 자동차의 양측면에 설치되어 측면 및 후방 시야를 확보하도록 이용되고 있지만, 측면에 근접한 자동차나 물체를 확인할 수 없는 블라인드 스팟이 있다.
따라서 주행중인 자동차의 측면에 붙어서 뒤따라오는 다른 자동차를 운전자가 확인하지 못하고 차선을 변경할 경우 블라인드 스팟에서 주행하는 다른 자동차와 접촉사고가 발생할 수 있는 문제점이 있었다.
이러한 문제점을 방지하기 위하여 운전자들은 블라인드 스팟을 관측할 수 있도록 표면이 곡면으로 형성된 볼록거울을 사이드미러의 한쪽 부분에 부착하는 경우도 있다.
하지만, 사이드미러에 볼록거울 등을 설치할 경우에도, 자동차의 차선을 변경하기 위하여 운전자는 육안으로 블라인드 스팟을 확인하여야 하므로 운전자의 운전 피로도를 증가시키게 되며, 운전자의 위치에 따라 블록거울이 부착된 사이드미러로도 확인되지 않는 블라인드 스팟이 존재하는 문제점이 발생한다.
이를 방지하기 위하여, 최근에는 자동차의 후면에 장착된 센서를 통해 블라인드 스팟에 접근하거나 블라인드 스팟에 위치하는 자동차 등을 감지한 정보를 운전자에게 제공함으로써 운전자가 블라인드 스팟에 있는 자동차 또는 블라인드 스팟으로 근접하는 자동차 등을 인지하지 못하고 차선을 변경함으로 인해 발생할 수 있는 사고를 방지하기 위한 종래의 블라인드 스팟 모니터 시스템이 제안되었다.
특히, 비전 센서를 이용한 종래의 블라인드 스팟 모니터 시스템에서는 영상 정보를 기반으로 영상 정보 내에 위치하는 자동차들을 검출하고, 검출된 자동차들의 정보를 이용하여 블라인드 스팟에 자동차가 있는지를 판별하고 있다.
이를 위하여, 종래의 비전 센서를 이용한 블라인드 스팟 모니터 시스템에서는 영상 정보 내에 위치하는 자동차들을 검출하는 자동차 검출기의 출력 신호를 이용하여 블라인드 스팟에 자동차가 위치하는지를 판별하기 위한 로직(logic)을 필요로 한다.
하지만, 종래의 비전 센서를 이용한 블라인드 스팟 모니터 시스템에서는 사용하고자 하는 자동차 검출기에 따라 블라인드 스팟에 자동차가 위치하는 지를 판별하기 위한 로직을 별도로 설계하여야 하는 문제점이 있다.
또한, 종래의 비전 센서를 이용한 블라인드 스팟 모니터 시스템에서는 사용하고자 하는 자동차 검출기를 설계한 이후, 설계된 자동차 검출기의 출력 특성에 맞추어 블라인드 스팟에 자동차가 위치하는 지를 판별하기 위한 로직을 설계하여야 하므로, 블라인드 스팟 모니터 시스템의 개발에 많은 시간이 소요되는 문제점이 있다.
본 발명은 상술한 문제점을 모두 해결하는 것을 그 목적으로 한다.
본 발명은 차량을 검출하는 검출기의 종류에 관계없이 적용 가능한 블라인드 스팟 모니터링 시스템을 제공하는 것을 다른 목적으로 한다.
본 발명은 검출기의 종류에 관계없이 검출기로부터의 출력 신호를 이용하여 블라인드 스팟에 차량이 위치하는 지를 판별할 수 있도록 하는 것을 또 다른 목적으로 한다.
본 발명은 필요에 따라 검출기를 교환할 수 있도록 하는 블라인드 스팟 모니터링 시스템을 제공하는 것을 또 다른 목적으로 한다.
본 발명은 블라인드 스팟 모니터링 시스템의 개발에 소요되는 시간을 최소화할 수 있도록 하는 것을 또 다른 목적으로 한다.
상기한 바와 같은 본 발명의 목적을 달성하고, 후술하는 본 발명의 특징적인 효과를 실현하기 위한, 본 발명의 특징적인 구성은 하기와 같다.
본 발명의 일 태양에 따르면, 기준 자동차의 하나 이상의 블라인드 스팟 모니터링을 위한 CNN(Convolutional Neural Network)의 학습 방법에 있어서, (a) 상기 기준 자동차에서 촬영된 적어도 하나의 영상 이미지에 대응되는 트레이닝 이미지가 입력되면, 학습 장치가, 상기 기준 자동차의 검출기로 하여금 상기 트레이닝 이미지에 포함된 관찰 대상 자동차에 대한 클래스 정보 및 위치 정보를 출력하도록 하는 단계; (b) 상기 학습 장치가, 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 사용하여 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 하나 이상의 단서 정보를 출력하도록 하며, 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 단서 정보 또는 이를 가공한 값을 사용하여 하나 이상의 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 판단 결과를 출력하도록 하는 단계; 및 (c) 상기 학습 장치가, 제1 로스 레이어로 하여금 상기 판단 결과를 그에 대응하는 제1 GT와 비교하여 하나 이상의 블라인드 스팟 로스값을 생성하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 하나 이상의 파라미터를 학습하며, 제2 로스 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 그에 대응하는 제2 GT와 비교하여 하나 이상의 자동차 검출 로스값을 생성하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기의 하나 이상의 파라미터를 학습하는 단계;를 포함하는 학습 방법이 제공된다.
일 실시예에서, 상기 검출기는, 상기 트레이닝 이미지로부터 특징 맵을 생성하는 하나 이상의 컨볼루션 레이어; 상기 특징 맵으로부터 상기 관찰 대상 자동차에 대한 ROI(Region Of Interest)을 생성하는 RPN(Region Proposal Network); 상기 특징 맵 내에서 상기 ROI에 대응되는 영역을 풀링하여 특징 벡터를 생성하는 풀링 레이어; 상기 특징 벡터에 적어도 하나의 FC(Fully Connected) 연산을 가하여 하나 이상의 FC 출력 값을 생성하는 적어도 하나의 자동차 검출용 FC 레이어; 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 클래스 정보를 출력하는 클래시피케이션(classification) 레이어; 및 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 위치 정보를 출력하는 리그레이션(regression) 레이어;를 포함하는 R-CNN(Region-based Convolutional Neural Network) 기반의 자동차 검출기인 것을 특징으로 한다.
일 실시예에서, 상기 자동차 검출 로스값은 상기 관찰 대상 자동차에 대한 하나 이상의 클래스 로스값과 하나 이상의 위치 로스값을 포함하며, 상기 학습 장치는, 상기 클래스 로스값과 상기 위치 로스값을 이용한 백프로퍼게이션을 통해 상기 자동차 검출용 FC 레이어의 하나 이상의 파라미터, 및 상기 컨볼루션 레이어의 하나 이상의 파라미터를 학습시키는 것을 특징으로 한다.
일 실시예에서, 상기 학습 장치는, 상기 CNN으로 하여금 상기 단서 정보 추출 레이어에 의해 생성된 상기 관찰 대상 자동차에 대한 상기 단서 정보와 상기 검출기의 상기 풀링 레이어에 의해 생성된 상기 특징 벡터를 컨캐터네이팅(concatenating)한 값을 상기 블라인드 스팟 확인용 FC 레이어의 입력으로서 받도록 하는 것을 특징으로 한다.
일 실시예에서, 상기 블라인드 스팟 확인용 FC 레이어는 상기 관찰 대상 자동차에 대한 상기 단서 정보를 입력으로 하는 다중 퍼셉트론에 의해 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 결과값을 출력하는 신경망을 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 관찰 대상 자동차에 대한 상기 단서 정보는, (i) 상기 관찰 대상 자동차에 대한 상기 클래스 정보, (ii) 상기 관찰 대상 자동차에 대한 상기 위치 정보, (iii) ROI 크기에 대응하는 상기 관찰 대상 자동차의 크기 정보, (iv) 상기 관찰 대상 자동차의 종횡비(aspect ratio) 정보, 및 (v) 상기 관찰 대상 자동차의 중심점과 상기 블라인드 스팟의 바깥 측면 사이의 거리 정보 중 적어도 일부를 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 단서 정보 추출 레이어는, (i) 상기 기준 자동차의 좌측 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 및 (ii) 상기 기준 자동차의 우측 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 중, 작은 값을 상기 관찰 대상 자동차의 상기 중심점과 상기 블라인드 스팟의 상기 바깥 측면 사이의 상기 거리 정보로 판단하며, 상기 관찰 대상 자동차의 상기 중심점이 상기 블라인드 스팟의 상기 바깥 측면의 외측에 위치하는지 혹은 내측에 위치하는지를 구분하기 위하여, 상기 거리 정보에 추가로 상대적 위치 정보를 더 출력하는 것을 특징으로 한다.
본 발명의 다른 태양에 따르면, 기준 자동차의 하나 이상의 블라인드 스팟 모니터링을 위한 CNN의 테스팅 방법에 있어서, (a) 학습 장치에 의해, (i) 상기 기준 자동차의 검출기로 하여금 상기 기준 자동차에서 촬영된 적어도 하나의 영상 이미지에 대응되는 트레이닝 이미지에 포함된 관찰 대상 자동차에 대한 학습용 클래스 정보 및 학습용 위치 정보를 출력하도록 하며, (ii) 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 사용하여 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 하나 이상의 학습용 단서 정보를 출력하도록 하고, (iii) 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 단서 정보 또는 이를 가공한 값을 사용하여 하나 이상의 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 학습용 판단 결과를 출력하도록 하며, (iv) 제1 로스 레이어로 하여금 상기 학습용 판단 결과를 그에 대응하는 제1 GT와 비교하여 하나 이상의 블라인드 스팟 로스값을 생성하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 하나 이상의 파라미터를 학습하고, 제2 로스 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 그에 대응하는 제2 GT와 비교하여 하나 이상의 자동차 검출 로스값을 생성하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기의 하나 이상의 파라미터를 학습한 상태에서, 테스팅 장치가, 상기 기준 자동차의 상기 검출기로 하여금 상기 기준 자동차에서 촬영된 테스트 이미지에 포함되는 상기 관찰 대상 자동차를 검출하는 상기 자동차 검출기로부터 상기 관찰 대상 자동차에 대한 테스트용 클래스 정보 및 테스트용 위치 정보를 출력하도록 하는 단계; 및 (b) 상기 테스팅 장치가, 상기 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보 및 상기 테스트용 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차에 대한 하나 이상의 테스트용 단서 정보를 출력하도록 하고, 상기 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 사용하여 상기 신경망 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟에 위치하는지 여부에 대한 테스트용 판단 결과를 출력하도록 하는 단계;를 포함하는 것을 특징으로 하는 테스팅 방법이 제공된다.
일 실시예에서, 상기 검출기는, 상기 테스트 이미지로부터 테스트용 특징 맵을 생성하는 하나 이상의 컨볼루션 레이어; 상기 테스트용 특징 맵으로부터 상기 관찰 대상 자동차에 대한 테스트용 ROI을 생성하는 RPN; 상기 테스트용 특징 맵 내에서 상기 테스트용 ROI에 대응되는 영역을 풀링하여 테스트용 특징 벡터를 획득하는 풀링 레이어; 상기 테스트용 특징 벡터에 적어도 하나의 FC 연산을 가하여 하나 이상의 FC 출력 값을 생성하는 적어도 하나의 자동차 검출용 FC 레이어; 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보를 출력하는 클래시피케이션 레이어; 및 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 테스트용 위치 정보를 출력하는 리그레션 레이어;를 포함하는 R-CNN 기반의 자동차 검출기인 것을 특징으로 한다.
일 실시예에서, 상기 테스팅 장치는, 상기 CNN으로 하여금 상기 단서 정보 추출 레이어에 의해 생성된 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보와 상기 검출기의 상기 풀링 레이어에 의해 생성된 상기 테스트용 특징 벡터를 컨캐터네이팅한 값을 상기 블라인드 스팟 확인용 FC 레이어의 입력으로서 받도록 하는 것을 특징으로 한다.
일 실시예에서, 상기 블라인드 스팟 확인용 FC 레이어는 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 입력으로 하는 다중 퍼셉트론에 의해 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 테스트용 결과값을 출력하는 신경망을 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보는, (i) 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보, (ii) 상기 관찰 대상 자동차에 대한 상기 테스트용 위치 정보, (iii) ROI 크기에 대비되는 상기 관찰 대상 자동차의 테스트용 크기 정보, (iv) 상기 관찰 대상 자동차의 테스트용 종횡비(aspect ratio) 정보, 및 (v) 상기 관찰 대상 자동차의 중심점과 상기 블라인드 스팟의 바깥 측면 사이의 테스트용 거리 정보 중 적어도 일부를 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 단서 정보 추출 레이어는, (i) 상기 기준 자동차의 좌측 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 및 (ii) 상기 기준 자동차의 우츨 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 중, 작은 값을 상기 관찰 대상 자동차의 상기 중심점과 상기 블라인드 스팟의 상기 바깥 측면 사이의 상기 테스트용 거리 정보로 판단하며, 상기 관찰 대상 자동차의 상기 중심점이 상기 블라인드 스팟의 상기 바깥 측면의 외측에 위치하는지 혹은 내측에 위치하는지를 구분하기 위하여, 상기 테스트용 거리 정보에 추가로 테스트용 상대적 위치 정보를 더 출력하는 것을 특징으로 한다.
일 실시예에서, 상기 테스팅 장치의 상기 기준 자동차는 상기 학습 장치의 상기 기준 자동차와 동일하지 않은 것을 특징으로 한다.
본 발명의 또 다른 태양에 따르면, 기준 자동차의 하나 이상의 블라인드 스팟 모니터링을 위한 CNN의 학습 장치에 있어서, 상기 기준 자동차에서 촬영된 적어도 하나의 영상 이미지에 대응되는 트레이닝 이미지를 수신하는 통신부; 및 (I) 상기 기준 자동차의 검출기로 하여금 상기 트레이닝 이미지에 포함된 관찰 대상 자동차에 대한 클래스 정보 및 위치 정보를 출력하도록 하는 프로세스, (II) 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 사용하여 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 하나 이상의 단서 정보를 출력하도록 하며, 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 단서 정보 또는 이를 가공한 값을 사용하여 하나 이상의 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 판단 결과를 출력하도록 하는 프로세스, (III) 제1 로스 레이어로 하여금 상기 판단 결과를 그에 대응하는 제1 GT와 비교하여 하나 이상의 블라인드 스팟 로스값을 생성하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 하나 이상의 파라미터를 학습하며, 제2 로스 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 그에 대응하는 제2 GT와 비교하여 하나 이상의 자동차 검출 로스값을 생성하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기의 하나 이상의 파라미터를 학습하는 프로세스를 수행하는 프로세스를 수행하는 프로세서;를 포함하는 학습 장치가 제공된다.
일 실시예에서, 상기 검출기는, 상기 트레이닝 이미지로부터 특징 맵을 생성하는 하나 이상의 컨볼루션 레이어; 상기 특징 맵으로부터 상기 관찰 대상 자동차에 대한 ROI을 생성하는 RPN; 상기 특징 맵 내에서 상기 ROI에 대응되는 영역을 풀링하여 특징 벡터를 생성하는 풀링 레이어; 및 상기 특징 벡터에 적어도 하나의 FC 연산을 가하여 하나 이상의 FC 출력 값을 생성하는 적어도 하나의 자동차 검출용 FC 레이어; 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 클래스 정보를 출력하는 클래시피케이션 레이어; 및 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 위치 정보를 출력하는 리그레이션 레이어;를 포함하는 R-CNN 기반의 자동차 검출기인 것을 특징으로 한다.
일 실시예에서, 상기 자동차 검출 로스값은 상기 관찰 대상 자동차에 대한 하나 이상의 클래스 로스값과 하나 이상의 위치 로스값을 포함하며, 상기 프로세서는, 상기 클래스 로스값과 상기 위치 로스값을 이용한 백프로퍼게이션을 통해 상기 자동차 검출용 FC 레이어의 하나 이상의 파라미터, 및 상기 컨볼루션 레이어의 하나 이상의 파라미터를 학습시키는 것을 특징으로 한다.
일 실시예에서, 상기 프로세서는, 상기 CNN으로 하여금 상기 단서 정보 추출 레이어에 의해 생성된 상기 관찰 대상 자동차에 대한 상기 단서 정보와 상기 검출기의 상기 풀링 레이어에 의해 생성된 상기 특징 벡터를 컨캐터네이팅한 값을 상기 블라인드 스팟 확인용 FC 레이어의 입력으로서 받도록 하는 것을 특징으로 한다.
일 실시예에서, 상기 블라인드 스팟 확인용 FC 레이어는 상기 관찰 대상 자동차에 대한 상기 단서 정보를 입력으로 하는 다중 퍼셉트론에 의해 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 하나의 결과값을 출력하는 신경망을 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 관찰 대상 자동차에 대한 상기 단서 정보는, (i) 상기 관찰 대상 자동차에 대한 상기 클래스 정보, (ii) 상기 관찰 대상 자동차에 대한 상기 위치 정보, (iii) ROI 크기에 대응하는 상기 관찰 대상 자동차의 크기 정보, (iv) 상기 관찰 대상 자동차의 종횡비(aspect ratio) 정보, 및 (v) 상기 관찰 대상 자동차의 중심점과 상기 블라인드 스팟의 바깥 측면 사이의 거리 정보 중 적어도 일부를 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 단서 정보 추출 레이어는, (i) 상기 기준 자동차의 좌측 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 및 (ii) 상기 기준 자동차의 우측 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 중, 작은 값을 상기 관찰 대상 자동차의 상기 중심점과 상기 블라인드 스팟의 상기 바깥 측면 사이의 상기 거리 정보로 판단하며, 상기 관찰 대상 자동차의 상기 중심점이 상기 블라인드 스팟의 상기 바깥 측면의 외측에 위치하는지 혹은 내측에 위치하는지를 구분하기 위하여, 상기 거리 정보에 추가로 상대적 위치 정보를 더 출력하는 것을 특징으로 한다.
본 발명의 또 다른 태양에 따르면, 기준 자동차의 하나 이상의 블라인드 스팟 모니터링을 위한 CNN의 테스팅 장치에 있어서, 학습 장치에 의해, (i) 상기 기준 자동차의 검출기로 하여금 상기 기준 자동차에서 촬영된 적어도 하나의 영상 이미지에 대응되는 트레이닝 이미지에 포함된 관찰 대상 자동차에 대한 학습용 클래스 정보 및 학습용 위치 정보를 출력하도록 하며, (ii) 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 사용하여 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 하나 이상의 학습용 단서 정보를 출력하도록 하고, (iii) 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 단서 정보 또는 이를 가공한 값을 사용하여 하나 이상의 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 학습용 판단 결과를 출력하도록 하며, (iv) 제1 로스 레이어로 하여금 상기 학습용 판단 결과를 그에 대응하는 제1 GT와 비교하여 하나 이상의 블라인드 스팟 로스값을 생성하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 하나 이상의 파라미터를 학습하고, 제2 로스 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 그에 대응하는 제2 GT와 비교하여 하나 이상의 자동차 검출 로스값을 생성하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기의 하나 이상의 파라미터를 학습한 상태에서, 상기 기준 자동차에서 촬영된 테스트 이미지에 포함되는 상기 관찰 대상 자동차를 검출하는 상기 검출기로부터 상기 관찰 대상 자동차에 대한 테스트용 클래스 정보 및 테스트용 위치 정보를 수신하는 통신부; 및 (I) 상기 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보 및 상기 테스트용 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차에 대한 하나 이상의 테스트용 단서 정보를 출력하도록 하는 프로세스와, (II) 상기 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 사용하여 상기 신경망 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟에 위치하는지 여부에 대한 테스트용 판단 결과를 출력하도록 하는 프로세스를 수행하는 프로세서;를 포함하는 테스팅 장치가 제공된다.
일 실시예에서, 상기 검출기는, 상기 테스트 이미지로부터 테스트용 특징 맵을 생성하는 하나 이상의 컨볼루션 레이어; 상기 테스트용 특징 맵으로부터 상기 관찰 대상 자동차에 대한 테스트용 ROI을 생성하는 RPN; 상기 테스트용 특징 맵 내에서 상기 테스트용 ROI에 대응되는 영역을 풀링하여 테스트용 특징 벡터를 획득하는 풀링 레이어; 상기 테스트용 특징 벡터에 적어도 하나의 FC 연산을 가하여 하나 이상의 FC 출력 값을 생성하는 적어도 하나의 자동차 검출용 FC 레이어; 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보를 출력하는 클래시피케이션 레이어; 및 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 테스트용 위치 정보를 출력하는 리그레션 레이어;를 포함하는 R-CNN 기반의 자동차 검출기인 것을 특징으로 한다.
일 실시예에서, 상기 프로세서는, 상기 CNN으로 하여금 상기 단서 정보 추출 레이어에 의해 생성된 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보와 상기 검출기의 상기 풀링 레이어에 의해 생성된 상기 테스트용 특징 벡터를 컨캐터네이팅한 값을 상기 블라인드 스팟 확인용 FC 레이어의 입력으로서 받도록 하는 것을 특징으로 한다.
일 실시예에서, 상기 블라인드 스팟 확인용 FC 레이어는 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 입력으로 하는 다중 퍼셉트론에 의해 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 테스트용 결과값을 출력하는 신경망을 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보는, (i) 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보, (ii) 상기 관찰 대상 자동차에 대한 상기 테스트용 위치 정보, (iii) ROI 크기에 대비되는 상기 관찰 대상 자동차의 테스트용 크기 정보, (iv) 상기 관찰 대상 자동차의 테스트용 종횡비(aspect ratio) 정보, 및 (v) 상기 관찰 대상 자동차의 중심점과 상기 블라인드 스팟의 바깥 측면 사이의 테스트용 거리 정보 중 적어도 일부를 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 단서 정보 추출 레이어는, (i) 상기 기준 자동차의 좌측 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 및 (ii) 상기 기준 자동차의 우츨 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 중, 작은 값을 상기 관찰 대상 자동차의 상기 중심점과 상기 블라인드 스팟의 상기 바깥 측면 사이의 상기 테스트용 거리 정보로 판단하며, 상기 관찰 대상 자동차의 상기 중심점이 상기 블라인드 스팟의 상기 바깥 측면의 외측에 위치하는지 혹은 내측에 위치하는지를 구분하기 위하여, 상기 테스트용 거리 정보에 추가로 테스트용 상대적 위치 정보를 더 출력하는 것을 특징으로 한다.
일 실시예에서, 상기 테스팅 장치의 상기 기준 자동차는 상기 학습 장치의 상기 기준 자동차와 동일하지 않은 것을 특징으로 한다.
이 외에도, 본 발명의 방법을 실행하기 위한 컴퓨터 프로그램을 기록하기 위한 컴퓨터 판독 가능한 기록 매체가 더 제공된다.
본 발명은 차량을 검출하는 검출기의 종류에 관계없이 적용 가능한 블라인드 스팟 모니터링 시스템을 제공할 수 있다.
본 발명은 검출기의 종류에 관계없이 검출기로부터의 출력 신호를 이용하여 블라인드 스팟에 차량이 위치하는 지를 판별할 수 있게 된다.
본 발명은 블라인드 스팟 모니터링 시스템에서 별도의 로직을 설계하지 않고서도 필요에 따라 검출기를 교체할 수 있게 되므로 블라인드 스팟 모니터링 시스템의 유지 보수에 따른 비용을 최소화할 수 있게 된다.
본 발명은 모든 검출기에 적용할 수 있으므로, 각각의 검출기에 대응하여 블라인드 스팟에 차량이 위치하는 지를 판별하기 위한 로직을 설계할 필요가 없으며, 그에 따라 블라인드 스팟 모니터링 시스템의 개발에 소요되는 시간을 최소화할 수 있게 된다.
본 발명의 실시예의 설명에 이용되기 위하여 첨부된 아래 도면들은 본 발명의 실시예들 중 단지 일부일 뿐이며, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자(이하 "통상의 기술자")에게 있어서는 발명적 작업이 이루어짐 없이 이 도면들에 기초하여 다른 도면들이 얻어질 수 있다.
도 1은 본 발명의 일 실시예에 따른 기준 자동차의 블라인드 스팟 모니터링을 위한 학습 장치를 개략적으로 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 학습 방법을 개략적으로 도시한 것이다.
도 3은 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 학습 방법에서 관찰 대상 자동차에 대한 단서 정보 중 관찰 대상 자동차의 위치 정보를 예시적으로 도시한 것이다.
도 4는 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 학습 방법에서 관찰 대상 자동차에 대한 단서 정보 중 관찰 대상 자동차의 중심점과 블라인드 스팟의 바깥 측면 사이의 거리 정보를 예시적으로 도시한 것이다.
도 5는 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 학습 방법에서 블라인드 스팟 확인용 FC 레이어의 구조를 개략적으로 도시한 것이다.
도 6은 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 테스팅 장치를 개략적으로 도시한 것이다.
도 7은 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 테스팅 방법을 개략적으로 도시한 것이다.
도 8은 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 테스팅 장치에 이용되는 검출기를 개략적으로 도시한 것이다.
도 9는 본 발명의 다른 실시예에 따른 블라인드 스팟 모니터링을 위한 학습 장치를 개략적으로 도시한 것이다.
도 10은 본 발명의 다른 실시예에 따른 블라인드 스팟 모니터링을 위한 학습 방법을 개략적으로 도시한 것이다.
도 11은 본 발명의 다른 실시예에 따른 블라인드 스팟 모니터링을 위한 테스팅 장치를 개략적으로 도시한 것이다.
도 12는 본 발명의 다른 실시예에 따른 블라인드 스팟 모니터링을 위한 테스트 방법을 개략적으로 도시한 것이다.
도 1은 본 발명의 일 실시예에 따른 기준 자동차의 블라인드 스팟 모니터링을 위한 학습 장치를 개략적으로 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 학습 방법을 개략적으로 도시한 것이다.
도 3은 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 학습 방법에서 관찰 대상 자동차에 대한 단서 정보 중 관찰 대상 자동차의 위치 정보를 예시적으로 도시한 것이다.
도 4는 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 학습 방법에서 관찰 대상 자동차에 대한 단서 정보 중 관찰 대상 자동차의 중심점과 블라인드 스팟의 바깥 측면 사이의 거리 정보를 예시적으로 도시한 것이다.
도 5는 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 학습 방법에서 블라인드 스팟 확인용 FC 레이어의 구조를 개략적으로 도시한 것이다.
도 6은 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 테스팅 장치를 개략적으로 도시한 것이다.
도 7은 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 테스팅 방법을 개략적으로 도시한 것이다.
도 8은 본 발명의 일 실시예에 따른 블라인드 스팟 모니터링을 위한 테스팅 장치에 이용되는 검출기를 개략적으로 도시한 것이다.
도 9는 본 발명의 다른 실시예에 따른 블라인드 스팟 모니터링을 위한 학습 장치를 개략적으로 도시한 것이다.
도 10은 본 발명의 다른 실시예에 따른 블라인드 스팟 모니터링을 위한 학습 방법을 개략적으로 도시한 것이다.
도 11은 본 발명의 다른 실시예에 따른 블라인드 스팟 모니터링을 위한 테스팅 장치를 개략적으로 도시한 것이다.
도 12는 본 발명의 다른 실시예에 따른 블라인드 스팟 모니터링을 위한 테스트 방법을 개략적으로 도시한 것이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명의 목적들, 기술적 해법들 및 장점들을 분명하게 하기 위하여 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 통상의 기술자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다.
또한, 본 발명의 상세한 설명 및 청구항들에 걸쳐, "포함하다"라는 단어 및 그것의 변형은 다른 기술적 특징들, 부가물들, 구성요소들 또는 단계들을 제외하는 것으로 의도된 것이 아니다. 통상의 기술자에게 본 발명의 다른 목적들, 장점들 및 특성들이 일부는 본 설명서로부터, 그리고 일부는 본 발명의 실시로부터 드러날 것이다. 아래의 예시 및 도면은 실례로서 제공되며, 본 발명을 한정하는 것으로 의도된 것이 아니다.
본 발명에서 언급하는 각종 이미지는 포장 또는 비포장 도로 관련 이미지를 포함할 수 있으며, 이 경우 도로 환경에서 등장할 수 있는 물체(가령, 자동차, 사람, 동물, 식물, 물건, 건물, 비행기나 드론과 같은 비행체, 기타 장애물)를 상정할 수 있을 것이나, 반드시 이에 한정되는 것은 아니며, 본 발명에서 언급하는 각종 이미지는 도로와 상관 없는 이미지(가령, 비포장도로, 골목길, 공터, 바다, 호수, 강, 산, 숲, 사막, 하늘, 실내와 관련된 이미지)일 수도 있으며, 이 경우, 비포장도로, 골목길, 공터, 바다, 호수, 강, 산, 숲, 사막, 하늘, 실내 환경에서 등장할 수 있는 물체(가령, 자동차, 사람, 동물, 식물, 물건, 건물, 비행기나 드론과 같은 비행체, 기타 장애물)를 상정할 수 있을 것이나, 반드시 이에 한정되는 것은 아니다.
더욱이 본 발명은 본 명세서에 표시된 실시예들의 모든 가능한 조합들을 망라한다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 기준 자동차의 블라인드 스팟 모니터링을 위한 학습 장치(100)를 개략적으로 도시한 것으로, 도 1을 참조하면, 상기 학습 장치(100)는 통신부(110)와 프로세서(120)를 포함할 수 있다.
먼저, 상기 통신부(110)는 상기 기준 자동차의 검출기로부터의 적어도 하나의 출력 신호에 대응되는 트레이닝 데이터를 수신할 수 있다. 즉, 상기 통신부(110)는, 후술할 상기 검출기로부터의 상기 출력 신호를 입력 신호(즉, 상기 트레이닝 데이터)로서 수신할 수 있다.
이때, 상기 트레이닝 데이터는 상기 검출기로부터의 입력 영상에 대응되는 이미지 상에 위치하는 관찰 대상 자동차들에 대한 정보로서, 상기 관찰 대상 자동차 등과 같은 객체들에 대한 클래스 정보와 상기 관찰 대상 자동차들이 이미지 내에 위치하는 영역들에 대한 위치 정보를 포함할 수 있다. 또한, 상기 트레이닝 데이터는 데이터베이스(130)에 저장될 수 있으며, 상기 데이터베이스(130)에는 상기 트레이닝 데이터에 대응하여 각각의 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보에 대한 GT(ground truth)가 저장되어 있을 수 있다.
다음으로, 상기 프로세서(120)는 상기 단서 정보 추출 레이어로 하여금 상기 트레이닝 데이터에 포함된 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 사용하여 소정의 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차에 대한 하나 이상의 단서 정보를 출력하도록 하는 제1 프로세스와, 블라인드 스팟 확인용 FC(Fully Connected) 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 단서 정보를 사용하여 하나 이상의 신경망 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 판단 결과를 출력하도록 하는 제2 프로세스와, 로스 레이어로 하여금 상기 판단 결과와 이에 대응되는 GT를 참고하여 하나 이상의 로스값을 생성하도록 함으로써, 상기 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 하나 이상의 파라미터를 학습하는 제3 프로세스를 수행할 수 있다.
이때, 본 발명의 일 실시예에 따른 상기 학습 장치(100)는 컴퓨팅 장치로서, 프로세서를 탑재하여 연산 능력을 갖춘 장치라면 얼마든지 본 발명에 따른 학습 장치(100)로서 채택될 수 있다. 또한, 도 1에서는 하나의 학습 장치(100)만을 나타내었으나, 이에 한정되지 않으며, 상기 학습 장치(100)는 복수 개로 나뉘어 역할을 수행할 수도 있다.
이와 같이 구성된 본 발명의 일 실시예에 따라 구성된 상기 학습 장치를 이용하여 상기 기준 자동차의 상기 블라인드 스팟을 모니터링 하기 위한 학습 방법을 도 2를 참조하여 설명하면 다음과 같다.
먼저, 상기 기준 자동차의 검출기로부터의 상기 출력 신호에 대응되는 상기 트레이닝 데이터가 입력되면, 상기 학습 장치(100)가, 상기 단서 정보 추출 레이어(121)로 하여금 상기 트레이닝 데이터에 포함된 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 상기 단서 정보를 출력하도록 한다.
이때, 상기 검출기는 비전 센서를 통해 획득되는 이미지 내에 위치하는 상기 관찰 대상 자동차를 검출하는 것으로, 상기 이미지 내에 상기 관찰 대상 자동차가 위치하는 것으로 추정되는 영역인 ROI(Region Of Interest)를 검출하는 가설 생성 단계(hypothesis generation stage)와 상기 검출된 ROI가 상기 관찰 대상 자동차를 포함하는지 여부를 판별하는 가설 확인 단계(hypothesis verification stage)로 구성될 수 있다. 그리고, 상기 가설 생성 단계는 옵티컬 플로우를 이용하는 모션 기반 체계(motion-based scheme)와 차량의 그림자, 모퉁이, 수평 및 수직 모서리, 대칭, 색상, 차량 불빛, 스테레오 카메라, 다수의 특징 등을 이용하는 형상 기반 체계(appearance-based scheme) 등으로 구현될 수 있으며, 상기 가설 확인 단계는 템플릿 매칭을 이용하는 상관관계 기반 체계(correlation-based scheme), 특징 및 분류자(classifier)를 이용하는 학습 기반 체계(learning-based scheme) 등으로 구현될 수 있다. 특히, 상기 학습 기반 체계에는 CNN과 같은 딥 러닝(deep learning) 기반 알고리즘이나, 의사결정 나무(decision tree), SVM(Support Vector Machine), 에이다부스트(AdaBoost), KNN(k-nearest neighbors) 등의 쉘로우 러닝(shallow learning) 기반 알고리즘이 적용될 수 있다.
그리고, 상기 관찰 대상 자동차에 대한 상기 단서 정보는, (i) 관찰 대상 자동차에 대한 상기 클래스 정보, (ii) 상기 관찰 대상 자동차에 대한 상기 위치 정보, (iii) 상기 ROI 크기에 대응하는 상기 관찰 대상 자동차의 크기 정보, (iv) 상기 관찰 대상 자동차의 종횡비(aspect ratio) 정보, 및 (v) 상기 관찰 대상 자동차의 중심점과 상기 블라인드 스팟의 바깥 측면 사이의 거리 정보 중 적어도 일부를 포함할 수 있다.
이때, 상기 관찰 대상 자동차에 대한 상기 클래스 정보는 상기 관찰 대상 자동차를 자동차, 오토바이 등으로 분류하기 위한 클래스 정보일 수 있다.
또한, 도 3을 참조하면, 상기 관찰 대상 자동차의 상기 위치 정보는 상기 이미지 내에 상기 관찰 대상 자동차가 위치하는 영역에 대응하는 위치 정보일 수 있다. 일 예로, 상기 관찰 대상 자동차에 대응하는 바운딩 박스의 위치 정보로서, 상기 이미지 내에서의 상기 바운딩 박스의 왼쪽 상단 모서리(TOP_LEFT) 좌표와 오른쪽 하단 모서리(BOTTOM_RIGHT) 좌표를 포함할 수 있다. 이에 더하여 상기 바운딩 박스의 중심(CENTER) 좌표를 포함할 수 있으나, 이는 상기 바운딩 박스의 상기 왼쪽 상단 모서리(TOP_LEFT) 좌표와 상기 오른쪽 하단 모서리(BOTTOM_RIGHT) 좌표를 이용한 연산에 의해 획득될 수도 있다.
또한, 도 4를 참조하면, (i) 좌측 블라인드 스팟(BS-L)의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 및 (ii) 우측 블라인드 스팟(BS-R)의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 중, 작은 값을 상기 관찰 대상 자동차의 상기 중심점(C)과 상기 블라인드 스팟의 상기 바깥 측면(S) 사이의 상기 거리 정보(L)로 판단하며, 상기 관찰 대상 자동차의 상기 중심점이 상기 블라인드 스팟의 상기 바깥 측면의 외측에 위치하는지 혹은 내측에 위치하는지를 구분하기 위하여, 상대적 위치 정보, 일 예로, (+) 또는 (-)를 추가로 더 포함할 수 있다.
다음으로, 상기 학습 장치(100)는 상기 블라인드 스팟 확인용 FC 레이어(122)로 하여금 상기 관찰 대상 자동차에 대한 상기 단서 정보를 사용하여 상기 신경망 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 상기 판단 결과를 출력하도록 한다.
이때, 도 5를 참조하면, 상기 블라인드 스팟 확인용 FC 레이어(122)는 상기 관찰 대상 자동차에 대한 상기 단서 정보를 입력으로 하는 다중 퍼셉트론에 의해 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 결과값을 출력하는 신경망으로 구성될 수 있다. 도 5에서는 입력 정보의 개수를 4개(입력 1, 입력 2, 입력 3, 입력 4)로 도시하였으나, 이는 설명을 편의를 위한 것으로 상기 입력 정보의 개수는 상기 단서 정보 추출 레이어(121)에서 생성된 상기 단서 정보에 대응되도록 설정될 수 있으다. 또한, 도 5에서 은닉층은 1개의 레이어로 도시되었으나, 이에 한정되지 않으며 다수 개의 레이어들을 포함할 수 있다.
다음으로, 상기 학습 장치(100)는 상기 로스 레이어(123)로 하여금 상기 블라인드 스팟 확인용 FC 레이어(122)로부터 출력되는 상기 판단 결과와 이에 대응되는 GT를 참고하여 상기 로스값을 생성하도록 함으로써, 상기 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어(122)를 학습할 수 있다.
상기 단서 정보 추출 레이어(121), 상기 블라인드 스팟 확인용 FC 레이어(122), 및 상기 로스 레이어(123)는 하나의 컴퓨팅 장치에 포함되거나, 각각 서로 다른 컴퓨팅 장치에 포함될 수 있으며, 컴퓨팅 장치 내에서 상기와 같은 동작을 수행하도록 하는 알고리즘으로 구현될 수도 있다.
도 6은 본 발명의 일 실시예에 따른 기준 자동차의 블라인드 스팟 모니터링을 위한 테스팅 장치(200)를 개략적으로 도시한 것으로, 상기 테스트 장치의 상기 기준 자동차는 전술한 상기 학습 장치의 기준 자동차와 동일할 수도 있고 동일하지 않을 수도 있으며, 도 6을 참조하면 상기 테스팅 장치(200)는 통신부(210)와 프로세서(220)를 포함할 수 있다.
먼저, 상기 통신부(210)는 상기 기준 자동차에서 촬영된 테스트 이미지 내에 위치하는 관찰 대상 자동차를 검출하는 검출기(20)로부터 상기 관찰 대상 자동차에 대한 테스트용 클래스 정보 및 테스트용 위치 정보를 수신할 수 있다.
다음으로, 상기 프로세서(220)는 상기 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보 및 상기 테스트용 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차에 대한 하나 이상의 테스트용 단서 정보를 출력하도록 하는 제1 프로세스와, 상기 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 사용하여 상기 신경망 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 테스트용 판단 결과를 출력하도록 하는 제2 프로세스를 수행할 수 있다.
이하에서, 단어 "학습용" 및 "테스트용"은 상술한 학습 방법과 테스트 방법을 구분하기 위해서 사용된다.
이때, 블라인드 스팟 확인용 FC 레이어는 도 1 내지 도 5를 참조하여 설명한 상기 학습 방법으로 상기 학습 장치에 의해 하나 이상의 파라미터가 학습 된 것으로, 상기 학습 방법을 간략히 설명하면 다음과 같다. 상기 학습 장치에 의해, (i) 상기 기준 자동차의 상기 검출기(20)로부터의 적어도 하나의 출력 신호에 대응되는 상기 트레이닝 데이터가 입력되면, 상기 단서 정보 추출 레이어로 하여금 상기 트레이닝 데이터에 포함된 상기 관찰 대상 자동차에 대한 학습용 클래스 정보 및 학습용 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차에 대한 하나 이상의 학습용 단서 정보들을 출력하도록 하며, (ii) 상기 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 단서 정보를 사용하여 상기 소정의 신경망 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 학습용 판단 결과를 출력하도록 하고, (iii) 상기 로스 레이어로 하여금 상기 학습용 판단 결과와 이에 대응되는 GT를 참고하여 하나 이상의 로스값을 생성하도록 함으로써, 상기 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 상기 파라미터를 학습할 수 있다.
그리고, 본 발명의 일 실시예에 따른 상기 테스팅 장치(200)는 컴퓨팅 장치로서, 프로세서를 탑재하여 연산 능력을 갖춘 장치라면 얼마든지 본 발명에 따른 테스팅 장치(200)로서 채택될 수 있다. 또한, 도 6에서는 하나의 테스팅 장치(200)만을 나타내었으나, 이에 한정되지 않으며, 상기 테스팅 장치(200)는 복수 개로 나뉘어 역할을 수행할 수도 있다.
이와 같이 구성된 본 발명의 일 실시예에 따른 상기 블라인드 스팟 모니터링을 위한 상기 테스팅 장치를 이용하여 상기 블라인드 스팟 모니터링을 위한 테스팅 방법을 도 7을 참조하여 설명하면 다음과 같다.
먼저, 상기 테스팅 방법을 수행하기 이전에, 상기 학습 장치에 의해, (i) 상기 단서 정보 추출 레이어(221)로 하여금 상기 검출기(20)로부터의 상기 출력 신호에 대응되는 상기 트레이닝 데이터에 포함된 상기 관찰 대상 자동차에 대한 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차에 대한 상기 학습용 단서 정보들을 출력하도록 하며, (ii) 상기 블라인드 스팟 확인용 FC 레이어(222)로 하여금 상기 학습용 단서 정보들을 사용하여 상기 신경망 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟에 위치하는지 여부에 대한 상기 학습용 판단 결과를 출력하도록 하고, (iii) 상기 로스 레이어로 하여금 상기 학습용 판단 결과와 이에 대응되는 GT를 참고하여 상기 로스값을 생성하도록 함으로써, 상기 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어(222)의 상기 파라미터를 학습한 상태에서, 상기 검출기(20)가 상기 기준 자동차에서 촬영된 테스트 이미지 내에 위치하는 상기 관찰 대상 자동차를 검출하며, 상기 검출된 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보 및 상기 테스트용 위치 정보를 출력한다.
이때, 상기 검출기(20)는 비전 센서를 통해 획득되는 이미지 내에 위치하는 상기 관찰 대상 자동차를 검출하는 것으로, 상기 이미지 내에 상기 관찰 대상 자동차가 위치하는 것으로 추정되는 영역인 ROI를 검출하는 가설 생성 단계(hypothesis generation stage)와 상기 검출된 ROI가 상기 관찰 대상 자동차를 포함하는지 여부를 판별하는 가설 확인 단계(hypothesis verification stage)로 구성될 수 있다. 그리고, 상기 가설 생성 단계는 옵티컬 플로우를 이용하는 모션 기반 체계(motion-based scheme)와 차량의 그림자, 모퉁이, 수평 및 수직 모서리, 대칭, 색상, 차량 불빛, 스테레오 카메라, 다수의 특징 등을 이용하는 형상 기반 체계(appearance based scheme) 등으로 구현될 수 있으며, 상기 가설 확인 단계는 템플릿 매칭을 이용하는 상관관계 기반 체계(correlation-based scheme), 특징 및 분류자(classifiers)를 이용하는 학습 기반 체계(learning-based scheme) 등으로 구현될 수 있다. 특히, 상기 학습 기반 체계에는 CNN과 같은 딥 러닝(deep learning) 기반 알고리즘이나, 의사결정 나무(decision tree), SVM(Support Vector Machine), 에이다부스트(AdaBoost), KNN(k-nearest neighbors) 등의 쉘로우 러닝(shallow learning) 기반 알고리즘이 적용될 수 있다.
일 예로, 도 8을 참조하면, 상기 검출기(20)는 R-CNN(Region-based Convolutional Neural Network) 기반의 자동차 검출기로, 상기 테스트 이미지로부터 테스트용 특징 맵을 획득하는 컨벌루션 레이어(21), 상기 테스트용 특징 맵으로부터 상기 관찰 대상 자동차에 대한 테스트용 ROI을 생성하는 RPN(22), 상기 테스트용 특징 맵 내에서 상기 테스트용 ROI에 대응되는 영역을 풀링하여 테스트용 특징 벡터를 생성하는 풀링 레이어(23), 상기 테스트용 특징 벡터에 적어도 한번 FC(fully connected) 연산을 가하여 하나 이상의 FC 출력 값을 생성하는 적어도 하나의 자동차 검출용 FC 레이어(24), 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차의 상기 테스트용 클래스 정보를 출력하는 클래시피케이션(classification) 레이어(25), 및 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차의 상기 테스트용 위치 정보를 출력하는 리그레이션(regression) 레이어(26)를 포함할 수 있다. 이때, 상기 컨벌루션 레이어(21)와 상기 자동차 검출용 FC 레이어(24)를 각각 하나의 레이어로 설명하였으나, 이에 한정되지 않으며, 각각 다수의 레이어로 형성될 수도 있다. 또한, 상기 테스트용 특징 맵은 상기 컨벌루션 레이어(21)에 의한 채널 깊이에 대응하는 하나 이상의 특징 맵으로 출력될 수 있다.
그러면, 상기 테스팅 장치(200)는 상기 단서 정보 추출 레이어(221)로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보 및 상기 테스트용 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보를 출력하도록 한다.
이때, 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보는, (i) 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보, (ii) 상기 관찰 대상 자동차에 대한 상기 테스트용 위치 정보, (iii) 테스트용 ROI 크기에 대비되는 상기 관찰 대상 자동차의 테스트용 크기 정보, (iv) 상기 관찰 대상 자동차의 종횡비(aspect ratio) 정보, 및 (v) 상기 관찰 대상 자동차의 중심점과 상기 블라인드 스팟의 바깥 측면 사이의 테스트용 거리 정보 중 적어도 일부를 포함할 수 있다.
그리고, 상기 관찰 대상 자동차의 테스트용 클래스 정보는 상기 관찰 대상 자동차를 자동차, 오토바이 등으로 분류하기 위한 클래스 정보일 수 있다.
또한, 도 3을 참조하여 설명한 바와 같이, 상기 관찰 대상 자동차의 상기 테스팅 위치 정보는 상기 테스트 이미지 내에 관찰 대상 자동차가 위치하는 영역에 대응하는 위치 정보일 수 있다. 일 예로, 상기 관찰 대상 자동차에 대응하는 바운딩 박스의 위치 정보로서, 상기 테스트 이미지 내에서의 상기 바운딩 박스의 왼쪽 상단 모서리(TOP_LEFT) 좌표와 오른쪽 하단 모서리(BOTTOM_RIGHT)를 포함할 수 있다. 이에 더하여 상기 바운딩 박스의 중심(CENTER) 좌표를 포함할 수 있으나, 이는 상기 바운딩 박스의 상기 왼쪽 상단 모서리(TOP_LEFT) 좌표와 오른쪽 하단 모서리(BOTTOM_RIGHT) 좌표를 이용한 연산에 의해 획득될 수도 있다.
또한, 도 4를 참조하여 설명한 바와 같이, (i) 좌측 블라인드 스팟(BS-L)의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 및 (ii) 우측 블라인드 스팟(BS-L)의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 중, 작은 값을 상기 관찰 대상 자동차의 상기 중심점(C)과 상기 블라인드 스팟의 상기 바깥 측면(S) 사이의 상기 테스트용 거리 정보(L)로 판단하며, 상기 관찰 대상 자동차의 상기 중심점이 상기 블라인드 스팟의 상기 바깥 측면의 외측에 위치하는지 혹은 내측에 위치하는지를 구분하기 위하여, 테스트용 상대적 위치 정보, 일 예로, (+) 또는 (-)를 추가로 더 포함할 수 있다.
다음으로, 상기 테스팅 장치(200)는 상기 블라인드 스팟 확인용 FC 레이어(222)로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 사용하여 상기 신경망 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 테스트용 판단 결과를 출력하도록 한다.
이때, 상기 테스트용 단서 정보를 가공한 값은, 상기 단서 정보 추출 레이어(221)에서 출력되는 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보와 상기 검출기(20)의 상기 풀링 레이어(23)에서 출력되는 상기 테스트용 특징 벡터를 이용하여 컨캐터네이팅(concatenating)한 값일 수 있으며, 상기 테스트용 단서 정보와 상기 테스트용 특징 벡터를 컨캐터네이팅하는 특징 컨캐터네이션 레이어가 상기 블라인드 스팟 확인용 FC 레이어(222) 전단에 위치할 수도 있다.
또한, 도 5를 참조하여 설명한 바와 같이, 상기 블라인드 스팟 확인용 FC 레이어(222)는 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 입력으로 하는 상기 다중 퍼셉트론에 의해 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 결과값을 출력하는 상기 신경망으로 구성될 수 있다.
상기 단서 정보 추출 레이어(221) 및 상기 블라인드 스팟 확인용 FC 레이어(222)는 하나의 컴퓨팅 장치에 포함되거나, 각각 서로 다른 컴퓨팅 장치에 포함될 수 있으며, 컴퓨팅 장치 내에서 상기와 같은 동작을 수행하도록 하는 알고리즘으로 구현될 수도 있다.
도 9는 본 발명의 다른 실시예에 따른 기준 자동차의 블라인드 스팟 모니터링을 위한 학습 장치(300)를 개략적으로 도시한 것으로, 도 9를 참조하면, 상기 학습 장치(300)는 통신부(310)와 프로세서(320)를 포함할 수 있다.
먼저, 상기 통신부(310)는 상기 기준 자동차에서 촬영된 영상 이미지에 대응되는 트레이닝 데이터를 수신할 수 있다.
이때, 상기 트레이닝 데이터 는 데이터베이스(330)에 저장되어 있을 수 있으며, 상기 데이터베이스(330)에는 상기 트레이닝 데이터에 대응하여 각각의 관찰 대상 자동차에 대한 클래스 정보 및 위치 정보에 대한 GT(ground truth)가 저장되어 있을 수 있다.
다음으로, 상기 프로세서(320)는 상기 기준 자동차의 검출기(30)로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 출력하도록 하는 제1 프로세스와, 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 사용하여 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 하나 이상의 단서 정보를 출력하도록 하며, 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 단서 정보 또는 이를 가공한 값을 사용하여 하나 이상의 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 판단 결과를 출력하도록 하는 제2 프로세스와, 제1 로스 레이어로 하여금 상기 판단 결과 및 이에 대응되는 제1 GT를 참고하여 하나 이상의 블라인드 스팟 로스값을 생성하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 하나 이상의 파라미터를 학습하며, 제2 로스 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보와 이에 대응되는 제2 GT를 참고하여 하나 이상의 자동차 검출 로스값을 생성하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기의 하나 이상의 파라미터를 학습하는 제3 프로세스를 수행할 수 있다.
이때, 본 발명의 다른 실시예에 따른 상기 학습 장치(300)는 컴퓨팅 장치로서, 프로세서를 탑재하여 연산 능력을 갖춘 장치라면 얼마든지 본 발명에 따른 학습 장치(300)로서 채택될 수 있다. 또한, 도 9에서는 하나의 학습 장치(300)만을 나타내었으나, 이에 한정되지 않으며, 상기 학습 장치(300)는 복수 개로 나뉘어 역할을 수행할 수도 있다.
이와 같이 구성된 본 발명의 다른 실시예에 따라 구성된 상기 학습 장치를 이용하여 상기 기준 자동차의 상기 블라인드 스팟을 모니터링 하기 위한 학습 방법을 도 10을 참조하여 설명하면 다음과 같다.
먼저, 상기 기준 자동차에서 촬영된 상기 영상 이미지에 대응되는 트레이닝 이미지가 입력되면, 상기 검출기(30)가 상기 트레이닝 이미지에 포함된 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 출력한다.
이때, 자동차 검출기(30)는 비전 센서를 통해 획득되는 이미지 내에 위치하는 상기 관찰 대상 자동차를 검출하는 것으로, 상기 이미지 내에 상기 관찰 대상 자동차가 위치하는 것으로 추정되는 영역인 ROI를 검출하는 가설 생성 단계(hypothesis generation stage)와 상기 검출된 ROI가 상기 관찰 대상 자동차를 포함하는지 여부를 판별하는 가설 확인 단계(hypothesis verification stage)로 구성될 수 있다. 그리고, 상기 가설 생성 단계는 옵티컬 플로우를 이용하는 모션 기반 체계(motion-based scheme)와 차량의 그림자, 모퉁이, 수평 및 수직 모서리, 대칭, 색상, 차량 불빛, 스테레오 카메라, 다수의 특징 등을 이용하는 형상 기반 체계(appearance-based scheme) 등으로 구현될 수 있으며, 상기 가설 확인 단계는 템플릿 매칭을 이용하는 상관관계 기반 체계(correlation-based scheme), 특징 및 분류자(classifier)를 이용하는 학습 기반 체계(learning-based scheme) 등으로 구현될 수 있다. 특히, 상기 학습 기반 체계에는 CNN과 같은 딥 러닝(deep learning) 기반 알고리즘이나, 의사결정 나무(decision tree), SVM(Support Vector Machine), 에이다부스트(AdaBoost), KNN(k-nearest neighbors) 등의 쉘로우 러닝(shallow learning) 기반 알고리즘이 적용될 수 있다.
일 예로, 도 8을 참조하여 설명한 검출기와 유사하게, 상기 검출기(30)는 R-CNN 기반의 자동차 검출기로, 상기 트레이닝 이미지로부터 특징 맵을 생성하는 컨벌루션 레이어(31), 상기 특징 맵으로부터 상기 관찰 대상 자동차에 대한 상기 ROI을 생성하는 RPN(32), 상기 특징 맵 내에서 상기 ROI에 대응되는 영역을 풀링하여 특징 벡터를 생성하는 풀링 레이어(33), 상기 특징 벡터에 적어도 하나의 FC(fully connected) 연산을 가하여 하나 이상의 FC 출력 값을 생성하는 적어도 하나의 자동차 검출용 FC 레이어(34), 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 클래스 정보를 출력하는 클래시피케이션 레이어(35), 및 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차의 상기 위치 정보를 출력하는 리그레이션 레이어(36)를 포함할 수 있다. 이때, 상기 컨벌루션 레이어(31)와 상기 자동차 검출용 FC 레이어(34)는 각각 적어도 하나의 레이어로 형성될 수 있다.
다음으로, 상기 학습 장치(300)는 상기 단서 정보 추출 레이어(321)로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 상기 단서 정보들을 출력하도록 한다.
이때, 상기 관찰 대상 자동차에 대한 상기 단서 정보들은, (i) 상기 관찰 대상 자동차에 대한 상기 클래스 정보, (ii) 상기 관찰 대상 자동차에 대한 상기 위치 정보, (iii) 상기 ROI 크기에 대응하는 상기 관찰 대상 자동차의 크기 정보, (iv) 상기 관찰 대상 자동차의 종횡비(aspect ratio) 정보, 및 (v) 상기 관찰 대상 자동차의 중심점과 상기 블라인드 스팟의 바깥 측면 사이의 거리 정보 중 적어도 일부를 포함할 수 있다.
그리고, 상기 관찰 대상 자동차에 대한 상기 클래스 정보는 상기 관찰 대상 자동차를 자동차, 오토바이 등으로 분류하기 위한 클래스 정보일 수 있다.
또한, 도 3을 참조하여 설명한 바와 유사하게, 상기 관찰 대상 자동차의 상기 위치 정보는 상기 이미지 내에 상기 관찰 대상자가 위치하는 영역에 대응하는 위치 정보일 수 있으다. 일 예로, 상기 관찰 대상 자동차에 대응하는 바운딩 박스의 위치 정보로서, 상기 이미지 내에서의 상기 바운딩 박스의 왼쪽 상단 모서리(TOP_LEFT) 좌표와 오른쪽 하단 모서리(BOTTOM_RIGHT) 좌표를 포함할 수 있다. 이에 더하여 상기 바운딩 박스의 중심(CENTER) 좌표를 포함할 수 있으나, 이는 상기 바운딩 박스의 상기 왼쪽 상단 모서리(TOP_LEFT) 좌표와 상기 오른쪽 하단 모서리(BOTTOM_RIGHT) 좌표를 이용한 연산에 의해 획득될 수도 있다.
또한, 도 4를 참조하여 설명한 바와 유사하게, (i) 좌측 블라인드 스팟(BS-L)의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 및 (ii) 우측 블라인드 스팟(BS-R)의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 중, 작은 값을 상기 관찰 대상 자동차의 상기 중심점(C)과 상기 블라인드 스팟의 상기 바깥 측면(S) 사이의 상기 거리 정보(L)로 판단하며, 상기 관찰 대상 자동차의 상기 중심점이 상기 블라인드 스팟의 상기 바깥 측면의 외측에 위치하는지 혹은 내측에 위치하는지를 구분하기 위하여, 상대적 위치 정보, 일 예로, (+) 또는 (-)를 추가로 더 포함할 수 있다.
다음으로, 상기 학습 장치(300)는 상기 블라인드 스팟 확인용 FC 레이어(322)로 하여금 상기 관찰 대상 자동차에 대한 상기 단서 정보 또는 이를 가공한 값을 사용하여 상기 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 상기 판단 결과를 출력하도록 할 수 있다.
이때, 상기 단서 정보를 가공한 값들은, 상기 단서 정보 추출 레이어(321)에서 출력되는 상기 관찰 대상 자동차에 대한 상기 단서 정보와 상기 검출기(30)의 상기 풀링 레이어(33)에서 출력되는 상기 특징 벡터를 컨캐터네이팅한 값일 수 있으며, 상기 단서 정보와 상기 특징 벡터를 컨캐터네이팅하는 특징 컨캐터네이션 레이어(340)가 상기 블라인드 스팟 확인용 FC 레이어(322) 전단에 위치할 수도 있다.
또한, 도 5를 참조하여 설명한 바와 유사하게, 상기 블라인드 스팟 확인용 FC 레이어(322)는 상기 관찰 대상 자동차에 대한 상기 단서 정보 또는 이를 가공한 값을 입력으로 하는 다중 퍼셉트론에 의해 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 결과값을 출력하는 신경망으로 구성될 수 있다.
다음으로, 상기 학습 장치(300)는 상기 제1 로스 레이어(323)로 하여금 (i) 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 상기 판단 결과 및 (ii) 이에 대응되는 상기 제1 GT를 참고하여 상기 블라인드 스팟 로스값을 획득하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어(322)의 상기 파라미터를 학습하며, 상기 제2 로스 레이어(324)로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보와 이에 대응되는 상기 제2 GT를 참고하여 상기 자동차 검출 로스값을 획득하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기(30)의 상기 파라미터를 학습할 수 있다.
이때, 상기 자동차 검출 로스값은 상기 관찰 대상 자동차에 대한 하나 이상의 클래스 로스값과 하나 이상의 위치 로스값을 포함할 수 있으며, 상기 학습 장치(300)는 상기 클래스 로스값과 상기 위치 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기(30)의 상기 자동차 검출용 FC 레이어(34)의 하나 이상의 파라미터, 또는 상기 컨벌루션 레이어(31)의 하나 이상의 파라미터를 학습시킬 수 있다. 또한, 도시하지 않았으나, 상기 학습 장치(300)는 상기 검출기(30)의 상기 RPN(32)에 의해 생성된 상기 ROI와 상기 트레이닝 이미지에 대응되는 ROI GT를 참고하여 하나 이상의 ROI 로스값을 획득하고, 이를 이용한 백프로퍼게이션을 통해 상기 RPN(32)의 하나 이상의 파라미터를 학습할 수 있다.
상기 단서 정보 추출 레이어(321) 및 상기 블라인드 스팟 확인용 FC 레이어(322)는 하나의 컴퓨팅 장치에 포함되거나, 각각 서로 다른 컴퓨팅 장치에 포함될 수 있으며, 컴퓨팅 장치 내에서 상기와 같은 동작을 수행하도록 하는 알고리즘으로 구현될 수도 있다. 또한, 제1 로스 레이어(323)와 제2 로스 레이어(324)는 하나의 컴퓨팅 장치에 포함되거나, 각각 서로 다른 컴퓨팅 장치에 포함될 수 있으며, 컴퓨팅 장치 내에서 상기와 같은 동작을 수행하도록 하는 알고리즘으로 구현될 수도 있다
도 11은 본 발명의 다른 실시예에 따른 기준 자동차의 블라인드 스팟 모니터링을 위한 테스팅 장치(400)를 개략적으로 도시한 것으로, 상기 테스트 장치의 상기 기준 자동차는 전술한 상기 학습 장치의 기준 자동차와 동일할 수도 있고 동일하지 않을 수도 있으며, 도 11을 참조하면, 상기 테스팅 장치(400)는 통신부(410)와 프로세서(420)를 포함할 수 있다.
먼저, 상기 통신부(410)는 상기 기준 자동차에서 촬영된 테스트 이미지 내에 위치하는 관찰 대상 자동차를 검출하는 검출기(40)로부터 상기 관찰 대상 자동차에 대한 테스트용 클래스 정보 및 테스트용 위치 정보를 수신할 수 있다.
이때, 상기 검출기(40)는 비전 센서를 통해 획득되는 이미지 내에 위치하는 상기 관찰 대상 자동차를 검출하는 것으로, 상기 이미지 내에 상기 관찰 대상 자동차가 위치하는 것으로 추정되는 영역인 ROI를 검출하는 가설 생성 단계(hypothesis generation stage)와 상기 검출된 ROI가 상기 관찰 대상 자동차를 포함하는지 여부를 판별하는 가설 확인 단계(hypothesis verification stage)로 구성될 수 있다. 그리고, 상기 가설 생성 단계는 옵티컬 플로우를 이용하는 모션 기반 체계(motion-based scheme)와 차량의 그림자, 모퉁이, 수평 및 수직 모서리, 대칭, 색상, 차량 불빛, 스테레오 카메라, 다수의 특징 등을 이용하는 형상 기반 체계(appearance-based scheme) 등으로 구현될 수 있으며, 상기 가설 확인 단계는 템플릿 매칭을 이용하는 상관관계 기반 체계(correlation-based scheme)과 특징 및 분류자(classifier)를 이용하는 학습 기반 체계(learning-based scheme) 등으로 구현될 수 있다. 특히, 상기 학습 기반 체계에는 CNN과 같은 딥 러닝(deep learning) 기반 알고리즘이나, 의사결정 나무(decision tree), SVM(support Vector Machine), 에이다부스트(AdaBoost), KNN(k-nearest neighbors) 등의 쉘로우 러닝(shallow learning) 기반 알고리즘이 적용될 수 있다.
일 예로, 도 8을 참조하여 설명한 검출기와 유사하게, 상기 검출기(40)는 R-CNN 기반의 자동차 검출기로, 상기 테스트 이미지로부터 테스트용 특징 맵을 생성하는 상기 컨벌루션 레이어, 상기 특징 맵으로부터 상기 관찰 대상 자동차에 대한 테스트용 ROI을 획득하는 상기 RPN, 상기 테스트용 특징 맵 내에서 상기 테스트용 ROI에 대응되는 영역을 풀링하여 테스트용 특징 벡터를 획득하는 상기 풀링 레이어, 상기 테스트용 특징 벡터에 하나 이상의 FC(fully connected) 연산을 가하여 하나 이상의 FC 출력 값을 생성하는 상기 자동차 검출용 FC 레이어, 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차의 상기 테스트용 클래스 정보를 출력하는 상기 클래시피케이션 레이어, 및 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차의 상기 테스트용 위치 정보를 출력하는 리그레이션 레이어를 포함할 수 있다. 이때, 상기 컨벌루션 레이어와 상기 자동차 검출용 FC 레이어를 각각 하나의 레이어로 설명하였으나, 이에 한정되지 않으며, 각각 다수의 레이어로 형성될 수도 있다. 또한, 상기 테스트용 특징 맵은 상기 컨벌루션 레이어(41)에 의한 채널 깊이에 대응하는 하나 이상의 특징 맵으로 출력될 수 있다.
다음으로, 프로세서(420)는 상기 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보 및 상기 테스트용 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차에 대한 하나 이상의 테스트용 단서 정보를 출력하도록 하는 제1 프로세스와, 상기 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 사용하여 상기 신경망 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 테스트용 판단 결과를 출력하도록 하는 제2 프로세스를 수행할 수 있다.
이하에서, 단어 "학습용" 및 "테스트용"은 상술한 학습 방법과 테스트 방법을 구분하기 위해서 사용된다.
이때, 상기 검출기(40)와 상기 블라인드 스팟 확인용 FC 레이어는 도 9와 도 10을 참조하여 설명한 학습 방법으로 상기 학습 장치에 의해 파라미터가 학습이 된 것으로, 상기 학습 방법을 간략히 설명하면 다음과 같다. 상기 검출기(40)가 상기 기준 자동차에서 촬영된 영상 이미지에 대응되는 트레이닝 이미지에 포함된 상기 관찰 대상 자동차에 대한 학습용 클래스 정보 및 학습용 위치 정보를 출력하면, 상기 학습 장치가, (i) 상기 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 하나 이상의 학습용 단서 정보를 출력하도록 하고, (ii) 상기 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 단서 정보 또는 이를 가공한 값을 사용하여 상기 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 학습용 판단 결과를 출력하도록 하며, (iii) 상기 제1 로스 레이어로 하여금 상기 학습용 판단 결과와 이에 대응되는 상기 제1 GT를 참고하여 하나 이상의 블라인드 스팟 로스값을 생성하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 파라미터를 학습하고, 상기 제2 로스 레이어로 하여금 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 이에 대응되는 상기 제2 GT와 비교하여 하나 이상의 자동차 검출 로스값을 생성하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기의 파라미터를 학습할 수 있다.
그리고, 본 발명의 다른 실시예에 따른 상기 테스팅 장치(400)는 컴퓨팅 장치로서, 프로세서를 탑재하여 연산 능력을 갖춘 장치라면 얼마든지 본 발명에 따른 테스팅 장치(400)로서 채택될 수 있다. 또한, 도 11에서는 하나의 테스팅 장치(400)만을 나타내었으나, 이에 한정되지 않으며, 상기 테스팅 장치(400)는 복수 개로 나뉘어 역할을 수행할 수도 있다.
이와 같이 구성된 본 발명의 다른 실시예에 따라 구성된 상기 테스팅 장치를 이용하여 상기 기준 자동차의 상기 블라인드 스팟을 모니터링 하기 위한 테스팅 방법을 도 12를 참조하여 설명하면 다음과 같다.
먼저, 상기 검출기(40)가 상기 기준 자동차에서 촬영된 상기 영상 이미지에 대응되는 상기 트레이닝 이미지에 포함된 상기 관찰 대상 자동차에 대한 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 출력하면, 상기 학습 장치에 의해, (i) 상기 단서 정보 추출 레이어(421)로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 상기 학습용 단서 정보들을 출력하도록 하고, (ii) 상기 블라인드 스팟 확인용 FC 레이어(422)로 하여금 상기 학습용 단서 정보 또는 이를 가공한 값을 사용하여 상기 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 상기 학습용 판단 결과를 출력하도록 하며, (iii) 상기 제1 로스 레이어로 하여금 상기 학습용 판단 결과와 이에 대응되는 상기 제1 GT를 참고하여 상기 블라인드 스팟 로스값을 생성하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어(422)의 상기 파라미터를 학습하고, 상기 제2 로스 레이어로 하여금 상기 학습용 클래스 정보 및 상기 학습용 위치 정보와 이에 대응되는 상기 제2 GT를 참고하여 상기 자동차 검출 로스값을 생성하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기(40)의 상기 파라미터를 학습한 상태에서, 상기 검출기(40)가 상기 기준 자동차에서 촬영된 테스트 이미지 내에 위치하는 상기 관찰 대상 자동차를 검출하며, 상기 검출된 관찰 대상 자동차에 대한 테스트용 클래스 정보 및 테스트용 위치 정보를 출력할 수 있다.
이때, 상기 검출기(40)는 비전 센서를 통해 획득되는 이미지 내에 위치하는 자동차를 검출하는 것으로, 상기 이미지 내에 상기 관찰 대상 자동차가 위치하는 것으로 추정되는 영역인 ROI를 검출하는 가설 생성 단계(hypothesis generation stage)와 상기 검출된 ROI가 상기 관찰 대상 자동차를 포함하는지 여부를 판별하는 가설 확인 단계(hypothesis verification stage)로 구성될 수 있다. 그리고, 상기 가설 생성 단계는 옵티컬 플로우를 이용하는 모션 기반 체계(motion-based scheme)와 차량의 그림자, 모퉁이, 수평 및 수직 모서리, 대칭, 색상, 차량 불빛, 스테레오 카메라, 다수의 특징 등을 이용하는 형상 기반 체계(appearance-based scheme) 등으로 구현될 수 있으며, 상기 가설 확인 단계는 템플릿 매칭을 이용하는 상관관계 기반 체계(correlation-based scheme), 특징 및 분류자(classifier)를 이용하는 학습 기반 체계(learning-based scheme) 등으로 구현될 수 있다. 특히, 상기 학습 기반 체계에는 CNN과 같은 딥 러닝(deep learning) 기반 알고리즘이나, 의사결정 나무(decision tree), SVM(Support Vector Machine), 에이다부스트(AdaBoost), KNN(k-nearest neighbors) 등의 쉘로우 러닝(shallow learning) 기반 알고리즘이 적용될 수 있다.
일 예로, 상기 검출기(40)는 R-CNN 기반의 자동차 검출기로, 상기 테스트 이미지로부터 테스트용 특징 맵을 획득하는 상기 컨벌루션 레이어(41), 상기 테스트용 특징 맵으로부터 상기 관찰 대상 자동차에 대한 상기 테스트용 ROI을 생성하는 상기 RPN(42), 상기 테스트용 특징 맵 내에서 상기 테스트용 ROI에 대응되는 영역을 풀링하여 테스트용 특징 벡터를 생성하는 상기 풀링 레이어(43), 상기 테스트용 특징 벡터에 FC 연산을 가하여 하나 이상의 FC 출력 값을 생성하는 상기 자동차 검출용 FC 레이어(44), 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보를 출력하는 상기 클래시피케이션 레이어(45), 및 상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 테스트용 위치 정보를 출력하는 상기 리그레이션 레이어(46)를 포함할 수 있다. 이때, 상기 컨벌루션 레이어(41)와 상기 자동차 검출용 FC 레이어(44)를 각각 하나의 레이어로 설명하였으나, 이에 한정되지 않으며, 각각 다수의 레이어로 형성될 수도 있다.
그러면, 상기 테스팅 장치(400)는 상기 단서 정보 추출 레이어(421)로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보 및 상기 테스트용 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보들을 출력하도록 한다.
이때, 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보는, (i) 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보, (ii) 상기 관찰 대상 자동차에 대한 상기 테스트용 위치 정보, (iii) 테스트용 ROI 크기에 대비되는 상기 관찰 대상 자동차의 테스트용 크기 정보, (iv) 상기 관찰 대상 자동차의 테스트용 종횡비(aspect ratio) 정보, 및 (v) 상기 관찰 대상 자동차의 중심점과 상기 블라인드 스팟의 바깥 측면 사이의 테스트용 거리 정보 중 적어도 일부를 포함할 수 있다.
그리고, 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보는 상기 관찰 대상 자동차를 자동차, 오토바이 등으로 분류하기 위한 클래스 정보일 수 있다.
또한, 도 3을 참조하여 설명한 바와 유사하게, 상기 관찰 대상 자동차의 상기 테스트용 위치 정보는 상기 테스트 이미지 내에 상기 관찰 대상 자동차가 위치하는 영역에 대응하는 위치 정보일 수 있다. 일 예로, 상기 관찰 대상 자동차에 대응하는 바운딩 박스의 위치 정보로서, 상기 테스트 이미지 내에서의 상기 바운딩 박스의 왼쪽 상단 모서리(TOP_LEFT) 좌표와 오른쪽 하단 모서리(BOTTOM_RIGHT) 좌표를 포함할 수 있다. 이에 더하여 상기 바운딩 박스의 중심(CENTER) 좌표를 포함할 수 있으나, 이는 상기 바운딩 박스의 상기 왼쪽 상단 모서리(TOP_LEFT) 좌표와 상기 오른쪽 하단 모서리(BOTTOM_RIGHT) 좌표를 이용한 연산에 의해 획득될 수도 있다.
또한, 도 4를 참조하여 설명한 바와 유사하게, (i) 좌측 블라인드 스팟(BS-L)의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 및 (ii) 우측 블라인드 스팟(BS-R)의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 중, 작은 값을 상기 관찰 대상 자동차의 상기 중심점(C)과 상기 블라인드 스팟의 상기 바깥 측면(S) 사이의 상기 테스트용 거리 정보로 판단하며, 상기 관찰 대상 자동차의 상기 중심점이 상기 블라인드 스팟의 상기 바깥 측면의 외측에 위치하는지 혹은 내측에 위치하는지를 구분하기 위하여, 상대적 위치 정보, 일 예로, (+) 또는 (-)를 추가로 더 포함할 수 있다.
다음으로, 상기 테스팅 장치(400)는 상기 블라인드 스팟 확인용 FC 레이어(422)로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 사용하여 상기 신경망 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 상기 테스트용 판단 결과를 출력하도록 한다.
이때, 상기 테스트용 단서 정보를 가공한 값은, 상기 단서 정보 추출 레이어(421)에서 출력되는 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보와 상기 검출기(40)의 상기 풀링 레이어(43)에서 출력되는 상기 테스트용 특징 벡터를 이용하여 컨캐터네이팅(concatenating)한 값일 수 있으며, 상기 테스트용 단서 정보와 상기 테스트용 특징 벡터를 컨캐터네이팅하는 특징 컨캐터네이션 레이어(440)가 상기 블라인드 스팟 확인용 FC 레이어(422) 전단에 위치할 수도 있다.
또한, 도 5를 참조하여 설명한 바와 유사하게, 상기 블라인드 스팟 확인용 FC 레이어(422)는 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 입력으로 하는 상기 다중 퍼셉트론에 의해 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 하나의 결과값을 출력하는 상기 신경망으로 구성될 수 있다.
상기 단서 정보 추출 레이어(421) 및 상기 블라인드 스팟 확인용 FC 레이어(422)는 하나의 컴퓨팅 장치에 포함되거나, 각각 서로 다른 컴퓨팅 장치에 포함될 수 있으며, 컴퓨팅 장치 내에서 상기와 같은 동작을 수행하도록 하는 알고리즘으로 구현될 수도 있다.
또한, 이상 설명된 본 발명에 따른 실시예들은 다양한 컴퓨터 구성요소를 통하여 수행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령어를 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 상기 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.
Claims (28)
- 기준 자동차의 하나 이상의 블라인드 스팟 모니터링을 위한 CNN(Convolutional Neural Network)의 학습 방법에 있어서,
(a) 상기 기준 자동차에서 촬영된 적어도 하나의 영상 이미지에 대응되는 트레이닝 이미지가 입력되면, 학습 장치가, 상기 기준 자동차의 검출기로 하여금 상기 트레이닝 이미지에 포함된 관찰 대상 자동차에 대한 클래스 정보 및 위치 정보를 출력하도록 하는 단계;
(b) 상기 학습 장치가, 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 사용하여 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 하나 이상의 단서 정보를 출력하도록 하며, 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 단서 정보 또는 이를 가공한 값을 사용하여 하나 이상의 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 판단 결과를 출력하도록 하는 단계; 및
(c) 상기 학습 장치가, 제1 로스 레이어로 하여금 상기 판단 결과를 그에 대응하는 제1 GT와 비교하여 하나 이상의 블라인드 스팟 로스값을 생성하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 하나 이상의 파라미터를 학습하며, 제2 로스 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 그에 대응하는 제2 GT와 비교하여 하나 이상의 자동차 검출 로스값을 생성하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기의 하나 이상의 파라미터를 학습하는 단계;
를 포함하는 것을 특징으로 하는 학습 방법. - 제1항에 있어서,
상기 검출기는,
상기 트레이닝 이미지로부터 특징 맵을 생성하는 하나 이상의 컨볼루션 레이어;
상기 특징 맵으로부터 상기 관찰 대상 자동차에 대한 ROI(Region Of Interest)을 생성하는 RPN(Region Proposal Network);
상기 특징 맵 내에서 상기 ROI에 대응되는 영역을 풀링하여 특징 벡터를 생성하는 풀링 레이어;
상기 특징 벡터에 적어도 하나의 FC(Fully Connected) 연산을 가하여 하나 이상의 FC 출력 값을 생성하는 적어도 하나의 자동차 검출용 FC 레이어;
상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 클래스 정보를 출력하는 클래시피케이션(classification) 레이어; 및
상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 위치 정보를 출력하는 리그레이션(regression) 레이어;
를 포함하는 R-CNN(Region-based Convolutional Neural Network) 기반의 자동차 검출기인 것을 특징으로 하는 학습 방법. - 제2항에 있어서,
상기 자동차 검출 로스값은 상기 관찰 대상 자동차에 대한 하나 이상의 클래스 로스값과 하나 이상의 위치 로스값을 포함하며,
상기 학습 장치는, 상기 클래스 로스값과 상기 위치 로스값을 이용한 백프로퍼게이션을 통해 상기 자동차 검출용 FC 레이어의 하나 이상의 파라미터, 및 상기 컨볼루션 레이어의 하나 이상의 파라미터를 학습시키는 것을 특징으로 하는 학습 방법. - 제2항에 있어서,
상기 학습 장치는, 상기 CNN으로 하여금 상기 단서 정보 추출 레이어에 의해 생성된 상기 관찰 대상 자동차에 대한 상기 단서 정보와 상기 검출기의 상기 풀링 레이어에 의해 생성된 상기 특징 벡터를 컨캐터네이팅(concatenating)한 값을 상기 블라인드 스팟 확인용 FC 레이어의 입력으로서 받도록 하는 것을 특징으로 하는 학습 방법. - 제1항에 있어서,
상기 블라인드 스팟 확인용 FC 레이어는 상기 관찰 대상 자동차에 대한 상기 단서 정보를 입력으로 하는 다중 퍼셉트론에 의해 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 결과값을 출력하는 신경망을 포함하는 것을 특징으로 하는 학습 방법. - 제1항에 있어서,
상기 관찰 대상 자동차에 대한 상기 단서 정보는, (i) 상기 관찰 대상 자동차에 대한 상기 클래스 정보, (ii) 상기 관찰 대상 자동차에 대한 상기 위치 정보, (iii) ROI 크기에 대응하는 상기 관찰 대상 자동차의 크기 정보, (iv) 상기 관찰 대상 자동차의 종횡비(aspect ratio) 정보, 및 (v) 상기 관찰 대상 자동차의 중심점과 상기 블라인드 스팟의 바깥 측면 사이의 거리 정보 중 적어도 일부를 포함하는 것을 특징으로 하는 학습 방법. - 제6항에 있어서,
상기 단서 정보 추출 레이어는, (i) 상기 기준 자동차의 좌측 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 및 (ii) 상기 기준 자동차의 우측 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 중, 작은 값을 상기 관찰 대상 자동차의 상기 중심점과 상기 블라인드 스팟의 상기 바깥 측면 사이의 상기 거리 정보로 판단하며, 상기 관찰 대상 자동차의 상기 중심점이 상기 블라인드 스팟의 상기 바깥 측면의 외측에 위치하는지 혹은 내측에 위치하는지를 구분하기 위하여, 상기 거리 정보에 추가로 상대적 위치 정보를 더 출력하는 것을 특징으로 하는 학습 방법. - 기준 자동차의 하나 이상의 블라인드 스팟 모니터링을 위한 CNN의 테스팅 방법에 있어서,
(a) 학습 장치에 의해, (i) 상기 기준 자동차의 검출기로 하여금 상기 기준 자동차에서 촬영된 적어도 하나의 영상 이미지에 대응되는 트레이닝 이미지에 포함된 관찰 대상 자동차에 대한 학습용 클래스 정보 및 학습용 위치 정보를 출력하도록 하며, (ii) 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 사용하여 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 하나 이상의 학습용 단서 정보를 출력하도록 하고, (iii) 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 단서 정보 또는 이를 가공한 값을 사용하여 하나 이상의 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 학습용 판단 결과를 출력하도록 하며, (iv) 제1 로스 레이어로 하여금 상기 학습용 판단 결과를 그에 대응하는 제1 GT와 비교하여 하나 이상의 블라인드 스팟 로스값을 생성하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 하나 이상의 파라미터를 학습하고, 제2 로스 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 그에 대응하는 제2 GT와 비교하여 하나 이상의 자동차 검출 로스값을 생성하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기의 하나 이상의 파라미터를 학습한 상태에서, 테스팅 장치가, 상기 기준 자동차의 상기 검출기로 하여금 상기 기준 자동차에서 촬영된 테스트 이미지에 포함되는 상기 관찰 대상 자동차를 검출하는 상기 자동차 검출기로부터 상기 관찰 대상 자동차에 대한 테스트용 클래스 정보 및 테스트용 위치 정보를 출력하도록 하는 단계; 및
(b) 상기 테스팅 장치가, 상기 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보 및 상기 테스트용 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차에 대한 하나 이상의 테스트용 단서 정보를 출력하도록 하고, 상기 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 사용하여 상기 신경망 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟에 위치하는지 여부에 대한 테스트용 판단 결과를 출력하도록 하는 단계;
를 포함하는 것을 특징으로 하는 테스팅 방법. - 제8항에 있어서,
상기 검출기는,
상기 테스트 이미지로부터 테스트용 특징 맵을 생성하는 하나 이상의 컨볼루션 레이어;
상기 테스트용 특징 맵으로부터 상기 관찰 대상 자동차에 대한 테스트용 ROI을 생성하는 RPN;
상기 테스트용 특징 맵 내에서 상기 테스트용 ROI에 대응되는 영역을 풀링하여 테스트용 특징 벡터를 획득하는 풀링 레이어;
상기 테스트용 특징 벡터에 적어도 하나의 FC 연산을 가하여 하나 이상의 FC 출력 값을 생성하는 적어도 하나의 자동차 검출용 FC 레이어;
상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보를 출력하는 클래시피케이션 레이어; 및
상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 테스트용 위치 정보를 출력하는 리그레션 레이어;
를 포함하는 R-CNN 기반의 자동차 검출기인 것을 특징으로 하는 테스팅 방법. - 제9항에 있어서,
상기 테스팅 장치는, 상기 CNN으로 하여금 상기 단서 정보 추출 레이어에 의해 생성된 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보와 상기 검출기의 상기 풀링 레이어에 의해 생성된 상기 테스트용 특징 벡터를 컨캐터네이팅한 값을 상기 블라인드 스팟 확인용 FC 레이어의 입력으로서 받도록 하는 것을 특징으로 하는 테스팅 방법. - 제8항에 있어서,
상기 블라인드 스팟 확인용 FC 레이어는 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 입력으로 하는 다중 퍼셉트론에 의해 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 테스트용 결과값을 출력하는 신경망을 포함하는 것을 특징으로 하는 테스팅 방법. - 제8항에 있어서,
상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보는, (i) 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보, (ii) 상기 관찰 대상 자동차에 대한 상기 테스트용 위치 정보, (iii) ROI 크기에 대비되는 상기 관찰 대상 자동차의 테스트용 크기 정보, (iv) 상기 관찰 대상 자동차의 테스트용 종횡비(aspect ratio) 정보, 및 (v) 상기 관찰 대상 자동차의 중심점과 상기 블라인드 스팟의 바깥 측면 사이의 테스트용 거리 정보 중 적어도 일부를 포함하는 것을 특징으로 하는 테스팅 방법. - 제12항에 있어서,
상기 단서 정보 추출 레이어는, (i) 상기 기준 자동차의 좌측 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 및 (ii) 상기 기준 자동차의 우츨 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 중, 작은 값을 상기 관찰 대상 자동차의 상기 중심점과 상기 블라인드 스팟의 상기 바깥 측면 사이의 상기 테스트용 거리 정보로 판단하며, 상기 관찰 대상 자동차의 상기 중심점이 상기 블라인드 스팟의 상기 바깥 측면의 외측에 위치하는지 혹은 내측에 위치하는지를 구분하기 위하여, 상기 테스트용 거리 정보에 추가로 테스트용 상대적 위치 정보를 더 출력하는 것을 특징으로 하는 테스팅 방법. - 제8항에 있어서,
상기 테스팅 장치의 상기 기준 자동차는 상기 학습 장치의 상기 기준 자동차와 동일하지 않은 것을 특징으로 하는 테스팅 방법. - 기준 자동차의 하나 이상의 블라인드 스팟 모니터링을 위한 CNN의 학습 장치에 있어서,
상기 기준 자동차에서 촬영된 적어도 하나의 영상 이미지에 대응되는 트레이닝 이미지를 수신하는 통신부; 및
(I) 상기 기준 자동차의 검출기로 하여금 상기 트레이닝 이미지에 포함된 관찰 대상 자동차에 대한 클래스 정보 및 위치 정보를 출력하도록 하는 프로세스, (II) 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 사용하여 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 하나 이상의 단서 정보를 출력하도록 하며, 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 단서 정보 또는 이를 가공한 값을 사용하여 하나 이상의 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 판단 결과를 출력하도록 하는 프로세스, (III) 제1 로스 레이어로 하여금 상기 판단 결과를 그에 대응하는 제1 GT와 비교하여 하나 이상의 블라인드 스팟 로스값을 생성하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 하나 이상의 파라미터를 학습하며, 제2 로스 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 클래스 정보 및 상기 위치 정보를 그에 대응하는 제2 GT와 비교하여 하나 이상의 자동차 검출 로스값을 생성하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기의 하나 이상의 파라미터를 학습하는 프로세스를 수행하는 프로세서;
를 포함하는 것을 특징으로 하는 학습 장치. - 제15항에 있어서,
상기 검출기는,
상기 트레이닝 이미지로부터 특징 맵을 생성하는 하나 이상의 컨볼루션 레이어;
상기 특징 맵으로부터 상기 관찰 대상 자동차에 대한 ROI을 생성하는 RPN;
상기 특징 맵 내에서 상기 ROI에 대응되는 영역을 풀링하여 특징 벡터를 생성하는 풀링 레이어; 및
상기 특징 벡터에 적어도 하나의 FC 연산을 가하여 하나 이상의 FC 출력 값을 생성하는 적어도 하나의 자동차 검출용 FC 레이어;
상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 클래스 정보를 출력하는 클래시피케이션 레이어; 및
상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 위치 정보를 출력하는 리그레이션 레이어;
를 포함하는 R-CNN 기반의 자동차 검출기인 것을 특징으로 하는 학습 장치. - 제16항에 있어서,
상기 자동차 검출 로스값은 상기 관찰 대상 자동차에 대한 하나 이상의 클래스 로스값과 하나 이상의 위치 로스값을 포함하며,
상기 프로세서는, 상기 클래스 로스값과 상기 위치 로스값을 이용한 백프로퍼게이션을 통해 상기 자동차 검출용 FC 레이어의 하나 이상의 파라미터, 및 상기 컨볼루션 레이어의 하나 이상의 파라미터를 학습시키는 것을 특징으로 하는 학습 장치. - 제16항에 있어서,
상기 프로세서는, 상기 CNN으로 하여금 상기 단서 정보 추출 레이어에 의해 생성된 상기 관찰 대상 자동차에 대한 상기 단서 정보와 상기 검출기의 상기 풀링 레이어에 의해 생성된 상기 특징 벡터를 컨캐터네이팅한 값을 상기 블라인드 스팟 확인용 FC 레이어의 입력으로서 받도록 하는 것을 특징으로 하는 학습 장치. - 제15항에 있어서,
상기 블라인드 스팟 확인용 FC 레이어는 상기 관찰 대상 자동차에 대한 상기 단서 정보를 입력으로 하는 다중 퍼셉트론에 의해 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 하나의 결과값을 출력하는 신경망을 포함하는 것을 특징으로 하는 학습 장치. - 제15항에 있어서,
상기 관찰 대상 자동차에 대한 상기 단서 정보는, (i) 상기 관찰 대상 자동차에 대한 상기 클래스 정보, (ii) 상기 관찰 대상 자동차에 대한 상기 위치 정보, (iii) ROI 크기에 대응하는 상기 관찰 대상 자동차의 크기 정보, (iv) 상기 관찰 대상 자동차의 종횡비(aspect ratio) 정보, 및 (v) 상기 관찰 대상 자동차의 중심점과 상기 블라인드 스팟의 바깥 측면 사이의 거리 정보 중 적어도 일부를 포함하는 것을 특징으로 하는 학습 장치. - 제20항에 있어서,
상기 단서 정보 추출 레이어는, (i) 상기 기준 자동차의 좌측 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 및 (ii) 상기 기준 자동차의 우측 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 중, 작은 값을 상기 관찰 대상 자동차의 상기 중심점과 상기 블라인드 스팟의 상기 바깥 측면 사이의 상기 거리 정보로 판단하며, 상기 관찰 대상 자동차의 상기 중심점이 상기 블라인드 스팟의 상기 바깥 측면의 외측에 위치하는지 혹은 내측에 위치하는지를 구분하기 위하여, 상기 거리 정보에 추가로 상대적 위치 정보를 더 출력하는 것을 특징으로 하는 학습 장치. - 기준 자동차의 하나 이상의 블라인드 스팟 모니터링을 위한 CNN의 테스팅 장치에 있어서,
학습 장치에 의해, (i) 상기 기준 자동차의 검출기로 하여금 상기 기준 자동차에서 촬영된 적어도 하나의 영상 이미지에 대응되는 트레이닝 이미지에 포함된 관찰 대상 자동차에 대한 학습용 클래스 정보 및 학습용 위치 정보를 출력하도록 하며, (ii) 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 사용하여 소정의 연산을 수행하도록 함으로써 상기 관찰 대상 자동차에 대한 하나 이상의 학습용 단서 정보를 출력하도록 하고, (iii) 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 단서 정보 또는 이를 가공한 값을 사용하여 하나 이상의 신경망 연산을 수행하도록 함으로써 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 학습용 판단 결과를 출력하도록 하며, (iv) 제1 로스 레이어로 하여금 상기 학습용 판단 결과를 그에 대응하는 제1 GT와 비교하여 하나 이상의 블라인드 스팟 로스값을 생성하도록 함으로써, 상기 블라인드 스팟 로스값을 이용한 백프로퍼게이션을 통해 상기 블라인드 스팟 확인용 FC 레이어의 하나 이상의 파라미터를 학습하고, 제2 로스 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 학습용 클래스 정보 및 상기 학습용 위치 정보를 그에 대응하는 제2 GT와 비교하여 하나 이상의 자동차 검출 로스값을 생성하도록 함으로써, 상기 자동차 검출 로스값을 이용한 백프로퍼게이션을 통해 상기 검출기의 하나 이상의 파라미터를 학습한 상태에서, 상기 기준 자동차에서 촬영된 테스트 이미지에 포함되는 상기 관찰 대상 자동차를 검출하는 상기 검출기로부터 상기 관찰 대상 자동차에 대한 테스트용 클래스 정보 및 테스트용 위치 정보를 수신하는 통신부; 및
(I) 상기 단서 정보 추출 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보 및 상기 테스트용 위치 정보를 사용하여 상기 소정의 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차에 대한 하나 이상의 테스트용 단서 정보를 출력하도록 하는 프로세스와, (II) 상기 블라인드 스팟 확인용 FC 레이어로 하여금 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 사용하여 상기 신경망 연산을 수행하도록 함으로써, 상기 관찰 대상 자동차가 상기 기준 자동차의 상기 블라인드 스팟에 위치하는지 여부에 대한 테스트용 판단 결과를 출력하도록 하는 프로세스를 수행하는 프로세서;
를 포함하는 것을 특징으로 하는 테스팅 장치. - 제22항에 있어서,
상기 검출기는,
상기 테스트 이미지로부터 테스트용 특징 맵을 생성하는 하나 이상의 컨볼루션 레이어;
상기 테스트용 특징 맵으로부터 상기 관찰 대상 자동차에 대한 테스트용 ROI을 생성하는 RPN;
상기 테스트용 특징 맵 내에서 상기 테스트용 ROI에 대응되는 영역을 풀링하여 테스트용 특징 벡터를 획득하는 풀링 레이어;
상기 테스트용 특징 벡터에 적어도 하나의 FC 연산을 가하여 하나 이상의 FC 출력 값을 생성하는 적어도 하나의 자동차 검출용 FC 레이어;
상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보를 출력하는 클래시피케이션 레이어; 및
상기 FC 출력 값을 참조하여 상기 관찰 대상 자동차에 대한 상기 테스트용 위치 정보를 출력하는 리그레션 레이어;
를 포함하는 R-CNN 기반의 자동차 검출기인 것을 특징으로 하는 테스팅 장치. - 제23항에 있어서,
상기 프로세서는, 상기 CNN으로 하여금 상기 단서 정보 추출 레이어에 의해 생성된 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보와 상기 검출기의 상기 풀링 레이어에 의해 생성된 상기 테스트용 특징 벡터를 컨캐터네이팅한 값을 상기 블라인드 스팟 확인용 FC 레이어의 입력으로서 받도록 하는 것을 특징으로 하는 테스팅 장치. - 제22항에 있어서,
상기 블라인드 스팟 확인용 FC 레이어는 상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보 또는 이를 가공한 값을 입력으로 하는 다중 퍼셉트론에 의해 상기 관찰 대상 자동차가 상기 블라인드 스팟 중 하나에 위치하는지 여부에 대한 테스트용 결과값을 출력하는 신경망을 포함하는 것을 특징으로 하는 테스팅 장치. - 제22항에 있어서,
상기 관찰 대상 자동차에 대한 상기 테스트용 단서 정보는, (i) 상기 관찰 대상 자동차에 대한 상기 테스트용 클래스 정보, (ii) 상기 관찰 대상 자동차에 대한 상기 테스트용 위치 정보, (iii) ROI 크기에 대비되는 상기 관찰 대상 자동차의 테스트용 크기 정보, (iv) 상기 관찰 대상 자동차의 테스트용 종횡비(aspect ratio) 정보, 및 (v) 상기 관찰 대상 자동차의 중심점과 상기 블라인드 스팟의 바깥 측면 사이의 테스트용 거리 정보 중 적어도 일부를 포함하는 것을 특징으로 하는 테스팅 장치. - 제26항에 있어서,
상기 단서 정보 추출 레이어는, (i) 상기 기준 자동차의 좌측 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 및 (ii) 상기 기준 자동차의 우츨 블라인드 스팟의 바깥 경계에서 상기 관찰 대상 자동차의 상기 중심점 사이의 거리 중, 작은 값을 상기 관찰 대상 자동차의 상기 중심점과 상기 블라인드 스팟의 상기 바깥 측면 사이의 상기 테스트용 거리 정보로 판단하며, 상기 관찰 대상 자동차의 상기 중심점이 상기 블라인드 스팟의 상기 바깥 측면의 외측에 위치하는지 혹은 내측에 위치하는지를 구분하기 위하여, 상기 테스트용 거리 정보에 추가로 테스트용 상대적 위치 정보를 더 출력하는 것을 특징으로 하는 테스팅 장치. - 제22항에 있어서,
상기 테스팅 장치의 상기 기준 자동차는 상기 학습 장치의 상기 기준 자동차와 동일하지 않은 것을 특징으로 하는 테스팅 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/152,699 US10474930B1 (en) | 2018-10-05 | 2018-10-05 | Learning method and testing method for monitoring blind spot of vehicle, and learning device and testing device using the same |
US16/152,699 | 2018-10-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200039548A true KR20200039548A (ko) | 2020-04-16 |
KR102349953B1 KR102349953B1 (ko) | 2022-01-12 |
Family
ID=67874282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190105496A KR102349953B1 (ko) | 2018-10-05 | 2019-08-27 | 자동차의 블라인드 스팟 모니터링을 위한 학습 방법과 테스팅 방법, 및 이를 이용한 학습 장치와 테스팅 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10474930B1 (ko) |
EP (1) | EP3633558A1 (ko) |
JP (1) | JP6814334B2 (ko) |
KR (1) | KR102349953B1 (ko) |
CN (1) | CN111008553B (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10853698B2 (en) * | 2016-11-09 | 2020-12-01 | Konica Minolta Laboratory U.S.A., Inc. | System and method of using multi-frame image features for object detection |
US10726303B1 (en) * | 2019-01-30 | 2020-07-28 | StradVision, Inc. | Learning method and learning device for switching modes of autonomous vehicle based on on-device standalone prediction to thereby achieve safety of autonomous driving, and testing method and testing device using the same |
US10817777B2 (en) * | 2019-01-31 | 2020-10-27 | StradVision, Inc. | Learning method and learning device for integrating object detection information acquired through V2V communication from other autonomous vehicle with object detection information generated by present autonomous vehicle, and testing method and testing device using the same |
CN111652128B (zh) * | 2020-06-02 | 2023-09-01 | 浙江大华技术股份有限公司 | 一种高空电力作业安全监测方法、系统和存储装置 |
CN113239912B (zh) * | 2021-07-13 | 2021-09-17 | 天津所托瑞安汽车科技有限公司 | Bsd图像有效区域的确定方法、设备和存储介质 |
KR102496765B1 (ko) | 2022-10-11 | 2023-02-07 | 유희경 | 자동차용 블라인드 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170270374A1 (en) * | 2016-03-21 | 2017-09-21 | Ford Global Technologies, Llc | Pedestrian detection and motion prediction with rear-facing camera |
US9934440B1 (en) * | 2017-10-04 | 2018-04-03 | StradVision, Inc. | Method for monitoring blind spot of monitoring vehicle and blind spot monitor using the same |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10181603A (ja) * | 1996-12-25 | 1998-07-07 | Toshiba Corp | 乗車列車選択支援情報作成装置 |
ES2158827B1 (es) * | 2000-02-18 | 2002-03-16 | Fico Mirrors Sa | Dispositivo de deteccion de presencia de objetos. |
JP4552305B2 (ja) * | 2000-10-02 | 2010-09-29 | 日産自動車株式会社 | 画像表示装置および表示方法 |
ES2177469B1 (es) * | 2001-05-16 | 2003-12-16 | Fico Mirrors Sa | Dispositivo de deteccion de presencia de objetos en un angulo muerto de un vehiculo automovil. |
US6859148B2 (en) * | 2002-10-30 | 2005-02-22 | Ford Global Technologies, Llc | Blind spot warning system for an automotive vehicle |
GB0605069D0 (en) * | 2006-03-14 | 2006-04-26 | Airmax Group Plc | Method and system for driver style monitoring and analysing |
US8050863B2 (en) * | 2006-03-16 | 2011-11-01 | Gray & Company, Inc. | Navigation and control system for autonomous vehicles |
JP5620147B2 (ja) * | 2010-05-24 | 2014-11-05 | 株式会社豊田中央研究所 | 可動物予測装置及びプログラム |
US10099614B2 (en) * | 2011-11-28 | 2018-10-16 | Magna Electronics Inc. | Vision system for vehicle |
US9069080B2 (en) * | 2013-05-24 | 2015-06-30 | Advanced Scientific Concepts, Inc. | Automotive auxiliary ladar sensor |
JP2016006626A (ja) * | 2014-05-28 | 2016-01-14 | 株式会社デンソーアイティーラボラトリ | 検知装置、検知プログラム、検知方法、車両、パラメータ算出装置、パラメータ算出プログラムおよびパラメータ算出方法 |
KR101692628B1 (ko) * | 2014-12-24 | 2017-01-04 | 한동대학교 산학협력단 | 관심영역을 이용하여 차량의 후방 좌우 옆 차선 영역을 감지하는 방법 및 이를 이용한 차량용 영상 모니터링 시스템 |
US10395764B2 (en) * | 2015-01-06 | 2019-08-27 | Aic Innovations Group, Inc. | Method and apparatus for recognition of patient activity |
US9840003B2 (en) * | 2015-06-24 | 2017-12-12 | Brain Corporation | Apparatus and methods for safe navigation of robotic devices |
US11144834B2 (en) * | 2015-10-09 | 2021-10-12 | Fair Isaac Corporation | Method for real-time enhancement of a predictive algorithm by a novel measurement of concept drift using algorithmically-generated features |
US20170124409A1 (en) * | 2015-11-04 | 2017-05-04 | Nec Laboratories America, Inc. | Cascaded neural network with scale dependent pooling for object detection |
US10002313B2 (en) * | 2015-12-15 | 2018-06-19 | Sighthound, Inc. | Deeply learned convolutional neural networks (CNNS) for object localization and classification |
US9805274B2 (en) * | 2016-02-03 | 2017-10-31 | Honda Motor Co., Ltd. | Partially occluded object detection using context and depth ordering |
JP2017162438A (ja) * | 2016-03-11 | 2017-09-14 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 危険予測方法 |
US20170355263A1 (en) * | 2016-06-13 | 2017-12-14 | Ford Global Technologies, Llc | Blind Spot Detection Systems And Methods |
US10115025B2 (en) * | 2016-06-13 | 2018-10-30 | Ford Global Technologies, Llc | Detecting visibility of a vehicle to driver of other vehicles |
CN106407931B (zh) * | 2016-09-19 | 2019-11-22 | 杭州电子科技大学 | 一种深度卷积神经网络运动车辆检测方法 |
CN106599939A (zh) * | 2016-12-30 | 2017-04-26 | 深圳市唯特视科技有限公司 | 一种基于区域卷积神经网络的实时目标检测方法 |
JP6719399B2 (ja) * | 2017-02-10 | 2020-07-08 | ヤフー株式会社 | 解析装置、解析方法、およびプログラム |
JP6823495B2 (ja) * | 2017-02-27 | 2021-02-03 | 株式会社日立製作所 | 情報処理装置および画像認識装置 |
US11308391B2 (en) * | 2017-03-06 | 2022-04-19 | Baidu Usa Llc | Offline combination of convolutional/deconvolutional and batch-norm layers of convolutional neural network models for autonomous driving vehicles |
US9947228B1 (en) * | 2017-10-05 | 2018-04-17 | StradVision, Inc. | Method for monitoring blind spot of vehicle and blind spot monitor using the same |
US10083375B1 (en) * | 2017-10-13 | 2018-09-25 | StradVision, Inc. | Method and device for performing activation and convolution operation at the same time and learning method and learning device for the same |
US10836379B2 (en) * | 2018-03-23 | 2020-11-17 | Sf Motors, Inc. | Multi-network-based path generation for vehicle parking |
-
2018
- 2018-10-05 US US16/152,699 patent/US10474930B1/en active Active
-
2019
- 2019-08-27 KR KR1020190105496A patent/KR102349953B1/ko active IP Right Grant
- 2019-09-05 EP EP19195517.8A patent/EP3633558A1/en active Pending
- 2019-10-02 JP JP2019182005A patent/JP6814334B2/ja active Active
- 2019-10-08 CN CN201910949146.3A patent/CN111008553B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170270374A1 (en) * | 2016-03-21 | 2017-09-21 | Ford Global Technologies, Llc | Pedestrian detection and motion prediction with rear-facing camera |
US9934440B1 (en) * | 2017-10-04 | 2018-04-03 | StradVision, Inc. | Method for monitoring blind spot of monitoring vehicle and blind spot monitor using the same |
Also Published As
Publication number | Publication date |
---|---|
KR102349953B1 (ko) | 2022-01-12 |
US10474930B1 (en) | 2019-11-12 |
JP6814334B2 (ja) | 2021-01-20 |
CN111008553A (zh) | 2020-04-14 |
EP3633558A1 (en) | 2020-04-08 |
CN111008553B (zh) | 2023-11-28 |
JP2020061140A (ja) | 2020-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20200039548A (ko) | 자동차의 블라인드 스팟 모니터링을 위한 학습 방법과 테스팅 방법, 및 이를 이용한 학습 장치와 테스팅 장치 | |
US10628688B1 (en) | Learning method and learning device, and testing method and testing device for detecting parking spaces by using point regression results and relationship between points to thereby provide an auto-parking system | |
US9435885B2 (en) | Road-terrain detection method and system for driver assistance systems | |
Khammari et al. | Vehicle detection combining gradient analysis and AdaBoost classification | |
KR102108953B1 (ko) | 센서 품질 저하에 강인한 딥러닝 기반 카메라, 라이더 센서 융합 인지 방법 및 시스템 | |
JP7135665B2 (ja) | 車両制御システム、車両の制御方法及びコンピュータプログラム | |
US10635917B1 (en) | Method and device for detecting vehicle occupancy using passenger's keypoint detected through image analysis for humans' status recognition | |
US10402978B1 (en) | Method for detecting pseudo-3D bounding box based on CNN capable of converting modes according to poses of objects using instance segmentation and device using the same | |
EP3690716A1 (en) | Method and device for merging object detection information detected by each of object detectors corresponding to each camera nearby for the purpose of collaborative driving by using v2x-enabled applications, sensor fusion via multiple vehicles | |
KR20200040187A (ko) | 자동차의 블라인드 스팟 모니터링을 위한 학습 방법과 테스팅 방법, 및 이를 이용한 학습 장치와 테스팅 장치 | |
JP6903352B2 (ja) | 非最大値抑制を学習する併合ネットワークを利用した異種センサ融合のための学習方法及び学習装置{learning method and learning device for heterogeneous sensor fusion by using merging network which learns non−maximum suppression} | |
US20230245466A1 (en) | Vehicle Lidar System and Object Classification Method Therewith | |
US20220171975A1 (en) | Method for Determining a Semantic Free Space | |
CN116778262A (zh) | 一种基于虚拟点云的三维目标检测方法和系统 | |
Fries et al. | Real-time unsupervised feature model generation for a vehicle following system | |
Wang et al. | A system of automated training sample generation for visual-based car detection | |
Liu | Development of a vision-based object detection and recognition system for intelligent vehicle | |
Yamashita et al. | Pedestrian and part position detection using a regression-based multiple task deep convolutional neural network | |
Aishwarya et al. | Robust Deep Learning based Speed Bump Detection for Autonomous Vehicles in Indian Scenarios | |
Ran et al. | Vision-based object detection and recognition system for intelligent vehicles | |
KR102039814B1 (ko) | 측후방 차량 검출 방법 및 그 장치 | |
Cacciola | Fusion of laser range-finding and computer vision data for traffic detection by autonomous vehicles | |
CN117197762A (zh) | 一种基于视觉和深度线索的自动驾驶场景检测方法 | |
Bharamgoudar | Detection of Free Space/Obstacles in Front of the Ego Car Using Stereo Camera in Urban Scenes | |
Priya et al. | Vehicle Detection Using Gabor Filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |