KR20200037079A - Bump layout for coplanarity improvement - Google Patents

Bump layout for coplanarity improvement Download PDF

Info

Publication number
KR20200037079A
KR20200037079A KR1020190112010A KR20190112010A KR20200037079A KR 20200037079 A KR20200037079 A KR 20200037079A KR 1020190112010 A KR1020190112010 A KR 1020190112010A KR 20190112010 A KR20190112010 A KR 20190112010A KR 20200037079 A KR20200037079 A KR 20200037079A
Authority
KR
South Korea
Prior art keywords
bump
conductive
region
pattern density
design
Prior art date
Application number
KR1020190112010A
Other languages
Korean (ko)
Other versions
KR102309349B1 (en
Inventor
링-웨이 리
청-린 황
민-타르 리우
푸-캉 치아오
매트 초우
춘-옌 로
체-정 추
웬-밍 첸
쿠오-치오 리우
Original Assignee
타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/448,755 external-priority patent/US11211318B2/en
Application filed by 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 filed Critical 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드
Publication of KR20200037079A publication Critical patent/KR20200037079A/en
Application granted granted Critical
Publication of KR102309349B1 publication Critical patent/KR102309349B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/392Floor-planning or layout, e.g. partitioning or placement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/18Chip packaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05171Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05184Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/0557Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • H01L2224/05572Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1146Plating
    • H01L2224/11462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1146Plating
    • H01L2224/11464Electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13164Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16146Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1701Structure
    • H01L2224/1703Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1712Layout
    • H01L2224/1713Square or rectangular array
    • H01L2224/17132Square or rectangular array being non uniform, i.e. having a non uniform pitch across the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1751Function
    • H01L2224/17515Bump connectors having different functions
    • H01L2224/17517Bump connectors having different functions including bump connectors providing primarily mechanical support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/38Effects and problems related to the device integration
    • H01L2924/384Bump effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Architecture (AREA)
  • Wire Bonding (AREA)

Abstract

A method includes the following steps of: storing a first design for conductive bumps on a first surface of an interposer, wherein the conductive bumps in the first design have the same cross section area; grouping the conductive bumps of the first design into a first group of conductive bumps located in a first area of the first surface and a second group of conductive bumps located in a second area of the first surface, wherein the bump pattern density of the second area is lower than the bump pattern density of the first area; forming a second design by modifying the first design, wherein the modification of the first design includes the modification of the cross section area of the conductive bumps of the second group in the second area; and forming conductive bumps on the first surface of the interposer in accordance with the second design. After the step of forming the conductive bumps on the first surface of the interposer in accordance with the second design, the conductive bumps of the first group and the conductive bumps of the second group have different cross section areas.

Description

공면성 향상을 위한 범프 레이아웃{BUMP LAYOUT FOR COPLANARITY IMPROVEMENT}Bump Layout for Improving Coplanarity {BUMP LAYOUT FOR COPLANARITY IMPROVEMENT}

우선권 주장 및 교차 참조Priority claims and cross-references

본 출원은 “공면성 향상을 위한 범프 레이아웃(Bump Layout for Coplanarity Improvement)”이라는 발명의 명칭으로 2018년 9월 28일자로 출원된 미국 가특허출원 제62/738,929호에 대한 우선권을 주장한다.This application claims priority to U.S. Provisional Patent Application No. 62 / 738,929 filed on September 28, 2018 in the name of the invention entitled "Bump Layout for Coplanarity Improvement".

반도체 산업은 다양한 전자부품(예컨대, 트랜지스터, 다이오드, 레지스터, 커패시터 등)의 집적 밀도의 지속적인 향상으로 인해 급격한 성장을 경험했다. 대부분의 경우, 집적 밀도의 이러한 향상은 최소 피쳐(feature) 크기의 반복적인 감소에 기인하는 것이며, 이는 더 많은 구성요소가 주어진 영역에 집적되도록 한다. The semiconductor industry has experienced rapid growth due to the continuous improvement of the integration density of various electronic components (eg transistors, diodes, resistors, capacitors, etc.). In most cases, this improvement in integration density is due to iterative reduction in minimum feature size, which allows more components to be integrated in a given area.

전자 디바이스의 소형화에 대한 요구가 증가하고 있기 때문에, 보다 작고 보다 창의적인 반도체 다이의 패키징 기술에 대한 필요성이 대두되었다. 상기한 패키징 시스템의 일례는 패키지 온 패키지(Package-on-Package; PoP) 기술이다. PoP 디바이스에서, 상부 반도체 패키지는 저부 반도체 패키지의 상부에 적층되어, 높은 수준의 집적도 및 구성요소 밀도를 제공한다. 다른 예는 칩 온 웨이퍼 온 기판(Chip-On-Wafer-On-Substrate; CoWoS) 구조이다. 몇몇 실시예에서는, CoWoS 구조를 형성하기 위해 복수 개의 반도체 칩이 웨이퍼에 부착되고, 다음에 웨이퍼를 복수 개의 인터포저(interposer)로 분리하기 위해 다이싱 프로세스가 수행되며, 각각의 인터포저에는 하나 이상의 반도체 칩이 부착된다. 반도체 칩(들)이 부착된 인터포저는 몇몇 실시예에서 칩 온 웨이퍼(Chip-On-Wafer; CoW) 구조라고 칭한다. CoW 구조는 그 후에 기판(예컨대, 인쇄 회로 기판)에 부착되어, CoWoS 구조를 형성한다. 이들 및 다른 진보된 패키징 기술은 향상된 기능 및 소형 풋프린트를 갖는 반도체 디바이스의 생산을 가능하게 한다.As the demand for miniaturization of electronic devices has increased, the need for packaging technology for smaller and more creative semiconductor dies has emerged. An example of the packaging system described above is a package-on-package (PoP) technology. In PoP devices, the top semiconductor package is stacked on top of the bottom semiconductor package, providing a high level of integration and component density. Another example is a chip-on-wafer-on-substrate (CoWoS) structure. In some embodiments, a plurality of semiconductor chips are attached to the wafer to form a CoWoS structure, followed by a dicing process to separate the wafer into a plurality of interposers, each interposer having one or more A semiconductor chip is attached. The interposer to which the semiconductor chip (s) is attached is referred to as a chip-on-wafer (CoW) structure in some embodiments. The CoW structure is then attached to a substrate (eg, printed circuit board) to form a CoWoS structure. These and other advanced packaging technologies enable the production of semiconductor devices with improved functionality and small footprint.

실시예에서, 방법은 인터포저의 제1 표면 상에 있는 도전성 범프를 위한 제1 디자인 - 제1 디자인 내의 도전성 범프들은 동일한 단면적을 가짐 - 을 수용하는 단계; 제1 디자인의 도전성 범프들을 제1 표면의 제1 영역에 있는 제1 그룹의 도전성 범프와, 제1 표면의 제2 영역에 있는 제2 그룹의 도전성 범프로 그룹화하는 단계로서, 제2 영역의 범프 패턴 밀도는 제1 영역의 범프 패턴 밀도보다 낮은 것인 도전성 범프를 그룹화하는 단계; 제1 디자인을 수정하는 것 - 제1 디자인을 수정하는 것은 제2 영역에 있는 제2 그룹의 도전성 범프의 단면적을 수정하는 것을 포함함 - 에 의해 제2 디자인을 형성하는 단계; 및 제2 디자인에 따라 인터포저의 제1 표면 상에 도전성 범프를 형성하는 단계를 포함하고, 제2 디자인에 따라 인터포저의 제1 표면 상에 도전성 범프를 형성하는 단계 후, 제1 그룹의 도전성 범프와 제2 그룹의 도전성 범프는 상이한 단면적을 갖는다. 실시예에서, 제1 그룹의 도전성 범프의 크기는 제1 디자인과 제2 디자인에서 변경되지 않은 채 유지된다. 실시예에서, 도전성 범프를 형성하는 단계는, 인터포저의 제1 표면 위에, 범프 개구를 갖는 패턴화 마스크층을 형성하는 단계; 및 패턴화 마스크층의 범프 개구 내에 도전성 재료를 형성하도록 도금 프로세스를 수행하는 단계를 포함한다. 실시예에서, 제1 영역에 있는 범프 개구의 크기는 제2 영역에 있는 범프 개구의 크기보다 작다. 실시예에서, 제1 영역의 범프 패턴 밀도는 약 25 %를 초과한다. 실시예에서, 제2 디자인에서는 제1 그룹의 도전성 범프가 제1 치수를 갖는 제1 단면을 갖고, 제2 그룹의 도전성 범프가 별개의 제2 치수를 갖는 제2 단면을 가지며, 제2 영역의 범프 패턴 밀도가 약 15 % 내지 약 25 %인 경우, 제2 치수는 제1 치수의 약 1.1배 내지 약 1.25배이고, 제2 영역의 범프 패턴 밀도가 약 15 % 미만인 경우, 제2 치수는 제1 치수의 약 1.35배 내지 약 1.55배이다. 실시예에서, 제1 디자인의 도전성 범프들을 그룹화하는 단계는, 제1 표면의 제3 영역에 있는 제3 그룹의 도전성 범프를 그룹화하는 것을 더 포함하고, 제3 영역의 범프 패턴 밀도는 제2 영역의 범프 패턴 밀도보다 낮다. 실시예에서, 제2 디자인을 형성하는 단계는, 제3 영역에 있는 제3 그룹의 도전성 범프의 단면적을 수정하는 것을 더 포함한다. 실시예에서, 제1 영역의 범프 패턴 밀도는 약 25 %보다 크고, 제2 영역의 범프 패턴 밀도는 약 15 % 내지 약 25 %이며, 제3 영역의 범프 패턴 밀도는 약 15 % 미만이다. 실시예에서, 제2 디자인에서는 제1 그룹의 도전성 범프는 제1 치수를 지닌 제1 단면을 갖고, 제2 그룹의 도전성 범프는 별개의 제2 치수를 갖는 제2 단면을 가지며, 제3 그룹의 도전성 범프는 별개의 제3 치수를 갖는 제3 단면을 갖고, 제2 치수는 제1 치수의 약 1.1배 내지 약 1.25배이고, 제3 치수는 제1 치수의 약 1.35배 내지 약 1.55배이다. 실시예에서, 제1 단면, 제2 단면 및 제3 단면은 기하학적으로 유사한 형상을 갖는다. 실시예에서, 상기 방법은 인터포저의 도전성 범프에 기판을 부착하는 것을 더 포함한다.In an embodiment, the method comprises receiving a first design for a conductive bump on the first surface of the interposer, wherein the conductive bumps in the first design have the same cross-sectional area; Grouping the conductive bumps of the first design into a first group of conductive bumps in the first area of the first surface and a second group of conductive bumps in the second area of the first surface, the bumps of the second area Grouping the conductive bumps, wherein the pattern density is lower than the bump pattern density of the first region; Modifying the first design, wherein modifying the first design includes modifying the cross-sectional area of the second group of conductive bumps in the second area; forming a second design; And forming a conductive bump on the first surface of the interposer according to the second design, and after forming the conductive bump on the first surface of the interposer according to the second design, the first group of conductivity The bump and the second group of conductive bumps have different cross-sectional areas. In an embodiment, the size of the first group of conductive bumps remains unchanged in the first and second designs. In an embodiment, forming a conductive bump comprises: forming a patterned mask layer having bump openings on a first surface of the interposer; And performing a plating process to form a conductive material in the bump openings of the patterned mask layer. In an embodiment, the size of the bump opening in the first area is smaller than the size of the bump opening in the second area. In an embodiment, the bump pattern density of the first region is greater than about 25%. In an embodiment, in the second design, the first group of conductive bumps has a first cross-section with a first dimension, the second group of conductive bumps has a second cross-section with a separate second dimension, and When the bump pattern density is from about 15% to about 25%, the second dimension is from about 1.1 to about 1.25 times the first dimension, and when the bump pattern density in the second region is less than about 15%, the second dimension is from the first dimension About 1.35 times to about 1.55 times the dimension. In an embodiment, the step of grouping the conductive bumps of the first design further comprises grouping the third group of conductive bumps in the third region of the first surface, the bump pattern density of the third region being the second region Is lower than the bump pattern density. In an embodiment, forming the second design further comprises modifying the cross-sectional area of the third group of conductive bumps in the third area. In an embodiment, the bump pattern density of the first region is greater than about 25%, the bump pattern density of the second region is about 15% to about 25%, and the bump pattern density of the third region is less than about 15%. In an embodiment, in the second design, the first group of conductive bumps has a first cross-section with a first dimension, the second group of conductive bumps has a second cross-section with a separate second dimension, and the third group of The conductive bump has a third cross section with distinct third dimensions, the second dimension is from about 1.1 times to about 1.25 times the first dimension, and the third dimension is from about 1.35 times to about 1.55 times the first dimension. In an embodiment, the first cross section, the second cross section and the third cross section have geometrically similar shapes. In an embodiment, the method further comprises attaching the substrate to the conductive bump of the interposer.

실시예에서, 방법은 워크피스의 제1 표면 상의 도전성 범프를 위한 제1 디자인을 분석하는 단계로서, 상기 분석은 워크피스의 제1 표면을 제1 도전성 범프를 갖는 제1 영역과, 제2 도전성 범프를 갖는 제2 영역으로 나누는 것을 포함하고, 제1 영역에 있는 제1 도전성 범프의 제1 범프 패턴 밀도는 제2 영역에 있는 제2 도전성 범프의 제2 범프 패턴 밀도보다 크고, 제1 영역에 있는 제1 도전성 범프의 제1 범프 피치는 제2 영역에 있는 제2 도전성 범프의 제2 범프 피치보다 작은 것인 제1 디자인을 분석하는 단계; 제2 디자인을 형성하도록 제1 디자인을 수정하는 단계 - 제1 디자인을 수정하는 단계는 제2 범프 피치를 줄이기 위해 제2 영역에 더미 범프를 추가하는 단계를 포함함 - ; 제2 디자인에 따라 워크피스의 제1 표면 상에 도전성 범프와 더미 범프를 형성하는 단계; 및 도전성 범프를 통해 워크피스를 기판에 접합하는 단계를 포함한다. 실시예에서, 제1 범프 패턴 밀도는 약 25 %를 초과한다. 실시예에서, 더미 범프는 도전성 범프와 동일한 재료로 형성되고, 더미 범프는 전기적으로 격리된다.In an embodiment, the method is a step of analyzing a first design for a conductive bump on a first surface of the workpiece, the analysis comprising: a first area having a first conductive bump and a second conductive surface of the first surface of the workpiece Dividing into a second region having bumps, the first bump pattern density of the first conductive bumps in the first region is greater than the second bump pattern density of the second conductive bumps in the second region, and the first region Analyzing a first design wherein the first bump pitch of the first conductive bump is less than the second bump pitch of the second conductive bump in the second region; Modifying the first design to form a second design, wherein modifying the first design includes adding dummy bumps to the second area to reduce the second bump pitch; Forming a conductive bump and a dummy bump on the first surface of the workpiece according to the second design; And bonding the workpiece to the substrate through a conductive bump. In an embodiment, the first bump pattern density is greater than about 25%. In an embodiment, the dummy bump is formed of the same material as the conductive bump, and the dummy bump is electrically isolated.

실시예에서, 반도체 디바이스는 인터포저의 상부면에 부착되는 다이; 인터포저의 하부면의 제1 영역 - 제1 영역은 제1 범프 패턴 밀도를 가짐 - 에 있는 제1 도전성 범프; 인터포저의 하부면의 제2 영역 - 제2 영역은 제1 범프 패턴 밀도보다 작은 제2 범프 패턴 밀도를 가짐 - 에 있는 제2 도전성 범프; 및 인터포저의 하부면의 둘레 영역 - 둘레 영역은 제1 영역과 제2 영역을 둘러쌈 - 에 있는 더미 범프를 포함한다. 실시예에서, 제1 영역의 제1 도전성 범프는 제1 범프 피치를 갖고, 제2 영역의 제2 도전성 범프는 제1 범프 피치보다 큰 제2 범프 피치를 가지며, 둘레 영역의 더미 범프는 제1 범프 피치에 매칭되는 제3 범프 피치를 갖는다. 실시예에서, 반도체 디바이스는 인터포저의 하부면의 제3 영역 - 제3 영역은 제2 범프 패턴 밀도보다 작은 제3 범프 패턴 밀도와 제2 범프 피치보다 큰 제4 범프 피치를 가짐 - 에 있는 제3 도전성 범프를 더 포함하고, 이때 둘레 영역은 제1 영역, 제2 영역 및 제3 영역을 둘러싼다. 실시예에서, 제1 범프 패턴 밀도는 약 25 %를 초과한다. 실시예에서, 제1 도전성 범프와 제2 도전성 범프는 동일한 단면적을 갖는다.In an embodiment, a semiconductor device includes a die attached to the top surface of the interposer; A first conductive bump in the first region of the lower surface of the interposer, the first region having a first bump pattern density; A second conductive bump in the second region of the lower surface of the interposer, the second region having a second bump pattern density less than the first bump pattern density; And a dummy bump in the circumferential region of the lower surface of the interposer, the circumferential region surrounding the first and second regions. In an embodiment, the first conductive bump in the first region has a first bump pitch, the second conductive bump in the second region has a second bump pitch greater than the first bump pitch, and the dummy bump in the peripheral region is the first. It has a third bump pitch that matches the bump pitch. In an embodiment, the semiconductor device is in a third region of the lower surface of the interposer, the third region has a third bump pattern density less than the second bump pattern density and a fourth bump pitch greater than the second bump pitch. 3 further comprising a conductive bump, wherein the circumferential region surrounds the first region, the second region and the third region. In an embodiment, the first bump pattern density is greater than about 25%. In an embodiment, the first conductive bump and the second conductive bump have the same cross-sectional area.

본 개시의 양태는 첨부도면과 함께 읽어볼 때에 아래의 상세한 설명으로부터 가장 잘 이해된다. 업계에서의 기준 실무에 따르면, 다양한 피쳐들이 실척으로 도시되지 않는다는 점에 주목하라. 사실상, 다양한 피쳐들의 치수는 설명의 명확성을 위해 임의로 증가 또는 감소될 수 있다.
도 1은 몇몇 실시예에 따른, 반도체 디바이스의 단면도를 예시한다.
도 2는 몇몇 실시예에서의, 인터포저의 표면 상의 도전성 범프의 레이아웃을 예시한다.
도 3은 몇몇 실시예에서의, 인터포저의 표면적 내의 도전성 범프를 예시한다.
도 4a 및 도 4b는 몇몇 실시예에서의 상이한 형상을 지닌 도전성 범프의 평면도를 예시한다.
도 5는 도전성 범프의 공면성을 향상시키는 방법의 실시예를 예시한다.
도 6은 도전성 범프의 공면성을 향상시키는 방법의 실시예를 예시한다.
도 7a 및 도 7b는 도 6에 예시된 방법을 적용하기 전후의 인터포저의 표면적 내의 도전성 범프의 실시예를 예시한다.
도 8a는 몇몇 실시예에서의 인터포저의 표면 상의 도전성 범프의 레이아웃을 예시한다.
도 8b는 도 8a에 예시한 레이아웃의 일부의 확대도를 예시한다.
도 9는 몇몇 실시예에서의 반도체 디바이스의 형성 방법을 위한 흐름도를 예시한다.
도 10은 몇몇 실시예에서의 반도체 디바이스의 형성 방법을 위한 흐름도를 예시한다.
도 11은 몇몇 실시예에서의 반도체 디바이스의 형성 방법을 위한 흐름도를 예시한다.
Aspects of the present disclosure are best understood from the following detailed description when read in conjunction with the accompanying drawings. Note that, according to industry standard practice, various features are not drawn to scale. In fact, the dimensions of the various features can be arbitrarily increased or decreased for clarity of explanation.
1 illustrates a cross-sectional view of a semiconductor device, in accordance with some embodiments.
2 illustrates the layout of a conductive bump on the surface of an interposer, in some embodiments.
3 illustrates a conductive bump in the surface area of an interposer, in some embodiments.
4A and 4B illustrate top views of conductive bumps with different shapes in some embodiments.
5 illustrates an embodiment of a method of improving the coplanarity of a conductive bump.
6 illustrates an embodiment of a method of improving the coplanarity of a conductive bump.
7A and 7B illustrate embodiments of conductive bumps in the surface area of the interposer before and after applying the method illustrated in FIG. 6.
8A illustrates the layout of a conductive bump on the surface of an interposer in some embodiments.
8B illustrates an enlarged view of a portion of the layout illustrated in FIG. 8A.
9 illustrates a flow chart for a method of forming a semiconductor device in some embodiments.
10 illustrates a flow chart for a method of forming a semiconductor device in some embodiments.
11 illustrates a flow chart for a method of forming a semiconductor device in some embodiments.

아래의 개시는 본 발명의 상이한 피쳐들을 구현하기 위한 여러 상이한 실시예들 또는 예들을 제시한다. 본 개시를 간략하게 하기 위해, 구성요소 및 배치의 특정예들이 아래에서 설명된다. 이들은 단순히 예일 뿐임은 물론이며, 제한하는 것으로 의도되지 않는다. 예컨대, 후속하는 설명에 있어서 제2 피쳐 위에 또는 제2 피쳐 상에 제1 피쳐의 형성은, 제1 및 제2 피쳐가 직접 접촉한 상태로 형성되는 실시예를 포함할 수 있고, 제1 피쳐와 제2 피쳐가 직접 접촉할 수 없도록 제1 피쳐와 제2 피쳐 사이에 다른 피쳐가 형성될 수 있는 실시예도 또한 포함할 수 있다. 또한, 본 개시는 다양한 예에 있어서 참조부호 및/또는 문자를 반복할 수 있다. 설명 전반에 걸쳐, 달리 상술하지 않는 한, 유사한 참조부호는 동일하거나 유사한 재료(들)를 사용하여 동일하거나 유사한 방법에 의해 형성된 동일하거나 유사한 구성요소를 일컫는다.The disclosure below presents several different embodiments or examples for implementing different features of the invention. To simplify the present disclosure, specific examples of components and arrangements are described below. These are, of course, merely examples, and are not intended to be limiting. For example, in the following description, the formation of the first feature on the second feature or on the second feature may include embodiments in which the first and second features are formed in direct contact with the first feature. It may also include embodiments in which other features can be formed between the first feature and the second feature such that the second feature cannot be in direct contact. In addition, the present disclosure may repeat reference signs and / or characters in various examples. Throughout the description, unless indicated otherwise, similar reference numerals refer to the same or similar components formed by the same or similar methods using the same or similar material (s).

더욱이, “아래(beneath)”, “밑(below)”, “하부(lower)”, “위(above)”, “상부(upper)” 등과 같은 공간적 상대 용어는 여기에서는 도면에 예시된 바와 같은 하나의 요소 또는 피쳐의 다른 요소(들) 또는 피쳐(들)에 대한 관계를 기술하는 설명의 편의성을 위해 사용될 수 있다. 공간적인 상대 용어는 도면에 도시한 방위뿐만 아니라 사용 시 또는 공정 시에 디바이스의 상이한 방위를 포괄하는 것으로 의도된다. 장치는 달리 배향될 수 있고(90도 회전되거나 다른 방위로 배향됨), 본 명세서에서 사용되는 공간적으로 상대적인 기술어는 그에 따라 해석될 수 있다.Moreover, spatial relative terms such as “beneath”, “below”, “lower”, “above”, “upper”, etc., are as illustrated herein in the drawings. It can be used for convenience of description describing the relationship of one element or feature to another element (s) or feature (s). Spatial relative terms are intended to encompass different orientations of the device in use or in process as well as orientation shown in the figures. The device can be oriented differently (rotated 90 degrees or oriented in a different orientation), and the spatially relative descriptors used herein can be interpreted accordingly.

본 개시의 실시예는 도전성 범프를 형성하는 것과 관련해서, 특히 인터포저의 표면(예컨대, 하부면)에서의 평탄도가 향상된 도전성 범프를 형성하는 것과 관련해서 설명된다. 몇몇 실시예에서, 범프 패턴 밀도가 낮은 영역에서의 도전성 범프의 크기(예컨대, 단면적)가 범프 패턴 밀도가 높은 영역에서의 도전성 범프의 크기에 비해 증가된다. 몇몇 실시예에서, 범프 패턴 밀도가 낮은 영역에서의 도전성 범프들 사이에 더미 범프가 형성되어, 범프 패턴 밀도가 낮은 영역에서의 범프 피치를 감소시키고, 범프 패턴 밀도가 높은 영역에서는 더미 범프가 형성되지 않는다. 몇몇 실시예에서, 더미 범프는 둘레 영역에서의 범프 피치를 감소시키기 위해 인터포저의 표면의 둘레 영역에 형성되고, 둘레 영역으로 둘러싸이는 표면의 다른 영역에서의 범프 피치는 변하지 않은 상태로 유지된다(예컨대, 다른 영역에는 더미 범프가 형성되지 않는다). Embodiments of the present disclosure are described with respect to forming conductive bumps, particularly with respect to forming conductive bumps with improved flatness at the surface (eg, bottom surface) of the interposer. In some embodiments, the size of the conductive bumps in areas with low bump pattern density (eg, cross-sectional area) is increased compared to the size of the conductive bumps in the area with high bump pattern density. In some embodiments, dummy bumps are formed between the conductive bumps in the region where the bump pattern density is low, reducing the bump pitch in the region where the bump pattern density is low, and dummy bumps are not formed in the region where the bump pattern density is high. Does not. In some embodiments, dummy bumps are formed in the circumferential region of the surface of the interposer to reduce the bump pitch in the circumferential region, and the bump pitch in other regions of the surface enclosed by the circumferential region remains unchanged ( For example, dummy bumps are not formed in other areas).

도 1은 몇몇 실시예에 따른, 반도체 디바이스(100)의 일부의 단면도를 예시한다. 반도체 디바이스(100)는 칩 온 웨이퍼 온 기판(CoWoS) 구조를 갖는다. 간결성을 위해, 도 1은 단지 반도체 디바이스(100)의 좌측 부분만을 보여주고, 반도체 디바이스(100)의 우측 부분은 당업자가 쉽게 이해하는 바와 같이 도 1에 도시한 좌측 부분과 동일(예컨대, 대칭)하거나 유사할 수 있다. 1 illustrates a cross-sectional view of a portion of a semiconductor device 100, in accordance with some embodiments. The semiconductor device 100 has a chip on wafer on substrate (CoWoS) structure. For brevity, FIG. 1 shows only the left portion of the semiconductor device 100, and the right portion of the semiconductor device 100 is the same as the left portion shown in FIG. 1 (e.g., symmetrical) as readily understood by those skilled in the art. Or similar.

반도체 디바이스(100)를 형성하기 위해, 하나 이상의 다이(101)(반도체 다이, 칩 또는 집적 회로(IC) 다이라고도 할 수 있음)가 인터포저(200)에 부착되어 칩 온 웨이퍼(CoW) 구조를 형성하고, 그 다음에 CoW 구조가 기판(300)(예컨대, 인쇄 회로 기판)에 부착되어 칩 온 웨이퍼 온 기판(CoWoS) 구조를 형성한다. 다이(101)는 몇몇 실시예에서 동일한 타입의 다이(예컨대, 메모리 다이 또는 로직 다이)이다. 다른 실시예에서, 다이(101)는 상이한 타입의 것이며, 예컨대 몇몇 다이(101)는 로직 다이이고, 다른 다이(101)는 메모리 다이이다. To form the semiconductor device 100, one or more dies 101 (also referred to as semiconductor dies, chips, or integrated circuits (ICs)) are attached to the interposer 200 to form a chip-on-wafer (CoW) structure. And then a CoW structure is attached to the substrate 300 (eg, a printed circuit board) to form a chip on wafer on board (CoWoS) structure. Die 101 is a die of the same type (eg, memory die or logic die) in some embodiments. In other embodiments, dies 101 are of different types, for example some dies 101 are logic dies and other dies 101 are memory dies.

각각의 다이(101)는 기판, 기판 내에/상에 형성된 전기 소자(예컨대, 트랜지스터, 레지스터, 커패시터, 다이오드 등) 및 전기 소자들을 연결하여 다이(101)의 기능성 회로를 형성하는 기판 위의 상호 접속 구조를 포함한다. 다이(101)는 다이(101)의 회로에 대한 전기 접속을 제공하는 도전성 필러(pillar)(103)(다이 커넥터라고도 함)도 또한 포함한다. 간결성을 위해, 다이(101)의 모든 피쳐가 예시되지는 않는다.Each die 101 is interconnected over a substrate, an electrical element formed in / on the substrate (eg, transistors, resistors, capacitors, diodes, etc.) and electrical elements connecting the electrical elements to form a functional circuit of the die 101 Includes structure. Die 101 also includes a conductive pillar 103 (also called a die connector) that provides electrical connection to the circuitry of die 101. For the sake of brevity, not all features of die 101 are illustrated.

다이(101)의 기판은 반도체 기판, 도핑형 또는 언도핑형, 또는 실리콘 온 인슐레이터(Silicon-On-Insulator; SOI) 기판의 활성층일 수 있다. 일반적으로, SOI 기판은 실리콘, 게르마늄, 실리콘 게르마늄, SOI, 실리콘 게르마늄 온 인슐레이터(Silicon Germanium On Insulator; SGOI) 또는 이들의 조합과 같은 반도체 재료층을 포함한다. 사용 가능한 다른 기판으로는 다층 기판, 그래디언트 기판(gradient substrate) 또는 하이브리드 배향 기판(hybrid orientation substrate)이 있다.The substrate of the die 101 may be a semiconductor substrate, a doped or undoped type, or an active layer of a silicon-on-insulator (SOI) substrate. Generally, an SOI substrate includes a layer of semiconductor material, such as silicon, germanium, silicon germanium, SOI, silicon germanium on insulator (SGOI), or combinations thereof. Other substrates that can be used include multilayer substrates, gradient substrates, or hybrid orientation substrates.

다이(101)의 전기 소자는 광범위한 능동 디바이스(예컨대, 트랜지스터) 및 수동 디바이스(예컨대, 커패시터, 레지스터, 인덕터) 등을 포함한다. 다이(101)의 전기 소자는 임의의 적절한 방법을 이용하여 다이(101)의 기판 내에 또는 기판 상에 형성될 수 있다. 다이(101)의 상호 접속 구조는 하나 이상의 유전층에 형성된 하나 이상의 금속화층(예컨대, 구리층)을 포함하고, 기능 회로를 형성하기 위해 다양한 전기 소자들을 접속시키는 데 사용된다. 실시예에서, 상호 접속 구조는 교호하는 유전층과 도전재(예컨대, 구리)층으로 형성되고, 임의의 적절한 프로세스(증착, 다마신, 이중 다마신 등)를 통해 형성될 수 있다. The electrical components of die 101 include a wide range of active devices (eg transistors) and passive devices (eg capacitors, resistors, inductors) and the like. The electrical element of die 101 may be formed in or on the substrate of die 101 using any suitable method. The interconnect structure of the die 101 includes one or more metallization layers (eg, copper layers) formed in one or more dielectric layers, and is used to connect various electrical elements to form a functional circuit. In an embodiment, the interconnect structure is formed of alternating dielectric layers and conductive (eg, copper) layers, and can be formed through any suitable process (deposition, damascene, dual damascene, etc.).

다이(101)의 하부 구조를 위한 일정 보호도를 제공하기 위해, 하나 이상의 패시베이션층이 다이(101)의 상호 접속 구조 위에 형성될 수 있다. 패시베이션층은 산화규소, 질화규소, 탄소 도핑 산화물과 같은 저유전상수 유전체(low-k dielectrics), 다공성 탄소 도핑 이산화규소와 같은 극저유전상수 유전체, 이들의 조합 등으로 이루어질 수 있다. 패시베이션층은 화학적 기상 증착(Chemical Vapor Deposition; CVD)과 같은 프로세스를 통해 형성될 수 있지만, 임의의 적절한 프로세스가 활용될 수 있다. In order to provide a certain degree of protection for the underlying structure of the die 101, one or more passivation layers may be formed over the interconnect structure of the die 101. The passivation layer may be made of low-k dielectrics such as silicon oxide, silicon nitride, and carbon-doped oxides, extremely low-k dielectrics such as porous carbon-doped silicon dioxide, and combinations thereof. The passivation layer can be formed through a process such as Chemical Vapor Deposition (CVD), but any suitable process can be utilized.

도전성 패드는 패시베이션층 위에 형성될 수 있고, 패시베이션층을 통과하여 다이(101)의 상호 접속 구조와 전기 접촉하도록 연장될 수 있다. 도전성 패드는 알루미늄을 포함할 수 있지만, 구리와 같은 다른 재료도 대안으로서 사용될 수 있다. The conductive pad can be formed over the passivation layer and can extend through the passivation layer to make electrical contact with the interconnect structure of the die 101. The conductive pad may include aluminum, but other materials such as copper may be used as an alternative.

다이(101)의 도전성 필러(103)는 도전성 패드 상에 형성되어, 다이(101)의 회로에 전기 접속되는 도전성 영역을 마련한다. 도전성 필러(103)는 구리 필러, 마이크로 범프와 같은 접촉 범프 등일 수 있고, 구리, 주석, 은과 같은 재료 또는 다른 적절한 재료를 포함할 수 있다.The conductive filler 103 of the die 101 is formed on a conductive pad to provide a conductive region electrically connected to the circuit of the die 101. The conductive filler 103 may be a copper filler, a contact bump such as a micro bump, or the like, and may include a material such as copper, tin, silver, or other suitable material.

인터포저(200)를 보면(워크피스라고도 할 수 있음) 기판(211), 관통 비아(215)[기판 관통 비아(TSV)라고도 함], 기판(211)의 상부면 상의 도전성 패드(213), 기판(211)의 하부면 상의 UBM(Under-Bump-Metallurgy) 구조(230), 및 UBM 구조(230) 상의 도전성 범프(231)(범프, 커넥터 또는 도전성 필러라고도 할 수 있음)를 포함한다. 도 1은 또한 기판(211)의 표면 유전층(219)(예컨대, 최하위 유전층)도 또한 예시한다. UBM 구조(230)는 표면 유전층(219)을 관통하여 연장되어 인터포저(200)의 도전성 피쳐[예컨대, 관통 비아(215)]와 전기적으로 커플링된다.Looking at the interposer 200 (also referred to as a workpiece) substrate 211, through vias 215 (also called substrate through vias (TSV)), conductive pads 213 on the top surface of the substrate 211, UBM (Under-Bump-Metallurgy) structure 230 on the bottom surface of the substrate 211, and conductive bumps 231 on the UBM structure 230 (also referred to as bumps, connectors, or conductive fillers). 1 also illustrates the surface dielectric layer 219 of the substrate 211 (eg, the lowest dielectric layer). The UBM structure 230 extends through the surface dielectric layer 219 and is electrically coupled with conductive features of the interposer 200 (eg, through vias 215).

기판(211)은, 예컨대 실리콘 기판, 도핑형 또는 언도핑형, 또는 실리콘 온 인슐레이터(SOI) 기판의 활성층일 수 있다. 그러나, 기판(211)은 대안으로서 유리 기판, 세라믹 기판, 폴리머 기판 또는 적절한 보호 및/또는 상호 접속 기능을 제공할 수 있는 임의의 다른 기판일 수 있다. The substrate 211 may be, for example, a silicon substrate, a doped or undoped type, or an active layer of a silicon on insulator (SOI) substrate. However, the substrate 211 may alternatively be a glass substrate, a ceramic substrate, a polymer substrate, or any other substrate capable of providing adequate protection and / or interconnect functionality.

몇몇 실시예에서, 기판(211)은 레지스터, 커패시터, 신호 분배 회로, 이들의 조합 등과 같은 전기 소자를 포함할 수 있다. 이들 전기 소자는 능동형, 수동형 또는 그 조합형일 수 있다. 다른 실시예에서, 기판(211)은 내부에 능동 전기 소자 및 수동 전기 소자 모두가 없다. 그러한 조합 모두는 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다.In some embodiments, substrate 211 may include electrical elements such as resistors, capacitors, signal distribution circuits, combinations thereof, and the like. These electrical elements can be active, passive or combinations thereof. In another embodiment, the substrate 211 is free of both active and passive electrical elements therein. All such combinations are intended to be included entirely within the scope of this disclosure.

관통 비아(215)는 기판(211)의 상부면에서부터 기판(211)의 하부면까지 연장되고, 도전성 패드(213)와 도전성 펌프(231) 사이의 전기 접속을 제공한다. 관통 비아(215)는 구리, 텅스텐, 알루미늄, 합금, 도핑된 폴리실리콘, 이들의 조합 등과 같은 적절한 도전성 재료로 형성될 수 있다. 배리어층이 관통 비아(215)와 기판(211) 사이에 형성될 수 있다. 배리어층은 티탄 질화물과 같은 적절한 재료를 포함할 수 있지만, 대안으로서 탄탈 질화물, 티타늄 등과 같은 다른 재료가 활용될 수도 있다.The through via 215 extends from the upper surface of the substrate 211 to the lower surface of the substrate 211 and provides electrical connection between the conductive pad 213 and the conductive pump 231. The through via 215 may be formed of a suitable conductive material, such as copper, tungsten, aluminum, alloy, doped polysilicon, combinations thereof, and the like. A barrier layer may be formed between the through via 215 and the substrate 211. The barrier layer may include a suitable material such as titanium nitride, but other materials such as tantalum nitride, titanium, etc. may be used as an alternative.

실시예에서, UBM 구조(230)는 티탄층, 구리층 및 니켈층과 같은 3개의 도전성 재료층을 포함한다. 그러나, 크롬/크롬-구리 합금/구리/금의 배치, 티탄/티탄 텅스텐/구리의 배치 또는 구리/니켈/금의 배치와 같은, UBM 구조(230)의 형성에 적절한 여러 적절한 재료 및 층의 배치가 있다. UBM 구조(230)를 위해 사용 가능한 임의의 적절한 재료 또는 재료층이 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다.In an embodiment, UBM structure 230 includes three conductive material layers, such as a titanium layer, a copper layer, and a nickel layer. However, the placement of several suitable materials and layers suitable for the formation of the UBM structure 230, such as the placement of chromium / chromium-copper alloy / copper / gold, the placement of titanium / titanium tungsten / copper, or the placement of copper / nickel / gold. There is. Any suitable material or layer of material usable for the UBM structure 230 is intended to be included entirely within the scope of this disclosure.

UBM 구조(230)는 기판(211) 내의 도전성 피쳐[예컨대, 관통 비아(215)에 전기적으로 커플링되는 도전성 패드]를 노출시키도록 표면 유전층(219)에 개구를 형성하는 것; 표면 유전층(219) 위에 그리고 표면 유전층(219)에 있는 개구의 내부를 따라 시드층을 형성하는 것; 시드층 위에 패턴화 마스크층(예컨대, 포토레지스트)를 형성하는 것; 패턴화 마스크층의 개구 내에 그리고 시드층 위에 (예컨대, 도금에 의해) 도전성 재료(들)를 형성하는 것; 마스크층을 제거하는 것; 및 도전성 재료(들)가 형성되지 않은 시드층의 부분을 제거하는 것에 의해 형성될 수 있다. UBM 구조(230)를 형성하기 위한 다른 방법도 가능하고, 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다.The UBM structure 230 forms an opening in the surface dielectric layer 219 to expose conductive features in the substrate 211 (eg, conductive pads electrically coupled to the through vias 215); Forming a seed layer over the surface dielectric layer 219 and along the interior of the opening in the surface dielectric layer 219; Forming a patterned mask layer (eg, photoresist) on the seed layer; Forming conductive material (s) in the opening of the patterned mask layer and over the seed layer (eg, by plating); Removing the mask layer; And removing the portion of the seed layer on which the conductive material (s) is not formed. Other methods for forming the UBM structure 230 are possible, and are intended to be entirely included within the scope of the present disclosure.

도전성 범프(231)는 마이크로범프, 구리 필러, C4(controlled collapse chip connection) 범프, 구리층, 니켈층, 무연(Lead Free; LF)층, ENEPIG(Electroless Nickel Electroless Palladium Immersion Gold)층, Cu/LF층, Sn/Ag층, Sn/Pb층, 이들의 조합 등과 같은 임의의 적절한 타입의 외부 컨택트일 수 있다. The conductive bump 231 is a micro bump, a copper filler, a controlled collapse chip connection (C4) bump, a copper layer, a nickel layer, a lead free (LF) layer, an ENEPIG (Electroless Nickel Electroless Palladium Immersion Gold) layer, a Cu / LF Any suitable type of external contact, such as a layer, Sn / Ag layer, Sn / Pb layer, combinations thereof, and the like.

몇몇 실시예에서, 도전성 범프(231)는, 예컨대 전해도금 또는 무전해도금과 같은 도금 프로세스에 의해 형성되는 구리 필러와 같은 금속 필러일 수도 있고, 이 금속 필러를 포함할 수도 있다. 도전성 범프(231)는 UBM 구조(230)를 노출시키는 개구를 지닌 패턴화 마스크층(예컨대, 포토레지스트)를 형성하는 것; (예컨대, 도금에 의해) 패턴화 마스크층의 개구 내에 그리고 UBM 구조(230) 위에 도전성 재료(들)를 형성하는 것; 및 마스크층을 제거하는 것에 의해 형성될 수 있다. 도전성 범프(231)를 형성하기 위한 다른 방법도 가능하고, 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다. 도 1의 예에서, UBM 구조(230)와 각각의 도전성 범프(231)는 동일한 폭을 갖는다.In some embodiments, the conductive bump 231 may be a metal filler such as a copper filler formed by a plating process such as electroplating or electroless plating, or may include the metal filler. The conductive bump 231 includes forming a patterned mask layer (eg, photoresist) having an opening exposing the UBM structure 230; Forming conductive material (s) in the opening of the patterned mask layer (eg, by plating) and over the UBM structure 230; And removing the mask layer. Other methods for forming the conductive bump 231 are possible, and are intended to be entirely included within the scope of the present disclosure. In the example of FIG. 1, the UBM structure 230 and each conductive bump 231 have the same width.

몇몇 실시예에서, (예컨대, 도금 프로세스를 통해) 도전성 범프(231)를 형성하는 데 사용되는 마스크층(예컨대, 포토레지스트)에 있는 개구의 크기는 도전성 범프(231)의 단면적에 대응하고(예컨대, 동일하고), 이에 따라 이 도전성 범프의 단면적을 결정한다. 도전성 범프(231)의 단면적은 몇몇 실시예에서는 도 1의 단면 A-A를 따른 도전성 범프(231)의 단면적을 일컫는다. 도전성 범프(231)의 단면은, 예컨대 원형 형상이나 타원 형상을 가질 수 있다. 설명을 용이하게 하기 위해, (예컨대, 도금 프로세스를 통해) 도전성 범프(231)를 형성하는 데 사용되는 패턴화 마스크층(예컨대, 포토레지스트)에 있는 개구는 이후에서는 범프 개구라고 할 수 있다. In some embodiments, the size of the opening in the mask layer (eg, photoresist) used to form the conductive bump 231 (eg, through a plating process) corresponds to the cross-sectional area of the conductive bump 231 (eg , The same), thereby determining the cross-sectional area of this conductive bump. The cross-sectional area of the conductive bump 231 refers to the cross-sectional area of the conductive bump 231 along cross-section A-A of FIG. 1 in some embodiments. The cross section of the conductive bump 231 may have, for example, a circular shape or an elliptical shape. For ease of explanation, the opening in the patterned mask layer (eg, photoresist) used to form the conductive bump 231 (eg, through a plating process) may hereinafter be referred to as a bump opening.

도 1에 예시된 바와 같이, 다이(101)의 도전성 필러(103)는, 예컨대 땜납 영역(105)에 의해 인터포저(200)의 도전성 패드(213)에 접합된다. 다이(101)를 인터포저(200)에 접합하기 위해 리플로우 프로세스(reflow process)가 수행될 수 있다.As illustrated in FIG. 1, the conductive filler 103 of the die 101 is bonded to the conductive pad 213 of the interposer 200 by, for example, solder regions 105. A reflow process may be performed to bond die 101 to interposer 200.

다이(101)가 인터포저(200)에 접합된 후, 언더필 재료(107)가 다이(101)와 인터포저(200) 사이에 형성된다. 언더필 재료(107)는, 예컨대 분배 니들이나 다른 적절한 분배 툴을 사용하여 다이(101)와 인터포저(200) 사이의 갭에 분배된 다음 경화되는 액체 에폭시를 포함할 수 있다. 도 1에 예시된 바와 같이, 언더필 재료(107)는 다이(101)와 인터포저(200) 사이의 갭을 충전하고, 또한 다이(101)들의 측벽 사이의 갭을 충전할 수도 있다. After die 101 is bonded to interposer 200, an underfill material 107 is formed between die 101 and interposer 200. The underfill material 107 may include a liquid epoxy that is then dispensed into a gap between the die 101 and the interposer 200 using a dispensing needle or other suitable dispensing tool. As illustrated in FIG. 1, underfill material 107 may fill the gap between die 101 and interposer 200 and may also fill the gap between the sidewalls of dies 101.

다음에, 몰딩 재료(109)가 인터포저(200) 위에 그리고 다이(101) 주변에 형성된다. 몰딩 재료(109)는 언더필 재료(107)도 또한 둘러싼다. 몰딩 재료(109)는, 예컨대 에폭시, 유기 폴리머, 실리카계 필러 또는 유리 필러가 첨가되거나 첨가되지 않은 폴리머, 또는 다른 재료를 포함할 수 있다. 몇몇 실시예에서, 몰딩 재료(109)는 도포될 때에 젤 타입 액체인 LMC(Liquid Molding Compound)를 포함한다. 몰딩 재료(109)는 도포될 때에 액체 또는 고체도 또한 포함할 수 있다. 대안으로서, 몰딩 재료(109)는 다른 격리 및/또는 캡슐화 재료를 포함할 수 있다. 몰딩 재료(109)는 몇몇 실시예에서 웨이퍼 레벨 몰딩 프로세스(wafer level molding process)를 이용하여 도포된다. 몰딩 재료(109)는, 예컨대 압축 성형, 이송 성형, MUF(Molded UnderFill) 또는 다른 방법을 이용하여 몰딩될 수 있다. Next, a molding material 109 is formed over the interposer 200 and around the die 101. The molding material 109 also surrounds the underfill material 107. The molding material 109 may include, for example, an epoxy, an organic polymer, a silica-based filler or a polymer with or without a glass filler, or other materials. In some embodiments, the molding material 109 includes a Liquid Molding Compound (LMC), which is a gel-type liquid when applied. The molding material 109 may also include liquids or solids when applied. Alternatively, the molding material 109 can include other sequestering and / or encapsulating materials. The molding material 109 is applied using a wafer level molding process in some embodiments. The molding material 109 can be molded using, for example, compression molding, transfer molding, Molded UnderFill (MUF) or other methods.

다음에, 몰딩 재료(109)는 몇몇 실시예에서 경화 프로세스를 이용하여 경화된다. 경화 프로세스는 어닐링 프로세스 또는 다른 가열 프로세스를 이용하여 몰딩 재료(109)를 정해진 기간 동안 정해진 온도로 가열하는 것을 포함할 수 있다. 경화 프로세스는 또한 자외(UV)광 노출 프로세스, 적외선(IR) 에너지 노출 프로세스, 이들의 조합이나, 이들과 가열 프로세스의 조합을 포함할 수 있다. 대안으로서, 몰딩 재료(109)는 다른 방법을 이용하여 경화될 수 있다. 몇몇 실시예에서는, 경화 프로세스가 포함되지 않는다. Next, the molding material 109 is cured using a curing process in some embodiments. The curing process may include heating the molding material 109 to a defined temperature for a defined period of time using an annealing process or other heating process. The curing process may also include an ultraviolet (UV) light exposure process, an infrared (IR) energy exposure process, a combination thereof, or a combination of these and a heating process. Alternatively, the molding material 109 can be cured using other methods. In some embodiments, a curing process is not included.

몰딩 재료(109)가 형성된 후, 화학적 및 기계적 평탄화(CMP)와 같은 평탄화 프로세스가 수행되어, 다이(101) 위에서 몰딩 재료(109)의 과량의 부분을 제거할 수 있고, 이에 따라 몰딩 재료(109)와 다이(101)가 동일 높이의 상부면을 갖는다. 도 1에 예시된 바와 같이, 몰딩 재료(109)는 기판(211)에 인접한다. After the molding material 109 is formed, a planarization process, such as chemical and mechanical planarization (CMP), can be performed to remove excess portions of the molding material 109 over the die 101, thereby forming the molding material 109 ) And die 101 have a top surface of the same height. As illustrated in FIG. 1, molding material 109 is adjacent to substrate 211.

도 1의 예에서, CoW 구조는 인터포저(200), 다이(101), 언더필 재료(107) 및 몰딩 재료(109)를 포함한다. 다음으로, CoW 구조는 기판(300) - 인쇄 회로 기판(PCB)일 수 있음 - 에 접합되어, CoWoS 구조를 형성할 수 있다. In the example of FIG. 1, the CoW structure includes interposer 200, die 101, underfill material 107 and molding material 109. Next, the CoW structure may be bonded to the substrate 300-which may be a printed circuit board (PCB)-to form a CoWoS structure.

기판(300)을 보면, 몇몇 실시예에서 기판(300)은 다층 회로 기판이다. 예컨대, 기판(300)은 BT(Bismaleimide Triazine) 수지, FR-4(방염성의 에폭시 수지 바인더를 지닌 유리섬유 직물로 이루어진 복합재), 세라믹, 유리, 플라스틱, 테이프, 필름 또는 다른 지지 재료로 형성되는 하나 이상의 유전층(321/323/325)을 포함할 수 있다. 기판(300)은 기판(300) 내/상에 형성된 전기 도전성 피쳐[예컨대, 도전성 라인(327) 및 비아(329)]를 포함할 수 있다. 도 1에 예시된 바와 같이, 기판(300)은 기판(300)의 상부면 상에 형성된 도전성 패드(326)와, 기판(300)의 하부면 상에 형성된 도전성 패드(328)를 가지며, 도전성 패드(326/238)는 기판(300)의 도전성 피쳐와 전기적으로 커플링된다. 땜납 볼, 구리 필러 또는 상부에 땜납을 지닌 구리 필러와 같은 외부 커넥터(331)가 도 1에 예시된 바와 같이 도전성 패드(328) 상에 형성된다.Looking at the substrate 300, in some embodiments, the substrate 300 is a multilayer circuit board. For example, the substrate 300 is one formed of BT (Bismaleimide Triazine) resin, FR-4 (composite made of glass fiber fabric having a flame-retardant epoxy resin binder), ceramic, glass, plastic, tape, film, or other supporting material. The above dielectric layers 321/323/325 may be included. Substrate 300 may include electrically conductive features (eg, conductive lines 327 and vias 329) formed in / on substrate 300. As illustrated in FIG. 1, the substrate 300 has a conductive pad 326 formed on the upper surface of the substrate 300 and a conductive pad 328 formed on the lower surface of the substrate 300, and the conductive pad (326/238) is electrically coupled to the conductive feature of the substrate 300. An external connector 331, such as a solder ball, copper filler or copper filler with solder on top, is formed on the conductive pad 328 as illustrated in FIG. 1.

인터포저(200)는 기판(300)에 접합된다. 인터포저(200)를, 예컨대 땜납 영역(217)을 통해 기판(300)에 전기적 그리고 기계적으로 커플링하기 위해 리플로우 프로세스가 수행될 수 있다. 다음에, 언더필 재료(112)가 인터포저(200)와 기판(300) 사이에 형성된다. 언더필 재료(112)는 언더필 재료(107)와 동일하거나 유사할 수 있고, 언더필 재료(107)와 동일하거나 유사한 형성 방법으로 형성될 수 있으므로, 그 상세는 반복하지 않는다. 인터포저(200)가 기판(300)에 접합된 후, 도 1의 CoWoS 구조가 형성된다.The interposer 200 is bonded to the substrate 300. A reflow process can be performed to electrically and mechanically couple the interposer 200 to the substrate 300 through, for example, solder regions 217. Next, an underfill material 112 is formed between the interposer 200 and the substrate 300. The underfill material 112 may be the same or similar to the underfill material 107, and may be formed in the same or similar formation method as the underfill material 107, so the details are not repeated. After the interposer 200 is bonded to the substrate 300, the CoWoS structure of FIG. 1 is formed.

반도체 디바이스(100)의 집적 밀도가 증가하기 때문에, 더 많은 다이(101)가 인터포저(200)에 부착되어, 반도체 패키지 내에서 보다 많은 기능을 달성할 수 있다, 그 결과, 인터포저(200)의 크기가 증가할 수 있다. 인터포저(200)의 크기가 증가하기 때문에, 인터포저(200)의 하부면에 있는 도전성 범프(231)과 같은, 인터포저(200)의 도전성 범프들의 공면성(예컨대, 평탄도 및 레벨)을 유지하기가 점점 어려워진다. 도전성 범프(231)들의 공면성은 기판(211)에 대해 원위에 있는 도전성 범프들의 단부면 사이의 최대 오프셋에 의해 측정될 수 있다. 예컨대, 도전성 범프(231)들의 공면성은 인터포저(200)의 중심 영역 및 둘레 영역에 위치하는 도전성 범프(231)들의 최하위 표면 사이의 최대차(예컨대, 최대 오프셋)을 산출하는 것에 의해 측정될 수 있다. 다른 예로서, 도전성 범프(231)들의 공면성은 피크 대 최소 제곱 평균(Least Mean Square; LMS) 방법과 같은 적절한 측정 방법을 이용하는 상용 장비를 사용하여 측정될 수 있다. 따라서, 도전성 범프들의 최하위 표면 사이의 차이가 크다는 것은 공면성이 불량하다는 것을 나타내고, 이는 콜드 조인트(cold-joint) 또는 브리징(bridging)(예컨대, 도전성 범프들 사이의 누전)과 같은 문제를 일으킬 수 있고, 이에 따라 제조 프로세스의 수율을 떨어뜨릴 수 있다. 본 개시에서의 다양한 실시예 방법과 구조는 도전성 범프(231)의 공면성을 향상시키고, 이에 따라 형성되는 반도체 디바이스(100)의 신뢰성을 향상시키고 생산 수율을 향상시킨다.As the integration density of the semiconductor device 100 increases, more die 101 is attached to the interposer 200, so that more functions can be achieved within the semiconductor package. As a result, the interposer 200 May increase in size. Since the size of the interposer 200 increases, the coplanarity (eg, flatness and level) of the conductive bumps of the interposer 200, such as the conductive bumps 231 on the lower surface of the interposer 200, is increased. It becomes increasingly difficult to maintain. The coplanarity of the conductive bumps 231 can be measured by the maximum offset between the end faces of the conductive bumps distal to the substrate 211. For example, the coplanarity of the conductive bumps 231 can be measured by calculating the maximum difference (eg, maximum offset) between the lowest surface of the conductive bumps 231 located in the center region and the circumferential region of the interposer 200. have. As another example, the coplanarity of the conductive bumps 231 may be measured using commercial equipment using a suitable measurement method, such as a peak to least mean square (LMS) method. Thus, a large difference between the bottom surfaces of the conductive bumps indicates poor coplanarity, which can cause problems such as cold-joint or bridging (eg, leakage between conductive bumps). Thereby, the yield of the manufacturing process can be reduced accordingly. Various embodiment methods and structures in the present disclosure improve the coplanarity of the conductive bump 231, thereby improving the reliability of the semiconductor device 100 formed and improving the production yield.

도 2는 몇몇 실시예에서의 도 1의 인터포저(200)의 하부면 상에 있는 도전성 펌프(231)를 위한 레이아웃(레이아웃 디자인 또는 디자인이라고도 할 수 있음)을 예시한다. 따라서, 도 2는 인터포저(200)의 하부면의 평면도이다. 특히, 도 2는 도전성 범프(231)가 형성된, 인터포저(200)의 하부면의 영역[예컨대, 401, 402, 403]을 예시하고, 각각의 영역은 상이한 범프 패턴 밀도를 가질 수 있고, 도 2의 레이아웃에 관한 상세(예컨대, 상이한 영역들의 경계를 결정하는 방법)는 이후에 설명된다. 간결성을 위해, 영역[예컨대, 401, 402, 403]에 있는 도전성 범프(231)는 도 2에는 예시되어 있지 않고, 도 3에 예시되어 있다. FIG. 2 illustrates a layout (also referred to as a layout design or design) for the conductive pump 231 on the bottom surface of the interposer 200 of FIG. 1 in some embodiments. Accordingly, FIG. 2 is a plan view of the lower surface of the interposer 200. In particular, FIG. 2 illustrates regions (eg, 401, 402, 403) of the lower surface of the interposer 200, on which the conductive bumps 231 are formed, and each region may have a different bump pattern density, and Details regarding the layout of 2 (eg, how to determine the boundaries of different areas) are described later. For brevity, the conductive bumps 231 in the regions (eg, 401, 402, 403) are not illustrated in FIG. 2 but illustrated in FIG. 3.

도 3은 도전성 범프(231)가 형성되는 인터포저(200)의 하부면의 영역을 도시한다. 도 3에 예시된 영역은 도 2에 예시된 영역들 중 임의의 영역 또는 도 2에 예시된 영역(예컨대, 401, 402, 403)들의 부분일 수 있다. 도 3의 범프(231)의 형상의 예가 도 4a 및 도 4b에 예시되어 있다. 특히, 도 4a는 직경(R)을 지닌 원형 단면을 갖는 범프(231)를 예시하고, 도 4b는 제1 치수(R1) 및 제2 치수(R2)를 지닌 타원형 단면을 갖는 범프(231)를 예시하며, 제2 치수(R2)는 타원 형상의 길이방향(예컨대, 타원 형상의 장축을 따르는 방향)을 따라 측정되고, 제1 치수(R1)는 길이방향에 수직한 방향을 따라 측정된다. 예시된 실시예에서, 도 3의 평면도에서의 범프(231)의 형상 및 크기는 (도 1의 단면 A-A를 따른) 범프(231)의 단면의 형상 및 크기와 동일하다. 따라서, 범프(231)의 형상 및 크기는 몇몇 실시예에서는 전술한 바와 같이 범프(231)를 형성하는 데 사용되는 마스크층에 있는 범프 개구의 형상 및 크기에 대응한다(예컨대, 동일하다).3 shows an area of the lower surface of the interposer 200 on which the conductive bumps 231 are formed. The region illustrated in FIG. 3 may be any of the regions illustrated in FIG. 2 or a portion of the regions illustrated in FIG. 2 (eg, 401, 402, 403). An example of the shape of the bump 231 of FIG. 3 is illustrated in FIGS. 4A and 4B. In particular, FIG. 4A illustrates a bump 231 having a circular cross section with a diameter R, and FIG. 4B illustrates a bump 231 having an elliptical cross section having a first dimension R1 and a second dimension R2. Illustratively, the second dimension R2 is measured along the longitudinal direction of the elliptical shape (eg, the direction along the long axis of the elliptical shape), and the first dimension R1 is measured along the direction perpendicular to the longitudinal direction. In the illustrated embodiment, the shape and size of the bump 231 in the top view of FIG. 3 is the same as the shape and size of the cross section of the bump 231 (along section A-A of FIG. 1). Thus, the shape and size of the bump 231 corresponds to the shape and size of the bump opening in the mask layer used to form the bump 231, as described above in some embodiments (eg, the same).

다시, 도 2를 참고하면, 영역(401)은 범프(231)를 위한 제1 패턴 밀도를 갖는 영역을 나타내고, 영역(402)은 범프(231)를 위한 제2 패턴 밀도를 갖는 영역을 나타내며, 영역(403)은 범프(231)를 위한 제3 패턴 밀도를 갖는 영역을 나타내고, “패턴 밀도”라는 용어는 소정 영역[예컨대 인터포저(200)의 하부면의 영역] 내에서의 범프(231)의 밀도를 일컫는다. Referring again to FIG. 2, region 401 represents a region having a first pattern density for bump 231, region 402 represents a region having a second pattern density for bump 231, Region 403 represents a region having a third pattern density for bump 231, and the term “pattern density” refers to bump 231 within a predetermined region (eg, the region of the lower surface of interposer 200). Refers to the density of

소정 영역에서의 범프(231)의 패턴 밀도는 해당 영역에서의 범프(231)들의 총 면적을 해당 영역의 면적으로 나누는 것에 의해 산출될 수 있다. 도 3의 예에서, 예시된 영역은 폭 b 및 길이 a를 갖는 직사각형 영역이고, 이에 따라 a×b의 면적을 갖는다. 상기 영역에서의 범프(231)의 총 면적은 이 영역 내부의 범프(231)들의 면적(예컨대, 도 3의 평면도에서 범프(231)의 원형 형상 또는 타원 형상의 면적)의 합계이다. 아래의 설명에서, 소정 영역에서의 범프(231)의 패턴 밀도는 해당 영역의 패턴 밀도 또는 해당 영역의 범프 패턴 밀도라고 칭할 수 있다. 예시된 실시예에서, 영역(401)은 약 25 %를 초과하는 패턴 밀도를 갖고, 영역(402)은 약 15 % 내지 약 25 %의 패턴 밀도를 가지며, 영역(403)은 약 15 % 미만의 패턴 밀도를 갖는다. 아래의 설명에서, 영역(401)은 높은 패턴 밀도 영역이라고 칭할 수 있고, 영역(402)은 중간 패턴 밀도 영역이라고 칭할 수 있으며, 영역(403)은 낮은 패턴 밀도 영역이라고 칭할 수 있다.The pattern density of the bumps 231 in a given region may be calculated by dividing the total area of the bumps 231 in the region by the area of the region. In the example of FIG. 3, the illustrated region is a rectangular region having a width b and a length a, thus having an area of a × b. The total area of the bumps 231 in the area is the sum of the areas of the bumps 231 inside the area (eg, the area of the circular shape or elliptical shape of the bump 231 in the plan view of FIG. 3). In the following description, the pattern density of the bump 231 in a given area may be referred to as a pattern density of the corresponding area or a bump pattern density of the corresponding area. In the illustrated embodiment, region 401 has a pattern density greater than about 25%, region 402 has a pattern density from about 15% to about 25%, and region 403 is less than about 15%. It has a pattern density. In the description below, region 401 may be referred to as a high pattern density region, region 402 may be referred to as an intermediate pattern density region, and region 403 may be referred to as a low pattern density region.

도 2의 예에서, 영역(401)은 연속적인 영역(예컨대, 직사각형 형상 영역)을 포함하고, 영역(402)은 4개의 별개의 영역(예컨대, 4개의 직사각형 형상 영역)을 포함하며, 영역(403)은 영역(401, 402) 이외의, 인터포저(200)의 하부면의 영역을 포함한다. 도 2에서의 영역(예컨대, 401, 402, 403)의 개수, 영역의 위치 및 영역의 형상은 단지 예시적인 것이지, 제한하는 것은 아니며, 영역의 다른 개수, 영역의 다른 위치 및 영역의 다른 형상도 또한 가능하며, 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다.In the example of FIG. 2, region 401 includes contiguous regions (eg, rectangular shaped regions), region 402 includes four distinct regions (eg, four rectangular shaped regions), and regions ( 403 includes areas on the lower surface of the interposer 200, other than the areas 401 and 402. The number of regions (e.g., 401, 402, 403) in FIG. 2, the location of the regions and the shape of the regions are merely illustrative, not limiting, and other numbers of regions, different locations of the regions and other shapes of the regions It is also possible and is intended to be included entirely within the scope of this disclosure.

본 개시를 사용하지 않는 이전 프로세싱에서는, 상이한 영역[예컨대, 401, 402, 403]에 범프(231)를 형성하기 위한 범프 개구들의 크기가 동일하고, 이에 따라 상이한 영역에 형성되는 도전성 범프(231)가 동일한 단면적을 갖는다. 그러나, 동일한 범프 개구 크기를 사용하는 것에 의해, 높은 패턴 밀도로 영역에 형성되는 범프(231)는, 낮은 패턴 밀도로 영역에 형성되는 범프(231)보다 낮은 높이를 가질 수 있다는 것이 관찰된다. 상이한 패턴 밀도를 지닌 영역에 있는 도전성 범프(231)의 높이차는 패턴 밀도 변화로 인한 도전성 범프(231)(의 높이)의 로딩 이펙트(loading effect)라고 칭할 수 있다. 로딩 이펙트는 도전성 범프(231)의 공면성 악화에 기여한다. 특별한 이론으로 제한되는 일 없이, 범프(231)를 형성하기 위한 도금 프로세스 동안, 화학 유체가 실질적으로 균일한 금속 이온 농도를 갖고, 이에 따라 높은 패턴 밀도를 지닌 영역은 범프(231)마다 보다 적은 금속 이온을 가질 수 있으며, 이에 따라 높은 패턴 밀도 영역에 형성된 범프(231)는 낮은 패턴 밀도 영역에 형성된 범프(231)보다 낮은 높이를 가질 수 있다.In previous processing not using the present disclosure, the bump openings for forming bumps 231 in different regions (eg, 401, 402, 403) have the same size, and thus conductive bumps 231 formed in different regions. Has the same cross-sectional area. However, it is observed that by using the same bump opening size, the bumps 231 formed in the region with a high pattern density can have a lower height than the bumps 231 formed in the region with a low pattern density. The difference in height of the conductive bumps 231 in regions having different pattern densities may be referred to as a loading effect of the conductive bumps 231 (height) due to the pattern density change. The loading effect contributes to the deterioration of coplanarity of the conductive bump 231. Without being limited to a particular theory, during the plating process to form the bumps 231, the chemical fluid has a substantially uniform metal ion concentration, so that regions with high pattern density have less metal per bump 231. It may have ions, and accordingly, the bump 231 formed in the high pattern density region may have a lower height than the bump 231 formed in the low pattern density region.

본 개시의 다양한 방법은 상이한 패턴 밀도를 지닌 영역에 있는 범프(231)들의 높이차를 줄이고, 이에 따라 범프(231)들의 공면성을 향상시킨다. 도 5는 상이한 영역(예컨대, 401, 402, 403)에 있는 범프(231)들의 크기가 달라지도록 범프(231)들의 크기(예컨대, 단면)을 조정하는 것에 의해 범프(231)들이 높이차를 줄이는 방법을 예시한다. 특히, 낮은 패턴 밀도 영역(403)에 있는 범프(231)의 크기와 중간 밀도 영역(402)에 있는 범프(231)의 크기는 높은 패턴 밀도 영역에 있는 범프(231)의 크기에 비해 증가된다(상세는 아래를 참조하라). 범프(231)의 크기를 조정하는 것은 전술한 바와 같이 범프(231)를 형성하는 데 사용되는 마스크층에 있는 범프 개구의 크기를 조정하는 것에 의해 달성될 수 있다.Various methods of the present disclosure reduce the height difference of the bumps 231 in regions having different pattern densities, thereby improving the coplanarity of the bumps 231. 5 shows that the bumps 231 reduce the height difference by adjusting the size (eg, cross-section) of the bumps 231 so that the sizes of the bumps 231 in different areas (eg, 401, 402, 403) are different. Illustrates the method. In particular, the size of the bump 231 in the low pattern density area 403 and the size of the bump 231 in the medium density area 402 are increased compared to the size of the bump 231 in the high pattern density area ( See below for details). Adjusting the size of the bumps 231 can be achieved by adjusting the size of the bump openings in the mask layer used to form the bumps 231 as described above.

몇몇 실시예에서, 도 5에 예시된 방법은 도전성 범프(231)를 위한 제1 레이아웃 디자인(예컨대, 여기에 개시된 방법을 이용하여 공면성을 향상시키기 위해 시작점으로서 이용되는 기존 디자인)을 수용하는 것에 의해 시작된다. 제1 레이아웃 디자인(제1 디자인이라고 칭할 수도 있음)은 범프(231)의 크기(예컨대, 단면적)와 범프(231)의 위치를 포함할 수 있다. 아래의 설명에서, 도 2의 레이아웃 디자인은, 모든 영역(예컨대, 401, 402, 403)에 있는 범프(231)들이 동일한 크기(예컨대, 단면적)를 갖는다고 가정할 때에 제1 디자인의 예로서 이용될 수 있다. 도 2의 디자인은 결국 범프(231)를 위한 향상된 공면성을 달성하는 제2 디자인을 형성하도록 수정되고, 그 상세는 아래에서 설명된다. In some embodiments, the method illustrated in FIG. 5 consists in accommodating a first layout design for conductive bumps 231 (eg, an existing design used as a starting point to improve coplanarity using the methods disclosed herein). Is started by. The first layout design (also referred to as the first design) may include the size (eg, cross-sectional area) of the bump 231 and the location of the bump 231. In the description below, the layout design of FIG. 2 is used as an example of the first design, assuming that bumps 231 in all areas (eg, 401, 402, 403) have the same size (eg, cross-sectional area). Can be. The design of FIG. 2 is eventually modified to form a second design that achieves improved coplanarity for bump 231, the details of which are described below.

다음에, 도 5의 방법은 인터포저(200)의 하부면에 있는 상이한 영역에서의 범프 패턴 밀도를 평가(예컨대, 산출)한다. 상이한 영역들에 있어서의 범프(231)들의 패턴 밀도에 기초하여, 도 5의 방법은 범프(231)들을 높은 패턴 밀도 영역(401)(예컨대, 패턴 밀도가 25 % 이상), 중간 패턴 밀도 영역(402)(예컨대, 패턴 밀도가 약 15 % 내지 약 25 %) 또는 낮은 패턴 밀도 영역(403)(예컨대, 패턴 밀도가 15 % 이하)으로 그룹화한다. 즉, 상기 방법은 인터포저(200)의 하부면을 높은 패턴 밀도 영역(401), 중간 패턴 밀도 영역(402) 및 낮은 패턴 밀도 영역(403)과 같은 3개의 영역(도 2의 401, 402, 403 참고)으로 나눈다. Next, the method of FIG. 5 evaluates (e.g., computes) bump pattern density in different areas on the bottom surface of the interposer 200. Based on the pattern density of the bumps 231 in the different regions, the method of FIG. 5 provides the bumps 231 with a high pattern density region 401 (e.g., a pattern density of 25% or more), an intermediate pattern density region ( 402) (e.g., about 15% to about 25% pattern density) or low pattern density area 403 (e.g., 15% or less pattern density). That is, the method includes three regions (401, 402 in FIG. 2) of the lower surface of the interposer 200, such as a high pattern density region 401, an intermediate pattern density region 402, and a low pattern density region 403. 403).

몇몇 실시예에서, 상이한 영역(예컨대, 401, 402, 403)들의 경계를 결정하는 것은, 인터포저(200)의 하부면을 복수 개의 비중첩 그리드형 소형 영역(예컨대, 크기가 약 1 mm × 약 0.5 mm인 직사각형 영역)으로 나누는 것, 각각의 소형 영역에서 범프 패턴 밀도를 산출하는 것, 및 각각의 소형 영역을 산출된 패턴 밀도에 기초하여 영역(예컨대, 401, 402, 403) 중 하나로 할당하는 것을 포함할 수 있다. 몇몇 실시예에서, 제1 디자인은 클러스터로 형성된 범프(231)를 가질 수 있고, 각각의 범프 클러스터는 상이한 범프 패턴 밀도를 가지며, 이 경우에 각각의 범프(231) 클러스터의 경계는 범프 클러스터가 할당되는 영역을 위한 경계로서 사용될 수 있다. 상이한 영역들의 경계를 결정하는 이들 방식 및 다른 방식은 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다. In some embodiments, determining the boundaries of the different areas (eg, 401, 402, 403) may include the lower surface of the interposer 200 in a plurality of non-overlapping grid-like small areas (eg, about 1 mm in size × about Dividing into 0.5 mm rectangular areas, calculating the bump pattern density in each small area, and assigning each small area to one of the areas (eg, 401, 402, 403) based on the calculated pattern density It may include. In some embodiments, the first design may have bumps 231 formed as clusters, each bump cluster having a different bump pattern density, in which case the boundary of each bump 231 cluster is assigned by the bump cluster It can be used as a boundary for the area to be. These and other ways of determining the boundaries of different areas are intended to be entirely within the scope of this disclosure.

다음에, 도 5의 방법은 제2 레이아웃 디자인(제2 디자인이라고 칭할 수도 있음)을 형성하도록 제1 레이아웃 디자인을 수정한다. 특히, 제2 레이아웃 디자인에서는, 낮은 패턴 밀도 영역(403)에 있는 범프(231)의 크기(예컨대, 단면적)와, 중간 패턴 밀도 영역(402)에 있는 범프(231)의 크기(예컨대, 단면적)가, 높은 밀도 영역(401)에 있는 범프(231)의 크기(예컨대, 단면적)보다 크도록 조정된다(예컨대, 증가된다). 높은 패턴 밀도 영역(401)에 있는 범프(231)의 크기는 예시된 실시예에서는 제1 레이아웃 디자인과 제2 레이아웃 디자인 간에 변하지 않고 유지된다. Next, the method of FIG. 5 modifies the first layout design to form a second layout design (also referred to as a second design). In particular, in the second layout design, the size (eg, cross-sectional area) of the bump 231 in the low pattern density area 403 and the size (eg, cross-sectional area) of the bump 231 in the middle pattern density area 402 Is adjusted to be greater than the size (eg, cross-sectional area) of the bump 231 in the high density area 401 (eg, increased). The size of the bumps 231 in the high pattern density region 401 remains unchanged between the first layout design and the second layout design in the illustrated embodiment.

몇몇 실시예에서, 낮은 패턴 밀도 영역과 중간 패턴 밀도 영역에 있는 범프(231)의 크기(예컨대, 단면적)를 증가시키는 것은, 범프(231)를 형성하기 위해, 예컨대 도금 프로세스에서 사용되는 마스크층의 범프 개구의 크기를 증가시키는 것에 의해 달성된다. 특히, 제1 레이아웃 디자인에 있는 범프(231)가 모든 영역(예컨대, 401, 402, 403)에서 직경(R)을 갖는 원형 형상을 갖는다고 가정하여 도 5의 방법을 적용하면, 중간 패턴 밀도 영역(402)에 있는 범프 개구(예컨대, 원형 형상)의 직경(R')은 약 1.1R 내지 약 1.25R이 되도록 조정되고, 낮은 패턴 밀도 영역(403)에 있는 범프 개구의 직경(R")은 약 1.35R 내지 약 1.55R이 되도록 조정된다. 높은 패턴 밀도 영역(401)에 있는 범프 개구의 직경은 R로 유지된다.In some embodiments, increasing the size (e.g., cross-sectional area) of the bumps 231 in the low and medium pattern density areas, for example, of the mask layer used in the plating process to form the bumps 231 This is achieved by increasing the size of the bump opening. In particular, assuming that the bumps 231 in the first layout design have a circular shape with a diameter R in all regions (eg, 401, 402, 403), applying the method of FIG. 5, the intermediate pattern density region The diameter R 'of the bump opening (e.g., circular shape) in 402 is adjusted to be from about 1.1R to about 1.25R, and the diameter R "of the bump opening in the low pattern density region 403 is It is adjusted to be about 1.35R to about 1.55R. The diameter of the bump opening in the high pattern density region 401 remains R.

제1 레이아웃 디자인에 있는 개구가 모든 영역(예컨대, 401, 402, 403)에서 제1 치수(R1) 및 제2 치수(R2)를 갖는 타원 형상을 가지면, 제2 디자인에서 중간 패턴 밀도 영역(402)에 있는 범프 개구(예컨대, 타원 형상)는 제1 치수(R1') 및 제2 치수(R2')를 갖도록 조정되고, 이때 R1'은 약 1.1R1 내지 1.25R1이고, 제2 치수(R2')는 약 1.1R2 내지 약 1.25R2이다. 추가로, 낮은 밀도 영역(403)에 있는 범프 개구(예컨대, 타원 형상)는 제1 치수(R1") 및 제2 치수(R2")를 갖도록 조정되고, 이때 R1"은 약 1.35R1 내지 약 1.55R1이고, 제2 치수(R2")는 약 1.35R2 내지 약 1.55R2이다. 높은 패턴 밀도 영역(401)에 있는 개구는 여전히 제1 치수(R1) 및 제2 치수(R2)를 갖는다.If the opening in the first layout design has an elliptical shape with the first dimension R1 and the second dimension R2 in all regions (eg, 401, 402, 403), the intermediate pattern density region 402 in the second design ), The bump opening (e.g., elliptical shape) is adjusted to have a first dimension (R1 ') and a second dimension (R2'), where R1 'is about 1.1R1 to 1.25R1, and the second dimension (R2' ) Is from about 1.1R2 to about 1.25R2. Additionally, the bump opening (eg, elliptical shape) in the low density region 403 is adjusted to have a first dimension (R1 ") and a second dimension (R2"), where R1 "is from about 1.35R1 to about 1.55. R1 and the second dimension (R2 ") is from about 1.35R2 to about 1.55R2. The opening in the high pattern density region 401 still has the first dimension R1 and the second dimension R2.

전술한 바와 같이, 중간 패턴 밀도 영역(402) 및 낮은 패턴 밀도 영역(403)에 있는 범프 개구의 크기는 높은 패턴 밀도 영역(401)에 있는 범프 개구의 크기보다 예정된 퍼센티지만큼 커지도록 조정된다. 범프 개구의 크기는 후속 형성되는 범프(231)의 단면적에 대응하기 때문에(예컨대, 동일하기 때문에), 제2 레이아웃 디자인을 이용하여 상이한 패턴 밀도를 지닌 영역에 형성되는 도전성 범프(231)는 상이한 단면적을 갖는다. 추가로, 전술한 상이한 영역에 있는 범프 개구들의 치수 간의 관계는 또한 제2 레이아웃 디자인을 이용하여 상이한 영역에 형성되는 도전성 범프(231)의 치수(예컨대, 도 4a에서의 원형 형상의 직경이나 도 4b에서의 타원 형상의 제1 치수 및 제2 치수)에도 또한 적용된다.As described above, the size of the bump openings in the middle pattern density region 402 and the low pattern density region 403 is adjusted to be larger than the size of the bump openings in the high pattern density region 401 by a predetermined percentage. Since the size of the bump openings corresponds to the cross-sectional area of the subsequently formed bumps 231 (e.g., the same), the conductive bumps 231 formed in the regions having different pattern densities using the second layout design have different cross-sectional areas Have Additionally, the relationship between the dimensions of the bump openings in the different areas described above is also the dimensions of the conductive bumps 231 formed in the different areas using the second layout design (e.g., the diameter of the circular shape in FIG. 4A or FIG. 4B). Also applies to the elliptical shape of the first dimension and the second dimension).

도 5의 방법은 제2 레이아웃 디자인에 따라 도전성 범프(231)를 형성하는 것과 같은 추가의 프로세싱 단계를 포함할 수 있다. 도 2의 예에서, 영역(401)은 높은 패턴 밀도 영역이고, 영역(402)은 중간 패턴 밀도 영역이며, 영역(403)은 낮은 패턴 밀도 영역이다. 따라서, 제2 레이아웃 디자인에 따라 도전성 범프(231)를 형성한 후, 영역(403)에 있는 도전성 범프(231)는 영역(402)에 있는 도전성 범프(231)보다 큰 단면적을 갖고, 영역(402)에 있는 도전성 범프(231)는 영역(401)에 있는 도전성 범프(231)보다 큰 단면적을 갖는다. The method of FIG. 5 may include additional processing steps, such as forming a conductive bump 231 according to the second layout design. In the example of FIG. 2, region 401 is a high pattern density region, region 402 is a middle pattern density region, and region 403 is a low pattern density region. Therefore, after forming the conductive bump 231 according to the second layout design, the conductive bump 231 in the region 403 has a larger cross-sectional area than the conductive bump 231 in the region 402, and the region 402 The conductive bump 231 in) has a larger cross-sectional area than the conductive bump 231 in the region 401.

예로서, 높은 패턴 밀도 영역(401)에 있는 범프(231)가 70 μm의 제1 치수(R1)와 90 μm의 제2 치수(R2)를 갖는 제1 디자인을 고려하라. 낮은 패턴 밀도 영역(403)과 중간 패턴 밀도 영역(402)에서의 범프 크기가 조정된 후, 제2 디자인에서는 중간 패턴 밀도 영역(402)에 있는 범프(231)가 82 μm의 제1 치수와 105 μm의 제2 치수를 갖고, 낮은 패턴 밀도 영역(403)에 있는 범프(231)는 98 μm의 제1 치수와 125 μm의 제2 치수를 갖는다.As an example, consider a first design in which the bump 231 in the high pattern density region 401 has a first dimension R1 of 70 μm and a second dimension R2 of 90 μm. After the bump sizes in the low pattern density region 403 and the middle pattern density region 402 have been adjusted, the bump 231 in the middle pattern density region 402 has a first dimension of 82 μm and 105 in the second design. The second dimension of μm, and the bump 231 in the low pattern density region 403 has a first dimension of 98 μm and a second dimension of 125 μm.

도 6은 다른 실시예에서 도전성 범프(231)의 공면성을 향상시키는 방법을 예시한다. 도 6의 실시예에서, 프로세싱은 도전성 범프(231)를 위한 제1 디자인을 수용하고, 인터포저(200)의 하부면 상에 있는 상이한 영역들을 위한 범프 패턴 밀도를 평가하는 것에 의해 시작된다. 상이한 영역들에 있어서의 범프 패턴 밀도에 기초하여, 도전성 범프(231)들은 높은 패턴 밀도 영역(401)(예컨대, 패턴 밀도가 약 25 % 이상), 중간 패턴 밀도 영역(402)(예컨대, 패턴 밀도가 약 15 % 내지 약 25 %) 또는 낮은 패턴 밀도 영역(403)(예컨대, 패턴 밀도가 15 % 이하)과 같은 상이한 영역들로 그룹화된다. 프로세싱은 도 5를 참고하여 전술한 것과 유사하므로, 상세는 반복하지 않는다. 예시된 실시예에서, 제1 디자인에서는 높은 패턴 밀도 영역(401)에서의 범프 피치(P1)가 중간 패턴 밀도 영역(402)에서의 범프 피치(P2)보다 작고, 중간 패턴 밀도 영역(402)에서의 범프 피치(P2)가 낮은 패턴 밀도 영역(403)에서의 범프 피치(P3)보다 작다.6 illustrates a method of improving the coplanarity of the conductive bump 231 in another embodiment. In the embodiment of FIG. 6, processing begins by accepting the first design for the conductive bump 231 and evaluating the bump pattern density for different areas on the bottom surface of the interposer 200. Based on the bump pattern density in the different regions, the conductive bumps 231 have a high pattern density region 401 (eg, pattern density of about 25% or more), an intermediate pattern density region 402 (eg, pattern density) Is grouped into different regions, such as about 15% to about 25%) or a low pattern density area 403 (eg, pattern density is 15% or less). The processing is similar to that described above with reference to Fig. 5, so details are not repeated. In the illustrated embodiment, in the first design, the bump pitch P1 in the high pattern density region 401 is smaller than the bump pitch P2 in the intermediate pattern density region 402, and in the intermediate pattern density region 402 The bump pitch P2 of is smaller than the bump pitch P3 in the low pattern density region 403.

다음에, 제1 디자인은 제2 디자인을 형성하도록 수정된다. 특히, 낮은 패턴 밀도 영역(403)에 있는 범프(231)의 피치와 중간 밀도 영역(402)에 있는 범프(231)의 피치는 높은 패턴 밀도 영역(401)에 있는 범프(231)의 피치와 매칭되도록 조정된다. 몇몇 실시예에서는, 인접한 범프(231/231D)들 사이의 범프 피치를 조정하기 위해(예컨대, 감소시키기 위해), 예컨대 낮은 패턴 밀도 영역(403)과 중간 패턴 밀도 영역(402)에서 기존의 범프(231)들 사이에 더미 범프(231D)(도 7b 참고)가 추가되어, 낮은 패턴 밀도 영역(403)과 중간 패턴 밀도 영역(402)에서의 조정된 범프 피치가 높은 패턴 밀도 영역(401)에서의 범프 피치와 매칭되며, 이때 더미 범프(231D)는 전기적으로 격리되는(예컨대, 다른 전기 도전성 피쳐와 전기적으로 커플링되지 않는) 도전성 범프이다. 이와 대조적으로, 각각의 도전성 범프(231)는 인터포저(200)의 적어도 하나의 전기 도전성 피쳐[예컨대, 접촉 패드, 관통 비아(215) 등]에 전기적으로 커플링된다. 더미 범프(231D)는 범프(231)와 동일한 재료(들)를 사용하여 그리고 범프(231)와 동일한 프로세싱 단계로 형성될 수 있다. 여기에서 “매칭”이라는 용어는 제조 한계 내에서의 피치들 간의 매칭 또는 소정 퍼센티지 내에서의 피치들 간의 매칭일 수 있다. 예컨대, 낮은 패턴 밀도 영역(403) 및 중간 패턴 밀도 영역(402)에서의 범프 피치는 높은 패턴 밀도 영역(401)에서의 범프 피치의 예정된 퍼센티지 이내(예컨대, ±15%, ±10% 또는 ±5% 이내)이다. Next, the first design is modified to form a second design. Specifically, the pitch of the bumps 231 in the low pattern density region 403 and the pitch of the bumps 231 in the middle density region 402 match the pitch of the bumps 231 in the high pattern density region 401 It is adjusted as much as possible. In some embodiments, to adjust the bump pitch between adjacent bumps 231 / 231D (e.g., to reduce), for example, existing bumps in low pattern density regions 403 and middle pattern density regions 402 ( Dummy bumps 231D (see FIG. 7B) are added between the 231s, so that the adjusted bump pitch in the low pattern density region 403 and the middle pattern density region 402 is high in the pattern density region 401. Matching the bump pitch, the dummy bump 231D is a conductive bump that is electrically isolated (eg, not electrically coupled with other electrically conductive features). In contrast, each conductive bump 231 is electrically coupled to at least one electrically conductive feature of the interposer 200 (eg, contact pads, through vias 215, etc.). The dummy bump 231D may be formed using the same material (s) as the bump 231 and with the same processing steps as the bump 231. The term “matching” herein can be a match between pitches within manufacturing limits or a match between pitches within a given percentage. For example, the bump pitch in the low pattern density region 403 and the middle pattern density region 402 is within a predetermined percentage of the bump pitch in the high pattern density region 401 (eg, ± 15%, ± 10%, or ± 5). %).

예로서, 높은 패턴 밀도 영역(401)에서의 범프 피치(P1)가 150 μm이고, 중간 패턴 밀도 영역(402)에서의 범프 피치(P2)가 180 μm이며, 낮은 패턴 밀도 영역(403)에서의 범프 피치(P3)가 250 μm인 제1 디자인을 고려하라. 범프 피치를 수정한 후, 모든 영역(예컨대, 401, 402, 403)에서의 범프(231)를 위한 범프 피치는 150 μm의 동일한 범프 피치를 갖는다.As an example, the bump pitch P1 in the high pattern density region 401 is 150 μm, the bump pitch P2 in the middle pattern density region 402 is 180 μm, and in the low pattern density region 403 Consider a first design with a bump pitch (P3) of 250 μm. After correcting the bump pitch, the bump pitch for the bumps 231 in all areas (eg, 401, 402, 403) has the same bump pitch of 150 μm.

예시된 실시예에서, 상이한 영역(예컨대, 401, 402, 403)에 있는 범프(231)들의 단면적은 제1 디자인과 제2 디자인 간에 변경되지 않는다. 몇몇 실시예에서, 상이한 영역(예컨대, 401, 402, 403)에 있는 범프(231)들의 단면적은 동일하다. 도 6의 방법은 제2 디자인에 따라 범프(231)와 더미 범프(231D)를 형성하는 것과 같은 추가의 프로세싱 단계를 포함할 수 있다.In the illustrated embodiment, the cross-sectional areas of the bumps 231 in different areas (eg, 401, 402, 403) do not change between the first design and the second design. In some embodiments, the cross-sectional areas of bumps 231 in different regions (eg, 401, 402, 403) are the same. The method of FIG. 6 may include additional processing steps, such as forming bumps 231 and dummy bumps 231D according to the second design.

도 7a 및 도 7b는 도 6에 예시된 방법을 적용하기 전후의 인터포저(200)의 하부면의 영역 내의 도전성 범프(231)를 위한 디자인의 실시예를 각각 예시한다. 도 7a 및 도 7b에 예시된 영역은, 예컨대 낮은 패턴 밀도 영역(403)의 부위 및 중간 패턴 밀도 영역(402)의 부위일 수 있다. 도 7a에 예시된 바와 같이, 제1 디자인의 범프(231)들 사이의 피치는, 예컨대 250 μm이다. 도 7b는 범프(231)들 사이에 형성된 더미 범프(231D)를 보여준다. 예컨대, 더미 범프(231D)는 동일한 열에 있는 인접한 범프(231)들 사이에 형성될 수 있다. 추가로, 도 7b는 또한 2개의 인접한 범프(231) 열 사이에 형성된 더미 범프(231D) 열을 예시한다. 형성된 더미 범프(231D)에 있어서, 범프(예컨대, 231, 231D)들의 피치는 높은 패턴 밀도 영역(401)의 피치 밀도에 매칭되도록, 예컨대 125 μm로 감소된다.7A and 7B respectively illustrate an embodiment of the design for the conductive bump 231 in the region of the lower surface of the interposer 200 before and after applying the method illustrated in FIG. 6. The regions illustrated in FIGS. 7A and 7B may be, for example, portions of the low pattern density region 403 and portions of the middle pattern density region 402. As illustrated in FIG. 7A, the pitch between the bumps 231 of the first design is, for example, 250 μm. 7B shows a dummy bump 231D formed between the bumps 231. For example, the dummy bump 231D may be formed between adjacent bumps 231 in the same row. Additionally, FIG. 7B also illustrates a dummy bump 231D row formed between two adjacent bump 231 rows. In the formed dummy bump 231D, the pitch of the bumps (eg, 231, 231D) is reduced to, for example, 125 μm, to match the pitch density of the high pattern density region 401.

도 8a는 실시예 방법을 이용하는 인터포저(200)의 하부면 상의 도전성 범프(231)를 위한 레이아웃 디자인을 예시한다. 도 8a의 예에서, 제1 디자인(예컨대, 도 2 참고)이 수용되고 평가된다. 제1 디자인의 상이한 영역을 위한 패턴 밀도가 산출된다. 산출된 패턴 밀도에 기초하여, 범프(231)들은 높은 패턴 밀도 영역(401)(예컨대, 패턴 밀도가 25 % 이상), 중간 패턴 밀도 영역(402)(예컨대, 패턴 밀도가 약 15 % 내지 약 25 %) 및 낮은 패턴 밀도 영역(403)(예컨대, 패턴 밀도가 15 % 이하)과 같은 상이한 영역들로 그룹화된다. 도 8a의 실시예에서, 상이한 영역(예컨대, 401, 402, 403)에 있는 범프(231)들의 단면적은 동일하다. 도 8a에서, 높은 패턴 밀도 영역(401)은 범프 피치(P1)를 갖고, 중간 패턴 밀도 영역은 범프 피치(P2)를 가지며, 낮은 패턴 밀도 영역은 범프 피치(P3)를 갖는다. 예시된 실시예에서, 범프 피치(P1)는 범프 피치(P2)보다 작고, 범프 피치(P2)는 범프 피치(P3)보다 작다.8A illustrates the layout design for the conductive bump 231 on the bottom surface of the interposer 200 using the method of the embodiment. In the example of FIG. 8A, the first design (eg, see FIG. 2) is accepted and evaluated. The pattern density for different areas of the first design is calculated. Based on the calculated pattern density, the bumps 231 have a high pattern density area 401 (e.g., pattern density of 25% or more), an intermediate pattern density area 402 (e.g., pattern density of about 15% to about 25%). %) And low pattern density regions 403 (eg, pattern density of 15% or less). In the embodiment of FIG. 8A, the cross-sectional areas of bumps 231 in different regions (eg, 401, 402, 403) are the same. In FIG. 8A, the high pattern density region 401 has a bump pitch P1, the middle pattern density region has a bump pitch P2, and the low pattern density region has a bump pitch P3. In the illustrated embodiment, the bump pitch P1 is smaller than the bump pitch P2, and the bump pitch P2 is smaller than the bump pitch P3.

상이한 패턴 밀도를 지닌 영역에 있는 도전성 범프(231)들의 높이차를 줄이기 위해, 도 8a의 실시예 방법은 제2 디자인을 형성하기 위해 인터포저(200)의 둘레(200P)(예컨대, 측벽)을 따라 배치된 영역(404)(도 8a에서 음영 패턴으로 예시됨)에 더미 범프(231D)(도 8b 참고)를 추가하는 것에 의해 제1 디자인을 수정한다. 여기에서, “매칭”이라는 용어는 제조 한계 내에서의 피치들 간의 매칭 또는 높은 패턴 밀도 영역(401)에서의 범프 피치의 소정 퍼센티지 이내(예컨대, ±15%, ±10% 또는 ±5% 이내)에서의 피치들 간의 매칭일 수 있다. In order to reduce the height difference of the conductive bumps 231 in the regions having different pattern densities, the embodiment method of FIG. 8A uses the perimeter 200P (eg sidewall) of the interposer 200 to form a second design. The first design is modified by adding a dummy bump 231D (see FIG. 8B) to the area 404 (also illustrated as a shaded pattern in FIG. 8A). Here, the term “matching” is within a certain percentage of bump pitch in the high pattern density region 401 or matching between pitches within manufacturing limits (eg, within ± 15%, ± 10% or ± 5%). It may be a match between the pitches at.

도 8a에 예시된 바와 같이, 영역(404)은 중공 직사각형 형상을 갖지만, 다른 적절한 형상도 또한 본 개시의 범위 내에서 고려된다. 영역(404)은 제1 디자인에서 인터포저(200)의 하부면 상에 N개의 최외측 범프 열 및/또는 N개의 최외측 범프 행(231)을 포함하도록 선택될 수 있으며, 이때 N은 5개, 10개 또는 15개와 같이 5개 내지 15개일 수 있다, 즉, 인터포저(200)의 영역(404)과 둘레(200P) 사이에는 범프(231 또는 231D)가 존재하지 않는다. 따라서, 제2 디자인에서 영역(404)은 내부에 더미 범프(231D)와 도전성 범프(231) 모두가 형성되고, 도 8a의 다른 영역(예컨대, 401, 402, 403)은 내부에 [예컨대 더미 범프(231D)가 아닌] 단지 도전성 범프(231)만이 형성된다.As illustrated in FIG. 8A, region 404 has a hollow rectangular shape, although other suitable shapes are also contemplated within the scope of the present disclosure. Region 404 may be selected to include N outermost bump columns and / or N outermost bump rows 231 on the bottom surface of interposer 200 in the first design, where N is 5 , May be 5 to 15, such as 10 or 15, that is, there is no bump 231 or 231D between the region 404 and the circumference 200P of the interposer 200. Accordingly, in the second design, the region 404 is formed with both the dummy bump 231D and the conductive bump 231 therein, and the other regions of FIG. 8A (eg, 401, 402, 403) are internally [eg, dummy bump (Not 231D)] Only the conductive bump 231 is formed.

도 8a에 예시된 실시예에서, 영역(404)은 높은 패턴 밀도 영역(401), 중간 패턴 밀도 영역(402) 및 낮은 패턴 밀도 영역(403)을 둘러싼다. 도 8a에서, 영역(404)은 이전에 낮은 패턴 밀도 영역(403)에 속했던 부위를 포함함에 주목하라. 따라서, 도 8a에 예시된 제2 디자인에서는 영역(403)이 영역(401/402) 이외에, 영역(404) 내부에 위치하는 인터포저(200)의 하부면의 부위를 포함한다.In the embodiment illustrated in FIG. 8A, region 404 surrounds high pattern density region 401, middle pattern density region 402 and low pattern density region 403. Note that in FIG. 8A, region 404 includes sites that previously belonged to low pattern density region 403. Accordingly, in the second design illustrated in FIG. 8A, the region 403 includes a portion of the lower surface of the interposer 200 located inside the region 404 in addition to the region 401/402.

예로서, 높은 패턴 밀도 영역(401)에서의 범프 피치(P1)가 150 μm이고, 중간 패턴 밀도 영역(402)에서의 범프 피치(P2)가 180 μm이며, 낮은 패턴 밀도 영역(403)에서의 범프 피치(P3)가 250 μm인 제1 디자인을 고려하라. 제2 디자인에서, 영역(404)에는 더미 범프(231D)가 형성되어, 범프들 사이(예컨대, 231과 231D 사이)의 범프 피치(P4)는 150 μm이다. 도 8a의 방법은 제2 디자인에 따라 범프(231)와 더미 범프(231D)를 형성하는 것과 같은 추가의 프로세싱 단계를 포함할 수 있다.As an example, the bump pitch P1 in the high pattern density region 401 is 150 μm, the bump pitch P2 in the middle pattern density region 402 is 180 μm, and in the low pattern density region 403 Consider a first design with a bump pitch (P3) of 250 μm. In the second design, a dummy bump 231D is formed in the region 404 so that the bump pitch P4 between the bumps (eg, between 231 and 231D) is 150 μm. The method of FIG. 8A may include additional processing steps, such as forming bumps 231 and dummy bumps 231D according to the second design.

도 8a의 실시예에서, 모든 영역(401, 402, 403)에 있는 범프(231)들의 단면적은 동일하고, 제1 디자인과 제2 디자인 간에 변경되지 않는다. 더욱이, 예시된 실시예에서 영역(404)에 있는 더미 범프(231D)의 단면적은 도전성 범프(231)의 단면적과 동일하다. In the embodiment of FIG. 8A, the cross-sectional areas of bumps 231 in all regions 401, 402, 403 are the same, and do not change between the first and second designs. Moreover, in the illustrated embodiment, the cross-sectional area of the dummy bump 231D in the region 404 is the same as the cross-sectional area of the conductive bump 231.

도 8b는 도 8a에 예시된 영역(404)의 일부(210)의 확대도를 예시한다. 도 8b에 예시된 바와 같이, 더미 범프(231D)는 범프(231)들 사이에 형성된다. 도 8b는 또한 2개의 도전성 범프(231) 열 사이에 형성된 더미 범프(231D) 열을 예시한다. 영역(404)의 (예컨대 231과 231D 사이의) 범프 피치는 P4이며, P4는 높은 패턴 밀도 영역(401)의 범프 피치(P1)와 매칭된다.8B illustrates an enlarged view of a portion 210 of the region 404 illustrated in FIG. 8A. As illustrated in FIG. 8B, a dummy bump 231D is formed between the bumps 231. 8B also illustrates a row of dummy bumps 231D formed between two rows of conductive bumps 231. The bump pitch (eg, between 231 and 231D) of the region 404 is P4, and P4 matches the bump pitch P1 of the high pattern density region 401.

개시된 실시예에 대한 변형이 가능하며, 이는 전적으로 본 개시의 범위 내에 포함되는 것으로 의도된다. 예컨대, 다양한 실시예 방법이 범프 크기(예컨대, 단면적) 또는 범프 피치를 조정하지만, 범프 크기와 범프 피치 모두를 조정하는 것에 의해 범프(231)의 공면성을 향상시키는 것도 가능하다. 예컨대, 다양한 영역(예컨대, 401, 402, 403)에서의 범프 개구 크기는, 다양한 영역에서의 범프 피치가 조정되는 동안 조정될 수 있다. 추가로, 본 개시는 인터포저(200)의 하부면 상에 도전성 범프(231)를 형성하는 것과 관련하여 설명되지만, 개시된 방법은 다른 구성요소 및/또는 다른 표면(예컨대, 하부면 대신 상부면) 상에 형성되는 도전성 범프의 공면성을 향상시키기 위해 이용될 수 있다.Modifications to the disclosed embodiments are possible, and are intended to be included entirely within the scope of this disclosure. For example, although various embodiment methods adjust the bump size (eg, cross-sectional area) or bump pitch, it is also possible to improve the coplanarity of the bump 231 by adjusting both the bump size and the bump pitch. For example, the bump opening size in various regions (eg, 401, 402, 403) can be adjusted while the bump pitch in various regions is adjusted. Additionally, while the present disclosure is described in connection with forming conductive bumps 231 on the bottom surface of interposer 200, the disclosed method is directed to other components and / or other surfaces (eg, top surface instead of bottom surface). It can be used to improve the coplanarity of the conductive bump formed on the image.

실시예들은 여러 장점을 달성할 수 있다. 도전성 범프(231)의 디자인에서 범프 크기(예컨대, 단면적) 또는 범프 피치를 조정하는 것에 의해, 상이한 패턴 밀도를 지닌 영역에서의 범프들의 높이차가 감소되고, 도전성 범프의 공면성이 향상된다. 향상된 공면성은 범프의 콜드 조인트(예컨대, 2개 디바이스의 도전성 범프들을 적절히 접합하는 데 실패하게 되는 불량하게 형성된 땜납 영역) 및 브리징과 같은 문제를 방지하거나 줄이고, 이에 따라 형성된 디바이스의 신뢰성을 향상시키고, 생산 수율을 향상시킨다. 현재 개시된 방법을 사용하지 않고 도전성 범프의 공면성을 위한 요건을 충족하기 위해서, 참조 방법(reference method)은 전해도금 속도를 줄여야만 할 수도 있고/있거나, 전해도금을 위해 사용되는 화학 유체에서 금속 이온 농도(예컨대, Ag의 농도)를 증가시켜야만 할 수도 있으며, 이는 생산 처리량을 감소시키고 제조비를 증가시킨다. 본 개시는 이들 문제를 피하고, 이에 따라 증가된 처리량(예컨대, 보다 높은 전해도금 속도)과 감소된 제조비를 달성한다.Embodiments can achieve several advantages. By adjusting the bump size (eg, cross-sectional area) or bump pitch in the design of the conductive bump 231, the height difference of the bumps in areas with different pattern densities is reduced, and the coplanarity of the conductive bumps is improved. The improved coplanarity prevents or reduces problems such as cold joints of the bumps (eg poorly formed solder areas that fail to properly bond the conductive bumps of the two devices) and bridging, thereby improving the reliability of the formed device, Improve production yield. In order to meet the requirements for the coplanarity of conductive bumps without using the currently disclosed method, the reference method may have to reduce the electroplating rate and / or metal ions in the chemical fluid used for electroplating. It may be necessary to increase the concentration (eg, the concentration of Ag), which reduces production throughput and increases manufacturing costs. The present disclosure avoids these problems, thereby achieving increased throughput (eg, higher electroplating rates) and reduced manufacturing costs.

도 9, 도 10 및 도 11은 몇몇 실시예에 따른, 반도체 디바이스의 제조 방법(1000, 2000, 300)에 관한 흐름도를 각각 예시한다. 도 9, 도 10 및 도 11에 도시한 실시예 방법은 단순히 여러 가능한 실시예 방법들의 일례임을 이해해야만 한다. 당업자라면, 여러가지 변형, 대안 및 수정을 이해할 것이다. 예컨대, 도 9, 도 10 및 도 11에 예시된 다양한 단계는 추가, 제거, 교체, 재구성 및 반복될 수 있다.9, 10, and 11 illustrate flow charts respectively for a method of manufacturing a semiconductor device (1000, 2000, 300), according to some embodiments. It should be understood that the embodiment method illustrated in FIGS. 9, 10 and 11 is merely an example of several possible embodiment methods. Those skilled in the art will understand various variations, alternatives and modifications. For example, the various steps illustrated in FIGS. 9, 10 and 11 can be added, removed, replaced, reconfigured and repeated.

도 9를 참고하면, 방법(1000)의 블럭(1010)에서는 인터포저의 제1 표면 상에 있는 도전성 범프를 위한 제1 디자인을 수용하며, 제1 디자인의 도전성 범프는 동일한 단면적을 갖는다. 블럭 1020에서, 제1 디자인의 도전성 범프를 제1 표면의 제1 영역에 있는 제1 그룹의 도전성 범프와, 제1 표면의 제2 영역에 있는 제2 그룹의 도전성 범프로 그룹화되고, 이때 제2 영역의 범프 패턴 밀도는 제1 영역의 범프 패턴 밀도보다 낮다. 블럭 1030에서, 제1 디자인을 수정하는 것에 의해 제2 디자인이 형성되고, 제1 디자인을 수정하는 것은 제2 영역에 있는 제2 그룹의 도전성 범프의 단면적을 수정하는 것을 포함한다. 블럭 1040에서, 인터포저의 제1 표면 상에 제2 디자인에 따라 도전성 범프가 형성되고, 이때 제1 그룹의 도전성 범프와 제2 그룹의 도전성 범프는 형성된 후에 상이한 단면적을 갖는다.Referring to FIG. 9, at block 1010 of method 1000, a first design for a conductive bump on the first surface of the interposer is accommodated, and the conductive bump of the first design has the same cross-sectional area. In block 1020, the conductive bumps of the first design are grouped into a first group of conductive bumps in a first area of the first surface and a second group of conductive bumps in a second area of the first surface, wherein the second The bump pattern density of the region is lower than the bump pattern density of the first region. In block 1030, a second design is formed by modifying the first design, and modifying the first design includes modifying the cross-sectional area of the second group of conductive bumps in the second region. At block 1040, a conductive bump is formed according to the second design on the first surface of the interposer, wherein the first group of conductive bumps and the second group of conductive bumps have different cross-sectional areas after formation.

도 10을 참고하면, 방법(2000)의 블럭 2010에서, 워크피스의 제1 표면 상에 있는 도전성 범프를 위한 제1 디자인이 분석되고, 상기 분석은 워크피스의 제1 표면을 제1 도전성 범프를 갖는 제1 영역과 제2 도전성 범프를 갖는 제2 영역으로 나누는 것을 포함하고, 제1 영역에 있는 제1 도전성 범프의 제1 범프 패턴 밀도는 제2 영역에 있는 제2 도전성 범프의 제2 범프 패턴 밀도보다 크며, 제1 영역에 있는 제1 도전성 범프의 제1 범프 피치는 제2 영역에 있는 제2 도전성 범프의 제2 범프 피치보다 작다. 블럭 2020에서, 제1 디자인은 제2 디자인을 형성하도록 수정되고, 제1 디자인을 수정하는 것은 제2 범프 피치를 줄이기 위해 제2 영역에 더미 범프를 추가하는 것을 포함한다. 블럭 2030에서, 제2 디자인에 따라 워크피스의 제1 표면 상에 도전성 범프와 더미 범프가 형성된다. 블럭 2040에서, 워크피스는 도전성 범프를 통해 기판에 접합된다.Referring to FIG. 10, at block 2010 of method 2000, a first design for a conductive bump on a first surface of the workpiece is analyzed, and the analysis is performed on the first surface of the workpiece and the first conductive bump. Dividing into a first region having and a second region having a second conductive bump, the first bump pattern density of the first conductive bump in the first region is the second bump pattern of the second conductive bump in the second region Greater than the density, the first bump pitch of the first conductive bump in the first region is less than the second bump pitch of the second conductive bump in the second region. At block 2020, the first design is modified to form a second design, and modifying the first design includes adding dummy bumps to the second area to reduce the second bump pitch. At block 2030, a conductive bump and a dummy bump are formed on the first surface of the workpiece according to the second design. At block 2040, the workpiece is bonded to the substrate through conductive bumps.

도 11을 참고하면, 방법(3000)의 블럭 3010에서는 워크피스의 제1 표면 상에 있는 도전성 범프를 위한 제1 디자인 - 도전성 범프들이 동일한 단면적을 가짐 - 이 수용되고, 이때 도전성 범프는 제1 표면의 제1 영역에 있는 제1 도전성 범프와, 제1 표면의 제2 영역에 있는 제2 도전성 범프를 포함하며, 제2 영역은 제1 영역을 둘러싸고, 제2 범프는 제1 범프의 제1 범프 피치보다 큰 제2 범프 피치를 갖는다. 블럭 3020에서, 제1 디자인은, 제2 범프 피치가 실질적으로 제1 범프 피치에 매칭되도록 제2 범프 피치를 줄이기 위해 제2 영역에 더미 범프를 추가하는 것에 의해 제2 디자인으로 변경된다. 블럭 3030에서, 워크피스의 제1 표면 상에 제2 디자인에 따라 도전성 범프가 형성된다.Referring to FIG. 11, at block 3010 of method 3000, a first design for a conductive bump on a first surface of a workpiece-conductive bumps having the same cross-sectional area-is accommodated, wherein the conductive bump is the first surface A first conductive bump in the first region of the first and a second conductive bump in the second region of the first surface, the second region surrounding the first region, and the second bump the first bump of the first bump It has a second bump pitch greater than the pitch. At block 3020, the first design is changed to the second design by adding dummy bumps to the second region to reduce the second bump pitch such that the second bump pitch substantially matches the first bump pitch. At block 3030, a conductive bump is formed according to the second design on the first surface of the workpiece.

실시예에서, 방법은 인터포저의 제1 표면 상에 있는 도전성 범프를 위한 제1 디자인 - 제1 디자인 내의 도전성 범프들은 동일한 단면적을 가짐 - 을 수용하는 단계; 제1 디자인의 도전성 범프들을 제1 표면의 제1 영역에 있는 제1 그룹의 도전성 범프와, 제1 표면의 제2 영역에 있는 제2 그룹의 도전성 범프로 그룹화하는 단계로서, 제2 영역의 범프 패턴 밀도는 제1 영역의 범프 패턴 밀도보다 낮은 것인 도전성 범프를 그룹화하는 단계; 제1 디자인을 수정하는 것 - 제1 디자인을 수정하는 것은 제2 영역에 있는 제2 그룹의 도전성 범프의 단면적을 수정하는 것을 포함함 - 에 의해 제2 디자인을 형성하는 단계; 및 제2 디자인에 따라 인터포저의 제1 표면 상에 도전성 범프를 형성하는 단계를 포함하고, 제2 디자인에 따라 인터포저의 제1 표면 상에 도전성 범프를 형성하는 단계 후, 제1 그룹의 도전성 범프와 제2 그룹의 도전성 범프는 상이한 단면적을 갖는다. 실시예에서, 제1 그룹의 도전성 범프의 크기는 제1 디자인과 제2 디자인에서 변경되지 않은 채 유지된다. 실시예에서, 도전성 범프를 형성하는 단계는, 인터포저의 제1 표면 위에, 범프 개구를 갖는 패턴화 마스크층을 형성하는 단계; 및 패턴화 마스크층의 범프 개구 내에 도전성 재료를 형성하도록 도금 프로세스를 수행하는 단계를 포함한다. 실시예에서, 제1 영역에 있는 범프 개구의 크기는 제2 영역에 있는 범프 개구의 크기보다 작다. 실시예에서, 제1 영역의 범프 패턴 밀도는 약 25 %를 초과한다. 실시예에서, 제2 디자인에서는 제1 그룹의 도전성 범프가 제1 치수를 갖는 제1 단면을 갖고, 제2 그룹의 도전성 범프가 별개의 제2 치수를 갖는 제2 단면을 가지며, 제2 영역의 범프 패턴 밀도가 약 15 % 내지 약 25 %인 경우, 제2 치수는 제1 치수의 약 1.1배 내지 약 1.25배이고, 제2 영역의 범프 패턴 밀도가 약 15 % 미만인 경우, 제2 치수는 제1 치수의 약 1.35배 내지 약 1.55배이다. 실시예에서, 제1 디자인의 도전성 범프들을 그룹화하는 단계는, 제1 표면의 제3 영역에 있는 제3 그룹의 도전성 범프를 그룹화하는 것을 더 포함하고, 제3 영역의 범프 패턴 밀도는 제2 영역의 범프 패턴 밀도보다 낮다. 실시예에서, 제2 디자인을 형성하는 단계는, 제3 영역에 있는 제3 그룹의 도전성 범프의 단면적을 수정하는 것을 더 포함한다. 실시예에서, 제1 영역의 범프 패턴 밀도는 약 25 %보다 크고, 제2 영역의 범프 패턴 밀도는 약 15 % 내지 약 25 %이며, 제3 영역의 범프 패턴 밀도는 약 15 % 미만이다. 실시예에서, 제2 디자인에서는 제1 그룹의 도전성 범프는 제1 치수를 지닌 제1 단면을 갖고, 제2 그룹의 도전성 범프는 별개의 제2 치수를 갖는 제2 단면을 가지며, 제3 그룹의 도전성 범프는 별개의 제3 치수를 갖는 제3 단면을 갖고, 제2 치수는 제1 치수의 약 1.1배 내지 약 1.25배이고, 제3 치수는 제1 치수의 약 1.35배 내지 약 1.55배이다. 실시예에서, 제1 단면, 제2 단면 및 제3 단면은 기하학적으로 유사한 형상을 갖는다. 실시예에서, 상기 방법은 인터포저의 도전성 범프에 기판을 부착하는 것을 더 포함한다.In an embodiment, the method comprises receiving a first design for a conductive bump on the first surface of the interposer, wherein the conductive bumps in the first design have the same cross-sectional area; Grouping the conductive bumps of the first design into a first group of conductive bumps in the first area of the first surface and a second group of conductive bumps in the second area of the first surface, the bumps of the second area Grouping the conductive bumps, wherein the pattern density is lower than the bump pattern density of the first region; Modifying the first design, wherein modifying the first design includes modifying the cross-sectional area of the second group of conductive bumps in the second area; forming a second design; And forming a conductive bump on the first surface of the interposer according to the second design, and after forming the conductive bump on the first surface of the interposer according to the second design, the first group of conductivity The bump and the second group of conductive bumps have different cross-sectional areas. In an embodiment, the size of the first group of conductive bumps remains unchanged in the first and second designs. In an embodiment, forming a conductive bump comprises: forming a patterned mask layer having bump openings on a first surface of the interposer; And performing a plating process to form a conductive material in the bump openings of the patterned mask layer. In an embodiment, the size of the bump opening in the first area is smaller than the size of the bump opening in the second area. In an embodiment, the bump pattern density of the first region is greater than about 25%. In an embodiment, in the second design, the first group of conductive bumps has a first cross-section with a first dimension, the second group of conductive bumps has a second cross-section with a separate second dimension, and When the bump pattern density is from about 15% to about 25%, the second dimension is from about 1.1 to about 1.25 times the first dimension, and when the bump pattern density in the second region is less than about 15%, the second dimension is from the first dimension About 1.35 times to about 1.55 times the dimension. In an embodiment, the step of grouping the conductive bumps of the first design further comprises grouping the third group of conductive bumps in the third region of the first surface, the bump pattern density of the third region being the second region Is lower than the bump pattern density. In an embodiment, forming the second design further comprises modifying the cross-sectional area of the third group of conductive bumps in the third area. In an embodiment, the bump pattern density of the first region is greater than about 25%, the bump pattern density of the second region is about 15% to about 25%, and the bump pattern density of the third region is less than about 15%. In an embodiment, in the second design, the first group of conductive bumps has a first cross-section with a first dimension, the second group of conductive bumps has a second cross-section with a separate second dimension, and the third group of The conductive bump has a third cross section with distinct third dimensions, the second dimension is from about 1.1 times to about 1.25 times the first dimension, and the third dimension is from about 1.35 times to about 1.55 times the first dimension. In an embodiment, the first cross section, the second cross section and the third cross section have geometrically similar shapes. In an embodiment, the method further comprises attaching the substrate to the conductive bump of the interposer.

실시예에서, 방법은 워크피스의 제1 표면 상의 도전성 범프를 위한 제1 디자인을 분석하는 단계로서, 상기 분석은 워크피스의 제1 표면을 제1 도전성 범프를 갖는 제1 영역과, 제2 도전성 범프를 갖는 제2 영역으로 나누는 것을 포함하고, 제1 영역에 있는 제1 도전성 범프의 제1 범프 패턴 밀도는 제2 영역에 있는 제2 도전성 범프의 제2 범프 패턴 밀도보다 크고, 제1 영역에 있는 제1 도전성 범프의 제1 범프 피치는 제2 영역에 있는 제2 도전성 범프의 제2 범프 피치보다 작은 것인 제1 디자인을 분석하는 단계; 제2 디자인을 형성하도록 제1 디자인을 수정하는 단계 - 제1 디자인을 수정하는 단계는 제2 범프 피치를 줄이기 위해 제2 영역에 더미 범프를 추가하는 단계를 포함함 - ; 제2 디자인에 따라 워크피스의 제1 표면 상에 도전성 범프와 더미 범프를 형성하는 단계; 및 도전성 범프를 통해 워크피스를 기판에 접합하는 단계를 포함한다. 실시예에서, 제1 범프 패턴 밀도는 약 25 %를 초과한다. 실시예에서, 더미 범프는 도전성 범프와 동일한 재료로 형성되고, 더미 범프는 전기적으로 격리된다.In an embodiment, the method is a step of analyzing a first design for a conductive bump on a first surface of the workpiece, the analysis comprising: a first area having a first conductive bump and a second conductive surface of the first surface of the workpiece Dividing into a second region having bumps, the first bump pattern density of the first conductive bumps in the first region is greater than the second bump pattern density of the second conductive bumps in the second region, and the first region Analyzing a first design wherein the first bump pitch of the first conductive bump is less than the second bump pitch of the second conductive bump in the second region; Modifying the first design to form a second design, wherein modifying the first design includes adding dummy bumps to the second area to reduce the second bump pitch; Forming a conductive bump and a dummy bump on the first surface of the workpiece according to the second design; And bonding the workpiece to the substrate through a conductive bump. In an embodiment, the first bump pattern density is greater than about 25%. In an embodiment, the dummy bump is formed of the same material as the conductive bump, and the dummy bump is electrically isolated.

실시예에서, 반도체 디바이스는 인터포저의 상부면에 부착되는 다이; 인터포저의 하부면의 제1 영역 - 제1 영역은 제1 범프 패턴 밀도를 가짐 - 에 있는 제1 도전성 범프; 인터포저의 하부면의 제2 영역 - 제2 영역은 제1 범프 패턴 밀도보다 작은 제2 범프 패턴 밀도를 가짐 - 에 있는 제2 도전성 범프; 및 인터포저의 하부면의 둘레 영역 - 둘레 영역은 제1 영역과 제2 영역을 둘러쌈 - 에 있는 더미 범프를 포함한다. 실시예에서, 제1 영역의 제1 도전성 범프는 제1 범프 피치를 갖고, 제2 영역의 제2 도전성 범프는 제1 범프 피치보다 큰 제2 범프 피치를 가지며, 둘레 영역의 더미 범프는 제1 범프 피치에 매칭되는 제3 범프 피치를 갖는다. 실시예에서, 반도체 디바이스는 인터포저의 하부면의 제3 영역 - 제3 영역은 제2 범프 패턴 밀도보다 작은 제3 범프 패턴 밀도와 제2 범프 피치보다 큰 제4 범프 피치를 가짐 - 에 있는 제3 도전성 범프를 더 포함하고, 이때 둘레 영역은 제1 영역, 제2 영역 및 제3 영역을 둘러싼다. 실시예에서, 제1 범프 패턴 밀도는 약 25 %를 초과한다. 실시예에서, 제1 도전성 범프와 제2 도전성 범프는 동일한 단면적을 갖는다.In an embodiment, a semiconductor device includes a die attached to the top surface of the interposer; A first conductive bump in the first region of the lower surface of the interposer, the first region having a first bump pattern density; A second conductive bump in the second region of the lower surface of the interposer, the second region having a second bump pattern density less than the first bump pattern density; And a dummy bump in the circumferential region of the lower surface of the interposer, the circumferential region surrounding the first and second regions. In an embodiment, the first conductive bump in the first region has a first bump pitch, the second conductive bump in the second region has a second bump pitch greater than the first bump pitch, and the dummy bump in the peripheral region is the first. It has a third bump pitch that matches the bump pitch. In an embodiment, the semiconductor device is in a third region of the lower surface of the interposer, the third region has a third bump pattern density less than the second bump pattern density and a fourth bump pitch greater than the second bump pitch. 3 further comprising a conductive bump, wherein the circumferential region surrounds the first region, the second region and the third region. In an embodiment, the first bump pattern density is greater than about 25%. In an embodiment, the first conductive bump and the second conductive bump have the same cross-sectional area.

앞의 설명은, 당업자가 본 개시의 양태를 보다 잘 이해할 수 있도록 다수의 실시예의 피쳐들을 약술한다. 당업자는, 여기에서 소개되는 실시예들의 동일한 목적을 이행하고/이행하거나 상기 실시예들의 동일한 이점을 달성하는 다른 프로세스 및 구조체를 구성 또는 수정하기 위한 기초로서 본 개시를 용이하게 사용할 수 있다는 점을 이해해야만 한다. 당업자는 또한, 그러한 등가의 구성은 본 개시의 사상 및 범위로부터 벗어나지 않으며, 당업자가 본 개시의 사상 및 범위로부터 벗어나는 일 없이 다양한 변화, 교체 및 변경을 실시할 수 있다는 점을 이해해야만 한다. The preceding description outlines features of multiple embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should understand that the present disclosure can be readily used as a basis for constructing or modifying other processes and structures that fulfill the same objectives of the embodiments introduced herein and / or achieve the same advantages of the above embodiments. Only. Those skilled in the art should also understand that such equivalent configurations are not departed from the spirit and scope of the present disclosure, and various changes, replacements, and modifications can be made by those skilled in the art without departing from the spirit and scope of the present disclosure.

Claims (10)

방법으로서,
인터포저의 제1 표면 상의 도전성 범프를 위한 제1 디자인 - 제1 디자인 내의 도전성 범프들은 동일한 단면적을 가짐 - 을 수용하는 단계;
제1 디자인의 도전성 범프들을 제1 표면의 제1 영역에 있는 제1 그룹의 도전성 범프와, 제1 표면의 제2 영역에 있는 제2 그룹의 도전성 범프로 그룹화하는 단계로서, 제2 영역의 범프 패턴 밀도는 제1 영역의 범프 패턴 밀도보다 낮은 것인 도전성 범프들을 그룹화하는 단계;
제1 디자인을 수정하는 것 - 제1 디자인을 수정하는 것은 제2 영역에 있는 제2 그룹의 도전성 범프의 단면적을 수정하는 것을 포함함 - 에 의해 제2 디자인을 형성하는 단계; 및
제2 디자인에 따라 인터포저의 제1 표면 상에 도전성 범프를 형성하는 단계
를 포함하고, 제2 디자인에 따라 인터포저의 제1 표면 상에 도전성 범프를 형성하는 단계 후, 제1 그룹의 도전성 범프와 제2 그룹의 도전성 범프는 상이한 단면적을 갖는 것인 방법.
As a method,
Receiving a first design for a conductive bump on the first surface of the interposer, wherein the conductive bumps in the first design have the same cross-sectional area;
Grouping the conductive bumps of the first design into a first group of conductive bumps in the first area of the first surface and a second group of conductive bumps in the second area of the first surface, the bumps of the second area Grouping the conductive bumps, wherein the pattern density is lower than the bump pattern density of the first region;
Modifying the first design, wherein modifying the first design includes modifying the cross-sectional area of the second group of conductive bumps in the second area; forming a second design; And
Forming a conductive bump on the first surface of the interposer according to the second design
And after forming a conductive bump on the first surface of the interposer according to the second design, the first group of conductive bumps and the second group of conductive bumps have different cross-sectional areas.
제1항에 있어서, 제1 그룹의 도전성 범프의 크기는 제1 디자인과 제2 디자인에서 변경되지 않은 채 유지되는 것인 방법. The method of claim 1, wherein the size of the first group of conductive bumps remains unchanged in the first and second designs. 제1항에 있어서, 도전성 범프를 형성하는 단계는
인터포저의 제1 표면 위에, 범프 개구를 갖는 패턴화 마스크층을 형성하는 단계; 및
패턴화 마스크층의 범프 개구 내에 도전성 재료를 형성하도록 도금 프로세스를 수행하는 단계
를 포함하는 것인 방법.
The method of claim 1, wherein forming the conductive bump
Forming a patterned mask layer having bump openings on the first surface of the interposer; And
Performing a plating process to form a conductive material in the bump openings of the patterned mask layer
How to include.
제1항에 있어서, 제1 디자인의 도전성 범프들을 그룹화하는 단계는, 제1 표면의 제3 영역에 있는 제3 그룹의 도전성 범프를 그룹화하는 단계를 더 포함하고, 제3 영역의 범프 패턴 밀도는 제2 영역의 범프 패턴 밀도보다 낮은 것인 방법.The method of claim 1, wherein grouping the conductive bumps of the first design further comprises grouping the third group of conductive bumps in the third area of the first surface, wherein the bump pattern density of the third area is The method is less than the bump pattern density of the second region. 방법으로서,
워크피스(workpiece)의 제1 표면 상의 도전성 범프를 위한 제1 디자인을 분석하는 단계로서, 상기 분석은 워크피스의 제1 표면을 제1 도전성 범프를 갖는 제1 영역과, 제2 도전성 범프를 갖는 제2 영역으로 나누는 것을 포함하고, 제1 영역에 있는 제1 도전성 범프의 제1 범프 패턴 밀도는 제2 영역에 있는 제2 도전성 범프의 제2 범프 패턴 밀도보다 크고, 제1 영역에 있는 제1 도전성 범프의 제1 범프 피치는 제2 영역에 있는 제2 도전성 범프의 제2 범프 피치보다 작은 것인 제1 디자인을 분석하는 단계;
제2 디자인을 형성하도록 제1 디자인을 수정하는 단계 - 제1 디자인을 수정하는 단계는 제2 범프 피치를 줄이기 위해 제2 영역에 더미 범프를 추가하는 단게를 포함함 - ;
제2 디자인에 따라 워크피스의 제1 표면 상에 도전성 범프와 더미 범프를 형성하는 단계; 및
도전성 범프를 통해 워크피스를 기판에 접합하는 단계
를 포함하는 방법.
As a method,
Analyzing a first design for a conductive bump on a first surface of a workpiece, the analysis comprising: a first area of the workpiece having a first region having a first conductive bump and a second conductive bump Dividing into a second region, the first bump pattern density of the first conductive bump in the first region is greater than the second bump pattern density of the second conductive bump in the second region, and the first in the first region Analyzing a first design wherein the first bump pitch of the conductive bump is less than the second bump pitch of the second conductive bump in the second region;
Modifying the first design to form a second design-modifying the first design includes steps to add dummy bumps to the second area to reduce the second bump pitch;
Forming a conductive bump and a dummy bump on the first surface of the workpiece according to the second design; And
Bonding the workpiece to the substrate via conductive bumps
How to include.
반도체 디바이스로서,
인터포저의 상부면에 부착되는 다이;
인터포저의 하부면의 제1 영역 - 제1 영역은 제1 범프 패턴 밀도를 가짐 - 에 있는 제1 도전성 범프;
인터포저의 하부면의 제2 영역 - 제2 영역은 제1 범프 패턴 밀도보다 작은 제2 범프 패턴 밀도를 가짐 - 에 있는 제2 도전성 범프; 및
인터포저의 하부면의 둘레 영역 - 둘레 영역은 제1 영역과 제2 영역을 둘러쌈 - 에 있는 더미 범프
를 포함하는 반도체 디바이스.
As a semiconductor device,
A die attached to the top surface of the interposer;
A first conductive bump in the first region of the lower surface of the interposer, the first region having a first bump pattern density;
A second conductive bump in the second region of the lower surface of the interposer, the second region having a second bump pattern density less than the first bump pattern density; And
Dummy bumps in the circumferential area of the lower surface of the interposer-the circumferential area surrounds the first and second areas
A semiconductor device comprising a.
제6항에 있어서, 제1 영역에 있는 제1 도전성 범프는 제1 범프 피치를 갖고, 제2 영역에 있는 제2 도전성 범프는 제1 범프 피치보다 큰 제2 범프 피치를 가지며, 둘레 영역에 있는 더미 범프는 제1 범프 피치에 매칭되는 제3 범프 피치를 갖는 것인 반도체 디바이스.7. The method of claim 6, wherein the first conductive bump in the first region has a first bump pitch, the second conductive bump in the second region has a second bump pitch greater than the first bump pitch, and is in the peripheral region The dummy bump has a third bump pitch that matches the first bump pitch. 제7항에 있어서, 인터포저의 하부면의 제3 영역 - 제3 영역은 제2 범프 패턴 밀도보다 작은 제3 범프 패턴 밀도와 제2 범프 피치보다 큰 제4 범프 피치를 가짐 - 에 있는 제3 도전성 범프를 더 포함하고, 둘레 영역은 제1 영역, 제2 영역 및 제3 영역을 둘러싸는 것인 반도체 디바이스.8. The third of claim 7, wherein the third area of the lower surface of the interposer-the third area has a third bump pattern density less than the second bump pattern density and a fourth bump pitch greater than the second bump pitch. A semiconductor device further comprising a conductive bump, wherein the circumferential region surrounds the first region, the second region, and the third region. 제6항에 있어서, 제1 범프 패턴 밀도는 25 %를 초과하는 것인 반도체 디바이스.7. The semiconductor device of claim 6, wherein the first bump pattern density is greater than 25%. 제6항에 있어서, 제1 도전성 범프와 제2 도전성 범프는 동일한 단면적을 갖는 것인 반도체 디바이스.The semiconductor device according to claim 6, wherein the first conductive bump and the second conductive bump have the same cross-sectional area.
KR1020190112010A 2018-09-28 2019-09-10 Semiconductor device and method for forming the same KR102309349B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862738929P 2018-09-28 2018-09-28
US62/738,929 2018-09-28
US16/448,755 US11211318B2 (en) 2018-09-28 2019-06-21 Bump layout for coplanarity improvement
US16/448,755 2019-06-21

Publications (2)

Publication Number Publication Date
KR20200037079A true KR20200037079A (en) 2020-04-08
KR102309349B1 KR102309349B1 (en) 2021-10-08

Family

ID=69946065

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190112010A KR102309349B1 (en) 2018-09-28 2019-09-10 Semiconductor device and method for forming the same

Country Status (2)

Country Link
KR (1) KR102309349B1 (en)
CN (1) CN110970396B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020088501A (en) * 2001-05-17 2002-11-29 송오성 Construction of dummy edge pads for COB package
KR20060110044A (en) * 2005-04-19 2006-10-24 삼성전자주식회사 Bga type semiconductor chip package having dummy solder ball and board mounting structure thereof
JP2006344824A (en) * 2005-06-09 2006-12-21 Nec Electronics Corp Semiconductor device and method for manufacturing semiconductor device
JP2014072487A (en) * 2012-10-01 2014-04-21 Panasonic Corp Semiconductor device and manufacturing method of the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4101042C1 (en) * 1991-01-16 1992-02-20 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De Contact and encapsulation of micro-circuits using solder laser - and laser transparent contact film segments with conductor sheets of solderable material, geometrically associated with solder protuberances
US8686560B2 (en) * 2010-04-07 2014-04-01 Maxim Integrated Products, Inc. Wafer-level chip-scale package device having bump assemblies configured to mitigate failures due to stress
KR101130498B1 (en) * 2010-04-27 2012-03-27 앰코 테크놀로지 코리아 주식회사 Semiconductor device having bump
WO2017179574A1 (en) * 2016-04-11 2017-10-19 株式会社村田製作所 Elastic wave element and elastic wave device
US9905527B1 (en) * 2016-12-15 2018-02-27 Micron Technology, Inc. Uniform electrochemical plating of metal onto arrays of pillars having different lateral densities and related technology

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020088501A (en) * 2001-05-17 2002-11-29 송오성 Construction of dummy edge pads for COB package
KR20060110044A (en) * 2005-04-19 2006-10-24 삼성전자주식회사 Bga type semiconductor chip package having dummy solder ball and board mounting structure thereof
JP2006344824A (en) * 2005-06-09 2006-12-21 Nec Electronics Corp Semiconductor device and method for manufacturing semiconductor device
JP2014072487A (en) * 2012-10-01 2014-04-21 Panasonic Corp Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
CN110970396A (en) 2020-04-07
CN110970396B (en) 2023-05-02
KR102309349B1 (en) 2021-10-08

Similar Documents

Publication Publication Date Title
US11094622B2 (en) Packaged semiconductor devices and methods of packaging thereof
US11476125B2 (en) Multi-die package with bridge layer
US10770437B2 (en) Semiconductor package and manufacturing method of the same
US11387214B2 (en) Multi-chip modules formed using wafer-level processing of a reconstituted wafer
US11901255B2 (en) Semiconductor device and method of forming the same
US20080230925A1 (en) Solder-bumping structures produced by a solder bumping method
US11304290B2 (en) Semiconductor structures and methods
US20240063177A1 (en) Semiconductor Device and Method of Forming the Same
CN112530892A (en) Semiconductor structure, packaging structure and method for forming semiconductor structure
US11211318B2 (en) Bump layout for coplanarity improvement
KR102309349B1 (en) Semiconductor device and method for forming the same
US20240063083A1 (en) Redistribution Structure with Warpage Tuning Layer
US20230378132A1 (en) Semiconductor package and method of manufacturing the same
TW202414614A (en) Semiconductor element

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant