KR20170131807A - Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법 및 그 장치 - Google Patents

Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법 및 그 장치 Download PDF

Info

Publication number
KR20170131807A
KR20170131807A KR1020160062419A KR20160062419A KR20170131807A KR 20170131807 A KR20170131807 A KR 20170131807A KR 1020160062419 A KR1020160062419 A KR 1020160062419A KR 20160062419 A KR20160062419 A KR 20160062419A KR 20170131807 A KR20170131807 A KR 20170131807A
Authority
KR
South Korea
Prior art keywords
pusch
spusch
transmission
legacy
short
Prior art date
Application number
KR1020160062419A
Other languages
English (en)
Inventor
김기태
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to KR1020160062419A priority Critical patent/KR20170131807A/ko
Publication of KR20170131807A publication Critical patent/KR20170131807A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04W72/0413
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 short PUSCH와 legacy PUSCH가 동시에 스케줄링을 해야 하는 상황에 대한 구체적인 해결 방안을 제시하는 것으로서, 본 제안에서는 기지국이 단말에게 PUSCH/sPUSCH 동시 스케줄링을 하는 프로세스에 대한 단말의 대응 동작을 제안한다.

Description

Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법 및 그 장치{Apparatus and method of scheduling legacy PUSCH and short PUSCH in a short TTI frame structure}
본 실시예들은 3GPP LTE/LTE-A 시스템에서 short TTI 기반 sPUSCH와 legacy PUSCH의 스케줄링 방안에 관한 것이다.
일 실시예는, 기지국으로부터 short TTI 정의에 따른 sPUSCH 스케줄링 비율 정보인 overload indicator를 수신하는 단계와, 수신된 overload indicator를 확인하는 단계와, 확인된 overload indicator에 따라 PUSCH 또는 sPUSCH 전송을 수행하는 단계를 포함하는 Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법을 제공할 수 있다.
도 1은 eNB and UE processing delays and HARQ RTT 를 나타낸 도면이다.
도 2는 resource mapping per PRB in one subframe 을 나타낸 도면이다.
도 3은 sPUSCH의 전송에 따른 overloading 정의 개념도를 나타낸 도면이다.
도 4는 Overlapping region puncturing 개념도를 나타낸 도면이다.
도 5는 Overlapping region sPUSCH dropping 개념도를 나타낸 도면이다.
도 6은 Overlapping region legacy PUSCH dropping 개념도를 나타낸 도면이다.
도 7은 Overlapping region legacy PUSCH shifting 개념도를 나타낸 도면이다.
도 8 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 9 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.
다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.
본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신 포인트를 통칭하여 기지국으로 지칭한다.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.
또한, LTE, LTE-advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다.
한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.
본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다.
실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다.
이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.
또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.
즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.
또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 PDCCH를 적용할 수 있다.
한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC시그널링을 포함한다.
eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.
[Latency reduction in RAN1]
Latency reduction Study Item은 RAN plenary #69 회의에서 승인되었다 [1]. Latency reduction의 주요 목적은 TCP throughput을 행상시키기 위해서 보다 짧은 TTI 운영을 규격화하는 것이다[2]. 이를 위해 RAN2에서는 이미 short TTI에 대한 성능 검증을 수행하였다[2].
아래와 같은 범위에서 RAN1에 관계된 potential impact들과 study를 수행한다[1]:
o Assess specification impact and study feasibility and performance of TTI lengths between 0.5ms and one OFDM symbol, taking into account impact on reference signals and physical layer control signaling
o backwards compatibility shall be preserved (thus allowing normal operation of pre-Rel 13 UEs on the same carrier);
Latency reduction can be achieved by the following physical layer techniques:
- short TTI
- reduced processing time in implementation
- new frame structure of TDD
3GPP RAN WG1#84회의에서 추가적으로 합의된 사항은 아래와 같다.
Agreements:
● Following design assumptions are considered:
o No shortened TTI spans over subframe boundary
o At least for SIBs and paging, PDCCH and legacy PDSCH are used for scheduling
● The potential specific impacts for the followings are studied
o UE is expected to receive a sPDSCH at least for downlink unicast
■ sPDSCH refers PDSCH carrying data in a short TTI
o UE is expected to receive PDSCH for downlink unicast
■ FFS whether a UE is expected to receive both sPDSCH and PDSCH for downlink unicast simultaneously
o FFS: The number of supported short TTIs
o If the number of supported short TTIs is more than one,
Agreements:
● Following design assumptions are used for the study
o From eNB perspective, existing non-sTTI and sTTI can be FDMed in the same subframe in the same carrier
■ FFS: Other multiplexing method(s) with existing non-sTTI for UE supporting latency reduction features
Agreements:
● In this study, following aspects are assumed in RAN1.
o PSS/SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified.
● Following aspects are further studied in the next RAN1 meeting
o Note: But the study is not limited to them.
o Design of sPUSCH DM-RS
■ Alt.1: DM-RS symbol shared by multiple short-TTIs within the same subframe
■ Alt.2: DM-RS contained in each sPUSCH
o HARQ for sPUSCH
■ Whether/how to realize asynchronous and/or synchronous HARQ
o sTTI operation for Pcell and/or SCells by (e)CA in addition to non-(e)CA case
3GPP RAN WG1#84bis회의에서 추가적으로 합의된 사항은 아래와 같다.
Working Assumption:
- 1-OFDM-symbol sTTI length will not be further studied
Agreement:
● sPDCCH (PDCCH for short TTI) needs to be introduced for short TTI.
● Each short TTI on DL may contain sPDCCH decoding candidates
Working Assumption:
● CRS-based sPDCCH is recommended to be supported
- FFS whether CRS-based sPDCCH can be transmitted in the legacy PDCCH region
● DMRS-based sPDCCH is recommended to be supported
● Design of both CRS-based sPDCCH and DMRS-based sPDCCH will be studied further.
Conclusions:
● A maximum number of BDs will be defined for sPDCCH in USS
● In case 2-level DCI is adopted, any DCI for sTTI scheduling carried on PDCCH may be taken into account in the maximum total number of BDs
● FFS whether the maximum number is dependent on the sTTI length
● FFS whether the maximum number of blind decodes for (E)PDCCH is reduced in subframes in which the UE is expected to perform blind decodes for sPDCCH
● FFS whether a UE may be expected to monitor both EPDCCH and sPDCCH in the same subframe
● FFS whether the maximum number of BDs on PDCCH is changed from the legacy number
● if DCI on PDCCH is for sTTI scheduling
Conclusion for study till RAN1#85:
● Two-level DCI can be studied for sTTI scheduling, whereby:
- DCI for sTTI scheduling can be divided into two types:
● "Slow DCI": DCI content which applies to more than 1 sTTI is carried on either legacy PDCCH, or sPDCCH transmitted not more than once per subframe
● FFS whether "Slow DCI" is UE-specific or common for multiple UEs
● "Fast DCI": DCI content which applies to a specific sTTI is carried on sPDCCH
● For a sPDSCH in a given sTTI, the scheduling information is obtained from either:
● a combination of slow DCI and fast DCI, or
● fast DCI only, overriding the slow DCI for that sTTI
- Compare with single-level DCI carried on one sPDCCH or one legacy PDCCH.
- It is not precluded to consider schemes in which the slow DCI also includes some resource allocation information for the sPDCCH.
● Methods for reducing the overhead of single-level DCI can also be studied
- Single-level DCI multi-sTTI scheduling for a variable number of sTTIs may be included
Aim to reduce the number of schemes under consideration at RAN1#85.
Agreements:
● Both CRS based TMs and DMRS based TMs are recommended to be supported for DL sTTI transmission
- No change for CRS definition
● FFS: Supporting more than 2 layers for sPDSCHs
- Further study is needed about DMRS design(s) for sPDSCH demodulation
● For a certain TTI length, increased PRB bundling sizes may be necessary to achieve sufficient channel estimation accuracy.
● FFS: the number of DMRS antenna ports that can be supported for a given short-TTI length.
● For a certain TTI length, new DMRS design(s) may be needed
Agreements:
● A UE is expected to handle the following cases in the same carrier in a subframe
- Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and short TTI unicast PDSCH
- Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and legacy TTI unicast PDSCH(s)
● FFS between:
- Alt 1: A UE is not expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier
- Alt 2: If the UE is scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier, then it may skip the decoding of one of them (FFS rules for determining which one)
- Alt 3: A UE is expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier
● FFS UE behaviour in case of being scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously with legacy TTI non-unicast PDSCH (except FFS for SC-PTM) on the same carrier
● A UE can be dynamically (with a subframe to subframe granularity) scheduled with legacy TTI unicast PDSCH and/or (depends on outcome of FFS above) short TTI PDSCH unicast
Agreements:
● A UE can be dynamically (with a subframe to subframe granularity) scheduled with PUSCH and/or sPUSCH
- A UE is not expected to transmit PUSCH and short TTI sPUSCH simultaneously on the same REs, i.e. by superposition
- FFS whether a UE may transmit PUSCH and short TTI sPUSCH in the same subframe on one carrier by puncturing PUSCH
- FFS whether a UE may transmit PUSCH and short TTI sPUSCH in different PRBs on the same symbol(s)
- Dropping/prioritization rules (if any) are FFS
Agreements:
● It is recommended to support PHICH-less asynchronous UL HARQ for PUSCH scheduled in a short TTI (i.e. for sPUSCH)
● If DL data transmission is scheduled in a short TTI, the processing time for preparing the HARQ feedback by UE and the processing time for preparing a potential retransmission by eNB are assumed to be reduced
- FFS: the extent of processing time reduction
● If UL data transmission is scheduled in a short TTI, the processing time for preparing UL data transmission upon UL grant reception at UE and the processing time for scheduling a potential retransmission by eNB are assumed to be reduced
- FFS: the extent of processing time reduction
● Study whether it is beneficial to limit the maximum TA value supported in conjunction with latency reduction
- Note that this would restrict the deployment scenarios for latency reduction.
● FFS whether processing time reductions can also be applied to legacy TTI transmissions for UEs that support short TTI
기본적으로 Average down-link latency calculation에서는 아래의 절차를 따라 latency를 계산하게 된다 [3].
Following the same approach as in section B.2.1 in 3GPP TR 36.912, the LTE U-plane one-way latency for a scheduled UE consists of the fixed node processing delays and 1 TTI duration for transmission, as shown in Figure 1 below. Assuming the processing times can be scaled by the same factor of TTI reduction keeping the same number of HARQ processes, the one way latency can be calculated as
D = 1.5 TTI (eNB processing and scheduling) + 1 TTI (transmission) + 1.5 TTI (UE processing) + n*8 TTI (HARQ retransmissions)
= (4 + n*8) TTI.
Considering a typical case where there would be 0 or 1 retransmission, and assuming error probability of the first transmission to be p, the delay is given by
D = (4 + p*8) TTI.
So, for 0% BLER, D = 4 * TTI,
And for 10% BLER, D = 4.8 * TTI.
Average UE initiated UL transmission latency calculation
Assume UE is in connected/synchronized mode and wants to do UL transmission, e.g., to send TCP ACK. Following table 1 shows the steps and their corresponding contribution to the UL transmission latency. To be consistent in comparison of DL and UL, we add the eNB processing delay in the UL after the UL data is received by the eNB (step 7).
Figure pat00001
In the table 1 above, steps 1-4 and half delay of step 5 is assumed to be due to SR, and rest is assumed for UL data transmission in values shown in Table 4
Resource mapping of short TTI [3]
In Figure 2 the resource map above is the legacy resource mapping per PRB in one subframe, considering 2 Antenna ports and 2 OFDM symbols control field. In Figure 2 the resource map below is the short TTI resource mapping, considering 2 OFDM symbols used for the control field in order to ensure the backward compatibility. The loss rates (Llegacy, e.g. 5% - 50%) of the PHY layer in short TTI duration are assumed.
TBS Calculation of short TTI
According to the resource mapping and the TBS calculation formula given above, the loss rate of PHY layer for legacy PDSCH is calculated as follows:
Figure pat00002
For different short TTI duration, The TBS of short TTI PDSCH is calculated as the following table 2:
Figure pat00003
상기와 같이 short TTI에 대한 Physical layer에 대한 연구가 진행 중이며, legacy PUSCH와 short PUSCH의 스케줄링에 대한 구체적인 방법이 부재되어 있다.
본 발명에서는 short PUSCH와 legacy PUSCH가 동시에 스케줄링을 해야 하는 상황에 대한 구체적인 해결 방안을 제시한다.
본 제안에서는 기지국이 단말에게 PUSCH/sPUSCH 동시 스케줄링을 하는 프로세스에 대한 단말의 대응 동작을 제안한다.
기본적으로 superposition 형태의 PUSCH/sPUSCH 전송은 latency reduction에서 제외된다(3GPP RAN1#84bis 회의 결정 내용).
따라서 본 발명은 현재 PUSCH와 동일한 carrier의 동일한 심볼 영역에서 스케줄링이 중첩될 때 단말이 취할 수 있는 UE behavior를 추가로 정의한다.
방안 1. 기본적으로 eNB는 legacy 서브프레임 내 sPUSCH의 overload indicator를 단말에게 전달한다.
본 제안에서는 기지국은 해당 서브프레임 내 sTTI 정의에 따른 sPUSCH 스케줄링 비율 정보인 overload indicator를 단말에게 전송한다.
예를 들어 sPUSCH의 overload indicator는 전체 sPUSCH의 전송 수를 나타내기 때문에 도 3에서는 overload indication=3이 된다. 이것은 sPUSCH의 전송 수를 나타내는 정보이기 때문에 해당 정보를 가지고 단말이 해석이 할 수 있는 sPUSCH 전송 상황은 아래와 같다.
- Overload indication=0 인 경우
■ 현재 기지국은 해당 sTTI 설정 영역을 통한 sPUSCH 전송을 수행하지 않는다.
■ 단말의 legacy PUSCH 전송을 수행할 수 있다.
- Overload indication≠0 인 경우
■ 해당 단말의 sPUSCH 전송이 이루어진다.
■ 해당 단말과 타 단말이 sPUSCH 전송을 수행한다.
이것은 sTTI 설정이 UE-specific 한 것인지 Common인지에 따라 overload indicator의 해석이 달라질 수 있음을 의미한다.
이를 통해서 단말은 동일 영역에 sPUSCH와 legacy PUSCH 자원의 중첩된 스케줄링 상황을 인지할 수 있게 된다.
방안 2. 단일 단말에게 Legacy PUSCH와 sPUSCH이 동시에 스케줄링 될 경우에는 Overload indication 정보를 통해서 아래의 단말 동작을 정의한다.
본 제안에서는 단말이 legacy PUSCH와 sPUSCH를 동일한 영역에서 dynamic하게 스케줄링 될 때의 동작을 정의하는 것이다. 따라서 해당 영역에서 sPUSCH 전송만을 수행하는 단말은 해당 영역에 legacy PUSCH 스케줄링이 수행되었는지에 대해서 알 수가 없다. 따라서 추가적으로 overload indication에 legacy PUSCH 전송 유무를 가리키는 on/off 필드를 추가로 구성해야 한다. 따라서 전체적인 overload indication 정보의 구성은 아래 표 3과 같이 개념적으로 표현할 수 있다.
Figure pat00004
이러한 정보를 기반으로 sPUSCH와 legacy PUSCH의 dynamic 스케줄링 방법은 아래와 같다.
방안 2-1) 단말은 sPUSCH 전송 수가 일정 수( N threshold ) 이하이면 sPUSCH 들과 중첩되는 legacy PUSCH 자원 영역을 puncturing한다 .
본 제안에서는 legacy PUSCH 전송을 수행하는 단말이 sPUSCH 전송을 동시에 스케줄링 받았을 때의 동작을 정의한다. 도 4와 같이 legacy PUSCH와 중첩되는 sPUSCH 수가 그리 크지 않을 경우에는 해당 영역의 PUSCH 자원(PRBs)을 puncturing한다. 이때 단말은 sTTI 설정 영역에 대한 정보는 알 수 있지만, 어느 sTTI에서 어느 단말에 의해 sPUSCH 전송이 일어나는지는 모두 알 수 없기 때문에, sPUSCH와 겹치는 전체 PRB 영역을 puncturing하는 것이 바람직하다. 이러한 방식은 sPUSCH 전송에 우선 순위를 둔 동작이기 때문에 sPUSCH 전송을 수행하는 모든 단말은 각자 스케줄링 받은 정보에 기반한 sPUSCH 전송을 수행하면 된다.
방안 2-2) 단말은 sPUSCH 전송 수가 일정 수(N threshold ) 이상이면 sPUSCH 를 dropping 한다.
본 제안에서는 legacy PUSCH 전송을 수행하는 단말이 sPUSCH 전송을 동시에 스케줄링 받았을 때의 동작을 정의한다. 도 5와 같이 legacy PUSCH와 중첩되는 sPUSCH 수가 일정 수 이상이 되었을 경우에 해당하는 단말의 동작이다. 여기에서는 앞의 '방안 2-1'과 달리 legacy PUSCH 전송에 우선 순위를 두는 동작이다. Legacy PUSCH를 정상적으로 전송하게 되면, 중첩되는 PRB의 sPUSCH를 puncturing하거나, Null로 설정하며 전송을 하지 않아야 한다. 그러나 sPUSCH 자체가 기본적으로 available RE 수가 작기 때문에 legacy PUSCH에서 수행할 수 있는 puncturing 동작은 적용에 한계가 있다. 따라서 legacy PUSCH 를 중요한 정보 전송으로 간주하여 전송의 우선 순위를 갖고, 관련 단말들은 해당 영역에 중첩되는 모든 sPUSCH의 전송을 dropping하게 된다.
방안 2-3) 단말은 sPUSCH 전송 수가 일정 수( N threshold ) 이상이면 legacy PUSCH 를 dropping 하고 재전송 절차를 수행한다.
본 제안에서는 legacy PUSCH 전송을 수행하는 단말이 sPUSCH 전송을 동시에 스케줄링 받았을 때의 동작을 정의한다. 도 6과 같이 legacy PUSCH와 중첩되는 sPUSCH 수가 일정 수 이상이 되었을 경에는 해당하는 단말의 동작이다. 여기에서는 앞의 '방안 2-2'과 달리 sPUSCH 전송에 우선 순위를 두는 동작이다. Legacy PUSCH를 정상적으로 전송하게 되면, 중첩되는 PRB의 sPUSCH가 간섭을 받기 때문에, legacy PUSCH를 Null로 설정하며 전송을 하지 않아야 한다.
이때 그러나 Dropping된 legacy PUSCH의 후속 절차는 아래와 같이 처리할 수 있다.
- N+1 서브프레임에서 전송 수행
■ 해당 subframe에서는 전송이 불가능하기 때문에, 다음 서브프레임에서 재전송을 수행한다.
- N+4 서브프레임 재전송
■ 기존의 UL HARQ 프로시저에 맞춰 재전송으로 간주하여 N+4 서브프레임에서 재전송을 수행한다.
방안 2-4) 단말은 sPUSCH 전송 수가 일정 수( Nthreshold ) 이상이면 legacy PUSCH 를 미리 정의된 PRB 영역으로shifting한다.
본 제안에서는 legacy PUSCH 전송을 수행하는 단말이 sPUSCH 전송을 동시에 스케줄링 받았을 때 legacy PUSCH를 shifting하는 동작을 정의한다. 도 7과 같이 legacy PUSCH와 중첩되는 sPUSCH 수가 일정 수 이상이 되었을 경에는 해당하는 단말의 동작이다. 여기에서는 앞의 '방안 2-3'과 달리 legacy PUSCH를 sPUSCH전송 영역과 중첩되지 않는 PRB로 shifting하여야 한다.
이때에는 기본적으로 shifting을 위한 PUSCH에 대한 사전 설정이 수반되어야 한다. 즉 sPUSCH와 스케줄링이 중첩되는 경우 특정 영역의 PUSCH 자원을 이용하여 legacy PUSCH 를 전송하는 것을 의미한다.
해당 정보는 sTTI 설정 시에 같이 정의할 수 있으며, 해당 정보를 RRC 시그널링과 같은 higher layer 시그널링을 통해서 단말들에게 전달할 수 있다.
본 발명에서는 3GPP LTE/LTE-A 시스템에서 short TTI 기반 sPUSCH와 legacy PUSCH의 스케줄링 시 발생할 수 있는 중첩 문제의 해결 방안을 제시하였다.
도 7은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 7을 참조하면, 또 다른 실시예에 의한 기지국(1000)은 제어부(1010)과 송신부(1020), 수신부(1030)을 포함한다.
제어부(1010)는 전술한 본 발명을 수행하기에 필요한 기지국이 단말에게 PUSCH/sPUSCH 동시 스케줄링을 하는 프로세스에 따른 전반적인 기지국의 동작을 제어한다.
송신부(1020)와 수신부(1030)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다.
도 8은 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
도 8을 참조하면, 또 다른 실시예에 의한 사용자 단말(1100)은 수신부(1110) 및 제어부(1120), 송신부(1130)을 포함한다.
수신부(1110)는 기지국으로부터 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.
또한 제어부(1120)는 전술한 본 발명을 수행하기에 필요한 기지국이 단말에게 PUSCH/sPUSCH 동시 스케줄링을 하는 프로세스에 대한 단말의 대응 동작에 따른 전반적인 단말의 동작을 제어한다.
송신부(1130)는 기지국에 상향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.
전술한 실시예에서 언급한 표준내용 또는 표준문서들은 명세서의 설명을 간략하게 하기 위해 생략한 것으로 본 명세서의 일부를 구성한다. 따라서, 위 표준내용 및 표준문서들의 일부의 내용을 본 명세서에 추가하거나 청구범위에 기재하는 것은 본 발명의 범위에 해당하는 것으로 해석되어야 한다.
[1] Ericsson, Huawei, "New SI proposal Study on Latency reduction techniques for LTE", RP-150465, Shanghai, China, March 9-12, 2015.
[2] R2-155008, "TR 36.881 v0.4.0 on Study on Latency reduction techniques for LTE" , Ericsson (Rapporteur)
[3] R1-160927, "TR 36.881-v0.5.0 on Study on Latency reduction techniques for LTE" , Ericsson (Rapporteur)
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (1)

  1. 기지국으로부터 short TTI 정의에 따른 sPUSCH 스케줄링 비율 정보인 overload indicator를 수신하는 단계;
    상기 수신된 overload indicator를 확인하는 단계; 및
    상기 확인된 overload indicator에 따라 PUSCH 또는 sPUSCH 전송을 수행하는 단계
    를 포함하는 Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법.
KR1020160062419A 2016-05-20 2016-05-20 Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법 및 그 장치 KR20170131807A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160062419A KR20170131807A (ko) 2016-05-20 2016-05-20 Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법 및 그 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160062419A KR20170131807A (ko) 2016-05-20 2016-05-20 Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법 및 그 장치

Publications (1)

Publication Number Publication Date
KR20170131807A true KR20170131807A (ko) 2017-11-30

Family

ID=60812670

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160062419A KR20170131807A (ko) 2016-05-20 2016-05-20 Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법 및 그 장치

Country Status (1)

Country Link
KR (1) KR20170131807A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11523415B2 (en) 2018-04-05 2022-12-06 Electronics And Telecommunications Research Institute Method and apparatus for uplink transmission in communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11523415B2 (en) 2018-04-05 2022-12-06 Electronics And Telecommunications Research Institute Method and apparatus for uplink transmission in communication system
US11711798B2 (en) 2018-04-05 2023-07-25 Electronics And Telecommunications Research Institute Method and apparatus for uplink transmission in communication system

Similar Documents

Publication Publication Date Title
US10616916B2 (en) Methods for multiplexing scheduling request information and HARQ ACK/NACK information while transmitting and receiving PUCCH and apparatuses thereof
CN109547182B (zh) 发送和接收短发送时间间隔的帧结构中的控制信息和数据的方法和装置
US20190014560A1 (en) User terminal, radio base station and radio communication method
JP6105672B2 (ja) ユーザ端末及び無線通信方法
KR20180046358A (ko) 차세대 무선 액세스망을 위한 스케줄링 방법 및 장치
US20220070913A1 (en) Terminal, radio base station, radio communication system, and radio communication method
CN107888333B (zh) 经由用于覆盖扩展的上行链路信道收发数据的方法及其装置
US11115976B2 (en) Method for transmitting/receiving uplink control channel in frame structure of short transmission time interval and device therefor
KR102237525B1 (ko) Short TTI를 위한 프레임 구조 설정 및 정보 전송 방법 및 그 장치
US10892867B2 (en) Method for establishing uplink data channel on basis of shared demodulation reference signal, and device therefor
KR102156670B1 (ko) 상향링크 제어 채널 송수신 시 스케줄링 요청 및 harq ack/nack 정보를 다중화하는 방법 및 그 장치
KR102120976B1 (ko) 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법 및 장치
KR20170131807A (ko) Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법 및 그 장치
US20180270797A1 (en) Method of transmitting and receiving downlink channel in short tti frame structure and apparatus thereof
KR102121009B1 (ko) 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법 및 장치
KR20180046445A (ko) Short TTI 프레임 구조에서 legacy PDCCH를 고려한 DCI 검출 방법 및 그 장치
KR20180036909A (ko) 커버리지 확장을 위한 상향링크 데이터 채널 송수신 방법 및 장치
KR20180088568A (ko) Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법
KR20180016688A (ko) Short TTI 프레임에서 부분 중첩 참조 신호 기반 short PUCCH 설계 방법 및 그 장치
KR20190086314A (ko) LTE URLLC에서 multi-level CSI 보고 방법 및 장치
KR20190086310A (ko) LTE URLLC에서 legacy 데이터 채널 다중화 방법 및 장치
KR20180112214A (ko) sTTI를 위한 하향 데이터 채널 Ack/Nack 충돌 방지 방법 및 그 장치
KR20170114071A (ko) Short TTI 프레임 구조에서 sPUSCH 관련 Ack/Nack 연결 설정 방법 및 그 장치
KR20180029180A (ko) Short TTI 프레임 구조에서 sPDSCH 처리 시간을 고려한 Ack/Nack 연결 설정 방법 및 그 장치
KR20170108202A (ko) Short TTI 프레임 구조 기반 자원 할당 방법 및 그 장치