KR20200031832A - Produced water treatment system - Google Patents

Produced water treatment system Download PDF

Info

Publication number
KR20200031832A
KR20200031832A KR1020180110780A KR20180110780A KR20200031832A KR 20200031832 A KR20200031832 A KR 20200031832A KR 1020180110780 A KR1020180110780 A KR 1020180110780A KR 20180110780 A KR20180110780 A KR 20180110780A KR 20200031832 A KR20200031832 A KR 20200031832A
Authority
KR
South Korea
Prior art keywords
production water
oil
water
production
hydrocyclone
Prior art date
Application number
KR1020180110780A
Other languages
Korean (ko)
Other versions
KR102098493B1 (en
Inventor
이승엽
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020180110780A priority Critical patent/KR102098493B1/en
Publication of KR20200031832A publication Critical patent/KR20200031832A/en
Application granted granted Critical
Publication of KR102098493B1 publication Critical patent/KR102098493B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0217Separation of non-miscible liquids by centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Water Treatments (AREA)

Abstract

The present invention relates to a production water treatment system for finally separating oil contained in production water generated in an oil production process from the production water. More specifically, the present invention is provided to make up for the shortage of production water in order to prevent the degradation of the performance of hydrocyclone for separating oil in the production water from the production water. The production water treatment system according to the present invention for achieving the above includes: a surge container which stores production water generated from a well; a hydrocyclone which primarily separates the oil in the production water through centrifugation of the product water supplied from the surge container; a gas floating separator which finally separates fine oil particles by using gas from the primarily separated production water; a production water drainage line which drains production water separated from the gas floating separator; and an oil and water separation fluid recovery line which branches from the production water drainage line and supplies the production water to the surge container. The present invention has technical characteristics of compensating for production water treated through an oil and water separation fluid recovery line when the amount of the production water flowing into hydrocyclone is smaller than the proper inflow amount of production water.

Description

생산수 처리 시스템{Produced water treatment system}Produced water treatment system

본 발명은 오일 생산 과정에서 발생하는 생산수에 포함된 오일을 생산수로부터 최종적으로 분리하는 생산수 처리 시스템에 관한 것으로서, 특히 생산수 내의 오일을 생산수로부터 분리하기 위한 하이드로사이클론의 성능 저하를 방지하기 위해 생산수의 부족량을 보충할 수 있게 구성한 것이다.The present invention relates to a production water treatment system for finally separating the oil contained in the production water from the production water generated in the process of oil production, in particular to prevent the degradation of the performance of the hydrocyclone to separate the oil in the production water from the production water In order to do so, it was configured to make up for the shortage of water.

생산수(Produced Water)는 오일 생산 과정 중 발생하는 폐기물 중에서 가장 큰 비중을 차지하는 오일폐수(Oily Wastewater)로서, 본질적으로 오일 생산 중에 지표면으로 방출되는 지하수에 갇힌 물이다. 일반적으로 오일 생산 유정 특성 및 운용 기간에 따라 양은 다소 상이하나 일반적으로 1배럴의 오일을 생산하는데 발생하는 생산수는 7 내지 10배럴 정도이다. 이러한 생산수는 매우 독성이 강하고 보통 오일, 유지(grease) 및 다른 탄화수소를 포함하고 있을 뿐만 아니라, 다량의 염, 금속 및 미량원소도 포함되어 있다. 이를 관리하는 것은 상당한 환경적 영향을 미칠 수 있으며 많은 비용부담을 발생시키게 된다.Produced Water is Oily Wastewater, which accounts for the largest portion of waste generated during the oil production process, and is essentially water trapped in groundwater discharged to the surface during oil production. In general, the amount of oil production varies slightly depending on the characteristics of the oil well and the operation period, but generally, the number of productions for producing one barrel of oil is about 7 to 10 barrels. These products are very toxic and usually contain oil, grease and other hydrocarbons, as well as large amounts of salts, metals and trace elements. Managing this can have a significant environmental impact and can be costly.

오일샌드에서 추출되는 석유성분은 비튜멘이라는 무겁고 끈적끈적한 검은색 점성질의 기름으로, 오일샌드의 약 10 내지 12%를 차지한다. 통상적인 원유는 물보다 가볍지만, 비튜멘은 물과 비슷한 비중을 가지므로, 상기 비튜멘은 자연 상태에서는 시추공이나 송유관 내에서 흐르지 않기 때문에 스팀을 가하거나 희석제(초경질원유 혹은 경질석유제품)와 혼합해 비중과 점성도를 낮춘 후 송유관으로 수송하여 얻어진다. 때문에 비튜멘에는 다량의 물이 함유되어 있어 오일을 회수하기 위해서는 1차 분리 FWKO(Free Water Knock-Out), 2차 분리로 항유화제(Demulsifier Chemicals), 전기장(Electrostatic Field) 등을 사용하여 오일을 회수한다. 오일성분 회수 후 발생하는 생산수 속에는 여전히 다량의 유분 및 고용성분 등을 포함하고 있어 이를 방출하거나 재활용하기 위해서는 15ppm 이하의 유분을 포함하는 물로 처리하는 생산수 처리 공정을 거쳐야 해상에 배수할 수 있다.The petroleum component extracted from the oil sands is a heavy, sticky black viscous oil called bitumen, which accounts for about 10 to 12% of the oil sands. Conventional crude oil is lighter than water, but since bitumen has a specific gravity similar to water, the bitumen does not flow in boreholes or oil pipelines in natural conditions, so steam is added or diluents (ultra-light crude oil or light petroleum products) are used. It is obtained by mixing and lowering the specific gravity and viscosity, and then transporting it to the oil pipeline. Therefore, in order to recover oil, bitumen contains a large amount of water, so the primary separation FWKO (Free Water Knock-Out), the secondary separation by using anti-emulsifiers (Demulsifier Chemicals), electric field (Electrostatic Field), etc. To recover. The production water generated after the recovery of the oil component still contains a large amount of oil and solid solutions, etc. In order to discharge or recycle it, it must be processed through a production water treatment process that treats it with water containing 15 ppm or less of oil before it can be drained to the sea.

생산수 처리방법은 크게 세 가지로 분류되는데, 물리적 처리방법과 생물학적 처리방법 그리고 화학적 처리방법을 들 수 있다. 이 중에서 가장 많이 사용되고 있는 방법은 물리적 처리방법이며, 분리효율이 높은 방법은 생물학적 처리방법과 화학적 처리방법이다.The production water treatment methods are classified into three types, physical treatment methods, biological treatment methods, and chemical treatment methods. The most commonly used method is a physical treatment method, and a method having high separation efficiency is a biological treatment method and a chemical treatment method.

물리적 처리방법은 가장 이용하기 쉬운 방법으로 여과(Filtration), 수착(Sorption), 중력침강(Gravity), 원심력 분리(Centrifugal force), 멤브레인(Membrane), 증류(Distillation), 스키머(Skimmer), 부유법(Flotation) 등의 많은 처리방법들이 존재한다. 장점으로는 화학적 처리기술이나 생물학적 처리기술 보다 제어하기 쉽다는 점을 꼽을 수 있으며, 단점으로는 물리적 처리기술로는 높은 분리효율을 기대하기 어렵다는 점이다.Physical treatment is the most easy to use method: Filtration, Sorption, Gravity, Centrifugal force, Membrane, Distillation, Skimmer, Suspension There are many treatment methods such as (Flotation). The advantage is that it is easier to control than the chemical treatment technology or biological treatment technology, and the disadvantage is that it is difficult to expect high separation efficiency with the physical processing technology.

생산수 속에 포함된 유기물을 확실히 제거하기 위해서는 화학반응이나 생물학적 반응을 이용한 방법들이 추가적으로 필요하다. 현재 가장 많이 사용되는 기술이 여과와 수착(흡착/흡수) 그리고 중력침강이다. 여과와 수착은 재료를 쉽게 구할 수 있다는 장점을 갖고 있으며, 중력침강은 장치건조비가 여과나 수착에 비해 비싸지만 유지비가 적게 든다는 장점이 있다.In order to reliably remove the organic substances contained in the product water, methods using chemical reactions or biological reactions are additionally required. The most commonly used technologies are filtration and sorption (adsorption / absorption) and gravity sedimentation. Filtration and sorption have the advantage that the material can be easily obtained, and gravity sedimentation has the advantage that the device drying cost is more expensive than filtration or sorption, but it requires less maintenance.

생물학적 처리방법에는 미생물에 의한 처리방법과 활성슬러지를 이용한 처리방법으로 분류할 수 있다. 미생물에 의한 처리방법은 호기성 미생물법과 혐기성 미생물법으로 나눌 수 있다. 생물학적 처리방법 중 호기성 미생물법에 의한 처리방법이 가장 많이 사용되며, 살수여상(Trickling Filter), 미생물 반응조(SBR: Sequencing Batch Reactor), 생물산화 여과공정(Biological Aerated Filter) 등이 있다. 혐기성 미생물에 의한 처리방법은 오염물질의 농도가 낮을 때 사용하면 비용대비 효율이 높은 장점이 있다. 갈대 여과(Reed Bed) 방법이 많이 이용되며 3,000 m3/day의 생산수 처리에서 평균 96%의 탄화수소 분리효율을 보인다.The biological treatment method can be classified into a treatment method using microorganisms and a treatment method using activated sludge. The treatment method by microorganisms can be divided into aerobic microbial methods and anaerobic microbial methods. Among biological treatment methods, aerobic microbial treatment is the most commonly used, and there are trickling filters, sequencing batch reactors (SBR), and biological aerated filters. The method of treatment by anaerobic microorganisms has the advantage of high cost-effectiveness when used when the concentration of contaminants is low. The reed bed method is widely used and shows an average of 96% hydrocarbon separation efficiency at 3,000 m3 / day production water treatment.

활성슬러지는 호기성 미생물법의 일종으로 수처리 공정에서 가장 많이 사용되는 기술 중 하나다. 주로 스키머 기술과 함께 사용되며, 20일의 고체체류시간(SRT: Solids Retention Time)에서 약 98~99%의 분리효율을 보이는 것으로 알려져 있다.Activated sludge is a type of aerobic microbial method and is one of the most used technologies in water treatment processes. It is mainly used with skimmer technology, and is known to exhibit a separation efficiency of about 98 to 99% at a solids retention time (SRT) of 20 days.

화학적 처리방법으로는 산화(Oxidation), 응결(Coagulation), 항유화제에 의한 방법(Demulsifier Chemicals) 등이 있으며, 최근에는 전기를 이용한 전기화학적 방법(Electrochemical Process)과 광분해 처리방법(Photocatalytic Treatment)에 대한 연구가 진행되고 있다.Chemical treatment methods include oxidation, coagulation, and demulsifier chemicals. Recently, electrochemical processes and photocatalytic treatments have been used. Research is ongoing.

산화법은 주로 내화물질(Refractory Chemical)을 분해하는 방법으로 사용되며, 강산화제(Strong Oxidant), 촉매(Catalyst), 조사(Irradiation) 등을 이용한다. 현재 고급산화공정(AOP: Advanced Oxidation Process)이란 기술이 개발, 상용화되어 있으며, AOP는 방전 램프에 자외선 파장과 오존 생성파장을 동시 발생시켜 공기 중의 산소와 결합하여 광분해하는 과정에서 다량의 OH 라디칼을 생성, 산화처리하는 공정이다. 응결은 주로 부유물질이나 콜로이드 입자 등을 제거하는 용도로 사용되며, 용해되어 있는 물질을 제거하는 것에는 비효율적이다.The oxidation method is mainly used as a method for decomposing refractory chemicals, and uses strong oxidants, catalysts, and irradiation. Currently, the technology called Advanced Oxidation Process (AOP) has been developed and commercialized, and AOP generates a large amount of OH radicals in the process of photolysis by combining with oxygen in the air by simultaneously generating ultraviolet wavelength and ozone generating wavelength in the discharge lamp. It is a process of generating and oxidizing. Condensation is mainly used to remove suspended solids or colloidal particles, and is inefficient for removing dissolved substances.

도면에서, 도 1은 종래 기술에 따른 생산수 처리 시스템을 나타낸 개념도이다.In the drawings, Figure 1 is a conceptual diagram showing a production water treatment system according to the prior art.

도 1에 도시된 바와 같이, 생산수 처리 시스템(PWTS: Produced water treatment system)는 유입된 생산수가 저장되는 서지 용기(surge vessel)(10)와, 서지 용기(10)의 내부에 압력을 제어하기 위해 연료가스를 공급하는 연료가스라인(11)과, 서지 용기(10)에서 연료가스를 배출하는 벤트라인(13)과, 서지 용기(10)에 저장된 생산수가 공급되며 원심력에 의해 생산수 내의 오일을 1차 분리하는 하이드로사이클론(20)과, 분리된 오일을 오일시스템(oil system)으로 재송유하기 위해 하이드로사이클론(20)에서 오일시스템으로 연장된 오일회수라인(21)과, 오일이 1차 분리된 생산수로부터 가스를 사용하여 미세한 오일입자를 생산수로부터 최종 분리시키는 가스부상분리기(GFU; Gas Floatation Unit)(30)를 포함하며, 가스부상분리기(30)에서 최종적으로 처리된 생산수는 생산수배수라인(31)을 통해 해양으로 배수한다.As shown in FIG. 1, a produced water treatment system (PWTS) is a surge vessel 10 in which the introduced product water is stored and a pressure inside the surge vessel 10. The fuel gas line 11 for supplying the fuel gas to the hazard, the vent line 13 for discharging the fuel gas from the surge vessel 10, and the production water stored in the surge vessel 10 are supplied and oil in the production water by centrifugal force The hydrocyclone 20 for primary separation, and the oil recovery line 21 extending from the hydrocyclone 20 to the oil system to re-feed the separated oil to the oil system, and the oil A gas floatation unit (GFU) 30 for final separation of fine oil particles from production water by using gas from the separated production water, the production water finally processed in the gas floating separator 30 is Through the production drainage line (31) Drained into the ocean.

종래의 생산수 처리 시스템에 있어서, 하이드로사이클론(20)으로 유입된 생산수는 연료가스에 의해 유지되는 서지 용기(10)의 압력을 근원으로 원심 회전하게 되고, 발생하는 원심력에 의해 오일과 생산수가 분리된다.In a conventional production water treatment system, the production water introduced into the hydrocyclone 20 is centrifugally rotated based on the pressure of the surge vessel 10 held by the fuel gas, and oil and production water are generated by the centrifugal force generated. Is separated.

이와 같이 구성된 하이드로사이클론(20)은 그 내부에 요구되는 유량에 맞춰 다량의 라이너(liner)가 내장되며, 유수 분리의 성능에는 하이드로사이클론(20)에 유입되는 생산수와 오일회수라인(21)의 압력차 및 유입된 생산수와 하이드로사이클론(20)에서 1차 분리된 생산수의 압력차이 비율을 제어함으로써, 하이드로사이클론(20)의 유수분리 성능을 제어하게 된다.The hydrocyclone 20 configured as described above is equipped with a large amount of a liner in line with a required flow rate therein, and the performance of oil-water separation includes the production water flowing into the hydrocyclone 20 and the oil recovery line 21. By controlling the pressure difference ratio and the pressure difference ratio between the pressure difference and the product water primaryly separated from the hydrocyclone 20, the oil separation performance of the hydrocyclone 20 is controlled.

한편, 해상유정의 경우 시간에 따라 유입되는 생산수의 성분이 상이하고 파이프라인의 서징으로 인해 생산수를 안정적으로 공급 받기 어렵다. 즉 생산수의 유량이 균일하지 않아 압력차율(Different Pressure Ratio) 제어가 원활하지 않게 되어 하이드로사이클론의 유수 분리 성능이 저하된다.On the other hand, in the case of offshore oil wells, the components of the production water introduced over time are different and it is difficult to stably receive the production water due to the surging of the pipeline. That is, since the flow rate of the production water is not uniform, the control of the differential pressure ratio is not smooth, and the performance of separating the oil from the hydrocyclone is deteriorated.

통상적으로 하이드로사이클론 내부의 라이너는 생산수의 최대 유량에 맞춰 설치됨에 따라 생산수의 유량이 감소될 경우 하이드로사이클론의 성능 저하가 발생하게 되고, 유량의 변동에 따라 수시로 하이드로사이클론의 라이너 설치 개수를 조절하기 위해 장비 관리가 요구되는 단점이 있다.In general, as the liner inside the hydrocyclone is installed in accordance with the maximum flow rate of the production water, when the flow rate of the production water decreases, the performance of the hydrocyclone occurs, and the number of line installations of the hydrocyclone is often adjusted according to the fluctuation of the flow rate. In order to do this, there is a disadvantage that equipment management is required.

보다 구체적으로 도 1에 도시된 PRV(Pressure ratio computation)(24)은 PDT1(23a)의 측정치와 PDT2(23b)의 측정치를 아래의 수학식 1에 의해 산출한다.More specifically, the PRV (Pressure ratio computation) 24 shown in FIG. 1 calculates the measured value of PDT1 (23a) and the measured value of PDT2 (23b) by Equation 1 below.

[수학식 1][Equation 1]

PRV = PDT2/PDT1PRV = PDT2 / PDT1

통상적으로 PDC(Pressure differential controller)의 설정값(setting point)은 1.8이다. Typically, the setting point of the pressure differential controller (PDC) is 1.8.

이때 PRV값이 1.8보다 커질 경우, PDCV(Pressure differential control valve)(25)를 개방하여 PDT2를 낮춰 안정화한다.At this time, when the PRV value is greater than 1.8, the pressure differential control valve (PDCV) 25 is opened to stabilize the PDT2 by lowering it.

그리고 PRV값이 1.8보다 작을 경우, PDCV(Pressure differential control valve)를 닫아서 PDT2를 높여 안정화하여야 하는데, 하이드로사이클론으로 유입되는 생산수의 양이 작을 경우 PDCV를 닫더라도 PRV를 1.8로 맞출 수 없게 되어 하이드로사이클론의 성능이 저하되는 문제점이 발생하게 된다.And if the PRV value is less than 1.8, the pressure differential control valve (PDCV) must be closed to increase PDT2 to stabilize it. If the amount of water flowing into the hydrocyclone is small, the PRV cannot be adjusted to 1.8 even if the PDCV is closed. The problem that the performance of the cyclone deteriorates occurs.

대한민국 등록특허공보 제10-1490147호(공고일; 2015.02.05)Republic of Korea Registered Patent Publication No. 10-1490147 (announcement date; 2015.02.05)

본 발명은 앞에서 설명한 바와 같은 종래 기술의 문제점을 해결하기 위하여 발명된 것으로서, 하이드로사이클론으로 유입되는 생산수의 양이 일정하게 유지되어 하이드로사이클론의 기능을 향상시킬 수 있게 구성한 생산수 처리 시스템을 제공하는 데 그 목적이 있다.The present invention was invented to solve the problems of the prior art as described above, to provide a production water treatment system configured to improve the function of the hydrocyclone by keeping the amount of production water flowing into the hydrocyclone constant It has its purpose.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 생산수 처리 시스템은 유정에서 발생한 생산수를 저장하는 서지 용기와, 서지 용기에서 공급된 생산수를 원심분리하여 생산수로부터 오일을 1차 분리하는 하이드로사이클론과, 생산수에서 가스를 이용하여 미세 오일 입자를 최종 분리하는 가스부상분리기와, 가스부상분리기에서 분리된 생산수를 배수하는 생산수배수라인과, 생산수배수라인에서 분기되어 최종 처리된 생산수를 서지 용기로 재공급하는 유수분리유체회수라인을 포함하며, 하이드로사이클론으로 유입되는 생산수의 양이 적정 생산수 유입량보다 작을 경우 유수분리유체회수라인을 통해 최종 처리된 생산수로 보상하는 것을 기술적 특징으로 한다.The production water treatment system according to the present invention for achieving the above object is a surge vessel for storing the product water generated in the oil well, and a hydro which primarily separates the oil from the product water by centrifuging the product water supplied from the surge container. Cyclone, a gas floating separator for final separation of fine oil particles using gas from the production water, a production water drainage line for draining the separated production water from the gas floating separator, and a final treated production branched from the production water drainage line It includes an oil-water separation fluid recovery line that re-supplies water to a surge container, and when the amount of production water flowing into the hydrocyclone is less than the proper production water inflow, compensation for the final processed water through the oil-water separation fluid recovery line Technical features.

또한, 본 발명의 바람직한 실시예에 따르면, 유수분리유체회수라인에는 배출기가 장착되며, 배출기에 연결된 연료가스라인을 통해 공급된 연료가스의 압력을 동력으로 최종 처리된 생산수를 서지 용기에 재공급한다.In addition, according to a preferred embodiment of the present invention, the oil-water separation fluid recovery line is equipped with an ejector, and re-supplies the produced water finally processed to the surge vessel by powering the pressure of the fuel gas supplied through the fuel gas line connected to the ejector. do.

또한, 본 발명의 바람직한 실시예에 따르면, 유수분리유체회수라인에는 PDCV(Pressure differential control valve)가 장착되며, 하이드로사이클론의 압력차이 비율이 설정값(setting point) 이하가 되었을 경우 PDCV를 개방하여 최종 처리된 생산수를 용기에 공급한다.In addition, according to a preferred embodiment of the present invention, the oil-water separation fluid recovery line is equipped with a pressure differential control valve (PDCV), and when the pressure difference ratio of the hydrocyclone is less than or equal to a set point, the PDCV is opened to finalize it. The treated production water is supplied to a container.

또한, 본 발명의 바람직한 실시예에 따르면, 유수분리유체회수라인이 생산수배수라인에서 분리된 분기점과 배출기의 사이에는 이중 역류방지밸브가 장착된다.In addition, according to a preferred embodiment of the present invention, a double backflow prevention valve is mounted between the branch and the discharger where the oil-water separation fluid recovery line is separated from the production water drainage line.

또한, 본 발명의 바람직한 실시예에 따르면, 배출기에는 연료가스라인이 연결되고, 배출기로 유입된 연료가스가 배출기에서 서지 용기로 유동함에 있어 연료가스의 압력에 의해 처리된 생산수가 서지 용기로 이송한다.In addition, according to a preferred embodiment of the present invention, a fuel gas line is connected to the discharger, and when the fuel gas flowing into the discharger flows from the discharger to the surge vessel, the production water processed by the pressure of the fuel gas is transferred to the surge vessel. .

앞서 설명한 바와 같이, 본 발명에 따른 생산수 처리 시스템은 유수 분리되어 배수되는 생산수의 일부를 하이드로사이클론으로 유입되는 생산수의 양이 작을 경우 보충 공급함으로써, 하이드로사이클론의 내부에 설치된 라이너의 용량에 맞는 적절한 유량을 유지하여 하이드로사이클론의 기능을 향상시킬 수 있다는 장점이 있다.As described above, the production water treatment system according to the present invention supplements and supplies a portion of the product water that is separated by flowing water and drains into the hydrocyclone, thereby supplying the capacity of the liner installed inside the hydrocyclone. It has the advantage that it can improve the function of the hydrocyclone by maintaining a suitable flow rate.

또한, 하이드로사이클론의 라이너의 용량에 맞춰 생산수 또는 처리된 생산수를 다시 공급함으로써, 종래와 같이 생산수 유량이 부족하거나 많을 경우 필요한 라이너의 교체에 따른 유지관리의 비용 및 시간이 필요치 않게 된다는 장점이 있다.In addition, by re-supplying the production water or the treated production water according to the capacity of the hydrocyclone liner, it is advantageous in that maintenance cost and time are not required due to replacement of the required liner when the production water flow rate is insufficient or high as in the prior art. There is this.

도 1은 종래 기술에 따른 생산수 처리 시스템을 나타낸 개념도이다.
도 2는 본 발명에 따른 생산수 처리 시스템을 나타낸 개념도이다.
1 is a conceptual view showing a production water treatment system according to the prior art.
2 is a conceptual diagram showing a production water treatment system according to the present invention.

아래에서는 본 발명에 따른 생산수 처리 시스템의 양호한 실시예를 첨부한 도면을 참조로 하여 상세히 설명한다.Hereinafter, a preferred embodiment of the production water treatment system according to the present invention will be described in detail with reference to the accompanying drawings.

도면에서, 도 2는 본 발명에 따른 생산수 처리 시스템을 나타낸 개념도이다.In the drawings, Figure 2 is a conceptual diagram showing a production water treatment system according to the present invention.

도 2에 도시된 바와 같이, 생산수 처리 시스템(PWTS: Produced water treatment system)(100)는 유입된 생산수가 저장되는 서지 용기(surge vessel)(10)와, 서지 용기(10)의 내부에 압력을 제어하기 위해 연료가스를 공급하는 연료가스라인(11)과, 서지 용기(10)에서 연료가스를 배출하는 벤트라인(13)과, 서지 용기(10)에 저장된 생산수가 공급되며 원심력에 의해 유수 분리하는 하이드로사이클론(20)과, 분리된 오일을 오일시스템으로 송유하기 위해 하이드로사이클론(20)에서 오일시스템으로 연장된 오일회수라인(21)과, 오일이 1차 분리된 생산수로부터 가스를 사용하여 미세 오일 입자를 최종 분리하는 가스부상분리기(GFU; Gas Floatation Unit)(30)과, 연료가스가 분리된 생산수가 가스부상분리기(30)에서 배수되도록 가스부상분리기(30)에서 연장된 생산수배수라인(31)을 포함하며, 생산수배수라인(31)에서 분기된 유수분리유체회수라인(120)은 서지 용기(10)에 연결되며, 상기 연료가스라인(11)은 유수분리유체회수라인(120)에 장착된 배출기(Ejector)(110)에 연결된다.As shown in FIG. 2, a produced water treatment system (PWTS) 100 includes a surge vessel 10 in which the introduced product water is stored and a pressure inside the surge vessel 10. In order to control the fuel gas line 11 for supplying fuel gas, the vent line 13 for discharging the fuel gas from the surge vessel 10, and the production water stored in the surge vessel 10 is supplied and flows by centrifugal force The hydrocyclone 20 to be separated, the oil recovery line 21 extending from the hydrocyclone 20 to the oil system to send the separated oil to the oil system, and the gas from the production water in which the oil is primarily separated are used. Gas floatation unit (GFU) 30 which finally separates the fine oil particles from the gas floating separator 30, so that the production water from which fuel gas is separated is drained from the gas floating separator 30. Drainage line (31) The oil-water separation fluid recovery line 120 branched from the water drainage line 31 is connected to the surge container 10, and the fuel gas line 11 is an ejector mounted on the oil-water separation fluid recovery line 120. It is connected to 110.

이와 같은 구성에 생산수 처리 시스템(100)에서 하이드로사이클론(20)으로 유입되는 생산수의 유량이 작을 경우 하이드로사이클론(20)의 성능의 저하를 방지하기 위해 유수분리유체회수라인(120)을 통해 최종 처리된 생산수를 서지 용기(10)로 재공급하도록 구성된 것이다.In this configuration, when the flow rate of the production water flowing into the hydrocyclone 20 from the production water treatment system 100 is small, through the oil-water separation fluid recovery line 120 to prevent deterioration of the performance of the hydrocyclone 20 It is configured to re-supply the final treated water to the surge container (10).

아래에서는 이와 같이 구성된 생산수 처리 시스템의 작동관계에 대해 구체적으로 설명하다.Hereinafter, the operational relationship of the production water treatment system configured as described above will be described in detail.

본 발명에서는 압력계산회로(Pressure Computation Loop)를 통해 PRV(24)에서 PY1 과 PY2 및 PDC2(125)로 전송되는 값이 1.6이하일 경우, 연료가스라인의 PC(11a)과 벤트라인의 PC(13a)를 통해 PCV1 과 PCV2 의 개도를 10%로 유지하도록 변경하여 일정량의 연료가스가 배출기(110) 쪽으로 유입되도록 하고 PDCV2 가 열리며 생산수배수라인을 통해 배수되는 생산수를 서지용기(10)로 재공급을 시작 한다.In the present invention, when the values transmitted from the PRV 24 to the PY1 and PY2 and the PDC2 125 through a pressure calculation loop are 1.6 or less, the fuel gas line PC 11a and the ventline PC 13a ) To maintain the opening degree of PCV1 and PCV2 at 10%, so that a certain amount of fuel gas flows into the discharger 110, PDCV2 is opened, and the production water drained through the production water drain line to the surge container 10 Start re-supply.

앞서 설명한 바와 같이 PRV(24)의 값이 1.8이하의 경우에는 생산수의 유입량이 적정치 이하이나 1.6 이상을 허용가능한 범위로 간주하고 본 발명에서는 허용가능 비율 이하인 PRV(24)에서 PY1 과 PY2 및 PDC2(125)로 전송되는 값이 1.6이하인 경우에 작동을 시작한다.As described above, when the value of the PRV 24 is 1.8 or less, the inflow amount of the production water is considered to be an acceptable value or more than 1.6, and in the present invention, PY1 and PY2 and When the value transmitted to the PDC2 125 is 1.6 or less, operation starts.

연료가스가 배출기(110) 쪽으로 유입되면 배출기(110)에는 유입되어 서지 용기(10)로 배출되는 연료가스의 압력을 동력으로 하여 유수분리유체회수라인(120)을 통해 생산수배수라인(31)을 따라 배수되는 생산수를 배출기(110) 쪽으로 유입시킨 후 연료가스와 함께 서지 용기(10)로 공급한다.When the fuel gas flows toward the discharger 110, the discharged water production line 31 through the oil and water separation fluid recovery line 120 by using the pressure of the fuel gas flowing into the discharger 110 and discharged to the surge container 10 as power After flowing the product water that is drained along the discharger 110, it is supplied to the surge container 10 together with fuel gas.

따라서 생산수의 유입량이 작아 PRV(24)에서 PDC로 전송되는 값이 1.6이하가 되면, 서지 용기(10)로 유입되는 생산수의 부족량을 최종처리된 생산수를 서지 용기(10)으로 재공급하여 보충하게 된다.Therefore, when the inflow amount of the production water is small and the value transmitted from the PRV 24 to the PDC becomes 1.6 or less, the shortage amount of the production water flowing into the surge vessel 10 is resupplied to the surge vessel 10 for the final processed water. To supplement.

여기에서 배출기(110)의 용량은 하이드로사이클론(20)의 정상적인 성능 발휘를 위해 최소한으로 요구되는 유량과 같거나 커야 한다.Here, the capacity of the discharger 110 should be equal to or larger than the minimum required flow rate for the normal performance of the hydrocyclone 20.

이와 같이 본 발명에서는 생산수의 유입량 부족에 따른 하이드로사이클론(20)의 성능 저하를 방지하기 위해 생산수의 부족량만큼을 최종처리된 생산수로 보충함으로써, 하이드로사이클론(20)의 성능 저하를 방지할 수 있으며, 종래와 같이 하이드로사이클론의 내부 라이너의 유지 관리에 어려움을 해결할 수 있다.As described above, in the present invention, to prevent the degradation of the performance of the hydrocyclone 20 by supplementing the amount of the insufficient amount of the production water with the final treated production water to prevent the degradation of the performance of the hydrocyclone 20 due to the lack of inflow of the production water. It is possible to solve the difficulty in maintaining the inner liner of the hydrocyclone as in the prior art.

더불어 본 발명에서는 유수분리유체회수라인(120)에는 배출기(110)와 PDCV2(123)의 사이에 연료가스의 유입을 방지하기 위한 이중역류방지밸브(121)가 장착된다.In addition, in the present invention, the oil-water separation fluid recovery line 120 is equipped with a double backflow prevention valve 121 for preventing the inflow of fuel gas between the discharger 110 and the PDCV2 (123).

100 : 생산수 처리 시스템
10 : 서지 용기
11 : 연료가스라인
13 : 벤트라인
20 : 하이드로사이클론
21 : 오일회수라인
30 : 가스부상분리기
31 : 생산수배수라인
110 : 배출기
120 : 유수분리유체회수라인
121 : 이중역류방지밸브
PDC : Pressure differential controller
PDCV : Pressure differential control valve
PDT : Pressure differential transmitter
PRV : Pressure ratio computation
LT : Level Transmitter
LC : Level Controller
PC : Pressure Controller
PT : Pressure Transmitter
LCV : Level Control Valve
PCV : Pressure Control Valve
SP : Set Point
MV : Mean Value
PV : Pressure Computation
PW : Produced Water
100: production water treatment system
10: surge container
11: Fuel gas line
13: ventline
20: hydrocyclone
21: oil recovery line
30: gas floating separator
31: Production drainage line
110: ejector
120: Oil-water separation fluid recovery line
121: double backflow prevention valve
PDC: Pressure differential controller
PDCV: Pressure differential control valve
PDT: Pressure differential transmitter
PRV: Pressure ratio computation
LT: Level Transmitter
LC: Level Controller
PC: Pressure Controller
PT: Pressure Transmitter
LCV: Level Control Valve
PCV: Pressure Control Valve
SP: Set Point
MV: Mean Value
PV: Pressure Computation
PW: Produced Water

Claims (5)

유정에서 발생한 생산수를 저장하는 서지 용기와,
서지 용기에서 공급된 생산수를 원심분리하여 오일과 생산수로 분리하는 하이드로사이클론과,
1차 분리한 생산수에서 가스를 이용하여 미세 오일입자를 분리하는 가스부상분리기와,
가스부상분리기에서 분리된 생산수를 배수하는 생산수배수라인과,
생산수배수라인에서 분기되어 처리된 생산수를 서지 용기로 공급하는 유수분리유체회수라인을 포함하며,
하이드로사이클론으로 유입되는 생산수의 양이 적정 생산수 유입량보다 작을 경우 유수분리유체회수라인을 통해 처리된 생산수로 보상하는 것을 특징으로 하는 생산수 처리 시스템.
Surge container for storing the production water from the well,
A hydrocyclone that centrifugally separates the product water supplied from the surge container into oil and product water,
Gas floating separator for separating fine oil particles using gas from the primary separated production water,
A production water drainage line for draining production water separated from the gas floating separator;
It includes an oil-water separation fluid recovery line that supplies the treated water branched from the production water drainage line to a surge container,
A production water treatment system characterized by compensating for the production water treated through an oil-water separation fluid recovery line when the amount of production water flowing into the hydrocyclone is less than the proper production water inflow.
제1항에 있어서,
유수분리유체회수라인에는 배출기가 장착되며, 배출기에 연결된 연료가스라인을 통해 공급된 연료가스의 압력을 동력으로 처리된 생산수를 서지 용기에 공급하는 것을 특징으로 하는 생산수 처리 시스템.
According to claim 1,
The oil-water separation fluid recovery line is equipped with an discharger, and a production water treatment system characterized by supplying the production water treated by power of the pressure of the fuel gas supplied through the fuel gas line connected to the discharger to the surge vessel.
제2항에 있어서,
유수분리유체회수라인에는 PDCV(Pressure differential control valve)가 장착되며, 하이드로사이클론의 압력차이 비율이 설정값(setting point) 이하가 되었을 경우 PDCV를 개방하여 처리된 생산수를 용기에 재공급하는 것을 특징으로 하는 생산수 처리 시스템.
According to claim 2,
The oil-separated fluid recovery line is equipped with a pressure differential control valve (PDCV), and when the pressure difference ratio of the hydrocyclone is less than or equal to a set point, the PDCV is opened to re-supply the treated production water to the container. Production water treatment system.
제3항에 있어서,
유수분리유체회수라인이 생산수배수라인에서 분리된 분기점과 배출기의 사이에는 역류방지밸브가 장착된 것을 특징으로 하는 생산수 처리 시스템.
According to claim 3,
A production water treatment system characterized in that a backflow prevention valve is installed between the branch and the discharger where the oil-water separation fluid recovery line is separated from the production water drainage line.
제4항에 있어서,
배출기에는 연료가스라인이 연결되고, 배출기로 유입된 연료가스가 배출기에서 서지 용기로 유동함에 있어 연료가스의 압력에 의해 생산수가 서지 용기로 재이송하는 것을 특징으로 하는 생산수 처리 시스템.
According to claim 4,
A fuel gas line is connected to the discharger, and when the fuel gas flowing into the discharger flows from the discharger to the surge vessel, the production water treatment system is characterized in that the production water is re-transmitted to the surge vessel by the pressure of the fuel gas.
KR1020180110780A 2018-09-17 2018-09-17 Produced water treatment system KR102098493B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180110780A KR102098493B1 (en) 2018-09-17 2018-09-17 Produced water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180110780A KR102098493B1 (en) 2018-09-17 2018-09-17 Produced water treatment system

Publications (2)

Publication Number Publication Date
KR20200031832A true KR20200031832A (en) 2020-03-25
KR102098493B1 KR102098493B1 (en) 2020-04-07

Family

ID=70001631

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180110780A KR102098493B1 (en) 2018-09-17 2018-09-17 Produced water treatment system

Country Status (1)

Country Link
KR (1) KR102098493B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112343550A (en) * 2020-11-17 2021-02-09 西安长庆科技工程有限责任公司 Shale oil test oil flowback stage ground processing integrated device and method
KR102618017B1 (en) 2023-06-12 2023-12-27 주식회사 에이치엔티 System for separation of liquid and solid
KR20240072855A (en) 2022-11-17 2024-05-24 고등기술연구원연구조합 A movable device that separates the substances that make up the oil sand

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490147B1 (en) 2014-05-13 2015-02-05 선보공업주식회사 Treating method of Produced Water
KR20150105357A (en) * 2012-12-21 2015-09-16 내셔널 오일웰 바르코 엘.피. A fluid treatment system, a fluid processing apparatus and a method of treating a mixture
US20160318043A1 (en) * 2013-12-16 2016-11-03 National Oilwell Carco A fluid treatment system, a fluid processing apparatus and a method of treating a mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150105357A (en) * 2012-12-21 2015-09-16 내셔널 오일웰 바르코 엘.피. A fluid treatment system, a fluid processing apparatus and a method of treating a mixture
US20160318043A1 (en) * 2013-12-16 2016-11-03 National Oilwell Carco A fluid treatment system, a fluid processing apparatus and a method of treating a mixture
KR101490147B1 (en) 2014-05-13 2015-02-05 선보공업주식회사 Treating method of Produced Water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112343550A (en) * 2020-11-17 2021-02-09 西安长庆科技工程有限责任公司 Shale oil test oil flowback stage ground processing integrated device and method
KR20240072855A (en) 2022-11-17 2024-05-24 고등기술연구원연구조합 A movable device that separates the substances that make up the oil sand
KR102618017B1 (en) 2023-06-12 2023-12-27 주식회사 에이치엔티 System for separation of liquid and solid

Also Published As

Publication number Publication date
KR102098493B1 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
US12091923B2 (en) System and method for treating water
KR102098493B1 (en) Produced water treatment system
Igwe et al. Optimal options for treatment of produced water in offshore petroleum platforms
US9630867B2 (en) Treatment of spent caustic waste
CA2865081C (en) System and method for treating produced, desalted and flow back water
CN104496128B (en) A kind of lurgi gasifier advanced waste treatment system and method
US20070158276A1 (en) Method and Apparatus for Sequenced Batch Advanced Oxidation Wastewater Treatment
Robinson Oil and gas: Treatment and discharge of produced waters onshore
CA3039948C (en) System and method for treatment of wastewater via enhanced electroflotation
Patni et al. Recycling and re-usage of oilfield produced water–A review
CN104528973A (en) Oil and sulphur containing sewage treatment system and treatment process thereof
US20190233315A1 (en) Process and facility for treating produced water from an oil & gas field
CA2869302C (en) System and method for treating water
CN107840495A (en) A kind of processing method of crude oil electric desalting waste water
US20150122481A1 (en) Systems and methods for de-oiling and total organic carbon reduction in produced water
Ebrahiem et al. Produced water treatment design methods in the gas plant: optimization and controlling
Ellis et al. Clarifying oilfield and refinery waste waters by gas flotation
Wu et al. Treatment of Refined oil depot wastewater
CN103102040A (en) Method for treating refinery sewage organic matter
US20240228333A9 (en) Produced water treatment for direct injection using mechanically assisted forward osmosis
Peréz Analysis and improvement proposal of a wastewater treatment plant in a Mexican refinery
Khosravi et al. Oil field produced water: issues and possible solutions
CN104591420A (en) Sulfur-containing oily sewage treatment device and treatment process used in oil-refining industry
Dusa Petrobrazi Refinery Used Water Treatment Plant, Case Study Romania
US20080156742A1 (en) Sludge Reduction System for Wastewater Treatment

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant