KR20200030616A - 적층 제조를 위한 온도 제어 - Google Patents

적층 제조를 위한 온도 제어 Download PDF

Info

Publication number
KR20200030616A
KR20200030616A KR1020207006693A KR20207006693A KR20200030616A KR 20200030616 A KR20200030616 A KR 20200030616A KR 1020207006693 A KR1020207006693 A KR 1020207006693A KR 20207006693 A KR20207006693 A KR 20207006693A KR 20200030616 A KR20200030616 A KR 20200030616A
Authority
KR
South Korea
Prior art keywords
zone
feed material
top layer
energy
additive manufacturing
Prior art date
Application number
KR1020207006693A
Other languages
English (en)
Inventor
데이비드 마사유키 이시카와
토드 제이. 에간
폴 제이 스테파스
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20200030616A publication Critical patent/KR20200030616A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/368Temperature or temperature gradient, e.g. temperature of the melt pool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/46Radiation means with translatory movement
    • B22F12/47Radiation means with translatory movement parallel to the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Lubricants (AREA)

Abstract

적층 제조 장치는, 플랫폼, 플랫폼 상에 공급 재료의 연속적인 층들을 디스펜싱하기 위한 디스펜서, 플랫 폼 위의 열 소스, 최상층의 제2 구역에 충돌하도록 에너지 빔을 방출하기 위한 에너지 소스, 공급 재료의 최상층의 온도들을 측정하고 그리고 제2 구역의 용융 풀의 치수를 측정하기 위한 센서 시스템, 및 제어기를 포함한다. 열 소스는 공급 재료의 연속적인 층들 중 최상층의 제1 구역에 에너지를 전달하여 제1 구역을 예열 및/또는 열처리하도록 구성된다. 제어기는, 측정된 온도들에 기반하여 공급 재료의 최상층을 가열하게 열 소스를 동작시키도록, 그리고 측정된 치수에 기반하여 최상층에서 공급 재료를 융합시키게 에너지 소스를 동작시키도록 구성된다.

Description

적층 제조를 위한 온도 제어
본 명세서는 적층 제조 장치들 및 프로세스들을 위한 온도 제어에 관한 것이다.
임의 형상 제작(solid freeform fabrication) 또는 3D 프린팅으로 또한 알려져 있는 적층 제조(AM; additive manufacturing)는, 2차원 층들로의 원재료(raw material)(예컨대, 분말들, 액체들, 현탁액들 또는 용융 고체들)의 연속적인 디스펜싱(dispensing)으로부터 3차원 오브젝트들이 빌드 업되는(built up) 제조 프로세스를 지칭한다. 이에 반해, 종래의 기계가공 기법들은, 오브젝트들이 스톡 재료(예컨대, 목재, 플라스틱 또는 금속의 블록)로부터 절단되는 절삭 프로세스(subtractive process)들을 수반한다.
다양한 적층 프로세스들이 적층 제조에서 사용될 수 있다. 일부 방법들은, 예컨대 선택적 레이저 용융(SLM; selective laser melting) 또는 직접 금속 레이저 소결(DMLS; direct metal laser sintering), 선택적 레이저 소결(SLS; selective laser sintering), 융합 적층 모델링(FDM; fused deposition modeling)을 사용하여 재료를 용융시키거나 연화시켜 층들을 생성하는 한편, 다른 방법들은 다른 기술들, 예컨대 스테레오리소그래피(SLA; stereolithography)를 사용하여 액체 재료들을 경화시킨다. 이러한 프로세스들은, 완성된 오브젝트들을 생성하기 위해 층들이 형성되는 방식에 있어서 그리고 프로세스들에서 사용하기에 호환성이 있는 재료들에 있어서 상이할 수 있다.
적층 제조의 일부 형태들에서, 분말이 플랫폼 상에 배치되고, 레이저 빔이 분말 상으로 패턴을 트레이싱하여, 분말을 함께 융합시켜 형상을 형성한다. 일단 형상이 형성되면, 플랫폼은 낮아지고, 분말의 새로운 층이 추가된다. 부품이 완전히 형성될 때까지, 프로세스가 반복된다.
일 양상에서, 적층 제조 장치는, 플랫폼, 플랫폼 상에 공급 재료(feed material)의 연속적인 층들을 디스펜싱하기 위한 디스펜서, 및 플랫폼 위의 열 소스를 포함한다. 열 소스는 공급 재료의 연속적인 층들 중 최상층(topmost layer)의 제1 구역에 에너지를 전달하여 제1 구역을 예열 및/또는 열처리하도록 구성된다. 적층 제조 장치는, 최상층의 제2 구역에 충돌(impinge)하여 제2 구역의 공급 재료로부터 용융 풀(melt pool)을 생성하도록 에너지 빔을 방출하기 위한 에너지 소스, 공급 재료의 최상층의 온도들을 측정하고 그리고 용융 풀의 치수를 측정하기 위한 센서 시스템, 및 제어기를 더 포함한다. 제2 구역은 제1 구역보다 더 작다. 제어기는, 측정된 온도들에 기반하여 공급 재료의 최상층을 가열하게 열 소스를 동작시키도록, 그리고 측정된 치수에 기반하여 최상층에서 공급 재료를 융합시키게 에너지 소스를 동작시키도록 구성된다.
다른 양상에서, 적층 제조 방법은, 플랫폼 상에 공급 재료의 연속적인 층들을 디스펜싱하는 단계, 공급 재료의 연속적인 층들 중 공급 재료의 최상층의 온도들을 측정하는 단계, 측정된 온도들에 기반하여 최상층을 커버하는 제1 구역에 열을 전달하는 단계, 및 에너지 빔에 의해 생성된 공급 재료의 용융 풀의 치수에 기반하여 제1 구역보다 더 작은 제2 구역에 에너지 빔을 방출하는 단계를 포함한다.
다른 양상에서, 적층 제조 장치는, 플랫폼, 플랫폼 상에 공급 재료의 연속적인 층들을 디스펜싱하기 위한 디스펜서, 및 플랫폼 위의 열 소스를 포함한다. 열 소스는 공급 재료의 연속적인 층들 중 최상층의 제1 구역에 에너지를 전달하여 제1 구역을 예열 및/또는 열처리하도록 구성된다. 적층 제조 장치는, 최상층의 제2 구역에 충돌하여 제2 구역의 공급 재료로부터 용융 풀을 생성하도록 에너지 빔을 방출하기 위한 에너지 소스 ― 제2 구역은 제1 구역보다 더 작음 ―, 센서 시스템 및 제어기를 더 포함한다. 센서 시스템은, 플랫폼의 빌드 구역(build region)의 고정식 제1 시야를 갖는 제1 카메라, 제1 시야보다 더 작고 그리고 제2 구역을 트레일링하도록 구성된 제2 시야를 갖는 제2 카메라, 및 제2 시야보다 더 작고 그리고 제2 구역을 커버하는 제3 시야를 갖는 제3 카메라를 포함한다. 제어기는, 제1 카메라, 제2 카메라 및 제3 카메라로부터 데이터를 수신하고 그리고 데이터로부터 공급 재료의 층의 온도 맵을 생성하도록, 그리고 온도 맵에 기반하여 최상층에서 공급 재료를 융합시키게 에너지 소스를 동작시키도록 구성된다.
일부 구현들에서, 열 소스는 제1 구역에 에너지를 전달하기 위한 램프들의 어레이를 포함한다. 제어기는 측정된 온도들에 기반하여 램프들의 어레이의 각각의 램프를 선택적으로 동작시키도록 구성될 수 있다. 일부 구현들에서, 열을 제1 구역에 전달하는 것은, 측정된 온도들에 기반하여 적외선 램프들의 어레이의 각각의 램프를 선택적으로 동작시키는 것을 포함한다.
일부 구현들에서, 에너지 소스는 레이저를 포함한다. 일부 구현들에서, 에너지 빔은 레이저에 의해 방출된다.
일부 구현들에서, 제2 구역의 크기, 에너지 빔의 파워, 또는 스캔 속도를 포함하는 하나 이상의 파라미터들은, 측정된 치수에 기반하여 조정되거나 선택된다. 제어기는, 하나 이상의 특징들을 조정 또는 선택하게 에너지 소스를 동작시키도록 구성될 수 있다.
일부 구현들에서, 센서 시스템은, 공급 재료의 최상층의 전체 폭 및 전체 길이에 걸쳐 온도들을 측정하도록 구성된 적외선 이미지 캡처 시스템을 포함한다.
일부 구현들에서, 온도들은, 공급 재료의 최상층으로부터의 열적 방출들에 기반하여, 공급 재료의 최상층의 전체 길이 및 전체 폭에 걸쳐 균일하게 분포된 다수의 위치들에서 측정된다. 센서 시스템은 온도를 측정하도록 구성된 적외선 이미지 캡처 시스템을 포함할 수 있다. 공급 재료의 최상층의 온도를 측정하는 것은, 다수의 위치들에서의 온도들을 측정하는 것을 포함한다.
일부 구현들에서, 방법은, 고속 카메라를 사용하여, 용융 풀의 치수를 측정하는 단계를 더 포함한다. 일부 구현들에서, 장치는, 고체-액체 계면들에서의 열 경사(thermal gradient)들 및 용융 풀의 치수를 측정하도록 구성된 고속 카메라를 포함할 수 있다.
일부 구현들에서, 고속 카메라는 용융 풀에서의 공급 재료의 온도들을 측정하도록 구성된다. 제어기는, 임계 온도에 대한 공급 재료의 측정된 온도들에 기반하여, 용융 풀의 치수를 결정하도록 구성될 수 있다. 용융 풀의 치수를 측정하는 것은, 용융 풀에서의 공급 재료의 온도들을 측정하는 것, 및 임계 온도에 대한 공급 재료의 측정된 온도들에 기반하여 용융 풀의 치수를 결정하는 것을 포함할 수 있다.
일부 구현들에서, 치수는 길이이다. 고속 카메라는, 용융 풀의 길이를 측정하도록 그리고 폭을 측정하도록 구성될 수 있다. 제어기는, 측정된 길이 및 측정된 폭에 기반하여 에너지 소스를 동작시키도록 구성될 수 있다. 방법은, 고속 카메라를 사용하여 폭을 측정하는 단계를 더 포함할 수 있다. 에너지 빔을 방출하는 것은, 측정된 길이 및 측정된 폭에 기반하여 에너지 빔을 방출하는 것을 포함할 수 있다.
일부 구현들에서, 파장들은 최상층의 제3 구역의 공급 재료에 의해 방출된다. 센서 시스템은, 파장들을 검출하기 위한 ― 검출된 파장들에 기반하여, 제3 구역의 공급 재료의 냉각 레이트들이 결정될 수 있음 ― 그리고 결정된 냉각 레이트들에 기반하여 열 소스 또는 에너지 소스를 동작시키기 위한 분광 광도계를 포함할 수 있다. 제어기는 냉각 레이트들을 결정하도록 구성될 수 있다. 온도를 측정하는 것은, 파장들을 검출하는 것, 및 냉각 레이트들을 결정하는 것을 포함할 수 있다.
일부 구현들에서, 제3 구역은 제1 구역보다 더 작고 그리고 제2 구역보다 더 크다.
장점들은, 아래에서 그리고 본원의 다른 곳에서 설명된 장점들을 포함할 수 있다(그러나 이에 제한되지 않음). 온도 프로파일, 즉, 공급 재료의 최상층의 특정 포지션, 이를테면, 복셀에서의 시간의 함수로써의 온도가 더 정밀하게 그리고 정확하게 제어될 수 있다. 이는, 적층 제조 장치에 의해 형성될 오브젝트가 희망 재료 특성들을 갖고 그리고 더 적은 결함들을 갖도록, 더 반복가능한 방식으로 그리고 희망 온도 프로파일(desired temperature profile)에 따라 최상층의 공급 재료가 가열 및 냉각되는 것을 가능하게 한다. 센서 시스템은 다수의 개별 센서들을 포함할 수 있으며, 그 각각은 최상층의 상이한 구역들의 공급 재료의 특성들을 측정한다. 이러한 센서들로부터의 데이터는, 에너지 전달 시스템이 온도 프로파일을 정밀하게 그리고 정확하게 제어하게 동작될 수 있도록, 적층 제조 장치의 에너지 전달 시스템의 폐루프 피드백 제어를 제공하기 위해 조합된다.
본 명세서에서 설명되는 청구대상의 하나 이상의 구현들의 세부 사항들이 첨부 도면들 및 아래의 설명에서 제시된다. 다른 잠재적 특징들, 양상들, 및 장점들은, 설명, 도면들 및 청구항들로부터 명백해질 것이다.
도 1a는 적층 제조 장치의 간략화된 개략적인 측면도이다.
도 1b는 적층 제조 장치의 개략적인 측면도이다.
도 2는 공급 재료의 층의 평면도이다.
도 3은 열적 이미징 디바이스에 의해 생성된 온도 맵을 도시한다.
도 4는 용융 풀의 측면도이다.
도 5는 적층 제조 장치의 블록 다이어그램이다.
공급 재료, 예컨대 분말을 융합시키는 것을 수반하는 적층 제조 프로세스들은, 부품 품질 및 수율 요건들을 충족시키기 위해 정밀한 열적 제어를 필요로 한다. 예컨대, 적층 제조 프로세스 동안, 패턴의 좁은 섹션들에서의, 에너지 전달 시스템에 의한 과열은, 키홀(keyhole)들로 인해 공급 재료의 층들에 기공(pore)들을 도입할 수 있다. 다공성은 강도 및 피로 저항과 같은 부품 재료 특성들에 악영향을 미치며, 부품 품질에 영향을 미치는 열적 문제들로 인한 몇몇 결함들 중 하나이다. 최상층에 걸쳐 급격한 열 경사가 있는 경우, 부품의 뒤틀림(warping), 응력-유도 균열, 및 변형이 발생할 수 있다. 적층 제조 프로세스 동안의 부품 변형은 바람직하지 않은데, 왜냐하면 변형된 부품들은 적층 제조 장치에서 이동하는 하드웨어를 물리적으로 방해할 수 있거나, 또는 부품 치수 규격들에 대한 부적합으로 인해 부품 폐기(part rejection)를 필요하게 할 수 있기 때문이다. 제조 동안의 보상되지 않는 열 전달로 인해 너무 많은 열이 손실되거나 또는 너무 적은 열이 가해지는 경우, 불완전한 융합이 발생할 수 있다. 따라서, 제조 프로세스 동안 융합될 공급 재료의 부분들이, 반복가능한 그리고 희망하는 온도 프로파일을 따르는 것이 바람직하다.
분말을 지지하는 플랫폼을 예열시키는 것은, 높이가 낮은 부품(short part)들에 대한 공급 재료의 가장 위의 층들의 온도 프로파일을 제어할 수 있지만, 높이가 높은 부품(tall part)들에 대한 온도 제어를 완화시키지 못하며, 심지어는 악화시킬 수 있다. 플랫폼으로부터 부품으로 전도되는 열은 높이가 높은 부품들의 최상부 층들에 도달하지 않을 것인데, 왜냐하면, 예열된 플랫폼으로부터 공급 재료의 최상층까지의 거리가 너무 크기 때문이다. 높이가 높은 부품들의 최상층들을 가열하기 위해 플랫폼으로부터의 열의 양을 증가시키는 것은, 공급 재료의 최하부 층들이 과열되는 것을 야기한다.
공급 재료 초기 온도와 용융 온도 사이의 온도 차이를 감소시켜 융합 품질 및 처리량을 개선하기 위해, 분말이 융합 전에 예열될 수 있다. 예컨대, 열적으로 유도된 잔류 응력 및 변형으로 인한 뒤틀림, 균열 및 다른 문제들의 가능성을 감소시킴으로써, 융합된 영역들의 미세구조를 수정하고 그리고 생산되는 층에 걸친 온도 변화를 최소화하여, 잔류 응력들을 감소시키고 융합 품질을 추가로 개선하기 위해, 영역들이 융합된 후에 그 영역들에 열이 또한 가해질 수 있다("열처리(heat-treating)"로 또한 지칭됨). 열은 또한, 복사, 대류, 및 전도성 손실들로 인한 열적 불균일성을 보상하는 데 사용될 수 있다. 층을 모니터링하는 다수의 센서들로부터의 데이터를 폐루프 피드백 시스템에 보냄으로써, 에너지 전달 시스템은 온도 프로파일을 더 정밀하게 그리고 정확하게 제어하도록 동작될 수 있다.
도 1a를 참조하면, 적층 제조 장치(100)는, 플랫폼(106) 상에 디스펜싱된 공급 재료의 최상층(104)에서의 공급 재료의 특성들을 측정하기 위한 센서 시스템(102)을 포함한다. 센서 시스템(102)은 열적 이미징 디바이스(108), 용융 풀 모니터(110), 분광 광도계(112), 또는 이들의 임의의 조합을 포함한다.
적층 제조 장치(100)는, 에너지를 공급 재료의 최상층(104)에 선택적으로 전달하기 위한 에너지 전달 시스템(114)을 더 포함한다. 에너지 전달 시스템(114)은 열 소스(116) 및 에너지 소스(118)를 포함하며, 열 소스(116)는, 에너지 소스(118)가 에너지를 전달하는 구역보다 더 큰 구역에 에너지를 전달하도록 구성된다. 본원에서 설명되는 바와 같이, 제어기(119)는 센서 시스템(102) 및 에너지 전달 시스템(114)에 동작가능하게 연결된다. 제어기(119)는, 장치(100)의 융합 품질, 수율 및 처리량을 개선하기 위해, 최상층(104)에서의 공급 재료의 특성들의 측정치들에 기반하여 에너지 전달 시스템(114)을 동작시킨다. 예컨대, 센서 시스템(102)은 다양한 상이한 레벨들의 해상도로 최상층(104)의 온도의 측정치들을 제공하며, 이러한 측정치들은, 제어기(119)가 에너지 전달 시스템(114)의 폐루프 피드백 제어를 수행하여, 공급 재료의 최상층(104)에서 희망 온도 프로파일을 달성할 수 있게 한다.
도 1b에 도시된 예에서, 장치(100)는, 플랫폼(106) 상에 공급 재료의 연속적인 층들(121)을 디스펜싱하기 위한 디스펜서(120)를 포함한다. 적층 제조 프로세스 동안, 디스펜서(120)는 공급 재료의 층을 디스펜싱하고, 에너지 전달 시스템(114)은, 공급 재료를 용융 및 융합시켜 희망하는 오브젝트의 부분들을 형성하기 위해, 제어된 방식으로 에너지를 제공한다.
디스펜서(120)는 플랫폼(106) 위에 포지셔닝된 하나 이상의 노즐들을 포함할 수 있으며, 그 하나 이상의 노즐들을 통해 공급 재료가 유동한다. 공급 재료는 중력-구동되거나(gravity-driven), 또는 디스펜서(120)에 의해, 예컨대 압전 액추에이터에 의해 능동적으로 배출된다. 개별적인 노즐들의 디스펜싱의 제어는, 공압 밸브들, 마이크로전기기계 시스템(MEMS) 밸브들, 솔레노이드 밸브들, 및/또는 자기 밸브들에 의해 제공될 수 있다. 일부 구현들에서, 디스펜서(120)는, 애퍼처들을 갖는 롤러 ― 애퍼처들을 통해 공급 재료가 디스펜싱됨 ―, 공급 재료 저장소로부터의 공급 재료를 플랫폼(106)에 걸쳐 푸시하기 위한 평평한 블레이드(blade) 또는 패들(paddle), 또는 튜브를 포함하며, 튜브는 애퍼처를 갖고 그리고 공급 재료를 튜브를 통해 푸시하기 위한 오거(augur)를 둘러싼다.
장치(100)는 플랫폼(106) 위에 증착된 공급 재료들의 층을 압축 및/또는 평활화하기 위한 압축 및/또는 레벨링 메커니즘, 예컨대 롤러 또는 블레이드를 포함할 수 있다.
일부 구현들에서, 공급 재료는 금속성 입자들을 포함한다. 금속성 입자들의 예들은, 금속들, 합금들 및 금속간 합금들을 포함한다. 금속성 입자들을 위한 재료들의 예들은, 알루미늄, 티타늄, 스테인리스 강, 니켈, 코발트, 크롬, 바나듐, 및 이러한 금속들의 다양한 합금들 또는 금속간 합금들을 포함한다.
일부 구현들에서, 공급 재료는 세라믹 입자들을 포함한다. 세라믹 재료들의 예들은, 금속 옥사이드, 이를테면, 세리아, 알루미나, 실리카, 알루미늄 나이트라이드, 실리콘 나이트라이드, 실리콘 카바이드, 또는 이러한 재료들의 조합, 이를테면, 알루미늄 합금 분말을 포함한다.
일부 구현들에서, 공급 재료는, 재료의 슬러리 현탁액 또는 액체 현탁액 내의 분말들 또는 건조 분말들을 포함한다. 예컨대, 압전 프린트헤드를 사용하는 디스펜서의 경우, 공급 재료는 액체 현탁액 내의 입자들을 포함할 수 있다. 디스펜서(120)는, 공급 재료의 층들을 형성하기 위해, 캐리어 유체, 예컨대 고 증기압 캐리어, 예컨대 이소프로필 알코올(IPA), 에탄올, 또는 N-메틸-2-피롤리돈(NMP) 내에 있는 분말을 전달한다. 캐리어 유체는 층에 대한 소결 단계 전에 증발될 수 있다. 대안적으로, 공급 재료를 디스펜싱하기 위해, 건식 디스펜싱 메커니즘, 예컨대 초음파 교반 및 가압된 불활성 가스에 의해 지원되는 노즐들의 어레이가 이용될 수 있다.
플랫폼(106)과 디스펜서(120)는, 디스펜서(120)가 플랫폼(106)의 상이한 부분들에 공급 재료를 디스펜싱할 수 있게 하기 위해, 서로에 대해 이동가능하다. 특히, 이러한 이동은, 공급 재료가 플랫폼(106)의 빌드 영역(122)을 따라 상이한 부분들에 걸쳐 디스펜싱되는 것을 가능하게 한다. 예컨대, 하나 이상의 액추에이터들을 포함하는 액추에이터 시스템(124)은, 제1 축, 예컨대 X-축 및 제2 축, 예컨대 Y-축을 따라 디스펜서(120)를 플랫폼(106)에 대해 구동시키도록 동작가능하다.
에너지 전달 시스템(114)은, 공급 재료의 최상층(104)의 부분을 예열하거나, 열처리하거나, 또는 용융시키기 위해, 플랫폼(106) 상의 공급 재료의 최상층(104)에 에너지를 전달하도록 구성된다. 특히, 제어기(119)는, 공급 재료의 부분들을 선택적으로 융합하여 오브젝트를 형성하기 위해, 미리 정의된 패턴을 나타내는 디지털 데이터에 따라 에너지 전달 시스템(114)을 동작시킨다. 본원에서 설명되는 바와 같이, 제어기(119)는, 희망 온도 프로파일을 나타내는 데이터를 저장할 수 있다. 이러한 데이터는 센서 시스템(102)에 의한 측정에 기반하여 생성될 수 있다. 제어기(119)는 또한, 희망 온도 프로파일, 및 그에 따른 공급 재료의 선택적 융합을 달성하기 위해, 공급 재료에 전달되는 에너지의 양을 변화시키도록 동작가능하다.
도 2를 참조하면, 에너지 전달 시스템(114) 및 센서 시스템(102)은, 빌드 영역(122)의 공급 재료의 최상층(104)의 상이하게 크기가 정해진 부분들에 에너지를 전달하고 그리고 그 상이하게 크기가 정해진 부분들을 측정한다. 예컨대, 빌드 영역(122)은 복셀들(129), 셀들(127), 및 섹션들(128)을 포함할 수 있으며, 복셀들(129)은 가장 작게 크기가 정해진 부분이다. 셀들(127)은 복셀들보다 더 크며, 섹션들(128)은 셀들보다는 더 크지만 빌드 영역(122)보다는 더 작다. 복셀들(129)은, 에너지 전달 시스템(114)에 의해 에너지가 선택적으로 전달되는 최상층(104)의 가장 작게 크기가 정해진 부분이거나, 또는 센서 시스템(102)에 의해 모니터링되는 가장 작게 크기가 정해진 부분일 수 있다. 셀들(127) 각각은 다수의 복셀들(129)을 포함하고, 다수의 셀들(127)은 섹션(128)을 형성하고, 다수의 섹션들(128)은 빌드 영역(122)을 형성한다. 본원에서 설명되는 바와 같이, 에너지 전달 시스템(114)의 서브시스템들 및 센서 시스템(102)의 서브시스템들은, 커버리지의 상이하게 크기가 정해진 구역들, 예컨대 구역들(126, 140, 152, 154)을 가질 수 있다.
에너지 전달 시스템(114)의 열 소스(116)는, 최상층(104)의 구역(126)에 에너지를 전달하도록 구성된다. 일부 구현들에서, 구역(126)은, 플랫폼(106)의 빌드 영역(122)의 전체 폭에 걸쳐, 빌드 영역(122)의 전체 길이에 걸쳐, 또는 둘 모두에 걸쳐 연장된다. 대안적으로 또는 추가적으로, 구역(126)은, 빌드 영역의 폭의 부분에 걸쳐, 빌드 영역의 길이의 부분에 걸쳐, 또는 둘 모두에 걸쳐 연장된다.
열 소스(116)가 빌드 영역(122)의 폭 또는 길이의 부분에만 에너지를 전달하도록 동작가능한 구현들에서, 플랫폼(106)과 열 소스(116)는, 예컨대 플랫폼(106)과 열 소스(116) 사이의 상대 운동(135)(도 1b에 도시됨)을 야기하기 위해, 방향(131)에서의 상대 운동을 야기하기 위해(도 2에 도시됨), 서로에 대해 이동가능하다. 예컨대, 액추에이터 시스템(125)(도 2에 도시됨)은, 제1 축 및/또는 제2 축을 따라 열 소스(116)를 플랫폼(106)에 대해 구동시키도록 동작가능한 하나 이상의 액추에이터들을 포함한다. 이와 관련하여, 열 소스(116)는, 에너지가 전체 빌드 영역(122)에 걸쳐 전달가능하도록, 플랫폼(106)에 걸쳐 수평으로 이동가능하다. 도 2에 도시된 예에서, 열 소스(116)는 Y-축에 대해 평행한 방향(131)으로 이동가능하다.
열 소스(116)는 구역(126)의 섹션들(128) 중 하나 이상의 섹션들(128)에 에너지를 선택적으로 전달하도록 동작가능하다. 각각의 섹션(128)은 공급 재료의 다수의 셀들(127)을 포함할 수 있으며, 각각의 셀(127)은 공급 재료의 다수의 복셀들(129)을 포함하는 구역에 대응한다. 섹션(128)이 X-축 및 Y-축 둘 모두를 따라 다수의 복셀들을 점유하는 정사각형 구역으로서 예시되지만, 이는 개략적이며, 구역은 다른 형상들을 가질 수 있고, 일부 구현들의 경우, X-축 또는 Y-축에서 단지 단일 복셀 폭일 수 있다.
예컨대, 열 소스(116)는, 섹션들(128)을 조명하도록 선택적으로 활성화가능한 다수의 적외선 램프들(117)을 포함할 수 있다. 적외선 램프들(117) 각각은, 활성화되는 경우, 적외선 광(133)을 방출하며, 적외선 광(133)은 활성화되는 경우, 최상층(104) 상의 섹션들(128) 중 대응하는 섹션(128)을 가열한다. 적외선 램프들(117)은, 각각의 섹션(128)에 전달되는 에너지의 양이 독립적으로 제어가능하도록, 전자적으로 어드레스가능하다. 예컨대, 램프들 각각에 대해, 적외선 램프에 공급되는 전력이 조절될 수 있다. 일부 구현들에서, 열 소스(116)의 적외선 램프들(117)은, X-축, Y-축, 또는 둘 모두를 따라 연장되는 선형 어레이로 배열된다.
일부 구현들에서, 적외선 램프들(117)은, 적외선 램프들(117)이 전체 구역(126)의 섹션들(128)에 에너지를 전달하게 독립적으로 제어가능하도록, 플랫폼(106)의 전체 폭에 걸쳐 연장된다. 그러한 경우들에서, 적외선 램프들(117)은, 에너지를 구역(126)에 전달하기 위해 X-축을 따라 이동하지 않는다. 대안적으로, 적외선 램프들(117)은, 플랫폼(106)의 폭의 부분에 걸쳐서만 연장되고, 에너지를 전체 구역(126)의 섹션들(128)의 부분에만 전달하도록 독립적으로 제어가능하다. 적외선 램프들(117)을 포함하는 열 소스(116)는, 적외선 램프들(117)이 전체 구역(126)을 가열할 수 있게 하기 위해, X-축을 따라 플랫폼(106)에 대해 이동가능할 수 있다.
일부 온도들을 초과하면, 분말은 끈적거리게(tacky) 되고, 결국 점성(viscous)을 갖게 될 수 있다. 이는 층 또는 후속적인 층들의 적절한 증착을 방해할 수 있다. 따라서, 일부 적층 제조 프로세스들의 경우, 분말의 온도를 상승시키는 것이 바람직하지만, 분말이 끈적거리거나 또는 점성을 갖게 되는 임계 온도를 초과하지 않는 것이 바람직하다. 금속 분말들의 상황에서, "끈적거림"은 소량의 네킹(necking) 또는 소결을 표시할 수 있는데, 예컨대 일부 퍼센티지의 입자들은 접촉점들에서 소결되지만, 입자들의 현저한 모폴로지 변화는 없다. 열 소스(116)가 예열을 위한 것이라고 가정하면, 열 소스(116)는, 복셀들의 선택된 부분을, 공급 재료가 융합되는 제2 온도 미만의 제1 온도까지 가열하기 위해 에너지를 구역(126)에 제공한다. 이러한 제1 온도는, 공급 재료가 네킹을 겪는 제3 온도보다 더 높을 수 있다. 제1 온도는, 공급 재료가 케이킹(caking)을 겪는 제4 온도보다 더 높을 수 있다. 이러한 더 높은 제4 "케이킹" 온도는, 공급 재료가 접촉점들에서 소결을 겪는 임계치보다 더 높지만, 실질적으로 다공성을 유지하고, 현저한 고밀화(densification)를 겪지 않으며, 예컨대 케이크 같은 밀도(cake-like consistency)를 달성한다. 일부 구현들에서, 이러한 더 높은 제4 온도는 케이킹 온도보다 더 높지만, 공급 재료가 융합, 예컨대 소결 또는 용융되어, 입자들 사이의 감소된 갭들 또는 더 낮은 다공성을 갖는 고체 덩어리(solid mass)를 형성하는 융합 온도보다는 여전히 더 낮다.
열 소스(116)를 통해 에너지를 전달하는 것에 추가하여, 에너지 전달 시스템(114)은 에너지 소스(118)를 사용하여 에너지를 전달하며, 에너지 소스(118)는 에너지를 최상층(104)의 구역(130)에 전달한다. 구역(130)은, 열 소스(116)가 에너지를 전달하는 구역(126)보다 더 작다. 예컨대, 구역(130)은, 단일 복셀보다 더 크지 않은 스폿 크기를 가질 수 있거나, 또는 다수의 복셀들을 커버하는 스폿 크기를 가질 수 있다. 이와 관련하여, 구역(130)은 셀들(127)의 크기보다 더 작다. 도 2가, 구역(130)이 구역(126) 내에 있는 것으로 예시하지만, 에너지 전달 시스템(114)이 구역(130)을 가열하기 전에, 구역(126)이 가열될 수 있다. 예컨대, 도 1b에 도시된 바와 같이, 적외선 광(133)은 섹션(128a)(도 2에 도시됨)을 가열할 수 있는 한편, 빔 스폿(139)은 구역(130)(도 2에 도시됨)을 가열한다. 적외선 램프들(117)과 플랫폼(106) 사이의 상대 운동(135)은, 적외선 광(133)이 전달되는 섹션(128a)이 구역(126)에 걸쳐 스캐닝되어, 구역(130)을 트래킹하는 것을 가능하게 한다.
도 1b를 다시 참조하면, 에너지 소스(118)는, 최상층(104)의 구역(130)에 충돌하도록 에너지 빔(132)을 방출하는 광학 엔진을 포함한다. 에너지 빔(132)은, 형성될 오브젝트에 대응하는 미리 정의된 패턴으로 공급 재료를 융합시키기에 충분한 열을 선택적으로 전달한다. 일부 구현들에서, 융합은 용융 및 응고, 또는 여전히 고체 형태인 동안의 소결, 또는 분말을 융합하는 다른 프로세스들을 포함한다.
일부 구현들에서, 광학 엔진은 레이저(134) 및 미러(136)를 포함한다. 레이저(134)는 미러(136)를 향해 에너지 빔(132)을 방출하고, 미러(136)는 에너지 빔(132)을 최상층(104)의 상이한 부분들을 향해 재지향시킨다. 예컨대, 미러(136)는, Y-축을 따라 최상층(104)의 상이한 부분들에 에너지 빔(132)을 재지향시키기 위해 회전가능하다. 예컨대, 미러(136)는 다각형 미러 스캐너 또는 갈보 미러 스캐너(galvo mirror scanner)의 일부일 수 있다.
전체 에너지 소스(118)는, 미러(136)가 에너지 빔(132)을 X-축을 따라 최상층(104)의 부분들로 재지향시킬 수 있게 하기 위해, 평행이동가능(translatable)할 수 있거나, 또는 X-축을 따르는 에너지 빔(132)의 이동은 제2 갈보 미러 스캐너에 의해 제공될 수 있다. 일부 구현들에서, 액추에이터 시스템(138)은 미러(136)를 평행이동시키기 위한 제1 액추에이터들 및 미러(136)를 회전시키기 위한 제2 액추에이터를 포함한다. 이는, 예컨대 구역(130)에 전달된 빔 스폿(139)(도 2 참조)이 X-축 및 Y-축 둘 모두를 따라 빌드 영역(122)에 걸쳐 수평으로 이동되는 것을 가능하게 한다. 빔 스폿(139)은, 미러(136)가 회전될 때 X-축에 대해 평행한 방향(141)으로 이동한다. 빔 스폿(139)은, X-축을 따라 연장되고 그리고 Y-축을 따라 서로에 대해 이격된 평행 경로들을 따라, 스캐닝 패턴으로 스위핑된다. 전체 빌드 영역(122)에 걸쳐 공급 재료의 선택적 융합을 가능하게 하기 위해, 특정 경로를 따라 공급 재료를 융합한 후에, 에너지 소스(118)는, 빔 스폿(139)이 초기 융합된 경로로부터 오프셋된 다른 평행 경로를 따라 스위핑될 수 있도록, 스캐닝 패턴의 해치 간격(hatch spacing)에 대응하는 증분들로 Y-축을 따라 이동가능하다.
일부 구현들에서, 에너지 소스(118) 및 열 소스(116)는 플랫폼(106) 위의 동일한 지지부에 장착되고, 공통 액추에이터는, 플랫폼(106)에 대해 지지부를 따라 이동하도록 에너지 소스(118) 및 열 소스(116)를 구동시킨다. 이러한 액추에이터는, 구동될 때, Y-축을 따라 열 소스(116) 및 에너지 소스(118)를 이동시킨다.
구역(126)의 섹션들(128)은 복셀보다 대략 2배 내지 10배 또는 그보다 더 클 수 있다. 복셀들(129)은 구역(130)의 스폿 크기보다 대략 50배 내지 150배 또는 그보다 더 클 수 있다. 섹션들(128)은 구역(130)보다 10의 몇 제곱(orders of magnitude)만큼 더 크다. 예컨대, 상이한 섹션들(128) 각각은 대략 10mm 폭이거나 또는 그보다 더 클 수 있고, 구역(130)은 50 미크론이거나 또는 그보다 더 클 수 있다.
일부 구현들에서, 구역(126)과 구역(130)은 서로 오버랩한다. 열 소스(116)가 에너지를 전달하는 구역(126)은, 구역(130), 빔 스폿(139)이 횡단한 빌드 영역(122)의 부분, 및/또는 빔 스폿(139)이 횡단할 빌드 영역(122)의 부분을 포함한다. 상기 다른 방식으로, 열 소스(116)는, 에너지 소스(118)가 에너지를 빌드 영역(122)의 부분에 전달하기 전에 그 부분에 에너지를 전달하고 그리고/또는 에너지 소스(118)가 빌드 영역(122)의 부분에 에너지를 전달한 후에 그 부분에 에너지를 전달한다. 예컨대, 구역(126)은, 하나 이상의 복셀들만큼 또는 하나 이상의 셀들(127)만큼 구역(130) 뒤에 뒤처질(lag) 수 있다.
에너지 소스(118)가 에너지를 제공하기 전에 최상층(104)의 부분에 에너지를 제공함으로써, 열 소스(116)는, 에너지 소스(118)가 구역(130)을 용융 및 소결시키기 위한 준비로, 구역(126)을 예열시킨다. 예열은 온도의 점진적인 증가를 제공하고, 공급 재료를 상승된 온도로 이끌어서, 초기 온도와 용융 온도 사이의 차이를 감소시켜, 공급 재료를 융합시키기 위한 에너지 소스(118)의 필요한 에너지 밀도를 감소시킨다. 예열되어 상승된 온도에서 공급 재료를 융합시킴으로써 에너지 소스(118)의 필요한 에너지 밀도를 감소시키는 것은, 불완전한 융합의 위험 없이 더 신속한 스캐닝을 용이하게 한다. 열 소스(116)를 사용하여 최상층(104)의 융합된 부분들을 가열하는 것은, 최상층(104) 및 연속적인 층들(121)에 걸친 열적 변화를 최소화하여서, 부품이 층별 높이가 증가함에 따른 잔류 응력을 최소화한다.
구역(130)의 공급 재료가 용융 및 융합된 후에, 열 소스(116)는 공급 재료의 이러한 부분에 에너지를 계속 전달하여 공급 재료를 열처리하여서, 공급 재료의 냉각 레이트를 제어할 수 있다. 빔 스폿(139)이 구역(130)의 부분을 통해 또는 구역(130)의 전체를 통해 스캐닝되는 한편, 열 소스(116)는 구역(130)을 통한 빔 스폿(139)의 횡단에 기반하여 섹션들(128)을 선택적으로 예열 또는 열처리하도록 동작된다.
센서 시스템(102)은 공급 재료의 온도를 모니터링하는 한편, 에너지 전달 시스템(114)은 공급 재료의 융합을 용이하게 한다. 열적 이미징 디바이스(108)는 공급 재료의 온도들을 측정한다. 예컨대, 열적 이미징 디바이스(108)는, 빌드 영역(122)의 구역(140) 내의 온도 변화를 표시하는 이미저리(imagery)를 캡처하는 적외선 이미지 캡처 시스템, 예컨대 적외선 카메라이다. 도 3을 참조하면, 캡처된 이미저리는 구역(140) 전체에 걸친 온도들, 예컨대 평균 온도들을 표시하는 온도 맵(142)을 형성하는 데 사용가능하다. 열적 이미징 디바이스(108)는 구역(140)에 걸쳐 연장되는 다수의 포지션들에서의 온도들을 측정한다. 일부 예들에서, 온도가 측정되는 포지션들은 구역(140)에 균일하게 분포된다.
일부 구현들에서, 구역(140)은, 예컨대 빌드 영역(122)의 길이 및 폭 둘 모두에 걸쳐, 빌드 영역(122) 전체를 커버한다. 다시 말해, 열적 이미징 디바이스(108)는 전체 빌드 영역(122)을 커버하는 시야(108a)를 갖는다. 구역(140)은 빌드 영역(122)의 셀들(127) 각각을 커버할 수 있다. 일부 구현들에서, 구역(140)은 빌드 영역(122)의 전체 미만을 커버하지만, 여전히 구역(126)보다 더 큰 영역을 커버한다. 구역(140)이 빌드 영역(122)의 전체 미만을 커버하는 구현들에서, 열적 이미징 디바이스(108)는 플랫폼(106)에 대해 이동가능하여, 빌드 영역(122) 전체에 걸친 온도들의 측정들을 가능하게 한다.
도 3에 도시된 예에서, 온도 맵(142)은, 예컨대 열 소스(116)에 의한 에너지의 전달로 인해, 구역(126)의 공급 재료의 온도가 구역(126) 외측의 공급 재료의 온도보다 더 높다는 것을 표시한다. 구역(126) 내에서, 열적 이미징 디바이스(108)는 온도 변화를 검출한다. 예컨대, 제1 영역(144)의 온도는 주변 영역(surrounding area)(146)의 온도보다 더 낮고, 제2 영역(148)의 온도는 주변 영역(146)의 온도보다 더 높다. 게다가, 제3 영역(150)의 온도는, 예컨대 에너지 소스(118)에 의한 에너지의 전달로 인해, 주변 영역(146)의 온도보다 더 높고 그리고 제2 영역(148)의 온도보다 더 높다.
도 2를 간단히 참조하면, 용융 풀 모니터(110)는, 에너지 소스(118)가 에너지 빔(132)을 지향시키는 구역(130)을 포함하는 구역(152)의 공급 재료의 특성들을 표시하는 데이터를 생성한다. 구역(152)은 구역(130)을 오버랩하고, 구역(130)을 둘러싼다. 용융 풀 모니터(110)에 의해 모니터링되는 구역(152)이 구역(130)보다 더 크지만, 용융 풀 모니터(110)는 여전히 구역(140)보다 현저하게 더 작은 구역으로 지향된다. 예컨대, 용융 풀 모니터(110)의 카메라는, 단일 복셀 또는 2개 이상의 복셀들을 커버하는 시야(110a)를 가질 수 있다. 도 2에 도시된 예에서, 구역(152)은 다수의 복셀들(129)을 커버하며, 구역(152)의 중심이 구역(130)의 중심과 코로케이팅되어서(collocated), 용융 풀 모니터(110)는 빔 스폿(139)에 의해 용융되는 공급 재료의 특성들을 표시하는 데이터를 생성할 수 있다. 용융 풀 모니터(110)는 셀들(127) 중 단일 셀(127)을 커버할 수 있거나, 또는 일부 경우들에서, 단일 셀(127), 및 주변 셀들(127)의 부분을 커버할 수 있다. 예컨대, 구역(152)은 구역(130)에 의해 커버되는 하나 이상의 복셀들을 커버하고, 구역(130)을 둘러싸는 영역을 또한 커버한다. 구역(130)을 둘러싸는 영역은 구역(130)을 둘러싸는 전체 복셀들을 포함할 수 있다. 일부 경우들에서, 구역(130)은 구역(130)을 둘러싸는 각각의 복셀의 부분을 포함할 수 있다. 이와 관련하여, 용융 풀 모니터(110)는 구역(130)을 둘러싸는 영역의 공급 재료뿐만 아니라 구역(130)의 공급 재료의 온도들을 검출할 수 있다. 구역(130)을 둘러싸는 영역의 공급 재료의 온도들에 대한, 구역(130)의 공급 재료의 온도들은, 용융 풀 모니터(110)에 의해 모니터링되는 것으로 본원에서 설명되는 하나 이상의 특성들을 표시할 수 있다.
용융 풀 모니터(110)는 구역(130)을 따르도록 플랫폼(106)에 대해 이동가능하다. 예컨대, 플랫폼(106)에 대한 용융 풀 모니터(110)의 이동은 최상층(104) 상에서의 빔 스폿(139)의 이동을 트래킹한다.
도 4를 참조하면, 용융 풀 모니터(110)에 의해 측정된 공급 재료의 특성들은 용융 풀(153)의 특성들을 포함한다. 용융 풀(153)은, 공급 재료의 최상층(104)에 충돌하는 에너지 빔(132)에 의해 부여되는 에너지로 인해, 공급 재료로부터 형성된다.
일부 예들에서, 용융 풀 모니터(110)는, 구역(152)의 온도들을 측정하도록 온도 교정된 고속 카메라, 확대 렌즈, 및 적외선 필터들을 포함한다. 용융 풀 모니터(110)에 의해 캡처된 이미저리로부터, 제어기(119)는, 융합된 공급 재료와 융합되지 않은 공급 재료와 용융된 공급 재료 사이를 구별할 수 있다. 용융 풀 모니터(110)에 의한 측정들은 또한, 공급 재료의 다른 특성들, 이를테면, 공급 재료의 냉각 레이트, 공급 재료의 결정화 레이트, 또는 공급 재료의 다른 재료 특성들을 표시할 수 있다. 구역(152) 내의 온도들의 분포는, 공급 재료의 부분이 융합되었는지, 융합되지 않았는지, 또는 용융되었는지를 표시한다. 예컨대, 공급 재료의 어느 부분이 용융된 공급 재료를 구성하는지를 결정하기 위해, 용융 풀 모니터(110)에 의해 측정된 온도들은 미리 정의된 임계치와 비교된다. 미리 정의된 임계치를 초과하는 온도들을 갖는 공급 재료의 부분들은 용융되어서 용융 풀(153)을 구성한다.
열적 이미징 디바이스(108)가 용융 풀(153)의 온도들의 측정치들을 제공할 수 있지만, 일부 구현들에서, 용융 풀 모니터(110)는, 열적 이미징 디바이스(108)보다, 구역(152)의 공급 재료의 더 고해상도의 이미지 또는 온도의 더 정밀한 측정치를 제공한다. 일부 구현들에서, 용융 풀 모니터(110)는, 공급 재료의 최상층(104)의 융합되지 않은 공급 재료와 용융 풀(153) 사이의 고체-액체 계면에서의 용융 풀(153)의 열 경사들의 측정치들을 제공한다. 열 경사들의 측정치들은, 용융 풀(153)의 크기 및 형상이 정밀하게 제어될 수 있도록, 용융 풀(153)의 하나 이상의 치수들을 표시할 수 있다. 열 경사들은, 용융 풀(153)을 형성하는 공급 재료뿐만 아니라 용융 풀(153)을 둘러싸는 공급 재료 둘 모두의 온도 측정치들에 기반하여 결정될 수 있다.
에너지 빔(132)이 충돌하는 구역(130)이 구역(140)의 전체 영역과 비교하여 비교적 작은 영역을 갖기 때문에, 에너지 빔(132)이 더 정밀하게 제어될 수 있도록, (적어도 구역(130)을 포괄하는) 구역(152)에 대한 더 고해상도의 온도 측정치를 갖는 것이 유리할 수 있다. 이러한 온도 측정치들은 열적 이미징 디바이스(108)의 온도 측정치들과 조합되어, 구역(152)의, 더 높은 온도 해상도를 갖는 온도 맵을 제공할 수 있다.
온도에 추가하여, 용융 풀 모니터(110)에 의해 검출되는 특성들은 용융 풀(153)의 기하학적 구조를 표시하는 하나 이상의 특성들, 이를테면, 예컨대, 용융 풀(153)의 치수, 용융 풀(153)의 길이(L1), 용융 풀(153)의 폭(도시되지 않음), 용융 풀(153)의 깊이(D1), 용융 풀(153)의 진원도(roundness), 용융 풀(153)의 형상, 또는 구역(130)에 전달되는 에너지의 특징들에 의존하는 용융 풀(153)의 다른 특성을 포함할 수 있다. 용융 풀(153)의 치수들은 이미지 프로세싱 알고리즘들에 기반하여 제어기(119)에 의해 계산될 수 있다.
도 1b를 다시 참조하면, 분광 광도계(112)는 공급 재료 중 구역(154)의 공급 재료의 특성들을 측정한다. 분광 광도계(112)는, 방출된 적외선 광에 대한 공급 재료의 부분의 스펙트럼 응답을 검출하기 위해 공급 재료의 부분을 향해 적외선 광을 방출하는 적외선 분광 광도계이다. 분광 광도계(112)에 의해 취해지는 측정들은 공급 재료의 부분의 온도를 표시하는 한편, 공급 재료의 부분은 에너지 빔(132)에 의한 공급 재료의 부분의 이전의 충돌로부터 냉각된다. 구역(154)의 공급 재료가 냉각됨에 따라, 분광 광도계(112)에 의해 검출가능한 광학 파장들이 변화된다. 검출된 파장들은 구역(154)의 공급 재료의 온도를 표시한다.
구역(154)은 에너지 소스(118)가 에너지 빔(132)을 지향시키는 구역(130) 뒤에 뒤처질 수 있다. 구역(154)은 구역(130)에 바로 뒤처지는 셀들(127)을 트래킹할 수 있다. 이와 관련하여, 분광 광도계(112)는, 에너지 소스(118)가 에너지를 공급 재료의 부분에 전달한 이후의 공급 재료의 부분의 특성들을 측정한다. 구역(154)은, 구역(152)보다는 더 크지만 구역(140)보다는 더 작을 수 있다. 예컨대, 구역(152)이 단일 복셀을 커버하는 경우, 구역(154)은 다수의 복셀들(129)을 커버할 수 있다. 구역(152)이 단일 셀(127)을 커버하는 경우, 구역(154)은 다수의 셀들(127)을 커버할 수 있다. 분광 광도계(112)에 의해 모니터링되는 공급 재료의 부분은, 빔 스폿(139)의 이동 방향(141)에 대해 용융 풀(153) 바로 뒤에 있고 그리고 에너지 소스(118)에 의해 최근에 용융된 공급 재료의 부분에 대응한다. 예컨대, 구역(154)은 구역(130)으로부터 1 내지 10개의 복셀들만큼 오프셋된다. 대안적으로, 구역(154)은 구역(130)을 포함하고, 그리고 또한, 구역(130)보다 1 내지 10개의 복셀들만큼 앞의 부분 및/또는 구역(130)보다 1 내지 10개의 복셀들만큼 뒤의 부분을 적어도 포함한다. 이와 관련하여, 분광 광도계의 시야(112a)는 최대 10개의 복셀들, 또는 그보다 많은 복셀들을 커버할 수 있다.
분광 광도계(112)는 냉각되는 공급 재료에 대한 고해상도 온도 판독치들을 제공할 수 있다. 이러한 판독치들은 열적 이미징 디바이스(108) 및 용융 풀 모니터(110)의 측정치들과 조합되어, 특히 점진적인 가열 및 냉각 동안의 공급 재료의 온도들에 대해, 구역(154)에서의 개선된 정밀도를 갖는 온도 맵을 제공할 수 있다.
일부 구현들에서, 구역(154)은 빔 스폿(139)의 이동 방향(141)에 대해 용융 풀(153)의 바로 앞의 공급 재료의 부분을 더 포함한다. 그러한 경우들에서, 분광 광도계(112)는 용융 및 융합을 위해 점진적으로 가열될 공급 재료의 부분들의 측정치들을 제공한다.
도 5를 참조하면, 제어기(119)는, 열 소스(116) 및 에너지 소스(118)를 포함하는 에너지 전달 시스템(114)에 동작가능하게 연결되어, 제어기(119)가 에너지 전달 시스템(114)의 동작들을 제어하는 것을 가능하게 한다. 제어기(119)는 추가로, 제어기(119)가 센서 시스템(102)에 의해 수집된 데이터를 사용하여 열 소스(116) 및 에너지 소스(118)의 동작들을 제어할 수 있도록, 센서 시스템(102)에 동작가능하게 연결된다. 센서 시스템(102)에 의해 수집된 데이터에 기반하여, 제어기(119)는 개선된 융합 품질을 달성하기 위해 에너지 전달 시스템(114)을 동작시킨다. 특히, 본원에서 설명되는 바와 같이, 열 소스(116)의 특정 파라미터들 및 에너지 소스(118)의 특정 파라미터들은, 센서 시스템(102)으로부터의 신호들에 대한 응답으로 조정가능하다.
제어기(119)는, 열적 이미징 디바이스(108), 용융 풀 모니터(110), 및 분광 광도계(112) 각각으로부터 데이터를 수신하고, 데이터를 조합하여 최상층(104)의 온도 프로파일을 생성한다. 예컨대, 열적 이미징 디바이스(108)는, 공급 재료의 최상층(104)의 부분 또는 전체에 걸친 온도들을 표시하는 데이터를 제어기(119)에 제공한다. 용융 풀 모니터(110)는, 용융 풀(153)의 온도를 표시하는 데이터 및 용융 풀(153)의 기하학적 구조를 표시하는 데이터를 제어기(119)에 제공한다. 분광 광도계(112)는, 에너지 빔(132)이 이전에 충돌한 또는 에너지 빔(132)이 충돌할 공급 재료의 부분의 온도를 표시하는 데이터를 제어기(119)에 제공한다. 열적 이미징 디바이스(108)에 의해 제공된 이러한 데이터들에 기반하여, 용융 풀 모니터(110), 분광 광도계(112), 및 제어기(119)는, 공급 재료의 최상층(104)의 정확한 온도 프로파일, 예컨대 온도 맵을 생성할 수 있다.
일부 구현들에서, 최상층(104)의 온도 프로파일의 정확도 및 정밀도를 개선하기 위해, 제어기(119)는 최상층(104) 아래의 공급 재료의 층들의 온도 프로파일들에 기반하여 온도 프로파일을 생성한다. 특히, 제어기(119)는, 에너지 전달 시스템(114)이 대응하는 하부층에 에너지를 전달할 때, 열적 이미징 디바이스(108), 용융 풀 모니터(110), 및 분광 광도계(112)에 의해 생성된 데이터를 사용하여 공급 재료의 하부층들 각각의 온도 프로파일들을 생성한다. 하부층들에 대한 온도 데이터는, 최상층(104)에 대한 온도 프로파일을 생성하는 데 사용가능한 이력 데이터에 대응한다. 일부 구현들에서, 이력 데이터의 온도들은 시간의 경과에 따른 하부층들을 통한 열 흐름을 고려하도록 조정된다. 따라서, 제어기(119)에는 층별 온도 프로파일이 제공된다. 제어기(119)는, 하부층들로부터 최상층(104)으로의 열 전달량을 컴퓨팅하고, 컴퓨팅된 열 전달량을 고려하여 최상층(104)의 온도 프로파일을 생성한다. 따라서, 제어기(119)는 하부층들의 온도 프로파일들에 기반하여 온도 프로파일을 생성한다.
현재 온도 프로파일을 생성하기 위한 온도 데이터가 제공되는 것에 추가하여, 제어기(119)는 최상층(104)의 희망 온도 프로파일을 표시하는 정보를 수신한다. 일부 구현들에서, 희망 온도 프로파일은, 최상층(104)에 대해 제어기가 선택한 희망 온도 프로파일(controller-selected desired temperature profile)에 대응한다. 예컨대, 제어기(119)는 형성될 오브젝트를 표시하는 데이터를 수신하고, 그런 다음, 그 오브젝트에 기반하여 그리고 공급 재료의 특성들 및 모폴로지의 희망하는 변화들에 기반하여, 희망 온도 프로파일을 선택한다. 예컨대, 희망 온도 프로파일의 온도들은 각각 공급 재료의 희망하는 예열, 열처리, 또는 용융을 달성하기 위해 선택된다. 본원에서 설명되는 바와 같이, 에너지 전달 시스템(114)은, 센서 시스템(102)을 사용하여 측정된 온도 프로파일에 기반하여 희망 온도 프로파일을 달성하기 위해 에너지를 최상층(104)에 전달하기 위하여, 폐쇄 피드백 루프(closed feedback loop)에서 동작된다.
희망 온도 프로파일은 임의의 주어진 시간에 최상층(104)을 따라 공간적으로 변화하는 온도들을 표시하여서, 희망 온도 프로파일을 달성하기 위해 최상층(104)에 전달되는 에너지는 오브젝트의 형성을 용이하게 한다. 예컨대, 에너지 빔(132)에 의해 충돌될 구역(130)은 희망 온도 프로파일에서 가장 높은 온도를 갖는다. 빔 스폿(139)의 이동 방향(141)에 대해 구역(130) 바로 앞의 영역은 주변 영역들보다 더 높은 온도를 가져서, 이 영역의 공급 재료는 에너지 빔(132)에 의해 소결 및 융합되기 위한 준비로, 점진적으로 가열된다. 유사하게, 빔 스폿(139)의 이동 방향(141)에 대해 구역(130) 바로 뒤의 영역은, 그 영역의 공급 재료가 에너지 빔(132)에 의한 최근의 충돌로부터 냉각됨에 따라, 주변 영역들보다 더 높은 온도를 갖는다.
게다가, 제어기(119)는, 개별적인 복셀들이 희망 온도 프로파일을 따르도록 적층 제조 프로세스가 진행됨에 따라, 에너지 전달 시스템(114)에 의해 전달되는 열의 양을 조정한다. 예컨대, 제어기(119)는, 예컨대 열 소스(116)에 의해 전달되는 열을 증가 또는 감소시킴으로써, 초기 온도의 임의의 검출된 불균일성을 보상할 수 있다.
열 소스(116) 및 에너지 소스(118)는, 희망 온도 프로파일을 달성하는 것을 용이하게 하기 위해 조정가능한 파라미터들을 갖는다. 열 소스(116)가 다수의 적외선 램프들을 포함하는 구현들에서, 열 소스(116)의 조정가능한 파라미터들은 램프들의 세기들을 표시하는 파라미터를 포함한다. 램프들의 세기들은 희망 온도 프로파일을 달성하기 위해 상이한 값들로 세팅될 수 있다. 예컨대, 하나의 위치에서 측정된 온도 프로파일의 온도가 빌드 영역(122)을 따르는 위치에서의 희망 온도 프로파일의 희망 온도보다 더 낮은 경우, 측정된 온도를 증가시키기 위해, 그 하나의 위치 바로 위의 적외선 램프의 전력이 증가된다. 유사하게, 하나의 위치에서 측정된 온도 프로파일의 온도가 그 하나의 위치에서의 희망 온도보다 더 높은 경우, 측정된 온도를 낮추기 위해 전력이 감소된다.
도 3에 도시된 온도 맵(142)의 예에서, 열 소스(116)는, 제1 영역(144) 위에 놓인 램프가 더 큰 레이트의 에너지, 예컨대 더 큰 세기를 갖는 에너지를 방출하도록 조절되거나 또는 활성화되어서, 제1 영역(144)의 온도가 주변 영역(146)에 비해 증가될 수 있도록, 동작된다. 게다가, 열 소스(116)는, 제2 영역(148) 위에 놓인 램프가 더 낮은 레이트의 에너지, 예컨대 더 작은 세기를 갖는 에너지를 방출하도록 조절되거나 또는 활성저하되어서(deactivated), 제2 영역(148)의 온도가 주변 영역(146)에 비해 감소될 수 있도록, 동작된다. 주변 영역(146)은 희망 온도 프로파일의 희망 온도들과 매칭되는 온도들을 갖는다. 이와 관련하여, 주변 영역(146) 위에 놓인 램프들은 세팅된 세기들로 유지된다.
일부 예들에서, 열 소스(116)의 램프들은 희망 온도 프로파일에 따라 구역(130) 바로 앞의 또는 바로 뒤의 위치들의 온도들을 제어하도록 동작된다. 구역(130) 바로 앞의 위치들 위에 포지셔닝된 램프들은, 구역(130) 바로 뒤의 위치들의 점진적인 냉각 및 구역(130) 앞의 위치들의 점진적인 가열을 가능하게 하도록 동작된다.
에너지 소스(118)의 조정가능한 파라미터들은, 빔 스폿(139)의 크기, 빔 스폿(139)의 스캐닝 속도, 에너지 빔(132)의 파워, 또는 에너지 빔(132)에 대한 스캔 패턴의 해치 간격을 포함한다. 예컨대, 구역(130)의 온도가, 구역(130)의 희망 온도 프로파일의 희망 온도보다 더 낮은 구현들에서, 구역(130)의 온도를 증가시키기 위해, 빔 스폿(139)의 크기가 감소되거나, 빔 스폿(139)의 스캐닝 속도가 감소되거나, 또는 에너지 빔(132)의 파워가 증가된다. 이는 구역(130)의 전력 밀도를 증가시켜서, 구역(130)으로의 에너지 전달 레이트를 증가시킨다. 구역(130)의 온도가 구역의 희망 온도보다 더 높은 구현들에서, 구역(130)의 온도를 감소시키기 위해, 빔 스폿(139)의 크기가 증가되거나, 빔 스폿(139)의 스캐닝 속도가 증가되거나, 또는 에너지 빔(132)의 파워가 감소된다. 이는 구역(130)의 전력 밀도를 감소시켜서, 구역(130)으로의 에너지 전달 레이트를 감소시킨다.
일부 구현들에서, 구역(130) 외측의 위치의 온도는 그 위치에서의 희망 온도보다 더 높거나 또는 더 낮다. 빔 스폿(139)이 구역(130) 외측의 위치들에서의 온도 증가들을 발생시킬 수 있기 때문에, 에너지 빔(132)의 스캔 패턴은 구역(130) 외측의 최상층(104)의 부분들의 온도에 영향을 미치도록 조정가능하다. 예컨대, 구역(130) 외측의 위치에서의 온도가 희망 온도보다 더 높은 것에 대한 응답으로, 스캔 패턴의 해치 간격, 예컨대 스캔 패턴의 평행 경로들 사이의 거리가 증가될 수 있다. 해치 간격의 이러한 증가는 구역(130)으로부터 그 위치로의 열 전달 레이트를 감소시킨다. 유사하게, 구역(130) 외측의 위치에서의 온도가 희망 온도보다 더 낮은 것에 대한 응답으로, 해치 간격이 감소될 수 있다. 해치 간격의 이러한 감소는 구역(130)으로부터 그 위치로의 열 전달 레이트를 증가시킨다.
다수의 구현들이 설명되었다. 그럼에도 불구하고, 다양한 수정들이 이루어질 수 있다는 것이 이해될 것이다.
제어기들 및 컴퓨팅 디바이스들은, 이러한 동작들, 및 본원에서 설명되는 다른 프로세스들 및 동작들을 구현할 수 있다. 위에서 설명된 바와 같이, 장치(100)의 제어기(119)는 장치(100)의 다양한 컴포넌트들, 시스템들, 및 서브시스템들에 연결되는 하나 이상의 프로세싱 디바이스들을 포함할 수 있다. 제어기(119)는 동작을 조정할 수 있고, 그리고 장치(100)로 하여금, 위에서 설명된 다양한 기능 동작들 또는 일련의 단계들을 수행하게 할 수 있다.
제어기(119), 및 본원에서 설명되는 시스템들의 다른 컴퓨팅 디바이스 부분은, 디지털 전자 회로, 또는 컴퓨터 소프트웨어, 펌웨어, 또는 하드웨어로 구현될 수 있다. 예컨대, 제어기는, 컴퓨터 프로그램 제품, 예컨대 비-일시적 기계 판독가능 저장 매체에 저장된 컴퓨터 프로그램을 실행하기 위한 프로세서를 포함할 수 있다. (프로그램, 소프트웨어, 소프트웨어 애플리케이션, 또는 코드로 또한 알려진) 그러한 컴퓨터 프로그램은, 컴파일링된 또는 해석된 언어들을 포함하는 임의의 형태의 프로그래밍 언어로 작성될 수 있고, 이는 독립형 프로그램으로서 또는 모듈, 컴포넌트, 서브루틴, 또는 컴퓨팅 환경에 사용하기에 적당한 다른 유닛으로서의 형태를 포함하는 임의의 형태로 전개될 수 있다.
제어기(119), 및 설명되는 시스템들의 다른 컴퓨팅 디바이스 부분은, 데이터 오브젝트, 예컨대 각각의 층에 대해 공급 재료가 증착되어야 하는 패턴을 식별하는 컴퓨터 지원 설계(CAD; computer aided design)-호환가능 파일을 저장하기 위한 비-일시적 컴퓨터 판독가능 매체를 포함할 수 있다. 예컨대, 데이터 오브젝트는, STL-포맷화 파일, 3D 제조 포맷(3MF; 3D Manufacturing Format) 파일, 또는 적층 제조 파일 포맷(AMF; Additive Manufacturing File Format) 파일일 수 있다. 예컨대, 제어기는 원격 컴퓨터로부터 데이터 오브젝트를 수신할 수 있다. 예컨대, 펌웨어 또는 소프트웨어에 의해 제어되는 제어기(119) 내의 프로세서는, 컴퓨터로부터 수신된 데이터 오브젝트를 해석하여, 각각의 층에 대해 특정된 패턴을 융합시키도록 장치(100)의 컴포넌트들을 제어하는 데 필요한 신호들의 세트를 생성할 수 있다.
일부 특정 구현들이 설명되었지만, 다른 구현들이 가능하다. 예컨대, 다음과 같다:
● 에너지 소스(118)가, 공급 재료를 소결 또는 용융시키기 위한 에너지를 제공하는 것으로 설명되지만, 일부 구현들에서, 에너지 소스는 공급 재료의 부분을 예열 또는 열처리하도록 동작가능하다. 예컨대, 에너지 소스(118)는, 에너지 소스(118)에 의해 방출되는 에너지 빔(132)의 파워가 조절될 수 있도록, 구성된다. 그 파워는, 에너지 빔(132)이 구역(130)에 충돌하여 구역(130)의 공급 재료를 예열 또는 열처리하게 하도록, 선택된다.
● 대안적으로 또는 추가적으로, 장치(100)는 공급 재료를 예열 또는 열처리하도록 동작가능한 하나 이상의 추가의 에너지 소스들을 포함한다. 예컨대, 에너지 소스는, 에너지 소스(118)에 의해 방출되는 에너지 빔(132) 뒤에 뒤처지는 에너지 빔을 방출하도록 동작가능하다. 이러한 추가의 에너지 빔은, 예컨대 희망 온도 프로파일에 기반하여 공급 재료를 열처리하는 데 사용된다. 대안적으로 또는 추가적으로, 에너지 소스는, 에너지 소스(118)에 의해 방출되는 에너지 빔(132)을 리드(lead)하는 에너지 빔을 방출하도록 동작가능하다. 이러한 추가의 에너지 빔은, 예컨대 희망 온도 프로파일에 기반하여 공급 재료를 예열하는 데 사용된다. 에너지 소스(118)가 레이저를 포함하는 것으로 설명되지만, 일부 구현들에서, 에너지 소스(118)는 공급 재료를 예열 또는 열처리하기 위한 전자 빔을 포함한다.
● 일부 구현들에서, 열 에너지 소스(118)는 레이저 및 갈보 미러 스캐너 및 평면형 미러를 포함한다. 대안적으로 또는 추가적으로, 열 소스(116)는 레이저 및 다각형 미러 스캐너를 포함한다. 다각형 미러 스캐너는 광빔을 수신하고, 단일 방향으로 계속 회전하여 경로를 따라 광빔이 스캐닝되게 한다.
● 열 소스(116), 에너지 소스(118), 열적 이미징 디바이스(108), 용융 풀 모니터(110), 분광 광도계(112), 또는 이들의 조합들이 플랫폼(106)에 대해 이동가능한 것으로 설명되지만, 일부 구현들에서, 플랫폼(106)이 이러한 디바이스들에 대해 이동가능하다. 예컨대, 플랫폼(106)은, Y-축, X-축, 또는 둘 모두를 따라 플랫폼(106)을 평행이동시키도록 동작되는 컨베이어 상에 장착된다.
● 열적 이미징 디바이스(108), 용융 풀 모니터(110), 및 분광 광도계(112)가 플랫폼(106)에 대해 이동가능한 것으로 설명되지만, 일부 구현들에서, 열적 이미징 디바이스(108), 용융 풀 모니터(110), 및 분광 광도계는 광학 엔진 내에서 레이저(134)와 미러(136) 사이에 통합된다. 예컨대, 광학 빔 스플리터들이 레이저(134)와 미러(136) 사이에 배치되어, 광학 엔진 내의 센서들로부터 레이저 빔(132)을 따라 최상층(104)의 상이한 부분들을 향해, 축상 광학 경로(on-axis optical path)들을 형성한다.
따라서, 다른 구현들은 청구항들의 범위 내에 있다.

Claims (15)

  1. 적층 제조 장치로서,
    플랫폼;
    상기 플랫폼 상에 공급 재료(feed material)의 연속적인 층들을 디스펜싱(dispense)하기 위한 디스펜서;
    상기 플랫폼 위의 열 소스 ― 상기 열 소스는 상기 공급 재료의 연속적인 층들 중 최상층(topmost layer)의 제1 구역에 에너지를 전달하여 상기 제1 구역을 예열 및/또는 열처리하도록 구성됨 ―;
    상기 최상층의 제2 구역에 충돌하여 상기 제2 구역의 공급 재료로부터 용융 풀(melt pool)을 생성하도록 에너지 빔을 방출하기 위한 에너지 소스 ― 상기 제2 구역은 상기 제1 구역보다 더 작음 ―;
    상기 공급 재료의 최상층의 온도들을 측정하고 그리고 상기 용융 풀의 치수를 측정하기 위한 센서 시스템; 및
    제어기를 포함하며,
    상기 제어기는,
    상기 측정된 온도들에 기반하여 상기 공급 재료의 최상층을 가열하게 상기 열 소스를 동작시키도록, 그리고
    상기 측정된 치수에 기반하여 상기 최상층에서 공급 재료를 융합시키게 상기 에너지 소스를 동작시키도록 구성되는,
    적층 제조 장치.
  2. 제1 항에 있어서,
    상기 열 소스는 상기 제1 구역에 에너지를 전달하기 위한 램프들의 어레이를 포함하고, 그리고
    상기 제어기는 상기 측정된 온도들에 기반하여 상기 램프들의 어레이의 각각의 램프를 선택적으로 동작시키도록 구성되는,
    적층 제조 장치.
  3. 제1 항에 있어서,
    상기 제어기는, 상기 측정된 치수에 기반하여 상기 제2 구역의 크기, 상기 에너지 빔의 파워, 또는 스캔 속도가 조정되도록, 상기 에너지 소스를 동작시키도록 구성되는,
    적층 제조 장치.
  4. 제1 항에 있어서,
    상기 센서 시스템은, 상기 공급 재료의 최상층의 전체 폭 및 전체 길이에 걸쳐 온도들을 측정하도록 구성된 적외선 이미지 캡처 시스템을 포함하는,
    적층 제조 장치.
  5. 제1 항에 있어서,
    상기 센서 시스템은, 상기 공급 재료의 최상층으로부터의 열적 방출들에 기반하여 상기 공급 재료의 최상층의 전체 길이 및 전체 폭에 걸쳐 균일하게 분포된 다수의 위치들에서의 온도를 측정하도록 구성된 적외선 이미지 캡처 시스템을 포함하는,
    적층 제조 장치.
  6. 제1 항에 있어서,
    고체-액체 계면에서의 열 경사(thermal gradient)들 및 상기 용융 풀의 치수를 측정하도록 구성된 고속 카메라를 더 포함하는,
    적층 제조 장치.
  7. 제6 항에 있어서,
    상기 고속 카메라는 상기 용융 풀에서의 공급 재료의 온도들을 측정하도록 구성되고, 그리고 상기 제어기는 임계 온도에 대한 상기 공급 재료의 측정된 온도들에 기반하여 상기 용융 풀의 치수를 결정하도록 구성되는,
    적층 제조 장치.
  8. 제6 항에 있어서,
    상기 고속 카메라는 상기 용융 풀의 길이를 측정하고 그리고 폭을 측정하도록 구성되고, 그리고 상기 제어기는 상기 측정된 길이 및 상기 측정된 폭에 기반하여 상기 에너지 소스를 동작시키도록 구성되는,
    적층 제조 장치.
  9. 제1 항에 있어서,
    상기 센서 시스템은, 상기 최상층의 제3 구역의 공급 재료에 의해 방출되는 파장들을 검출하기 위한 분광 광도계를 포함하고, 그리고 상기 제어기는 상기 검출된 파장들에 기반하여 상기 제3 구역의 공급 재료의 냉각 레이트들을 결정하도록 그리고 상기 결정된 냉각 레이트들에 기반하여 상기 열 소스 또는 상기 에너지 소스를 동작시키도록 구성되는,
    적층 제조 장치.
  10. 제9 항에 있어서,
    상기 제3 구역은 상기 제1 구역보다 더 작고 그리고 상기 제2 구역보다 더 큰,
    적층 제조 장치.
  11. 적층 제조 방법으로서,
    플랫폼 상에 공급 재료의 연속적인 층들을 디스펜싱하는 단계;
    상기 공급 재료의 연속적인 층들 중 공급 재료의 최상층의 온도들을 측정하는 단계;
    상기 측정된 온도들에 기반하여 상기 최상층을 커버하는 제1 구역에 열을 전달하는 단계; 및
    에너지 빔에 의해 생성되는, 상기 공급 재료의 용융 풀의 치수에 기반하여, 상기 제1 구역보다 더 작은 제2 구역에 상기 에너지 빔을 방출하는 단계를 포함하는,
    적층 제조 방법.
  12. 제11 항에 있어서,
    상기 공급 재료의 최상층의 온도들을 측정하는 단계는, 상기 공급 재료의 최상층으로부터의 열적 방출들에 기반하여, 상기 공급 재료의 최상층의 전체 길이 및 전체 폭에 걸쳐 균일하게 분포된 다수의 위치들에서의 온도를 측정하는 단계를 포함하는,
    적층 제조 방법.
  13. 제11 항에 있어서,
    고속 카메라를 사용하여, 상기 용융 풀의 치수를 측정하는 단계를 더 포함하는,
    적층 제조 방법.
  14. 제11 항에 있어서,
    상기 온도들을 측정하는 단계는,
    상기 최상층의 제3 구역의 공급 재료에 의해 방출되는 파장들을 검출하는 단계, 및
    상기 검출된 파장들에 기반하여 상기 제3 구역의 공급 재료의 냉각 레이트들을 결정하는 단계를 포함하는,
    적층 제조 방법.
  15. 적층 제조 장치로서,
    플랫폼;
    상기 플랫폼 상에 공급 재료의 연속적인 층들을 디스펜싱하기 위한 디스펜서;
    상기 플랫폼 위의 열 소스 ― 상기 열 소스는 상기 공급 재료의 연속적인 층들 중 최상층의 제1 구역에 에너지를 전달하여 상기 제1 구역을 예열 및/또는 열처리하도록 구성됨 ―;
    상기 최상층의 제2 구역에 충돌하여 상기 제2 구역의 공급 재료로부터 용융 풀을 생성하도록 에너지 빔을 방출하기 위한 에너지 소스 ― 상기 제2 구역은 상기 제1 구역보다 더 작음 ―;
    센서 시스템 ― 상기 센서 시스템은,
    상기 플랫폼의 빌드 구역(build region)의 고정식 제1 시야를 갖는 제1 카메라,
    상기 제1 시야보다 더 작고 그리고 상기 제2 구역을 트레일링하도록 구성된 제2 시야를 갖는 제2 카메라, 및
    상기 제2 시야보다 더 작고 그리고 상기 제2 구역을 커버하는 제3 시야를 갖는 제3 카메라를 포함함 ―; 및
    제어기를 포함하며,
    상기 제어기는,
    상기 제1 카메라, 상기 제2 카메라 및 상기 제3 카메라로부터 데이터를 수신하고 그리고 상기 데이터로부터 상기 공급 재료의 층의 온도 맵을 생성하도록, 그리고
    상기 온도 맵에 기반하여 상기 최상층에서 공급 재료를 융합시키게 상기 에너지 소스를 동작시키도록 구성되는,
    적층 제조 장치.
KR1020207006693A 2017-08-11 2018-08-08 적층 제조를 위한 온도 제어 KR20200030616A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/675,457 US10710307B2 (en) 2017-08-11 2017-08-11 Temperature control for additive manufacturing
US15/675,457 2017-08-11
PCT/US2018/045788 WO2019032687A1 (en) 2017-08-11 2018-08-08 TEMPERATURE CONTROL FOR ADDITIVE MANUFACTURING

Publications (1)

Publication Number Publication Date
KR20200030616A true KR20200030616A (ko) 2020-03-20

Family

ID=65271890

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207006693A KR20200030616A (ko) 2017-08-11 2018-08-08 적층 제조를 위한 온도 제어

Country Status (7)

Country Link
US (1) US10710307B2 (ko)
EP (1) EP3664993A4 (ko)
JP (1) JP2020530528A (ko)
KR (1) KR20200030616A (ko)
CN (1) CN111093956B (ko)
TW (1) TWI781202B (ko)
WO (1) WO2019032687A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102420688B1 (ko) 2021-02-08 2022-07-14 한양대학교 산학협력단 3차원 적층 구조물의 적층 제어 방법
KR20230015234A (ko) * 2021-07-22 2023-01-31 울산과학기술원 금속 3d 프린터 모니터링 방법, 장치 및 상기 방법을 실행시키기 위하여 기록매체에 저장된 컴퓨터 프로그램

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014016679A1 (de) 2014-11-12 2016-05-12 Cl Schutzrechtsverwaltungs Gmbh Verfahren und Vorrichtung zur Belichtungssteuerung einer selektiven Lasersinter- oder Laserschmelzvorrichtung
US10891756B2 (en) * 2016-11-07 2021-01-12 Sony Corporation Image processing device, chart for calibration, and calibration system
US11312069B2 (en) * 2017-04-25 2022-04-26 Hexcel Corporation System for selective laser sintering
CN115319115A (zh) 2017-08-01 2022-11-11 西格马实验室公司 用于在增材制造操作期间测量辐射热能的系统和方法
US10710307B2 (en) 2017-08-11 2020-07-14 Applied Materials, Inc. Temperature control for additive manufacturing
US10933493B2 (en) * 2017-09-25 2021-03-02 Raytheon Technologies Corporation Additive manufacturing in situ stress relief
US11517984B2 (en) 2017-11-07 2022-12-06 Sigma Labs, Inc. Methods and systems for quality inference and control for additive manufacturing processes
DE102018127695A1 (de) 2017-11-07 2019-05-09 Sigma Labs, Inc. Korrektur von nicht-bildgebenden thermischen Messvorrichtungen
DE102017130282A1 (de) * 2017-12-18 2019-06-19 MTU Aero Engines AG Verfahren und Vorrichtung zum additiven Herstellen eines Bauteil sowie Bauteil
WO2019165111A1 (en) 2018-02-21 2019-08-29 Sigma Labs, Inc. Systems and methods for measuring radiated thermal energy during an additive manufacturing operation
CN112004635B (zh) 2018-02-21 2022-04-05 西格马实验室公司 用于增材制造的系统和方法
US11084225B2 (en) 2018-04-02 2021-08-10 Nanotronics Imaging, Inc. Systems, methods, and media for artificial intelligence process control in additive manufacturing
WO2019212482A1 (en) * 2018-04-30 2019-11-07 Hewlett-Packard Development Company, L.P. Additive manufacturing of metals
US11325299B2 (en) * 2018-07-16 2022-05-10 Massachusetts Institute Of Technology Additive manufacturing via optical aperture division multiplexing
US11611097B2 (en) * 2018-11-06 2023-03-21 Utility Global, Inc. Method of making an electrochemical reactor via sintering inorganic dry particles
EP3698947A1 (de) * 2019-02-19 2020-08-26 Siemens Aktiengesellschaft Überwachung und prozessregelung einer additiven fertigung eines werkstücks
US20220042956A1 (en) * 2019-03-12 2022-02-10 Shimadzu Corporation Spectrophotometer
JP7354489B2 (ja) * 2019-03-19 2023-10-03 ニデックマシンツール株式会社 三次元積層装置及び三次元積層方法
US20200346405A1 (en) * 2019-05-01 2020-11-05 Fabrisonic Llc Systems and devices for quality monitoring of additive manufacturing processes
EP3747634B1 (de) * 2019-06-07 2022-05-04 ExOne GmbH Verfahren zum herstellen mindestens eines bauteils im 3d-druck und 3d-drucker
WO2021003309A2 (en) * 2019-07-02 2021-01-07 Nikon Corporation Selective sintering and powderbed containment for additive manufacturing
JP2021020319A (ja) * 2019-07-24 2021-02-18 株式会社荏原製作所 Am装置
CN114286744A (zh) * 2019-09-09 2022-04-05 惠普发展公司,有限责任合伙企业 基于热传递熔融构建材料
JP7320884B2 (ja) * 2019-09-10 2023-08-04 ナノトロニクス イメージング インコーポレイテッド 製造プロセスのためのシステム、方法、および媒体
KR102210721B1 (ko) * 2019-10-08 2021-02-02 한국과학기술원 실시간 자가보정기능을 갖춘 3d 프린터 및 3d 프린터의 프린팅 방법
US11225027B2 (en) 2019-10-29 2022-01-18 Applied Materials, Inc. Melt pool monitoring in multi-laser systems
EP4055454A4 (en) * 2019-11-06 2024-01-31 Nanotronics Imaging Inc SYSTEMS, PROCESSES AND SUPPORTS FOR MANUFACTURING PROCESSES
KR102236148B1 (ko) * 2019-12-31 2021-04-06 한국과학기술원 3d 프린팅 공정 중 형성되는 용융풀 크기를 제어할 수 있는 3d 프린팅 시스템 및 방법
WO2021150248A1 (en) * 2020-01-24 2021-07-29 Hewlett-Packard Development Company, L.P. Energy source setting
US11485089B2 (en) * 2020-03-12 2022-11-01 Xerox Corporation Method and system for operating a modular heater to improve layer bonding in a metal drop ejecting three-dimensional (3D) object printer
DE102020204003A1 (de) 2020-03-27 2021-09-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren und Vorrichtung zur generativen Fertigung durch pulverbettbasiertes Strahlschmelzen
US20210394302A1 (en) * 2020-06-18 2021-12-23 Sigma Labs, Inc. Determination and control of cooling rate in an additive manufacturing system
IT202000017164A1 (it) 2020-07-15 2022-01-15 Nuovo Pignone Tecnologie Srl Metodo di scalabilità basato su una procedura di sovrapposizione punto per punto e relativo sistema
CA3209918A1 (en) * 2021-03-01 2022-09-09 Gunaranjan Chaudhry Methods for laser calibration in additive manufacturing systems, and systems configured for same
US11752558B2 (en) 2021-04-16 2023-09-12 General Electric Company Detecting optical anomalies on optical elements used in an additive manufacturing machine
IL283302B2 (en) * 2021-05-19 2023-05-01 Magnus Metal Ltd A system and method for additive molding
KR20240040073A (ko) * 2021-07-22 2024-03-27 마그누스 메탈 리미티드 적층 금속 주조 시스템 및 방법

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6925346B1 (en) 1998-06-30 2005-08-02 Jyoti Mazumder Closed-loop, rapid manufacturing of three-dimensional components using direct metal deposition
JP4556160B2 (ja) * 2001-11-17 2010-10-06 インステク インコーポレイテッド レーザークラッディングとレーザー金属加工技術において、映像撮影とイメージプロセッシングを用いて、クラッディング層高さをリアルタイムでモニタし、かつ制御する方法及びそのシステム
US6822194B2 (en) 2002-05-29 2004-11-23 The Boeing Company Thermocouple control system for selective laser sintering part bed temperature control
DE10236697A1 (de) 2002-08-09 2004-02-26 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Objekts mittels Sintern
US7020539B1 (en) 2002-10-01 2006-03-28 Southern Methodist University System and method for fabricating or repairing a part
SE524432C2 (sv) 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
SE524421C2 (sv) 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
US6815636B2 (en) 2003-04-09 2004-11-09 3D Systems, Inc. Sintering using thermal image feedback
US6930278B1 (en) 2004-08-13 2005-08-16 3D Systems, Inc. Continuous calibration of a non-contact thermal sensor for laser sintering
DE102005016940B4 (de) 2005-04-12 2007-03-15 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Auftragen von Schichten eines pulverförmigen Materials auf eine Oberfläche
DE102005022308B4 (de) 2005-05-13 2007-03-22 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial
DE102005030067A1 (de) 2005-06-27 2006-12-28 FHS Hochschule für Technik, Wirtschaft und soziale Arbeit St. Gallen Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes durch ein generatives 3D-Verfahren
ATE466720T1 (de) * 2006-06-20 2010-05-15 Univ Leuven Kath Verfahren und vorrichtung zur in-situ-überwachung und rückkopplungssteuerung selektiver laserpulverbearbeitung
DE102006053121B3 (de) 2006-11-10 2007-12-27 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes mittels eines Beschichters für pulverförmiges Aufbaumaterial
US7515986B2 (en) 2007-04-20 2009-04-07 The Boeing Company Methods and systems for controlling and adjusting heat distribution over a part bed
US7718933B2 (en) 2007-04-20 2010-05-18 The Boeing Company Methods and systems for direct manufacturing temperature control
DE102007056984A1 (de) 2007-11-27 2009-05-28 Eos Gmbh Electro Optical Systems Verfahren zum Herstellen eines dreidimensionalen Objekts mittels Lasersintern
WO2011008143A1 (en) 2009-07-15 2011-01-20 Arcam Ab Method and apparatus for producing three-dimensional objects
CN103338880B (zh) 2011-01-28 2015-04-22 阿卡姆股份有限公司 三维物体生产方法
ES2436190T3 (es) * 2011-07-21 2013-12-27 Ems-Patent Ag Procedimiento de soldadura láser y piezas formadas con dicho procedimiento
EP2917797B1 (en) 2012-11-08 2021-06-30 DDM Systems, Inc. Systems and methods for additive manufacturing and repair of metal components
CN102962452B (zh) * 2012-12-14 2014-06-25 沈阳航空航天大学 基于红外测温图像的金属激光沉积制造扫描路径规划方法
WO2014144255A2 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Laser sintering apparatus and methods
DE102013017792A1 (de) * 2013-10-28 2015-04-30 Cl Schutzrechtsverwaltungs Gmbh Verfahren zum Herstellen eines dreidimensionalen Bauteils
US10207363B2 (en) 2014-03-24 2019-02-19 James Eldon Craig Additive manufacturing temperature controller/sensor apparatus and method of use thereof
US10336007B2 (en) 2014-05-09 2019-07-02 United Technologies Corporation Sensor fusion for powder bed manufacturing process control
US9341467B2 (en) 2014-08-20 2016-05-17 Arcam Ab Energy beam position verification
US10112262B2 (en) * 2014-10-28 2018-10-30 General Electric Company System and methods for real-time enhancement of build parameters of a component
WO2016081651A1 (en) * 2014-11-18 2016-05-26 Sigma Labs, Inc. Multi-sensor quality inference and control for additive manufacturing processes
US9662840B1 (en) 2015-11-06 2017-05-30 Velo3D, Inc. Adept three-dimensional printing
GB201510220D0 (en) 2015-06-11 2015-07-29 Renishaw Plc Additive manufacturing apparatus and method
WO2017014964A1 (en) 2015-07-20 2017-01-26 Applied Materials, Inc. Additive manufacturing with multiple heat sources
JP6661920B2 (ja) * 2015-08-26 2020-03-11 セイコーエプソン株式会社 3次元形成装置
CN108025500A (zh) * 2015-09-16 2018-05-11 应用材料公司 用于增材制造系统的可调整的z轴打印头模块
US10207489B2 (en) * 2015-09-30 2019-02-19 Sigma Labs, Inc. Systems and methods for additive manufacturing operations
US20200079010A1 (en) 2015-10-29 2020-03-12 Hewlwtt-Packard Development Company, L.P. Additive manufacturing method using an energy source and varying build material spacings and apparatus
CN206200123U (zh) * 2016-09-29 2017-05-31 中北大学 一种选择性激光熔化成形熔池实时监测装置
CN106990114B (zh) * 2017-06-06 2023-10-31 清华大学天津高端装备研究院 增材制造缺陷检测方法及增材制造装置
US10710307B2 (en) 2017-08-11 2020-07-14 Applied Materials, Inc. Temperature control for additive manufacturing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102420688B1 (ko) 2021-02-08 2022-07-14 한양대학교 산학협력단 3차원 적층 구조물의 적층 제어 방법
KR20230015234A (ko) * 2021-07-22 2023-01-31 울산과학기술원 금속 3d 프린터 모니터링 방법, 장치 및 상기 방법을 실행시키기 위하여 기록매체에 저장된 컴퓨터 프로그램

Also Published As

Publication number Publication date
CN111093956B (zh) 2022-05-31
JP2020530528A (ja) 2020-10-22
CN111093956A (zh) 2020-05-01
US20190047226A1 (en) 2019-02-14
WO2019032687A1 (en) 2019-02-14
US10710307B2 (en) 2020-07-14
TW201910105A (zh) 2019-03-16
EP3664993A1 (en) 2020-06-17
EP3664993A4 (en) 2021-01-20
TWI781202B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
KR20200030616A (ko) 적층 제조를 위한 온도 제어
CN110214075B (zh) 在增材制造设备中对材料进行预热
WO2019217438A1 (en) Temperature control for additive manufacturing
US10391707B2 (en) Additive manufacturing system having laser and dispenser on common support
EP1634694B1 (en) Continuous calibration of a non-contact thermal sensor for laser sintering
JP4146385B2 (ja) サーマルイメージ・フィードバックを用いた焼結
US11084097B2 (en) Additive manufacturing with cell processing recipes
US11117194B2 (en) Additive manufacturing having energy beam and lamp array
US20170021419A1 (en) Additive manufacturing with multiple heat sources
CN110891768A (zh) 使用多边形镜扫描仪和检流计镜扫描仪的增材制造
US20210039314A1 (en) Nozzle and additive manufacturing apparatus
US20200261977A1 (en) Scan field variation compensation
EP4116017A2 (en) Closed-loop automatic setting adjustments for additive manufacturing based on layer imaging
JP2021523293A (ja) ポリゴンスキャナを用いた付加製造