KR20200032065A - 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법 및 장치 - Google Patents

짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법 및 장치 Download PDF

Info

Publication number
KR20200032065A
KR20200032065A KR1020200031570A KR20200031570A KR20200032065A KR 20200032065 A KR20200032065 A KR 20200032065A KR 1020200031570 A KR1020200031570 A KR 1020200031570A KR 20200031570 A KR20200031570 A KR 20200031570A KR 20200032065 A KR20200032065 A KR 20200032065A
Authority
KR
South Korea
Prior art keywords
aggregation level
search space
time interval
transmission time
downlink control
Prior art date
Application number
KR1020200031570A
Other languages
English (en)
Other versions
KR102121009B1 (ko
Inventor
김기태
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Publication of KR20200032065A publication Critical patent/KR20200032065A/ko
Application granted granted Critical
Publication of KR102121009B1 publication Critical patent/KR102121009B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 실시예들은 short TTI 프레임 구조에서 단말이 DCI를 검출하는 방법에 관한 것으로서, legacy PDCCH의 Search space와 sPDCCH의 Search space를 Search space의 유형 또는 집합 레벨 등에 기초하여 서로 분리하고 분리된 Search space에 관한 정보를 단말로 시그널링함으로써, 단말이 Blind decoding의 복잡도를 감소시키며 DCI를 검출할 수 있도록 한다.

Description

짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법 및 장치{METHOD AND APPARATUS FOR DETECTING DOWNLINK CONTROL INFORMATION IN A SHORT TTI FRAME STRUCTURE}
본 실시예들은 3GPP LTE/LTE-Advanced 시스템에서 하향링크 제어 정보를 검출하는 단말 및 기지국의 동작에 관한 것이다.
3GPP LTE/LTE-Advanced 시스템에서 latency reduction을 위한 연구와 논의가 진행되고 있다. Latency reduction의 주요 목적은 TCP throughput을 향상시키기 위해서 보다 짧은 TTI(이하, 'short TTI' 또는 'sTTI'라 함) 운영을 규격화하는 것이다.
이를 위해 RAN2에서는 short TTI에 대한 성능 검증을 수행하고 있으며, 0.5ms와 하나의 OFDM 심볼 사이에서 TTI 길이의 실현 가능성과 성능, 백워드 호환성 유지 등에 대한 논의가 진행 중이다.
이러한 short TTI에 대한 Physical layer에 대한 연구가 진행 중이며, DCI 구성 및 검출에 관한 논의가 진행 중이나, sPDCCH와 legacy PDCCH의 search space 구성 및 blind decoding에 대한 방안이 부재되어 있다.
본 실시예들의 목적은, short TTI 프레임 구조에서 sPDCCH와 legacy PDCCH의 search space 구성 및 blind decoding에 관한 구체적인 방안을 제공하는 데 있다.
일 측면에서, 본 실시예들은, 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법에 있어서, 제1 전송 시간 간격의 하향링크 제어 채널의 검색 공간을 제1 집합 레벨로 설정하는 단계와, 제2 전송 시간 간격의 하향링크 제어 채널의 검색 공간을 제2 집합 레벨로 설정하는 단계를 포함하고, 제1 집합 레벨과 제2 집합 레벨은 서로 분리된 방법을 제공한다.
다른 측면에서, 본 실시예들은, 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법에 있어서, 제1 집합 레벨로 설정된 제1 전송 시간 간격의 하향링크 제어 채널을 수신하는 단계와, 제2 집합 레벨로 설정된 제2 전송 시간 간격의 하향링크 제어 채널을 수신하는 단계와, 제1 집합 레벨과 제2 집합 레벨에 기초하여 블라인드 디코딩을 수행하는 단계를 포함하고, 제1 집합 레벨과 제2 집합 레벨은 서로 분리된 방법을 제공한다.
또한, 본 실시예들은, 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 단말에 있어서, 제1 집합 레벨로 설정된 제1 전송 시간 간격의 하향링크 제어 채널을 수신하고 제2 집합 레벨로 설정된 제2 전송 시간 간격의 하향링크 제어 채널을 수신하는 수신부와, 제1 집합 레벨과 제2 집합 레벨에 기초하여 블라인드 디코딩을 수행하는 제어부를 포함하고, 제1 집합 레벨과 제2 집합 레벨은 서로 분리된 단말을 제공한다.
본 실시예들에 의하면, short TTI 프레임 구조에서 하향링크 제어 정보(DCI) 송수신을 위한 search space 구성에 대한 구체적인 방안을 제공하며, 본 실시예들은 유사 시그널 및 채널에 그 원리가 그대로 적용될 수 있다.
도 1은 eNB and UE processing delays and HARQ RTT 를 나타낸 도면이다.
도 2는 resource mapping per PRB in one subframe 을 나타낸 도면이다.
도 3은 Search space 정의 개념도를 나타낸 도면이다.
도 4는 Common search space 정의 개념도를 나타낸 도면이다.
도 5는 UE-specific search space 정의 개념도를 나타낸 도면이다.
도 6은 본 실시예들에 따른 sTTI를 위한 search space 분리 개념도(방안 1)를 나타낸 도면이다.
도 7은 본 실시예들에 따른 sTTI를 위한 search space 분리 개념도(방안 3)를 나타낸 도면이다.
도 8은 본 실시예들에 따른 search space 분리시 방안 4-1에 따른 search space 기반 CCE indexing 방법을 나타낸 도면이다.
도 9는 본 실시예들에 따른 search space 분리시 방안 4-2에 따른 search space 기반 CCE indexing 방법을 나타낸 도면이다.
도 10은 본 실시예들에 따른 search space 분리시 방안 4-3에 따른 search space 기반 CCE indexing 방법을 나타낸 도면이다.
도 11과 도 12는 본 실시예들에 따른 sTTI 프레임 구조에서 DCI를 검출하는 방법의 과정을 나타낸 도면이다.
도 13은 본 실시예들에 따른 기지국의 구성을 나타낸 도면이다.
도 14는 본 실시예들에 따른 사용자 단말의 구성을 나타낸 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.
다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.
본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신 포인트를 통칭하여 기지국으로 지칭한다.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.
또한, LTE, LTE-advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다.
한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.
본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다.
실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다.
이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.
또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.
즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.
또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 PDCCH를 적용할 수 있다.
한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC 시그널링을 포함한다.
eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.
[Latency reduction in RAN1]
Latency reduction Study Item은 RAN plenary #69 회의에서 승인되었다[1]. Latency reduction의 주요 목적은 TCP throughput을 향상시키기 위해서 보다 짧은 TTI 운영을 규격화하는 것이다[2]. 이를 위해 RAN2에서는 이미 short TTI에 대한 성능 검증을 수행하였다[2].
아래와 같은 범위에서 RAN1에 관계된 potential impact들과 study를 수행한다[1]:
O Assess specification impact and study feasibility and performance of TTI lengths between 0.5ms and one OFDM symbol, taking into account impact on reference signals and physical layer control signaling
O backwards compatibility shall be preserved (thus allowing normal operation of pre-Rel 13 UEs on the same carrier);
Latency reduction can be achieved by the following physical layer techniques:
- short TTI
- reduced processing time in implementation
- new frame structure of TDD
3GPP RAN WG1#84회의에서 추가적으로 합의된 사항은 아래와 같다.
Agreements:
● Following design assumptions are considered:
O No shortened TTI spans over subframe boundary
O At least for SIBs and paging, PDCCH and legacy PDSCH are used for scheduling
● The potential specific impacts for the followings are studied
O UE is expected to receive a sPDSCH at least for downlink unicast
■ sPDSCH refers PDSCH carrying data in a short TTI
O UE is expected to receive PDSCH for downlink unicast
■ FFS whether a UE is expected to receive both sPDSCH and PDSCH for downlink unicast simultaneously
O FFS: The number of supported short TTIs
O If the number of supported short TTIs is more than one,
Agreements:
● Following design assumptions are used for the study
O From eNB perspective, existing non-sTTI and sTTI can be FDMed in the same subframe in the same carrier
■ FFS: Other multiplexing method(s) with existing non-sTTI for UE supporting latency reduction features
Agreements:
● In this study, following aspects are assumed in RAN1.
O PSS/SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified.
● Following aspects are further studied in the next RAN1 meeting
O Note: But the study is not limited to them.
O Design of sPUSCH DM-RS
■ Alt.1: DM-RS symbol shared by multiple short-TTIs within the same subframe
■ Alt.2: DM-RS contained in each sPUSCH
O HARQ for sPUSCH
■ Whether/how to realize asynchronous and/or synchronous HARQ
O sTTI operation for Pcell and/or SCells by (e)CA in addition to non-(e)CA case
3GPP RAN WG1#84bis회의에서 추가적으로 합의된 사항은 아래와 같다.
Working Assumption:
- 1-OFDM-symbol sTTI length will not be further studied
Agreement:
● sPDCCH (PDCCH for short TTI) needs to be introduced for short TTI.
- Each short TTI on DL may contain sPDCCH decoding candidates
Working Assumption:
● CRS-based sPDCCH is recommended to be supported
- FFS whether CRS-based sPDCCH can be transmitted in the legacy PDCCH region
● DMRS-based sPDCCH is recommended to be supported
● Design of both CRS-based sPDCCH and DMRS-based sPDCCH will be studied further.
Conclusions:
● A maximum number of BDs will be defined for sPDCCH in USS
● In case 2-level DCI is adopted, any DCI for sTTI scheduling carried on PDCCH may be taken into account in the maximum total number of BDs
● FFS whether the maximum number is dependent on the sTTI length
● FFS whether the maximum number of blind decodes for (E)PDCCH is reduced in subframes in which the UE is expected to perform blind decodes for sPDCCH
● FFS whether a UE may be expected to monitor both EPDCCH and sPDCCH in the same subframe
● FFS whether the maximum number of BDs on PDCCH is changed from the legacy number
● if DCI on PDCCH is for sTTI scheduling
Conclusion for study till RAN1#85:
● Two-level DCI can be studied for sTTI scheduling, whereby:
- DCI for sTTI scheduling can be divided into two types:
● "Slow DCI": DCI content which applies to more than 1 sTTI is carried on either legacy PDCCH, or sPDCCH transmitted not more than once per subframe
● FFS whether "Slow DCI" is UE-specific or common for multiple UEs
● "Fast DCI": DCI content which applies to a specific sTTI is carried on sPDCCH
● For a sPDSCH in a given sTTI, the scheduling information is obtained from either:
● a combination of slow DCI and fast DCI, or
● fast DCI only, overriding the slow DCI for that sTTI
- Compare with single-level DCI carried on one sPDCCH or one legacy PDCCH.
- It is not precluded to consider schemes in which the slow DCI also includes some resource allocation information for the sPDCCH.
● Methods for reducing the overhead of single-level DCI can also be studied
- Single-level DCI multi-sTTI scheduling for a variable number of sTTIs may be included
Aim to reduce the number of schemes under consideration at RAN1#85.
● Both CRS based TMs and DMRS based TMs are recommended to be supported for DL sTTI transmission
- No change for CRS definition
● FFS: Supporting more than 2 layers for sPDSCHs
- Further study is needed about DMRS design(s) for sPDSCH demodulation
● For a certain TTI length, increased PRB bundling sizes may be necessary to achieve sufficient channel estimation accuracy.
● FFS: the number of DMRS antenna ports that can be supported for a given short-TTI length.
● For a certain TTI length, new DMRS design(s) may be needed
Agreements:
● A UE is expected to handle the following cases in the same carrier in a subframe
- Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and short TTI unicast PDSCH
- Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and legacy TTI unicast PDSCH(s)
● FFS between:
- Alt 1: A UE is not expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier
- Alt 2: If the UE is scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier, then it may skip the decoding of one of them (FFS rules for determining which one)
- Alt 3: A UE is expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier
● FFS UE behaviour in case of being scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously with legacy TTI non-unicast PDSCH (except FFS for SC-PTM) on the same carrier
● A UE can be dynamically (with a subframe to subframe granularity) scheduled with legacy TTI unicast PDSCH and/or (depends on outcome of FFS above) short TTI PDSCH unicast
Agreements:
● A UE can be dynamically (with a subframe to subframe granularity) scheduled with PUSCH and/or sPUSCH
- A UE is not expected to transmit PUSCH and short TTI sPUSCH simultaneously on the same REs, i.e. by superposition
- FFS whether a UE may transmit PUSCH and short TTI sPUSCH in the same subframe on one carrier by puncturing PUSCH
- FFS whether a UE may transmit PUSCH and short TTI sPUSCH in different PRBs on the same symbol(s)
- Dropping/prioritization rules (if any) are FFS
Agreements:
● It is recommended to support PHICH-less asynchronous UL HARQ for PUSCH scheduled in a short TTI (i.e. for sPUSCH)
● If DL data transmission is scheduled in a short TTI, the processing time for preparing the HARQ feedback by UE and the processing time for preparing a potential retransmission by eNB are assumed to be reduced
- FFS: the extent of processing time reduction
● If UL data transmission is scheduled in a short TTI, the processing time for preparing UL data transmission upon UL grant reception at UE and the processing time for scheduling a potential retransmission by eNB are assumed to be reduced
- FFS: the extent of processing time reduction
● Study whether it is beneficial to limit the maximum TA value supported in conjunction with latency reduction
- Note that this would restrict the deployment scenarios for latency reduction.
● FFS whether processing time reductions can also be applied to legacy TTI transmissions for UEs that support short TTI
기본적으로 Average down-link latency calculation에서는 아래의 절차를 따라 latency를 계산하게 된다[3].
Following the same approach as in section B.2.1 in 3GPP TR 36.912, the LTE U-plane one-way latency for a scheduled UE consists of the fixed node processing delays and 1 TTI duration for transmission, as shown in Figure 1 below. Assuming the processing times can be scaled by the same factor of TTI reduction keeping the same number of HARQ processes, the one way latency can be calculated as
D = 1.5 TTI (eNB processing and scheduling) + 1 TTI (transmission) + 1.5 TTI (UE processing) + n*8 TTI (HARQ retransmissions)
= (4 + n*8) TTI.
Considering a typical case where there would be 0 or 1 retransmission, and assuming error probability of the first transmission to be p, the delay is given by
D = (4 + p*8) TTI.
So, for 0% BLER, D = 4 * TTI,
And for 10% BLER, D = 4.8 * TTI.
Average UE initiated UL transmission latency calculation
Assume UE is in connected/synchronized mode and wants to do UL transmission, e.g., to send TCP ACK. Following table shows the steps and their corresponding contribution to the UL transmission latency. To be consistent in comparison of DL and UL, we add the eNB processing delay in the UL after the UL data is received by the eNB (step 7).
Figure pat00001
In the table 1 above, steps 1-4 and half delay of step 5 is assumed to be due to SR, and rest is assumed for UL data transmission in values shown in Table 4
Resource mapping of short TTI [3]
In Figure 2 the resource map above is the legacy resource mapping per PRB in one subframe, considering 2 Antenna ports and 2 OFDM symbols control field. In Figure 2 the resource map below is the short TTI resource mapping, considering 2 OFDM symbols used for the control field in order to ensure the backward compatibility. The loss rates (Llegacy, e.g. 5% - 50%) of the PHY layer in short TTI duration are assumed.
TBS Calculation of short TTI
According to the resource mapping and the TBS calculation formula given above, the loss rate of PHY layer for legacy PDSCH is calculated as follows:
Figure pat00002
For different short TTI duration, The TBS of short TTI PDSCH is calculated as the following table 2:
Figure pat00003
상기와 같이 short TTI에 대한 Physical layer에 대한 연구가 진행 중이며, DCI 구성 및 검출에 대한 논의가 진행 중에 있다. 구체적으로는 sPDCCH와 legacy PDCCH의 search space 구성 및 blind decoding에 대한 방안이 부재되어 있다.
본 발명에서는 short TTI 프레임을 위한 sPDCCH와 legacy PDCCH의 search space 구성 및 blind decoding 방안을 제시한다.
기본적으로 PDCCH 검출에는 아래의 Aggregation level, PDCCH candidate를 기반으로 주어진 Hashing function에 기반한 blind decoding을 수행한다.
Figure pat00004
Figure pat00005
도 3은 Search space 정의 개념도를 나타낸 것이고, 도 4는 Common search space 정의 개념도를 나타낸 것이며, 도 5는 UE-specific search space 정의 개념도를 나타낸 것이다.
여기에서 주어진 hashing function을 이용한 Search space 정의 및 Blind decoding procedure는 아래와 같다.
1) Search space 정의
◆ Search Space (Cont'd)
● The variable Y k
√ For the COMMON search space
Figure pat00006
√ For the UE-specific search space
Figure pat00007
◆ Size of search space
● CCE units
● The size depends on the type and aggregation level of search space
● 4 kinds of size: 6, 8, 12, 16 [CCEs]
◆ Number of PDCCH candidates M (L)
● The set of PDCCH candidates to monitor are defined in terms of search spaces
● Mainly connected to the aggregation level
Figure pat00008
2) Relationship between Y k and search space
■ Offset of starting-point of search space
■ Offset(Y k ) has UE-specific value within UE-specific search space
■ Offset(Y k ) is fixed by zero in common search space
■ Example: CommonSearchSpace
√ Aggregation level (L): 4, N CCE = 35
√ Size of Search space: 16 CCEs
√ Number of candidate (M (L) ): 4
Y k =0(Y k does not get affected by n RNTI )
Figure pat00009
■ Example: UE-specific Search Space
√ Aggregation level (L): 4, N CCE = 35
√ Size of Search space: 8 CCEs
√ Number of candidate ( M (L) ): 2
Figure pat00010
Figure pat00011
결국 정의된 search space 를 기반으로 단말이 자신의 PDCCH를 찾기 위해서는 아래와 같은 최대 Blind decoding 수가 결정된다.
즉, 전체 aggregation level 1,2,4,8에 대해서 PDCCH 후보가 UESS=16, CSS=6이 존재한다. 따라서 각 Transmission mode에서 찾아야 하는 PDCCH format은 DCI format 1A + α'로 2개가 존재하기 때문에 총 Blind decoding 수는 44가 된다(Legacy PDCCH 기준).
Figure pat00012
본 제안에서는 sTTI에서 고려하는 있는 Two-level DCI 를 위한 Search space 정의 및 단말의 Blind decoding 동작에 관한 제안을 수행한다.
현재 latency reduction에서 고려하고 있는 Two-level DCI는 'slow DCI'와 'fast DCI'로 나눌 수 있다.
여기에서 추가로 고려해야 할 사항이 단말의 Blind decoding이다.
Blind decoding의 복잡도를 고려해야 하는 측면에서는 Blind decoding의 복잡도를 legacy PDCCH와 short PDCCH(sPDCCH)가 나누어 가지는 동작이 바람직하다. 따라서 아래와 같은 방법을 제안한다.
방안 1. Legacy PDCCH에서 상대적으로 큰 aggregation level의 search space를 정의하고, sPDCCH에서는 상대적으로 작은 aggregation level의 search space를 할당한다. 두 search space 간에는 동일한 aggregation level에 대한 blind decoding은 정의하지 않는다.
본 제안에서는 단말의 최대 Blind decoding을 최소로 증가시키기 위해서 legacy PDCCH 영역과 sPDCCH 영역에 search space를 분리 정의한다.
예를 들어 도 6과 같이 legacy PDCCH 영역에는 기존의 Common search space와 Aggregation level=4,8의 UE-specific search space만을 정의하고, 각 sTTI의 sPDCCH에서는 상대적으로 낮은 aggregation level-1,2의 UE-specific search space만을 정의한다.
이것은 sTTI 기반의 sPDCCH는 상대적으로 legacy PDCCH보다 가용 자원이 상대적으로 적을 것으로 예상되기 때문에, 상대적으로 작은 자원을 사용하는 aggregation level만을 sPDCCH 정의에 허용하게 된다. 기본적으로 Common search space는 aggregation level=4,8을 사용하기 때문에 legacy PDCCH에 정의하는 것이 오버헤드 감소에 이득이 될 것으로 보인다.
각 search space 분리에 대한 것은 sTTI configuration시에 추가 시그널링을 통해서 flexible한 적용이 가능하다. 즉 UE-specific search space의 Aggregation level L에 대한 셋을 시그널링으로 내려주면 단말은 설정된 방법에 따라서 설정된 search space의 aggregation level에 대한 Blind decoding을 수행한다.
구체적으로 예를 들어 도 6과 같은 경우에는 아래와 같은 blind decoding이 정의된다.
Figure pat00013
- Legacy PDCCH
O Common search space: Aggregation level L={4,8}
O UE specific search space: Aggregation level L={4,8}
- sPDCCH: BD 수=sTTI별 BD X No.of sTTI in a subframe
O UE specific search space: Aggregation level L={1,2}
방안 2. Legacy PDCCH에는 Common search space만을 정의하고, sPDCCH에는 UE-specific search space만을 정의한다.
본 제안에서는 앞서 언급한 방안 1과 달리 Common search space 영역까지 sPDCCH에 정의하는 것이 오버헤드로 작용할 수 있기 때문에 Common search space만을 legacy PDCCH에 정의하고, 나머지 모든 UE-specific search space들을 모두 sPDCCH에 정의함을 의미한다.
즉, legacy PDCCH에는 Common search space에 해당하는 Aggregation level L=4,8이 정의되고, sPDCCH에는 UE-Specific search space에 해당하는 Aggregation level L=1,2,4,8이 정의된다.
구체적으로 예를 들어 아래 식과 같이 hashing function이 정의될 수 있다.
Figure pat00014
- Legacy PDCCH
o Common search space: Aggregation level L={4,8}
- sPDCCH: BD 수=sTTI별 BD X No.of sTTI in a subframe
o UE specific search space: Aggregation level L={1,2,4,8}
방안 3. sPDCCH에는 최소 aggregation level만을 정의하고, 나머지 search space는 legacy PDCCH에 정의한다.
본 제안에서는 최소 aggregation level만을 sPDCCH에 할당하고, 나머지 search space에 대해서는 legacy PDCCH에 할당한다.
예를 들어 현재 3GPP LTE/LTE-Advanced 표준에 정의된 search space 중 가장 낮은 aggregation level은 L=1이다. 따라서 이와 같은 경우에는 가장 낮은 aggregation level은 1이기 때문에 도 7과 같은 search space 할당이 이루어지게 된다.
결과적으로 해당 기법은 sPDCCH에 가장 낮은 자원을 필요로 하는 기법이기 때문에 sTTI의 control overhead가 가장 낮은 방식으로 운용할 수 있다.
구체적으로 예를 들어 도 7과 같은 경우에는 아래와 같은 blind decoding이 정의된다.
Figure pat00015
- Legacy PDCCH
O Common search space: Aggregation level L={4,8}
O UE specific search space: Aggregation level L={2,4,8}
- sPDCCH: BD 수=sTTI별 BD X No.of sTTI in a subframe
O UE specific search space: Aggregation level L={1}
방안 4. sPDSCH A/N 설정을 위한 Lowest CCE index는 sTTI 서브프레임 단위의 offset을 적용하여 정의한다.
본 제안에서는 search space 분리에 따른 CCE indexing 방안을 제시한다. 각자 영역별로 별도의 CCE index을 수행할 수 있지만, 경우에 따라서는 서브프레임 내에서 legacy PDCCH와 sPDCCH에 정의된 search space의 정렬이 필요할 수 있다.
따라서 본 제안에서는 아래와 같이 총 3가지의 search space의 CCE indexing방법을 제시한다.
방안 4-1) legacy PDCCH와 sPDCCH는 별도의 search space를 구성한다.
도 8은 legacy PDCCH와 sPDCCH가 별도의 search space를 구성하는 예시를 나타낸 것이다.
도 8을 참조하면, legacy PDCCH와 sPDCCH의 search space가 별도로 구성되어 CCE index가 각각 독립적으로 부여된다.
방안 4-2) legacy PDCCH에 이어서 sTTI별 sPDCCH를 연결하여 search space를 구성한다.
도 9는 legacy PDCCH에 sTTI별 sPDCCH를 연결하여 search space를 구성하는 예시를 나타낸 것이다.
도 9를 참조하면, legacy PDCCH에 이어서 각각의 sTTI별 sPDCCH가 연결되어 search space를 구성한다. 따라서, 각각의 sTTI별 sPDCCH의 CCE index는 legacy PDCCH의 CCE index에 이어서 부여되게 된다.
방안 4-3) legacy PDCCH에 sTTI별 offset을 두어서 연속적인 search space를 구성한다.
도 10은 legacy PDCCH에 sTTI별 offset을 두고 sPDCCH를 연결하여 search space를 구성하는 예시를 나타낸 것이다.
도 10을 참조하면, legacy PDCCH에 sPDCCH가 순차적으로 연결되어 search space를 구성하므로, sPDCCH의 CCE index는 legacy PDCCH, sTTI#0의 sPDCCH, sTTI#1의 sPDCCH, ..., sTTI#N의 sPDCCH의 순서로 부여되게 된다.
본 발명에서는 sTTI 기반 DCI 송수신을 위한 search space 구성에 대한 구체적인 방법에 대해 기술하였으며, 해당 방법은 유사 시그널 및 채널에 그 원리가 그대로 적용할 수 있다.
도 11은 본 실시예들에 따른 sTTI 프레임 구조에서 DCI를 검출하는 방법의 과정을 나타낸 것으로서, 기지국이 legacy PDCCH와 sPDCCH를 위한 search space를 구성하는 방식을 나타낸 것이다.
도 11을 참조하면, 기지국은 legacy PDCCH의 search space를 설정하고(S1100), sPDCCH의 search space를 설정한다(S1110).
여기서, 기지국은 legacy PDCCH와 sPDCCH의 search space를 분리하여 구성할 수 있다.
일 예로, 기지국은 legacy PDCCH의 search space는 상대적으로 큰 Aggregation level(예, L=4,8)로 구성하고, sPDCCH의 search space는 상대적으로 작은 Aggregation level(예, L=1,2)로 구성하여 legacy PDCCH와 sPDCCH의 search space를 분리할 수 있다.
여기서, sPDCCH의 search space는 Aggregation level 가장 작은 L=1로만 구성하고, legacy PDCCH는 나머지 Aggregation level인 L=2,4,8로 구성되도록 할 수도 있다.
또는, legacy PDCCH의 search space는 Common search space로 구성하고, sPDCCH의 search space는 UE-specific search space로 구성할 수도 있다.
기지국은 legacy PDCCH의 Search space의 Aggregation level에 관한 정보와 sPDCCH의 Search space의 Aggregation level에 관한 정보를 단말로 전송하며(S1120), Aggregation level에 관한 정보를 sTTI configuration 시에 추가 시그널링을 통해 전송할 수 있다.
도 12는 본 실시예들에 따른 sTTI 프레임 구조에서 DCI를 검출하는 방법의 과정을 나타낸 것으로서, 단말이 Blind decoding을 수행하는 방식을 나타낸 것이다.
도 12를 참조하면, 단말은 기지국으로부터 legacy PDCCH와 sPDCCH를 수신한다(S1200).
그리고, 단말은 sTTI configuration 정보를 통해 legacy PDCCH와 sPDCCH의 Search space를 구성하는 Aggregation level에 관한 정보를 수신한다(S1210).
일 예로, legacy PDCCH의 Search space는 상대적으로 큰 Aggregation level L=4,8로 구성되고, sPDCCH의 Search space는 상대적으로 작은 Aggregation level L=1,2로 구성된 Search space 정보를 수신할 수 있다.
이때, sPDCCH의 Search space는 최소 Aggregation level L=1로만 구성될 수도 있다.
또는, legacy PDCCH의 Search space는 Common search space에 해당하는 Aggregation level로 구성되고, sPDCCH의 Search space는 UE-specific search space로 구성된 Search space 정보를 수신할 수도 있다.
단말은 기지국으로부터 수신한 Search space에 관한 정보, 즉, 각각의 PDCCH에 정의된 Aggregation level에 관한 정보를 확인하고, 이에 기초하여 Blind decoding을 수행한다(S1220).
Legacy PDCCH의 Search space와 sPDCCH의 Search space를 분리하고 분리된 Search space에 관한 정보를 단말로 시그널링함으로써, 단말이 Blind decoding의 복잡도를 감소시키며 Blind decoding을 수행할 수 있도록 한다.
도 13은 본 실시예들에 따른 기지국(1300)의 구성을 나타낸 것이다.
도 13을 참조하면, 본 실시예들에 따른 기지국(1300)은, 제어부(1310)와 송신부(1320), 수신부(1330)를 포함한다.
제어부(1310)는, 전술한 본 실시예들이 short TTI 프레임을 위한 sPDCCH와 legacy PDCCH의 search space 구성 및 blind decoding 방식을 제공함에 따른 전반적인 기지국(1300)의 동작을 제어한다.
송신부(1320)와 수신부(1330)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다.
도 14는 본 실시예들에 따른 사용자 단말(1400)의 구성을 나타낸 것이다.
도 14를 참조하면, 본 실시예에 의한 사용자 단말(1400)은 수신부(1410) 및 제어부(1420), 송신부(1430)를 포함한다.
수신부(1410)는, 기지국으로부터 하향링크 제어 정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.
또한, 제어부(1420)는, 전술한 본 실시예들이 short TTI 프레임을 위한 sPDCCH와 legacy PDCCH의 search space 구성 및 blind decoding 방식을 제공함에 따른 전반적인 사용자 단말(1400)의 동작을 제어한다.
송신부(1430)는, 기지국에 상향링크 제어 정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.
전술한 실시예에서 언급한 표준내용 또는 표준문서들은 명세서의 설명을 간략하게 하기 위해 생략한 것으로 본 명세서의 일부를 구성한다. 따라서, 위 표준내용 및 표준문서들의 일부의 내용을 본 명세서에 추가하거나 청구범위에 기재하는 것은 본 발명의 범위에 해당하는 것으로 해석되어야 한다.
Appendix
[1] Ericsson, Huawei, "New SI proposal Study on Latency reduction techniques for LTE", RP-150465, Shanghai, China, March 9-12, 2015.
[2] R2-155008, "TR 36.881 v0.4.0 on Study on Latency reduction techniques for LTE", Ericsson (Rapporteur)
[3] R1-160927, "TR 36.881-v0.5.0 on Study on Latency reduction techniques for LTE", Ericsson (Rapporteur)
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (12)

  1. 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법에 있어서,
    제1 집합 레벨로 설정된 제1 전송 시간 간격의 하향링크 제어 채널을 수신하는 단계;
    제2 집합 레벨로 설정된 제2 전송 시간 간격의 하향링크 제어 채널을 수신하는 단계; 및
    상기 제1 집합 레벨과 상기 제2 집합 레벨에 기초하여 블라인드 디코딩을 수행하는 단계를 포함하고,
    상기 제2 전송 시간 간격이 짧은 전송 시간 간격(sTTI)인 경우, 단말 특이적 검색 공간에 대하여 집합 레벨이 1, 2, 4 및 8로 구성되고, 1, 2, 4 및 8 중 적어도 하나를 지시하는 정보가 기지국으로부터 수신되며,
    상기 기지국으로부터 상기 짧은 전송 시간 간격(sTTI) 구성정보를 수신하는 단계를 더 포함하고,
    상기 짧은 전송 시간 간격 구성정보는,
    구성된 상기 단말 특이적 검색 공간에 대한 집합 레벨 중 상기 적어도 하나를 지시하는 정보를 포함하며,
    상기 디코딩을 수행하는 단계는,
    상기 제2 전송 시간 간격의 하향링크 제어 채널에 대해서, 상기 짧은 전송 시간 간격 구성정보에 기초하여 지시된 상기 적어도 하나의 집합 레벨에 기초하여 블라인드 디코딩을 수행하는 방법.
  2. 제1항에 있어서,
    상기 제1 집합 레벨과 상기 제2 집합 레벨은 서로 별개로 설정되는 방법.
  3. 제1항에 있어서,
    상기 제1 집합 레벨은 공용 검색 공간에 해당하는 집합 레벨이고, 상기 제2 집합 레벨은 단말 특이적 검색 공간에 해당하는 집합 레벨인 방법.
  4. 제1항에 있어서,
    상기 제1 전송 시간 간격의 하향링크 제어 채널의 검색 공간과 상기 제2 전송 시간 간격의 하향링크 제어 채널의 검색 공간은 서로 별개로 구성되는 방법.
  5. 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법에 있어서,
    제1 집합 레벨로 설정된 제1 전송 시간 간격의 하향링크 제어 채널을 설정하는 단계; 및
    제2 집합 레벨로 설정된 제2 전송 시간 간격의 하향링크 제어 채널을 설정하는 단계를 포함하고,
    상기 제2 전송 시간 간격이 짧은 전송 시간 간격(sTTI)인 경우, 단말 특이적 검색 공간에 대하여 집합 레벨이 1, 2, 4 및 8로 구성되고, 1, 2, 4 및 8 중 적어도 하나를 지시하는 정보가 단말로 전송되며,
    상기 단말로 상기 짧은 전송 시간 간격(sTTI) 구성정보를 전송하는 단계를 더 포함하고,
    상기 짧은 전송 시간 간격 구성정보는,
    구성된 상기 단말 특이적 검색 공간에 대한 집합 레벨 중 상기 적어도 하나를 지시하는 정보를 포함하며,
    상기 단말은, 상기 제1 집합 레벨과 상기 제2 집합 레벨에 기초하여 블라인드 디코딩을 수행하되, 상기 제2 전송 시간 간격의 하향링크 제어 채널에 대해서, 상기 짧은 전송 시간 간격 구성정보에 기초하여 지시된 상기 적어도 하나의 집합 레벨에 기초하여 블라인드 디코딩을 수행하는 방법.
  6. 제5항에 있어서,
    상기 제1 집합 레벨과 상기 제2 집합 레벨은 서로 별개로 설정되는 방법.
  7. 제5항에 있어서,
    상기 제1 집합 레벨은 공용 검색 공간에 해당하는 집합 레벨이고, 상기 제2 집합 레벨은 단말 특이적 검색 공간에 해당하는 집합 레벨인 방법.
  8. 제5항에 있어서,
    상기 제1 전송 시간 간격의 하향링크 제어 채널의 검색 공간과 상기 제2 전송 시간 간격의 하향링크 제어 채널의 검색 공간은 서로 별개로 구성되는 방법.
  9. 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 단말에 있어서,
    제1 집합 레벨로 설정된 제1 전송 시간 간격의 하향링크 제어 채널을 수신하고, 제2 집합 레벨로 설정된 제2 전송 시간 간격의 하향링크 제어 채널을 수신하는 수신부; 및
    상기 제1 집합 레벨과 상기 제2 집합 레벨에 기초하여 블라인드 디코딩을 수행하는 제어부를 포함하고,
    상기 제2 전송 시간 간격이 짧은 전송 시간 간격(sTTI)인 경우, 단말 특이적 검색 공간에 대하여 집합 레벨이 1, 2, 4 및 8로 구성되고, 1, 2, 4 및 8 중 적어도 하나를 지시하는 정보가 기지국으로부터 수신되며,
    상기 수신부는,
    상기 기지국으로부터 상기 짧은 전송 시간 간격(sTTI) 구성정보를 수신하고,
    상기 짧은 전송 시간 간격 구성정보는,
    구성된 상기 단말 특이적 검색 공간에 대한 집합 레벨 중 상기 적어도 하나를 지시하는 정보를 포함하며,
    상기 제어부는,
    상기 제2 전송 시간 간격의 하향링크 제어 채널에 대해서, 상기 짧은 전송 시간 간격 구성정보에 기초하여 지시된 상기 적어도 하나의 집합 레벨에 기초하여 블라인드 디코딩을 수행하는 단말.
  10. 제9항에 있어서,
    상기 제1 집합 레벨과 상기 제2 집합 레벨은 서로 별개로 설정되는 단말.
  11. 제9항에 있어서,
    상기 제1 집합 레벨은 공용 검색 공간에 해당하는 집합 레벨이고, 상기 제2 집합 레벨은 단말 특이적 검색 공간에 해당하는 집합 레벨인 단말.
  12. 제9항에 있어서,
    상기 제1 전송 시간 간격의 하향링크 제어 채널의 검색 공간과 상기 제2 전송 시간 간격의 하향링크 제어 채널의 검색 공간은 서로 별개로 구성되는 단말.
KR1020200031570A 2016-05-12 2020-03-13 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법 및 장치 KR102121009B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160058317 2016-05-12
KR1020160058317 2016-05-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170056011A Division KR102093906B1 (ko) 2016-05-04 2017-05-02 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20200032065A true KR20200032065A (ko) 2020-03-25
KR102121009B1 KR102121009B1 (ko) 2020-06-11

Family

ID=60809642

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020170056011A KR102093906B1 (ko) 2016-05-04 2017-05-02 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법 및 장치
KR1020200031570A KR102121009B1 (ko) 2016-05-12 2020-03-13 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법 및 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020170056011A KR102093906B1 (ko) 2016-05-04 2017-05-02 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법 및 장치

Country Status (1)

Country Link
KR (2) KR102093906B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140031120A (ko) * 2012-09-04 2014-03-12 삼성전자주식회사 제어 채널 엘리먼트들에 대한 어그리게이션 레벨들 개수 조정 장치 및 방법
WO2015140601A1 (en) * 2014-03-21 2015-09-24 Telefonaktiebolaget L M Ericsson (Publ) Adaptive outer loop for physical downlink channel link adaptation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140031120A (ko) * 2012-09-04 2014-03-12 삼성전자주식회사 제어 채널 엘리먼트들에 대한 어그리게이션 레벨들 개수 조정 장치 및 방법
WO2015140601A1 (en) * 2014-03-21 2015-09-24 Telefonaktiebolaget L M Ericsson (Publ) Adaptive outer loop for physical downlink channel link adaptation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP R1-162405* *
3GPP R1-162588* *

Also Published As

Publication number Publication date
KR102121009B1 (ko) 2020-06-11
KR102093906B1 (ko) 2020-03-27
KR20170128757A (ko) 2017-11-23

Similar Documents

Publication Publication Date Title
KR101919636B1 (ko) 하향링크 제어 채널을 송수신하는 방법 및 그 장치
US11431461B2 (en) Method and apparatus for transmitting and receiving control information and data in frame structure of short transmission time interval
US20210351874A1 (en) Method and device for scheduling uplink control channel in next generation wireless network
US20180279326A1 (en) Method for transmitting and receiving downlink pre-emption indication information using bitmap in new radio networks and apparatus thereof
CN109842952B (zh) LTE中发送和接收数据信道的基于多sTTI的调度的方法和装置
EP3534561B1 (en) Method and device for allocating data channel resource for next-generation wireless access network
EP3735023A1 (en) User terminal, radio base station and radio communication method
US20230056636A1 (en) Method and device for allocating data channel resource for next-generation wireless access network
KR101562704B1 (ko) 하향링크 제어채널에서의 블라인드 디코딩을 조절하는 방법 및 장치
KR102237525B1 (ko) Short TTI를 위한 프레임 구조 설정 및 정보 전송 방법 및 그 장치
CN108702280B (zh) 基于共享的解调参考信号来建立上行链路数据信道的方法及其装置
KR102120976B1 (ko) 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법 및 장치
KR102121009B1 (ko) 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법 및 장치
US20180270797A1 (en) Method of transmitting and receiving downlink channel in short tti frame structure and apparatus thereof
KR20140031793A (ko) 하향링크 제어채널의 블라인드 디코딩을 제어하는 방법 및 장치
KR20180046445A (ko) Short TTI 프레임 구조에서 legacy PDCCH를 고려한 DCI 검출 방법 및 그 장치
KR20170131807A (ko) Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법 및 그 장치
KR20180036909A (ko) 커버리지 확장을 위한 상향링크 데이터 채널 송수신 방법 및 장치
KR20170114071A (ko) Short TTI 프레임 구조에서 sPUSCH 관련 Ack/Nack 연결 설정 방법 및 그 장치
KR20180046444A (ko) Short TTI 프레임 구조에서 slow DCI 설정 방법 및 그 장치
KR20150029510A (ko) 하향링크 제어 정보 전송 방법 및 그 장치
KR20180105053A (ko) 짧은 전송 시간 간격의 프레임 구조에서 하향 링크 채널을 송수신하는 방법 및 그 장치
KR20180004392A (ko) 짧은 전송 시간 간격 프레임 구조에서 상향링크 제어 채널을 설정하는 방법 및 그 장치
KR20190056560A (ko) LTE URLLC에서 false-alarm 감소를 위한 제어 채널 설계 방법
KR20180036886A (ko) 상향 링크 harq 동작 방법 및 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant