KR20200028687A - Palladium-Supported Porous Polyurea Heterogeneous Catalyst and Suzuki-Miyaura Cross-coupling Reaction using the Same - Google Patents

Palladium-Supported Porous Polyurea Heterogeneous Catalyst and Suzuki-Miyaura Cross-coupling Reaction using the Same Download PDF

Info

Publication number
KR20200028687A
KR20200028687A KR1020180107098A KR20180107098A KR20200028687A KR 20200028687 A KR20200028687 A KR 20200028687A KR 1020180107098 A KR1020180107098 A KR 1020180107098A KR 20180107098 A KR20180107098 A KR 20180107098A KR 20200028687 A KR20200028687 A KR 20200028687A
Authority
KR
South Korea
Prior art keywords
palladium
biaryl
porous polyurea
compound
suzuki
Prior art date
Application number
KR1020180107098A
Other languages
Korean (ko)
Other versions
KR102103917B1 (en
Inventor
심상은
소재일
천영걸
류지형
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020180107098A priority Critical patent/KR102103917B1/en
Publication of KR20200028687A publication Critical patent/KR20200028687A/en
Application granted granted Critical
Publication of KR102103917B1 publication Critical patent/KR102103917B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3253Polyamines being in latent form
    • C08G18/3256Reaction products of polyamines with aldehydes or ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J35/10
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a porous polyurea, whose surface area, pore size, and thermal stability are sufficient to be utilized as a support for a catalyst, and which can be favorably used as a catalyst for Suzuki-Miyaura coupling reaction by supporting palladium on the porous polyurea, wherein the porous polyurea is represented by formula 1.

Description

팔라듐 담지 다공성 폴리우레아 불균일 촉매 및 이를 이용한 스즈키-미야우라(Suzuki-Miyaura) 커플링 반응{Palladium-Supported Porous Polyurea Heterogeneous Catalyst and Suzuki-Miyaura Cross-coupling Reaction using the Same}Palladium-Supported Porous Polyurea Heterogeneous Catalyst and Suzuki-Miyaura Cross-coupling Reaction Using the Same} Palladium-carried porous polyurea heterogeneous catalyst and Suzuki-Miyaura coupling reaction

본 발명은 다공성 폴리우레아에 관한 것으로, 더욱 상세하게는 다공성 폴리우레아에 팔라듐을 담지하여 스즈키-미야우라(Suzuki-Miyaura) 커플링 반응의 촉매로 활용하는 것에 관한 것이다.The present invention relates to a porous polyurea, and more particularly, to support palladium on a porous polyurea and utilize it as a catalyst for a Suzuki-Miyaura coupling reaction.

유기화학이 더 정교해져 가면서, 반응속도 조절, 반응의 활성 에너지 감소 및 선택적 반응 진행에 대한 기능을 가진 유기화학이 더 정교해져 가면서, 반응속도 조절, 반응의 활성 에너지 감소 및 선택적 반응 진행에 대한 기능을 가진 촉매를 필요로 하고 있다. 따라서 최적화된 촉매의 개발은 항상 중요한 문제 중 하나이다. 비록 균일 촉매는 효과가 매우 좋지만, 이러한 촉매는 반응물에서 분리하기 어려우며, 여러번 재사용이 어렵다는 단점이 있어왔다. 이러한 이유로 안정적인 구조를 갖으며, 전이금속을 잘 지지할 수 있는 불균일 촉매가 각광받고 있다. As the organic chemistry becomes more sophisticated, the reaction rate is regulated, the active energy of the reaction is reduced, and the functions for the selective reaction progress are controlled. It requires a catalyst with. Therefore, the development of an optimized catalyst is always one of the important issues. Although the homogeneous catalyst has a very good effect, such a catalyst has been disadvantageous in that it is difficult to separate from the reactants and difficult to reuse many times. For this reason, a heterogeneous catalyst having a stable structure and capable of supporting a transition metal well has been spotlighted.

다공성 고분자(Porous organic polymers, POPs)는 표면 기공과 큰 표면적을 가진 특별한 특성 때문에 잘 알려진 재료이며, 이러한 다공성 고분자는 간단한 화학반응으로 작용기를 바꿀 수 있고, 기공크기를 조절할 수 있기 때문에 최근에 가스저장, 센서, 불균일 촉매로 사용되고 있다. 특히, 많은 화학반응에서 비싼 귀금속을 촉매로 사용하기 때문에 불균일 촉매로 다공성 고분자 사용을 위한 연구가 많이 이루어지고 있다. 귀금속을 촉매로 사용했을 때, 서로 결합이 되면서 반응 효율이 낮아지고, 반응에 따라서 귀금속의 전자 상태를 바꾸기 위한 리간드를 필요로 하기 때문에, 촉매 지지체로서 큰 표면적을 가진 다공성 고분자를 이용하기 위해서 금속 간의 결합반응을 막고, 귀금속의 전자 상태를 바꾸기 위하여 구조를 변화시키기 위한 시도 또한 필요한 실정이다. Porous organic polymers (POPs) are well-known materials because of their special properties with surface pores and large surface area, and these porous polymers can change functional groups through simple chemical reactions and can control the pore size. , Sensors, and heterogeneous catalysts. In particular, since many precious metals are used as catalysts in many chemical reactions, many studies have been conducted to use porous polymers as heterogeneous catalysts. When a noble metal is used as a catalyst, the reaction efficiency decreases as it is bonded to each other, and since a ligand for changing the electron state of the noble metal is required according to the reaction, between metals in order to use a porous polymer having a large surface area as a catalyst support Attempts to change the structure to prevent the binding reaction and change the electron state of the noble metal are also necessary.

한편, 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응은 C-C결합에 가장 중요한 반응 중 하나이다. 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응의 대부분은 팔라듐 촉매를 사용하여 이루어지며, 이러한 촉매의 성능은 대게 팔라듐의 리간드에 달려있다. 특히, 팔라듐을 담지하는 포스핀(phosphine) 리간드가 잘 알려져 있는데, 포스핀(phosphine) 리간드의 전자 특성은 작용기를 조절함으로써 쉽게 변화시킬 수 있기 때문에 스즈키-미야우라(Suzuki-Miyaura) 반응에 널리 사용되고 있다. 그러나 이러한 포스핀(phosphorus) 리간드는 비싸고 독성이 있다는 문제점이 있다. 따라서 팔라듐을 잘 담지할 수 있으며, 친환경적이고, 경제적이며 촉매의 효율 또한 높일 수 있는 다공성 고분자의 개발이 요구된다.On the other hand, Suzuki-Miyaura cross-coupling reaction is one of the most important reactions for C-C bonding. The majority of Suzuki-Miyaura cross-coupling reactions are made using palladium catalysts, and the performance of these catalysts is largely dependent on the palladium ligand. In particular, phosphine ligands supporting palladium are well known. The electronic properties of phosphine ligands are widely used in the Suzuki-Miyaura reaction because they can be easily changed by controlling functional groups. have. However, these phosphine (phosphorus) ligands are expensive and have the problem of toxicity. Therefore, there is a need to develop a porous polymer that can support palladium well, is eco-friendly, economical, and can also increase the efficiency of the catalyst.

1. 대한민국 등록특허 제10-1117175호1. Republic of Korea Registered Patent No. 10-1117175

따라서 본 발명이 해결하고자 하는 과제는 상기 한계점을 극복하기 위한 것으로, 팔라듐 금속이 잘 담지될 수 있도록 넓은 표면적, 열적 안정성 및 가공성을 가지며, 이를 스즈키-미야우라(Suzuki-Miyaura) 커플링 반응의 촉매로 활용하여 적은 양으로도 촉매 효율이 높으며, 재생 가능하여 친환경적이고 경제적인 다공성 고분자를 제공하는 것이다.Therefore, the problem to be solved by the present invention is to overcome the above limitation, and has a large surface area, thermal stability, and processability so that palladium metal can be supported well, and it is a catalyst for Suzuki-Miyaura coupling reaction. It is used to provide high efficiency in a small amount of catalyst and is renewable to provide an environmentally friendly and economical porous polymer.

상기 기술적 과제를 달성하기 위하여,In order to achieve the above technical problem,

본 발명은 하기 화학식 1로 표시되는 다공성 폴리우레아를 제공한다.The present invention provides a porous polyurea represented by Formula 1 below.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 n은 1 내지 1000의 정수임.The n is an integer from 1 to 1000.

또한, 상기 다공성 폴리우레아에 팔라듐(Pd)을 담지시킨 것을 특징으로 하는 팔라듐(Pd) 다공성 폴리우레아를 제공한다.In addition, it provides a palladium (Pd) porous polyurea, characterized in that palladium (Pd) is supported on the porous polyurea.

또한, 1) 멜라민(melamine)에 1,4-페닐렌 다이이소시아네이트(1,4-phenylene diisocyanate)를 첨가하여 우레아 축합반응 시키고, 여과한 후 건조시켜 다공성 폴리우레아를 합성하는 단계; 및 2) 상기 다공성 폴리우레아에 팔라듐 염 용액을 첨가하여 교반함으로써 팔라듐(Pd)을 담지시키는 단계;를 포함하는 것을 특징으로 하는, 팔라듐(Pd) 담지 다공성 폴리우레아의 제조방법을 제공한다.In addition, 1) melamine (melamine) 1,4-phenylene diisocyanate (1,4-phenylene diisocyanate) is added to urea condensation reaction, filtered and dried to synthesize porous polyurea; And 2) adding a palladium salt solution to the porous polyurea to stir palladium (Pd) by stirring; characterized in that it comprises a palladium (Pd) supported porous polyurea.

또한, 본 발명은 팔라듐(Pd) 담지 다공성 폴리우레아를 포함하는 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응용 촉매 조성물을 제공한다.In addition, the present invention provides a catalyst composition for Suzuki-Miyaura cross-coupling reaction comprising palladium (Pd) supported porous polyurea.

또한, 본 발명은 팔라듐(Pd) 담지 다공성 폴리우레아를 촉매로서 이용하여 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응을 수행하여 바이아릴(biaryl) 화합물을 제조하는 단계를 포함하는 바이아릴(biaryl) 화합물의 제조방법을 제공한다. In addition, the present invention uses a palladium (Pd) -supported porous polyurea as a catalyst to perform a Suzuki-Miyaura cross coupling reaction to produce a biaryl (biaryl) compound comprising the step of preparing a biaryl (biaryl) compound biaryl) compound.

본 발명에 따른 다공성 폴리우레아는 표면적, 기공크기 및 열적 안정성이 촉매의 지지체로 활용되기에 충분한 효과가 있다. The porous polyurea according to the present invention has sufficient effect that surface area, pore size and thermal stability are utilized as a support for the catalyst.

또한, 팔라듐이 담지된 다공성 폴리우레아를 스즈키-미야우라(Suzuki-Miyaura) 커플링 반응의 촉매로 사용하여 0.1mol%의 적은 함량에도 불구하고 99%이상의 수율을 보여주었으며, 5번 재사용하였을 때도 90%의 수율을 유지하여 본 발명에 따른 다공성 폴리우레아 및 이를 이용한 촉매는 친환경적이고 경제적인 효과가 있다.In addition, palladium-supported porous polyurea was used as a catalyst for the Suzuki-Miyaura coupling reaction, showing a yield of 99% or more despite a small content of 0.1 mol%, and 90 when reused 5 times By maintaining the yield of%, the porous polyurea according to the present invention and the catalyst using the same have eco-friendly and economical effects.

도 1은 다공성 폴리우레아의 합성, 팔라듐 담지 및 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응에서의 촉매의 활용에 관한 전체적인 절차를 나타낸다.
도 2는 멜라민(melamine)과 1,4-페닐렌 다이이소시아네이트(1,4-phenylene diisocyanate)의 축합반응으로 합성된 다공성 폴리우레아 사진이다.
도 3은 UPOP와 Pd@UPOP 촉매의 FT-IR spectra이다.
도 4는 멜라민(melamine)과 1,4-페닐렌 다이이소시아네이트(1,4-phenylene diisocyanate)의 축합반응으로 합성된 다공성 폴리우레아의 C13-NMR spectrum이다.
도 5는 77K에서 UPOP의 N2의 흡착-탈착 등온선(a)과 기공크기 분포(b)를 나타낸다.
도 6은 a) x10K, b) x50K에서 UPOP의 SEM 이미지 이다.
도 7은 a,b) UPOP, c,d) Pd@UPOP 촉매의 TEM 이미지(좌)와 Pd@UPOP에서 C, O, N 및 Pd 원소들의 메핑(mapping) 이미지(우) 이다.
도 8은 질소가스 하에서 UPOP와 Pd@UPOP 촉매의 TGA thermogram을 나타낸다.
도 9는 UPOP의 XPS spectrum과 C, N, 및 O 원소의 함량을 나타낸다.
도 10은 UPOP와 Pd@UPOP의 a) O 1s, b) N 1s, c) Pd 3d의 XPS spectra를 나타낸다.
도 11은 Pd@UPOP를 촉매로 한 4-브로모아니솔(4-bromoanisole)과 페닐보론산(phenylboronic acid)의 스즈키-미야우라(Suzuki-Miyaura) 반응 수행의 최적화 조건 데이터이다.
도 12는 물/에탄올에서 Pd@UPOP를 촉매로 한 아릴 브로마이드(aryl bromide)와 헤테로아릴 브로마이드(heteroaryl bromide)의 스즈키-미야우라(Suzuki-Miyaura) 반응 수행의 최적화 조건 데이터이다.
도 13은 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응에서 Pd@UPOP 촉매의 재사용 성능을 내타낸다.
Figure 1 shows the overall procedure for the synthesis of porous polyurea, palladium loading and the use of catalysts in the Suzuki-Miyaura cross-coupling reaction.
Figure 2 is a photograph of a porous polyurea synthesized by a condensation reaction of melamine and 1,4-phenylene diisocyanate.
3 is an FT-IR spectra of UPOP and Pd @ UPOP catalysts.
4 is a C 13 -NMR spectrum of a porous polyurea synthesized by a condensation reaction of melamine and 1,4-phenylene diisocyanate.
5 shows the adsorption-desorption isotherm (a) and pore size distribution (b) of N 2 of UPOP at 77K.
6 is a SEM image of UPOP at a) x10K and b) x50K.
7 is a, b) UPOP, c, d) TEM image of the Pd @ UPOP catalyst (left) and mapping images of C, O, N and Pd elements in Pd @ UPOP (right).
8 shows TGA thermograms of UPOP and Pd @ UPOP catalysts under nitrogen gas.
9 shows the XPS spectrum of UPOP and the contents of C, N, and O elements.
10 shows the XPS spectra of a) O 1s, b) N 1s, c) Pd 3d of UPOP and Pd @ UPOP.
FIG. 11 is optimization condition data of Suzuki-Miyaura reaction of 4-bromoanisole and phenylboronic acid using Pd @ UPOP as a catalyst.
12 is an optimization condition data of the Suzuki-Miyaura reaction of aryl bromide and heteroaryl bromide using Pd @ UPOP as a catalyst in water / ethanol.
13 shows the reuse performance of the Pd @ UPOP catalyst in the Suzuki-Miyaura cross-coupling reaction.

이하에서는 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 멜라민(melamine)과 1,4-페닐렌 다이이소시아네이트(1,4-phenylene diisocyanate) 축합반응을 통해 표면적, 기공크기 및 열적 안정성이 우수한 다공성 폴리우레아를 합성하고, 여기에 팔라듐을 담지한 팔라듐 촉매를 제조하여 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응에서 유용하게 활용될 수 있음을 밝혀내어 본 발명을 완성하였다. The present inventors synthesized a porous polyurea excellent in surface area, pore size, and thermal stability through condensation reaction of melamine and 1,4-phenylene diisocyanate, and loaded palladium on it The present invention was completed by discovering that a palladium catalyst can be usefully used in a Suzuki-Miyaura cross-coupling reaction.

본 발명은 하기 화학식 1로 표시되는 다공성 폴리우레아를 제공한다.The present invention provides a porous polyurea represented by Formula 1 below.

[화학식 1][Formula 1]

Figure pat00002
Figure pat00002

상기 n은 1 내지 1000의 정수임.The n is an integer from 1 to 1000.

이때, 상기 n은 100 내지 500의 정수인 것이 바람직하다.At this time, the n is preferably an integer of 100 to 500.

또한, 상술한 바와 같은 상기 다공성 폴리우레아는 멜라민(melamine)과 1,4-페닐렌 다이이소시아네이트(1,4-phenylene diisocyanate)를 반응시켜 제조하는 것을 특징으로 한다.In addition, the porous polyurea as described above is characterized in that it is prepared by reacting melamine (melamine) and 1,4-phenylene diisocyanate (1,4-phenylene diisocyanate).

본 발명에서 상기 멜라민(melamine) 외에 아민류를 포함하는 화합물이면 모두 가능하며, 상기 1,4-페닐렌 다이이소시아네이트(1,4-phenylene diisocyanate) 외에도 이소시아네이트(isocyanate)기를 포함하는 화합물이면 제한 없이 모두 가능하다.In the present invention, any compound containing amines other than the melamine may be used, and any compound containing an isocyanate group in addition to the 1,4-phenylene diisocyanate may be used without limitation. Do.

상술한 바와 같은 본 발명에 따른 다공성 폴리우레아에 있어서, 상기 다공성 폴리우레아에 팔라듐(Pd)을 담지 시킨 것을 특징으로 하는 팔라듐(Pd) 담지 다공성 폴리우레아인 것이 바람직하다. In the porous polyurea according to the present invention as described above, it is preferable that the porous polyurea is supported by palladium (Pd), characterized in that palladium (Pd) is supported on the porous polyurea.

또한, 본 발명은 1) 멜라민(melamine)에 1,4-페닐렌 다이이소시아네이트(1,4-phenylene diisocyanate)를 첨가하여 우레아 축합반응 시키고, 여과한 후 건조시켜 다공성 폴리우레아를 합성하는 단계; 및 2) 상기 다공성 폴리우레아에 팔라듐 염 용액을 첨가하여 교반함으로써 팔라듐(Pd)을 담지 시키는 단계; 를 포함하는 것을 특징으로 하는 팔라듐(Pd) 담지 다공성 폴리우레아의 제조방법을 제공한다.In addition, the present invention 1) melamine (melamine) 1,4-phenylene diisocyanate (1,4-phenylene diisocyanate) is added to the urea condensation reaction, filtered and dried to synthesize a porous polyurea; And 2) adding palladium salt solution to the porous polyurea and stirring to support palladium (Pd); It provides a method for producing a palladium (Pd) -supported porous polyurea characterized in that it comprises a.

여기서, 상기 팔라듐 염은 팔라듐 아세테이트(Palladium(II)acetate, Pd(OAc)2), 염화팔라듐(Palladium(II) Chloride, PdCl2), 비스(디벤질리덴아세톤)팔라듐(Bis(dibenzylideneacetone)palladium, Pd2(dba)3) 및 팔라듐(트리플루오로아세테이트)(Palladium(II) trifluoroacetate, Pd(TFA)2) 로 이루어진 군에서 선택된 것을 특징으로 하나, 바람직하게는 팔라듐 아세테이트(Palladium(II)acetate, Pd(OAc)2)이다.Here, the palladium salt is palladium acetate (Palladium (II) acetate, Pd (OAc) 2 ), palladium chloride (Palladium (II) Chloride, PdCl 2 ), bis (dibenzylideneacetone) palladium (Bis (dibenzylideneacetone) palladium, Pd 2 (dba) 3 ) and palladium (trifluoroacetate) (Palladium (II) trifluoroacetate, Pd (TFA) 2 ), but preferably palladium acetate (Palladium (II) acetate, Pd (OAc) 2 ).

본 발명은 팔라듐(Pd) 담지 다공성 폴리우레아를 포함하는 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응용 촉매 조성물을 제공한다.The present invention provides a catalyst composition for Suzuki-Miyaura cross-coupling reaction comprising palladium (Pd) supported porous polyurea.

또한, 본 발명은 팔라듐(Pd) 담지 다공성 폴리우레아를 촉매로서 이용하여 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응을 수행하여 바이아릴(biaryl) 화합물을 제조하는 단계를 포함하는 바이아릴(biaryl) 화합물의 제조방법을 제공한다. In addition, the present invention uses a palladium (Pd) -supported porous polyurea as a catalyst to perform a Suzuki-Miyaura cross coupling reaction to produce a biaryl (biaryl) compound comprising the step of preparing a biaryl (biaryl) compound biaryl) compound.

상술한 바와 같은 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응에서 촉매로 이용되는 팔라듐(Pd) 담지 다공성 폴리우레아는 0.05~0.5mol% 포함하는 것을 특징으로 하는 바이아릴(biaryl) 화합물의 제조방법을 제공한다.Preparation of a biaryl (biaryl) compound characterized in that it contains 0.05 to 0.5 mol% of palladium (Pd) supported porous polyurea used as a catalyst in the Suzuki-Miyaura cross coupling reaction as described above. Provides a method.

이때, 팔라듐 담지 다공성 폴리우레아 촉매의 함량이 상기 함량 범위를 벗어나면 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응이 충분히 일어나지 않아 목적 산물의 수율이 현저히 낮거나, 사용한 촉매의 함량 대비 목적 산물의 수율이 좋지 않아 경제적이지 못한 문제가 야기될 수 있다.At this time, when the content of the palladium-supported porous polyurea catalyst is outside the above-mentioned content range, the Suzuki-Miyaura cross coupling reaction does not occur sufficiently, and thus the yield of the target product is remarkably low, or the target product compared to the content of the used catalyst Poor yields can cause problems that are not economical.

상술한 바와 같은 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응은 아릴 브로마이드 또는 헤테로아릴 브로마이드 중 어느 하나의 화합물, 페닐보론산 및 염(base)을 용매에 용해시킨 혼합물에 팔라듐 담지 다공성 폴리우레아 촉매를 첨가하는 단계; 및 상기 팔라듐 담지 다공성 폴리우레아 촉매가 첨가된 혼합물을 공기 분위기 하에서 반응시키는 단계를 포함하는 바이아릴(biaryl) 화합물의 제조방법을 제공한다.Suzuki-Miyaura cross-coupling reaction as described above is a palladium-supported porous polyurea in a mixture of a compound of either aryl bromide or heteroaryl bromide, phenylboronic acid and a salt (base) dissolved in a solvent. Adding a catalyst; And it provides a method for producing a biaryl (biaryl) compound comprising the step of reacting the mixture to which the palladium-supported porous polyurea catalyst is added in an air atmosphere.

상기 아릴 브로마이드 또는 헤테로아릴 브로마이드는 4-브로모아니솔(4-bromoanisole), 2-브로모아니솔(2-bromoanisole), 4-브로모톨루엔(4-bromotoluene), 2-브로모톨루엔(2-bromotoluene), 브로모벤젠(bromobenzene), 1-브로모-4-니트로벤젠(1-bromo-4-nitrobenzene), 4-브로모벤조니트릴(4-bromobenzonitrile), 4-브로모아세토페논(4-bromoacetophenone), 2-브로모피리딘(2-bromopyridine), 3-브로모피리딘(3-bromopyridine), 2-브로모티오펜(2-bromothiophene) 으로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 한다.The aryl bromide or heteroaryl bromide is 4-bromoanisole, 2-bromoanisole, 4-bromotoluene, 2-bromotoluene (2 -bromotoluene, bromobenzene, 1-bromo-4-nitrobenzene, 4-bromobenzonitrile, 4-bromoacetophenone (4 -bromoacetophenone), 2-bromopyridine (2-bromopyridine), 3-bromopyridine (3-bromopyridine), 2-bromothiophene (2-bromothiophene) is characterized in that any one selected from the group consisting of.

또한, 상기 염은 K2CO3 또는 K3PO4 중에서 선택되는 것을 특징으로 하며, 상기 용매는 C1~C4 알콜 수용액인 것을 특징으로 한다.In addition, the salt is characterized in that it is selected from K 2 CO 3 or K 3 PO 4 , the solvent is characterized in that the aqueous solution of C1 ~ C4 alcohol.

이때, 상기 C1~C4 알콜 수용액은 에탄올 수용액인 것이 바람직하며, 더욱 바람직하게는 물과 에탄올을 3:1(v/v)의 비로 혼합한 수용액이다.At this time, the aqueous solution of C1 to C4 alcohol is preferably an aqueous solution of ethanol, more preferably an aqueous solution of water and ethanol mixed in a ratio of 3: 1 (v / v).

상기 반응은 상온 ~ 100℃에서 15분 ~ 24시간 동안 공기 분위기 하에서 수행하는 것을 특징으로 하는 바이아릴(biaryl) 화합물의 제조방법을 제공한다.The reaction provides a method for preparing a biaryl compound, characterized in that the reaction is performed under an air atmosphere at room temperature to 100 ° C for 15 minutes to 24 hours.

이때, 상기와 같은 반응온도 및 시간을 벗어나면 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응이 충분히 일어나지 않아 목적 산물의 수율이 현저히 낮아지거나, 반응온도 및 시간 대비 목적 산물의 수율이 좋지 않아 경제적이지 못한 문제가 야기될 수 있다.At this time, if the reaction temperature and time are out of the above, the Suzuki-Miyaura cross-coupling reaction does not occur sufficiently, so that the yield of the target product is remarkably lowered, or the yield of the target product compared to the reaction temperature and time is not good. Uneconomical problems can arise.

또한, 상기 바이아릴(biaryl) 화합물은 하기 화학식 2로 표시되는 것을 특징으로 하는 바이아릴(biaryl) 화합물의 제조방법을 제공한다. In addition, the biaryl (biaryl) compound provides a method for producing a biaryl (biaryl) compound, characterized in that represented by the following formula (2).

[화학식 2][Formula 2]

Figure pat00003
Figure pat00003

(상기 식에서, A는 아니솔(anisole), 톨루엔(toluene), 벤젠(benzene), 니트로벤젠(nitrobenzene), 벤조니트릴(benzonitrile), 아세토페논(acetophenone), 피리딘(pyridine) 및 티오펜(thiophene)으로 이루어진 군에서 선택되는 어느 하나이다.)(In the above formula, A is anisole, toluene, benzene, nitrobenzene, benzonitrile, acetophenone, pyridine and thiophene It is any one selected from the group consisting of.)

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for explaining the present invention in more detail, according to the gist of the present invention, the scope of the present invention is not limited by these examples to those skilled in the art to which the present invention pertains. It will be obvious.

<실시예 1> 팔라듐(Pd) 담지 다공성 폴리우레아의 합성<Example 1> Synthesis of palladium (Pd) -supported porous polyurea

1. 재료준비1. Material preparation

1,4-페닐렌 다이이소시아네이트(1,4-Phenylene diisocyanate), 멜라민(melamine), 다이메틸 술폭시드(dimethyl sulfoxide(DMSO)), 팔라듐 아세테이트(palladium acetate), 클로로폼(chloroform)은 시그마 알드리치(Sigma Aldrich)사에서 구매하였다. 모든 화학물질들은 추가적인 정제 없이 사용하였다.1,4-Phenylene diisocyanate, melamine, dimethyl sulfoxide (DMSO), palladium acetate, chloroform are sigma aldrich ( Sigma Aldrich). All chemicals were used without further purification.

2. 우레아 다공성 고분자의 합성2. Synthesis of urea porous polymer

우레아 다공성 고분자(Urea Porous Organic Polymer, UPOP)는 100mL의 둥근 플라스크에서 우레아 반응을 통해 합성되었다. Ar 조건 하에서 DMSO에 2mmol의 멜라민(melamine)을 녹이고, 여기에 1,4-페닐렌 다이이소시아네이트(1,4-phenylene diisocyanate)를 첨가하였다. 그 후 24시간동안 150℃에서 교반하면서 반응시켰다. 반응 후에 생성물을 원심분리에 의해서 여과시키고, 에탄올로 반복적으로 헹궈냈다. 이후, 85℃에서 24시간동안 건조시켜 도 2와 같이 흰색 분말을 얻었다.Urea Porous Organic Polymer (UPOP) was synthesized through a urea reaction in a 100 mL round flask. 2 mmol of melamine was dissolved in DMSO under Ar conditions, and 1,4-phenylene diisocyanate was added thereto. Thereafter, the mixture was reacted with stirring at 150 ° C for 24 hours. After the reaction, the product was filtered by centrifugation and rinsed repeatedly with ethanol. Then, dried at 85 ° C. for 24 hours to obtain a white powder as shown in FIG. 2.

3. UPOP에 팔라듐(Pd)의 고정화3. Immobilization of palladium (Pd) on UPOP

클로로폼(chloroform)(40mL)에 있는 팔라듐 아세테이트(palladium acetate)(0.75mg) 용액에 UPOP(292.5mg)을 첨가하였다. 상기 혼합물을 초음파처리기(ultrasonicator)를 이용하여 3분동안 섞어준 후에, 70℃에서 5시간동안 교반시켰다. 그 후에 생성물을 여과시키고, 에탄올로 헹궈냈다. 이후, 80℃에서 24시간동안 건조시켜 노란색 분말을 얻었다. UPOP (292.5 mg) was added to a solution of palladium acetate (0.75 mg) in chloroform (40 mL). The mixture was mixed for 3 minutes using an ultrasonicator, and then stirred at 70 ° C for 5 hours. The product was then filtered and rinsed with ethanol. Thereafter, drying was performed at 80 ° C. for 24 hours to obtain a yellow powder.

<실시예 2> 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응<Example 2> Suzuki-Miyaura cross coupling reaction

1. 재료준비1. Material preparation

4-브로모아니솔(4-bromoanisole), 2-브로모아니솔(2-bromoanisole), 4-브로모톨루엔(4-bromotoluene), 2-브로모톨루엔(2-bromotoluene), 브로모벤젠(bromobenzene), 4-브로모아세토페논(4-bromoacetophenone)은 시그마 알드리치(Sigma Aldrich)사에서 구매하였으며, 2-브로모피리딘(2-Bromopyridine) 3-브로모피리딘(3-bromopyridine)은 도쿄 케미컬(Toyko Chemical)사에서 구매하였고, 1-브로모-4-니트로벤젠(1-Bromo-4-nitrobenzene), 4-브로모벤조니트릴(4-bromobenzonitrile), 2-브로모티오펜(2-bromothiophene)은 알파 에이사(Alfa Aesar)에서 구매하여 사용하였다. 모든 화학물질들은 추가적인 정제 없이 사용하였다.4-bromoanisole, 2-bromoanisole, 4-bromotoluene, 2-bromotoluene, bromobenzene ( bromobenzene) and 4-bromoacetophenone were purchased from Sigma Aldrich. 2-Bromopyridine 3-bromopyridine is Tokyo Chemical ( Toyko Chemical), 1-bromo-4-nitrobenzene, 4-bromobenzonitrile, 2-bromothiophene It was purchased and used by Alfa Aesar. All chemicals were used without further purification.

2. 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응2. Suzuki-Miyaura Cross Coupling Reaction

용매 4mL에 아릴 브로마이드(aryl bromide)(0.2mmol), 페닐보론산(phenylboronic acid)(0.24mmol), 염기(0.2mmol)를 혼합하여 혼합물을 제조하고, 여기에 상기 팔라듐(Pd)이 담지된 우레아 다공성 고분자(Pd@UPOP)를 0.1mol% 첨가하여 공기중에서 80℃에서 1시간동안 반응시켰다. 반응 후에, 디에틸에테르(diethyl ether)와 함께 조생성물이 추출 되었으며, 이를 무수 MgSO4로 건조시키고, 감압하에서 증발시켰다. 이후, 생성물을 컬럼 크로마토그래피(column chromatography)를 이용해 정제하고, GC 분석을 수행하여 반응 수율을 알아냈다.Aryl bromide (0.2 mmol), phenylboronic acid (0.24 mmol), and base (0.2 mmol) were mixed in 4 mL of a solvent to prepare a mixture, and the urea containing the palladium (Pd) was added thereto. Porous polymer (Pd @ UPOP) was added 0.1 mol% and reacted in air at 80 ° C. for 1 hour. After the reaction, the crude product was extracted with diethyl ether, dried over anhydrous MgSO 4 and evaporated under reduced pressure. Thereafter, the product was purified by column chromatography, and GC analysis was performed to find the reaction yield.

<실시예 3> 촉매의 재사용<Example 3> Reuse of catalyst

용매 EtOH 1 mL, H2O 3 mL에 Pd@UPOP (0.1 mol%), 4-브로모아니솔(4-bromoanisole)(37.4 mg, 0.2 mmol), 페닐보론산(phenylboronic acid) (29.4 mg, 0.24 mmol) 및 K3PO4 (0.4 mmol)를 80℃에서 1시간동안 반응시켜 재사용 실험을 수행하였다. 반응 후에, 여과하여 반응 혼합물로부터 촉매를 분리하였으며, 후에 이 촉매를 상기 반응과 같은 조건에 재사용하였다.Solvent EtOH 1 mL, H 2 O 3 mL Pd @ UPOP (0.1 mol%), 4-bromoanisole (37.4 mg, 0.2 mmol), phenylboronic acid (29.4 mg, 0.24 mmol) and K 3 PO 4 (0.4 mmol) were reacted at 80 ° C. for 1 hour to perform a reuse experiment. After the reaction, the catalyst was separated from the reaction mixture by filtration, after which the catalyst was reused under the same conditions as the above reaction.

<실시예 4> FT-IR, NMR, TGA, SEM, TEM, BET, XPS의 측정<Example 4> Measurement of FT-IR, NMR, TGA, SEM, TEM, BET, XPS

UPOP과 Pd@UPOP의 FT-IR spectra는 VERTEX 80V FT-IR vacuum spectrometer를 사용하여 분석되었다. 분석은 400-4000cm-1의 주파수 범위에서 수행하였다. UPOP의 C13-NMR spectrum은 용매로 CDCl3를 이용하고, DIGITAL AVANCE III 400 MHz Bruker NMR spectrometer를 사용하여 분석되었다. 분석은 128scan을 위해 400MHz에서 수행되었다. 고체(solid) NMR도 같은 조건하에서 수행되었다. Thermogravimetric analysis (TGA)은 Q50 (TA Instruments, USA)을 이용하여 40-900℃(10℃/min), 질소가스 분위기 하에서 수행되었다. 형태(Morphology)는 scanning electron microscope (SEM, S-4300, Hitachi)와 transmission electron microscope (TEM, JEM2100F, JEOL)를 이용하여 분석되었다. 표면적은 BELSROP-MAX (MicrotracBEL USA)를 이용하여 Brunauer-Emmett-Teller (BET) 방법을 사용하여 분석되었다. 기공크기는 non-local density functional theory (NL-DFT) 방법으로 측정되었다. X-ray photoelectron spectroscopy (XPS) spectra는 K-Alpha model of XPS spectrometer (Thermo Scientific, USA)를 이용하여 얻어졌으며, 탄소, 질소, 산소 및 팔라듐 원소분석을 수행하였다. 담지된 팔라듐(Pd)의 함량 측정을 위해 inductively coupled plasma optical emission spectrometer (ICP-OES, Optima 7300DV) 분석을 수행하였다. 교차 커플링 반응의 수율은 gas chromatography (Agilent 7980A, Agilent Technologies)를 이용하여 분석되었다. 분석온도는 150℃였으며, 이동상으로서 이동속도 6mL/sec 조건의 에틸에테르(ethyl ether)가 사용되었다.UPOP and Pd @ UPOP's FT-IR spectra were analyzed using a VERTEX 80V FT-IR vacuum spectrometer. The analysis was performed in the frequency range of 400-4000cm -1 . The UP 13 C 13 -NMR spectrum was analyzed using CDCl 3 as a solvent and a DIGITAL AVANCE III 400 MHz Bruker NMR spectrometer. Analysis was performed at 400 MHz for 128 scans. Solid NMR was also performed under the same conditions. Thermogravimetric analysis (TGA) was performed under a nitrogen gas atmosphere at 40-900 ° C (10 ° C / min) using Q50 (TA Instruments, USA). Morphology was analyzed using a scanning electron microscope (SEM, S-4300, Hitachi) and a transmission electron microscope (TEM, JEM2100F, JEOL). The surface area was analyzed using the Brunauer-Emmett-Teller (BET) method using BELSROP-MAX (MicrotracBEL USA). The pore size was measured by the non-local density functional theory (NL-DFT) method. X-ray photoelectron spectroscopy (XPS) spectra was obtained using a K-Alpha model of XPS spectrometer (Thermo Scientific, USA), and elemental analysis of carbon, nitrogen, oxygen, and palladium was performed. An inductively coupled plasma optical emission spectrometer (ICP-OES, Optima 7300DV) analysis was performed to measure the content of the supported palladium (Pd). The yield of the cross coupling reaction was analyzed using gas chromatography (Agilent 7980A, Agilent Technologies). The analysis temperature was 150 ° C, and as the mobile phase, ethyl ether with a moving speed of 6 mL / sec was used.

<실험예 1> 구조특성<Experiment 1> Structural characteristics

우레아 다공성 고분자(UPOP)의 합성방법은 도 1에 나타내었다. UPOP는 도 3에서와 같이 FT-IR를 사용함으로써 특징지어졌다. 3332 cm-1와 1640 cm-1에서 관찰된 피크(peak)는 각각 우레아(urea) 그룹의 N-H 그룹과 C=O 스트레칭(stretching)이다. 반응 후에, 2270 cm-1에 N=C=O 피크(peak)는 사라졌는데, 이것은 이소시아네이트(isocyanate) 그룹이 폴리우레아(polyurea)가 되기 위해 반응되어져 UPOP가 생성됨을 의미한다. 팔라듐(Pd)이 담지된 우레아 다공성 고분자(Pd@UPOP)의 FT-IR spectra도 도 3에 나타내었다. Pd@UPOP의 피크(peak)는 UPOP와 같았으며, 이것은 UPOP에 팔라듐(Pd)이 담지된 후에도 UPOP의 화학구조가 그대로 남아있음을 의미한다. 도 4는 UPOP의 C13-NMR spectrum을 보여주는 것으로, 여기에 4개의 강한 피크(peak)가 관찰되었다. 120.4와 134.4 ppm의 C4, C5 피크(peak)는 페닐고리(phenyl ring)의 탄소에 대한 것이고, 153.7 ppm의 C6 피크(peak)는 우레아(urea) 그룹에 대한 것이며, 163.8 ppm에서의 C7 피크(peak)는 멜라민(melamine) 탄소에 관한 것이다. 이러한 UPOP의 모든 피크(peak)는 이와 비슷한 구조를 가진 고분자와 일치했다.The method for synthesizing the urea porous polymer (UPOP) is shown in FIG. 1. UPOP was characterized by using FT-IR as in FIG. 3. The peaks observed at 3332 cm -1 and 1640 cm -1 are the NH group of the urea group and the C = O stretching, respectively. After the reaction, the N = C = O peak disappeared at 2270 cm −1 , which means that the isocyanate group was reacted to become polyurea, thereby producing UPOP. The FT-IR spectra of the urea porous polymer (Pd @ UPOP) carrying palladium (Pd) is also shown in FIG. 3. The peak of Pd @ UPOP was the same as that of UPOP, which means that the chemical structure of UPOP remains even after palladium (Pd) is supported on UPOP. Figure 4 shows the UP 13 C 13 -NMR spectrum, four strong peaks (peak) were observed here. The C4 and C5 peaks at 120.4 and 134.4 ppm are for the carbon in the phenyl ring, the C6 peak at 153.7 ppm is for the urea group, and the C7 peak at 163.8 ppm ( The peak) relates to melamine carbon. All the peaks of these UPOPs matched the polymers with similar structures.

<실험예 2> 표면특성<Experiment 2> surface properties

도 5에서와 같이 77K에서 N2의 흡착-탈착에 의한 표면적을 확인하기 위하여 0과 1 사이의 P/P0에 대한 BET 분석을 수행하였다. 그 결과, UPOP의 표면적은 12528 m2/g으로 측정되었다. 이렇게 UPOP가 높은 표면적을 가지는 이유는 UPOP가 3-가지(tri-branch) 구조를 가지고 있기 때문이다. 또한, Non-local density functional theory (NL-DFT)를 이용하여 계산된 UPOP의 기공크기는 수백나노미터 크기까지 넓은 범위의 크기로 분포되어 있음을 보여주었다.As shown in FIG. 5, BET analysis of P / P 0 between 0 and 1 was performed to confirm the surface area by adsorption-desorption of N 2 at 77K. As a result, the surface area of UPOP was measured to be 12528 m 2 / g. The reason why UPOP has a high surface area is that UPOP has a tri-branch structure. In addition, it was shown that the pore size of UPOP calculated using Non-local density functional theory (NL-DFT) is distributed in a wide range of sizes up to several hundred nanometers.

SEM과 TEM을 통해 관찰된 UPOP와 Pd@IPOP의 형태(morphology)는 도 6과 도 7에 보여주었다. SEM과 TEM에서 UPOP는 플레이트-타입(plate-type) 구조를 가짐을 확인하였다. 또한, 원소 메핑(mapping)에서 4개의 원소들(C, O, N, Pd)은 Pd@UPOP에 균질하게 분포되어 있음을 보여주었으며, 이것으로 촉매가 성공적으로 준비되었음을 알 수 있었다. The morphology of UPOP and Pd @ IPOP observed through SEM and TEM is shown in FIGS. 6 and 7. In SEM and TEM, it was confirmed that UPOP has a plate-type structure. In addition, the element mapping showed that the four elements (C, O, N, and Pd) were homogeneously distributed in Pd @ UPOP, indicating that the catalyst was successfully prepared.

<실험예 3> 열적특성<Experimental Example 3> Thermal properties

TGA를 이용하여 분석된 UPOP와 Pd@UPOP의 열적 안정성은 도 8에 보여주었다. 헤테로 고리(Heterocyclic) 시스템은 높은 반응온도에서 반응할 수도 있기 때문에 높은 온도에서의 구조적 안정성은 중요한 문제이다. 5%의 구조적 분해가 일어나는 점을 분해점으로서 지정하였으며, 도 8에서와 같이 UPOP와 Pd@UPOP의 구조 분해온도는 각각 263과 266℃로 나타났다. 이것으로 UPOP에 Pd를 담지하여도 구조의 끊어짐이 없어 분해온도가 UPOP와 거의 동일함을 확인하였다.  The thermal stability of UPOP and Pd @ UPOP analyzed using TGA is shown in FIG. 8. Structural stability at high temperatures is an important issue because heterocyclic systems may react at high reaction temperatures. The point where 5% structural decomposition occurs was designated as the decomposition point, and as shown in FIG. 8, the structural decomposition temperatures of UPOP and Pd @ UPOP were 263 and 266 ° C, respectively. As a result, it was confirmed that the decomposition temperature was almost the same as that of UPOP because there was no breakage of the structure even when Pd was supported on the UPOP.

<실험예 4> 원소분석<Experimental Example 4> Elemental Analysis

원소분석을 위하여 XPS 분석을 수행하였으며, 도 9와 도 10에서와 같이 Pd@UPOP의 팔라듐과 다른 원소와의 상호작용을 조사하였다. 도 9에서와 같이 UPOP에 대한 spectrum으로부터 특정된 원자 퍼센트(atomic percent)는 이론값과 거의 동일하였다. 또한, 도 10에서 UPOP와 Pd@UPOP의 N 1s 결합 에너지(binding energy)는 399.6eV이며, O 1s는 531.05eV임을 보여주었다. 이것으로 구조 뼈대와 팔라듐(Pd)의 상호작용 때문에 UPOP와 Pd@UPOP에 대해 O는 약간의 피크(peak) 이동이 있음을 확인하였다. Pd@UPOP에서 Pd 3d3/2와 Pd 3d5/2의 피크(peak)는 각각 337.81eV, 343.01eV였으며, Pd@UPOP의 peak는 +2 산화상태(oxidation state)를 갖음을 확인하였다. 게다가, Pd(OAc)2(338.40eV)와 비교하여 Pd@UPOP는 0.59eV의 이동(shift)이 발생하였다. 이러한 현상은 고분자의 표면에 팔라듐(Pd)이 고정되어 있기 때문에 일어나는 현상이다. 상기 실험 결과로, 팔라듐(Pd)은 고분자의 위/안쪽에 성공적으로 고정되었음을 확인하였다. 고정된 팔라듐(Pd)의 정확한 함량을 알기 위하여, ICP-OES 분석을 수행하였다. 그 결과, UPOP에서 팔라듐(Pd)의 함량이 0.96wt%임을 확인하였다. 이러한 결과로 Pd@UPOP 구조에는 팔라듐(Pd)이 결합할 수 있는 충분한 양의 질소원자가 있고, 팔라듐(Pd)이 기공 안쪽으로 들어갈 수 있는 내부 공간이 있기 때문에 더 많은 양의 팔라듐(Pd)이 포함될 것이라 예상될 수 있다. XPS analysis was performed for elemental analysis, and the interaction of pd @ UPOP with palladium and other elements was investigated as in FIGS. 9 and 10. As shown in Fig. 9, the atomic percent specified from the spectrum for UPOP was almost the same as the theoretical value. In addition, in FIG. 10, it was shown that N 1s binding energy of UPOP and Pd @ UPOP is 399.6 eV, and O 1s is 531.05 eV. This confirmed that there was a slight peak shift in O for UPOP and Pd @ UPOP due to the interaction between the structural skeleton and palladium (Pd). In Pd @ UPOP, the peaks of Pd 3d 3/2 and Pd 3d 5/2 were 337.81eV and 343.01eV, respectively, and it was confirmed that the peak of Pd @ UPOP has a +2 oxidation state. Moreover, compared to Pd (OAc) 2 (338.40eV), Pd @ UPOP shifted by 0.59eV. This phenomenon occurs because palladium (Pd) is fixed on the surface of the polymer. As a result of the experiment, it was confirmed that palladium (Pd) was successfully fixed to the inside / side of the polymer. To know the exact content of the fixed palladium (Pd), ICP-OES analysis was performed. As a result, it was confirmed that the content of palladium (Pd) in UPOP was 0.96 wt%. As a result of this, the Pd @ UPOP structure contains a sufficient amount of palladium (Pd) because there is a sufficient amount of nitrogen atoms to which palladium (Pd) can bind, and there is an interior space for palladium (Pd) to enter the pores. Can be expected.

<실험예 5> 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 촉매 반응<Experimental Example 5> Suzuki-Miyaura cross-coupling catalytic reaction

4-브로모아니솔(4-bromoanisole)과 페닐보론산(phenylboronic acid)의 스즈키-미야우라(Suzuki-Miyaura)는 촉매 반응 수행에 최적화된 조건으로 선택되었다. 도 11에 Pd@UPOP 촉매의 최적화 수율 자료를 리스트 하였다. 0.1mol%의 Pd@UPOP와 염기와 함께 4-브로모아니솔(4-bromoanisole)과 페닐보론산(phenylboronic acid)의 반응은 80℃, 공기하에서 1시간동안 수행하였다. 최적의 반응 조건을 찾기 위하여, 다른 염기와 용매들로 반응을 수행하였다. 그 결과, Pd@UPOP는 H20/EtOH(3:1 v/v)에서 가장 좋은 결과를 보여주었다. 또한, NEt3, KOH, K2CO3, K3PO4와 같은 염기 중에서 만족할 만큼 충분한 수율 결과가 나타난 것은 K2CO3, K3PO4 (도 11, entries 1-4) 염기였다. K2CO3 염기와 함께 용매를 선택하기 위하여 더 많은 실험을 수행하였다. 실험한 용매는 H2O, EtOH, DMF 및 이들의 혼합용매였다. 그 결과, Pd@UPOP는 물과 에탄올을 3:1(v/v)의 비로 혼합한 용매를 사용했을 때 가장 높은 수율을 보여주었다(도 11, entry 3, 4). 특히, K2CO3 염기와 함께 Pd@UPOP는 95%의 수율을 보여주었다(도 11, entry 3). 일반적으로 메톡시(Methoxy) 그룹을 가지는 4-브로모아니솔(4-bromoanisole)은 전자가 풍부하기 때문에 반응이 진행되기 어렵지만, Pd@UPOP를 0.1mol%만 포함시켜도 대기 중의 1시간 반응 조건 하에서도 팔라듐(Pd)은 95%의 수율을 낼 수 있었다. 이러한 결과로, Pd@UPOP의 가장 좋은 수율 조건이 선택되었으며, 이와 같은 조건하에서 다른 아릴 브로마이드(aryl bromide)와 헤테로아릴 브로마이드(heteroaryl bromide)를 이용하여 추가적인 실험을 수행하였다.Suzuki-Miyaura of 4-bromoanisole and phenylboronic acid were selected as conditions optimized for performing the catalytic reaction. 11, the optimization yield data of the Pd @ UPOP catalyst is listed. The reaction of 4-bromoanisole and phenylboronic acid with 0.1 mol% of Pd @ UPOP and base was performed at 80 ° C. for 1 hour under air. In order to find the optimum reaction conditions, the reaction was carried out with different bases and solvents. As a result, Pd @ UPOP showed the best results in H 2 0 / EtOH (3: 1 v / v). In addition, among the bases such as NEt 3 , KOH, K 2 CO 3 , and K 3 PO 4 , satisfactory enough yield results were K 2 CO 3 , K 3 PO 4 (FIG. 11, entries 1-4) base. More experiments were performed to select solvents with K 2 CO 3 base. The solvents tested were H 2 O, EtOH, DMF and mixed solvents thereof. As a result, Pd @ UPOP showed the highest yield when using a solvent in which water and ethanol were mixed at a ratio of 3: 1 (v / v) (FIG. 11, entry 3, 4). In particular, Pd @ UPOP with K 2 CO 3 base showed a yield of 95% (FIG. 11, entry 3). In general, 4-bromoanisole (Methoxy) having a group (4-bromoanisole) because the electron is rich, the reaction is difficult to proceed, but even if only 0.1 mol% of Pd @ UPOP is included, under the reaction conditions for 1 hour in the atmosphere Palladium (Pd) was able to yield a yield of 95%. As a result of this, the best yield condition of Pd @ UPOP was selected, and under these conditions, additional experiments were performed using other aryl bromide and heteroaryl bromide.

도 12에서와 같이 아릴 브로마이드와 헤테로아릴 브로마이드를 이용한 스즈키-미야우라(Suzuki-Miyaura) 교차 반응 시 Pd@UPOP의 촉매 반응을 평가하였다. Pd@UPOP의 촉매반응을 조사하기 위해 3가지 세트로 분류하였다. 첫번째 그룹(도 12, entries 1-4)은 전자를 잘 주는 아릴 브로마이드(aryl bromide) 그룹(electron donating group(EDG)), 두번째 그룹(entries 5-8)은 전자를 잘 끌어당기는 아릴 브로마이드(aryl bromide) 그룹(electron withdrawing group (EWG)), 세번째 그룹은 헤케로 아릴 브로마이드(heteroaryl bromide)(9-11)로 분류하였다. EDG의 아릴 브로마이드(aryl bromide)는 브로모벤젠(bromobenzene) 보다 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응이 더 어려운 것으로 알려져 있다. 이는 벤젠고리에 붙어있는 작용기가 전자를 벤젠고리 쪽으로 밀어서 벤젠고리는 전자가 풍부한 상태가 되어 반응 물질이 안정화되기 때문이다. As shown in FIG. 12, the catalytic reaction of Pd @ UPOP was evaluated during Suzuki-Miyaura cross reaction using aryl bromide and heteroaryl bromide. To investigate the catalytic reaction of Pd @ UPOP, it was classified into three sets. The first group (FIG. 12, entries 1-4) is an electron donating group (EDG) which gives electrons well, and the second group (entries 5-8) is an aryl bromide that attracts electrons well (aryl The bromide group (EWG), the third group was classified as a heteroaryl bromide (9-11). It is known that the aryl bromide of EDG has a more difficult Suzuki-Miyaura cross-coupling reaction than bromobenzene. This is because the functional group attached to the benzene ring pushes the electron toward the benzene ring, and the benzene ring becomes rich in electrons, thereby stabilizing the reactant.

그러나, Pd@UPOP는 EDG 아릴 브로마이드(aryl bromide)에 훌륭한 촉매 작용을 함을 확인하였다. 입체효과를 조사하기 위하여, 오쏘(ortho)와 파라(para) 위치에 있는 -OCH3(entries 1-2)와 오쏘(ortho)와 파라(para) 위치에 있는 -CH3(entries 3-4)를 비교하였다. 입체 방해 때문에 오쏘-(ortho-) 치환된 아릴 브로마이드(aryl bromide)의 수율이 더 높았음을 확인하였다. 또한, -CH3는 -OCH3 보다 더 약한 EDG이기 때문에 -CH3 치환된 아릴 브로마이드(aryl bromide)가 -OCH3 치환된 아릴 브로마이드(aryl bromide) 보다 수율이 더 높았다. 이것은 벤젠고리에 전자가 풍부할수록 더 반응하기 어려워짐을 의미한다. 또한, 1-브로모-4-니트로벤젠(1-bromo-4-nitrobenzene), 4-브로모벤조니트릴(4-bromobenzonitrile), 4-브로모아세토페논(4-bromoacetophenone)과 같은 EWG의 아릴 브로마이드(aryl bromide) 반응은 거의 수율이 100%가 됨을 확인하였다(entries 6-8). EWG는 벤젠고리로부터 전자를 잡아당겨서 벤젠고리를 불안정하게 만들어 아릴 브로마이드(aryl bromide)가 쉽게 반응하기 때문에 수율이 EDG 보다 더 높게된다. However, it was confirmed that Pd @ UPOP has a good catalytic effect on EDG aryl bromide. To investigate the stereoscopic effect, -OCH 3 (entries 1-2) in ortho and para positions and -CH 3 (orries 3-4) in ortho and para positions Compared. It was confirmed that the yield of ortho- substituted aryl bromide was higher due to steric hindrance. In addition, since -CH 3 is a weaker EDG than -OCH 3 , -CH 3 substituted aryl bromide yields higher than -OCH 3 substituted aryl bromide. This means that the more electrons in the benzene ring, the more difficult it is to react. Also, aryl bromide of EWG such as 1-bromo-4-nitrobenzene, 4-bromobenzonitrile, and 4-bromoacetophenone. The (aryl bromide) reaction confirmed that the yield was almost 100% (entries 6-8). EWG pulls electrons from the benzene ring, making the benzene ring unstable, and the aryl bromide reacts easily, resulting in higher yield than EDG.

마지막 반응 그룹은 피리딘(pyridinic) 그룹(entries 9-10)과 티오펜(thiophene) (entry 11)을 가진 헤테로아릴 브로마이드(heteroaryl bromide) 그룹이다. 3-브로모피리딘(3-bromopyridine)의 반응 생성물은 97%의 수율을 나타내었으나(entry 10), 2-브로모피리딘(2-bromopyridine)의 수율은 71% 였다(entry 9). 이러한 결과로 Br에 더 가까운 이종원자는 반응을 더 어렵게 만듦을 알았다. 게다가, N 보다 S의 전기음성도가 더 낮아 벤젠고리의 전자 밀도가 더 낮아지기 때문에 2-브로모티오펜(2-bromothiophene)의 수율은 100% 에 도달 되었을을 확인하였다(entry 11). 일반적으로 벤젠고리의 이종원자는 고리에 전자밀도를 더 높이기 때문에 반응 진행을 더 어렵게 만든다. 그러나, 아릴 브로마이드(aryl bromide)의 모든 반응은 1시간 내에 수율이 90%이상 도달하였으며, 헤테로아릴 브로마이드(heteroaryl bromide) 반응은 3시간 내에 수율이 적어도 70%이상 도달하였다. 이러한 결과는 Pd@UPOP이 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응에 효율이 높은 촉매임을 나타낸다.The last reaction group is a heteroaryl bromide group having a pyridine group (entries 9-10) and a thiophene (entry 11). The reaction product of 3-bromopyridine showed a yield of 97% (entry 10), but the yield of 2-bromopyridine was 71% (entry 9). As a result, it was found that the heteroatom closer to Br makes the reaction more difficult. In addition, it was confirmed that the yield of 2-bromothiophene reached 100% because the electron density of S was lower because the electronegativity of S was lower than that of N (entry 11). In general, heteroatoms in the benzene ring increase the electron density in the ring, making the reaction more difficult. However, all reactions of the aryl bromide reached a yield of 90% or more within 1 hour, and the heteroaryl bromide reaction reached a yield of at least 70% within 3 hours. These results indicate that Pd @ UPOP is a highly efficient catalyst for Suzuki-Miyaura cross-coupling reaction.

이러한 높은 촉매 활성은 두 가지 이유 때문이다. 첫째로 UPOP는 많은 양의 N를 가지기(31%) 때문에 구조적으로 충분한 팔라듐 원자를 담지할 수 있기 때문이고, 또 다른 이유는 UPOP의 넓은 표면적은 팔라듐을 넓은 면적에 퍼지게 하여 많은 반응 위치(site)를 제공을 가능하게 하기 때문이다. This high catalytic activity is for two reasons. First, because UPOP has a large amount of N (31%), it is capable of supporting structurally sufficient palladium atoms, and another reason is that the large surface area of UPOP spreads palladium over a large area, resulting in many reaction sites. This is because it makes it possible to provide.

<실험예 6> 촉매의 재활용성<Experimental Example 6> Recyclability of the catalyst

불균일 촉매의 재활용성은 중요한 문제이다. Pd@UPOP 촉매의 재활용성은 4-브로모아니솔(4-bromoanisole)과 페닐보론산(phenylboronic acid) 사이의 반응을 통해 평가하였다. 상기 반응은 도 12의 entry 1의 조건하에서 수행하였다. 반응 후에, 촉매는 에탄올로 원심분리하여 생성물로부터 분리하고, 촉매를 원래 상태로 되돌리기 위하여 1시간 동안 진공 건조하였다. 그 후에, 이 촉매는 같은 조건하에서 다음 반응을 수행하였다. 도 13은 반복적인 사용으로도 촉매 성능이 유지되고 있음을 보여준다. 5번 재활용 후에, 수율이 90%나 되는 전도유망한 결과를 얻었으며, 이것은 불균일 촉매로서 충분히 사용될 수 있음을 확인하였다.The recyclability of heterogeneous catalysts is an important issue. The recyclability of the Pd @ UPOP catalyst was evaluated through a reaction between 4-bromoanisole and phenylboronic acid. The reaction was performed under the condition of entry 1 in FIG. 12. After the reaction, the catalyst was separated from the product by centrifugation with ethanol, and vacuum dried for 1 hour to return the catalyst to its original state. Thereafter, the catalyst was subjected to the next reaction under the same conditions. 13 shows that the catalyst performance is maintained even after repeated use. After 5 times of recycling, a promising result with a yield of 90% was obtained, confirming that it can be sufficiently used as a heterogeneous catalyst.

Claims (14)

하기 화학식 1로 표시되는 다공성 폴리우레아:
[화학식 1]
Figure pat00004

상기 n은 1 내지 1000의 정수임.
Porous polyurea represented by the following formula (1):
[Formula 1]
Figure pat00004

The n is an integer from 1 to 1000.
제1항에 있어서,
상기 다공성 폴리우레아는 멜라민(melamine)과 1,4-페닐렌 다이이소시아네이트(1,4-phenylene diisocyanate)를 반응시켜 제조하는 것을 특징으로 하는, 다공성 폴리우레아.
According to claim 1,
The porous polyurea is characterized in that it is prepared by reacting melamine (melamine) and 1,4-phenylene diisocyanate (1,4-phenylene diisocyanate), porous polyurea.
제1항에 따른 다공성 폴리우레아에 팔라듐(Pd)을 담지시킨 것을 특징으로 하는, 팔라듐(Pd) 담지 다공성 폴리우레아.A porous polyurea supported on palladium (Pd), characterized in that palladium (Pd) is supported on the porous polyurea according to claim 1. 1) 멜라민(melamine)에 1,4-페닐렌 다이이소시아네이트(1,4-phenylene diisocyanate)를 첨가하여 우레아 축합반응 시키고, 여과한 후 건조시켜 다공성 폴리우레아를 합성하는 단계; 및
2) 상기 다공성 폴리우레아에 팔라듐 염 용액을 첨가하여 교반함으로써 팔라듐(Pd)을 담지시키는 단계;
를 포함하는 것을 특징으로 하는, 팔라듐(Pd) 담지 다공성 폴리우레아의 제조방법.
1) adding 1,4-phenylene diisocyanate to melamine to condense urea, filtering and drying to synthesize porous polyurea; And
2) adding palladium salt solution to the porous polyurea to stir palladium (Pd) by stirring;
Characterized in that it comprises, a method for producing palladium (Pd) -supported porous polyurea.
제4항에 있어서,
상기 팔라듐 염은 팔라듐 아세테이트(Palladium(II)acetate, Pd(OAc)2), 염화팔라듐(Palladium(II) Chloride, PdCl2), 비스(디벤질리덴아세톤)팔라듐(Bis(dibenzylideneacetone)palladium, Pd2(dba)3) 및 팔라듐(트리플루오로아세테이트)(Palladium(II) trifluoroacetate, Pd(TFA)2) 로 이루어진 군에서 선택된 것을 특징으로 하는, 팔라듐(Pd) 담지 다공성 폴리우레아의 제조방법.
According to claim 4,
The palladium salt is palladium acetate (Palladium (II) acetate, Pd (OAc) 2 ), palladium (II) Chloride, PdCl 2 ), bis (dibenzylideneacetone) palladium (Bis (dibenzylideneacetone) palladium, Pd 2 (dba) 3 ) and palladium (trifluoroacetate) (Palladium (II) trifluoroacetate, Pd (TFA) 2 ), characterized in that selected from the group consisting of, palladium (Pd) supported porous polyurea production method.
제3항에 따른 팔라듐(Pd) 담지 다공성 폴리우레아를 포함하는, 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응용 촉매 조성물.A catalyst composition for Suzuki-Miyaura cross-coupling reaction, comprising the palladium (Pd) -supported porous polyurea according to claim 3. 제3항에 따른 팔라듐(Pd) 담지 다공성 폴리우레아를 촉매로서 이용하여 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응을 수행하여 바이아릴(biaryl) 화합물을 제조하는 단계를 포함하는, 바이아릴(biaryl) 화합물의 제조방법.A biaryl comprising preparing a biaryl compound by performing a Suzuki-Miyaura cross-coupling reaction using the palladium (Pd) -supported porous polyurea according to claim 3 as a catalyst. (biaryl) Method of preparing a compound. 제7항에 있어서,
상기 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응에서 촉매로 이용되는 팔라듐(Pd) 담지 다공성 폴리우레아는 0.05~0.5mol% 포함하는 것을 특징으로 하는, 바이아릴(biaryl) 화합물의 제조방법.
The method of claim 7,
The Suzuki-Miyaura (Suzuki-Miyaura) palladium (Pd) -supported porous polyurea used as a catalyst in the cross-coupling reaction is characterized in that it contains 0.05 to 0.5 mol%, a method for producing a biaryl (biaryl) compound.
제7항에 있어서,
상기 스즈키-미야우라(Suzuki-Miyaura) 교차 커플링 반응은 아릴 브로마이드 또는 헤테로아릴 브로마이드 중 어느 하나의 화합물, 페닐보론산 및 염(base)을 용매에 용해시킨 혼합물에 팔라듐 담지 다공성 폴리우레아 촉매를 첨가하는 단계; 및
상기 팔라듐 담지 다공성 폴리우레아 촉매가 첨가된 혼합물을 공기 분위기 하에서 반응시키는 단계를 포함하는, 바이아릴(biaryl) 화합물의 제조방법.
The method of claim 7,
In the Suzuki-Miyaura cross-coupling reaction, a palladium-carrying porous polyurea catalyst is added to a mixture in which a compound of any one of aryl bromide or heteroaryl bromide, phenylboronic acid, and a base is dissolved in a solvent. To do; And
The method comprising the step of reacting the mixture to which the palladium-supported porous polyurea catalyst is added, under an air atmosphere.
제9항에 있어서,
상기 아릴 브로마이드 또는 헤테로아릴 브로마이드는 4-브로모아니솔(4-bromoanisole), 2-브로모아니솔(2-bromoanisole), 4-브로모톨루엔(4-bromotoluene), 2-브로모톨루엔(2-bromotoluene), 브로모벤젠(bromobenzene), 1-브로모-4-니트로벤젠(1-bromo-4-nitrobenzene), 4-브로모벤조니트릴(4-bromobenzonitrile), 4-브로모아세토페논(4-bromoacetophenone), 2-브로모피리딘(2-bromopyridine), 3-브로모피리딘(3-bromopyridine), 2-브로모티오펜(2-bromothiophene) 으로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는, 바이아릴(biaryl) 화합물의 제조방법.
The method of claim 9,
The aryl bromide or heteroaryl bromide is 4-bromoanisole, 2-bromoanisole, 4-bromotoluene, 2-bromotoluene (2 -bromotoluene, bromobenzene, 1-bromo-4-nitrobenzene, 4-bromobenzonitrile, 4-bromoacetophenone (4 -Bromoacetophenone), 2-bromopyridine (2-bromopyridine), 3-bromopyridine (3-bromopyridine), characterized in that any one selected from the group consisting of 2-bromothiophene (2-bromothiophene), Method for preparing a biaryl compound.
제9항에 있어서,
상기 염은 K2CO3 또는 K3PO4 중에서 선택되는 것을 특징으로 하는, 바이아릴(biaryl) 화합물의 제조방법.
The method of claim 9,
The salt is characterized in that it is selected from K 2 CO 3 or K 3 PO 4 , a method for producing a biaryl (biaryl) compound.
제9항에 있어서,
상기 용매는 C1~C4 알콜 수용액인 것을 특징으로 하는, 바이아릴(biaryl) 화합물의 제조방법.
The method of claim 9,
The solvent is characterized in that the aqueous solution of C1 ~ C4 alcohol, a method for producing a biaryl (biaryl) compound.
제9항에 있어서,
상기 반응은 상온 ~ 100℃에서 15분 ~ 24시간 동안 공기 분위기 하에서 수행하는 것을 특징으로 하는, 바이아릴(biaryl) 화합물의 제조방법.
The method of claim 9,
The reaction is characterized in that performed at room temperature ~ 100 ℃ for 15 minutes ~ 24 hours in an air atmosphere, a method for producing a biaryl (biaryl) compound.
제9항에 있어서,
상기 바이아릴(biaryl) 화합물은 하기 화학식 2로 표시되는 것을 특징으로 하는, 바이아릴(biaryl) 화합물의 제조방법.
[화학식 2]
Figure pat00005

(상기 식에서, A는 아니솔(anisole), 톨루엔(toluene), 벤젠(benzene), 니트로벤젠(nitrobenzene), 벤조니트릴(benzonitrile), 아세토페논(acetophenone), 피리딘(pyridine) 및 티오펜(thiophene)으로 이루어진 군에서 선택되는 어느 하나이다.)
The method of claim 9,
The biaryl (biaryl) compound is characterized in that represented by the following formula (2), a method for producing a biaryl (biaryl) compound.
[Formula 2]
Figure pat00005

(In the above formula, A is anisole, toluene, benzene, nitrobenzene, benzonitrile, acetophenone, pyridine and thiophene It is any one selected from the group consisting of.)
KR1020180107098A 2018-09-07 2018-09-07 Palladium-Supported Porous Polyurea Heterogeneous Catalyst and Suzuki-Miyaura Cross-coupling Reaction using the Same KR102103917B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180107098A KR102103917B1 (en) 2018-09-07 2018-09-07 Palladium-Supported Porous Polyurea Heterogeneous Catalyst and Suzuki-Miyaura Cross-coupling Reaction using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180107098A KR102103917B1 (en) 2018-09-07 2018-09-07 Palladium-Supported Porous Polyurea Heterogeneous Catalyst and Suzuki-Miyaura Cross-coupling Reaction using the Same

Publications (2)

Publication Number Publication Date
KR20200028687A true KR20200028687A (en) 2020-03-17
KR102103917B1 KR102103917B1 (en) 2020-04-24

Family

ID=70004119

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180107098A KR102103917B1 (en) 2018-09-07 2018-09-07 Palladium-Supported Porous Polyurea Heterogeneous Catalyst and Suzuki-Miyaura Cross-coupling Reaction using the Same

Country Status (1)

Country Link
KR (1) KR102103917B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195966A (en) * 2021-11-24 2022-03-18 大连理工大学 Large-specific-surface-area porous polyketide amine and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102618530B1 (en) 2021-08-31 2023-12-27 울산과학기술원 Metal-organic framework, method for preparing thereof and organic chemical reaction catalyst using thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747526A (en) * 2008-12-15 2010-06-23 国家纳米科学中心 Polymer microporous material and preparation method based on organic polymer network structure
KR101117175B1 (en) 2009-07-27 2012-03-07 광주과학기술원 Polyurea porous materials and method for fabricating the same
JP2014171924A (en) * 2013-03-06 2014-09-22 Kawamura Institute Of Chemical Research Catalyst for selective chemical catalytic reduction and selective chemical catalytic reduction method using the same
WO2015170688A1 (en) * 2014-05-07 2015-11-12 国立大学法人北陸先端科学技術大学院大学 Metal-supported porous coordination polymer catalyst
JP5979153B2 (en) * 2011-11-02 2016-08-24 三菱化学株式会社 Method for producing conjugated polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747526A (en) * 2008-12-15 2010-06-23 国家纳米科学中心 Polymer microporous material and preparation method based on organic polymer network structure
KR101117175B1 (en) 2009-07-27 2012-03-07 광주과학기술원 Polyurea porous materials and method for fabricating the same
JP5979153B2 (en) * 2011-11-02 2016-08-24 三菱化学株式会社 Method for producing conjugated polymer
JP2014171924A (en) * 2013-03-06 2014-09-22 Kawamura Institute Of Chemical Research Catalyst for selective chemical catalytic reduction and selective chemical catalytic reduction method using the same
WO2015170688A1 (en) * 2014-05-07 2015-11-12 国立大学法人北陸先端科学技術大学院大学 Metal-supported porous coordination polymer catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195966A (en) * 2021-11-24 2022-03-18 大连理工大学 Large-specific-surface-area porous polyketide amine and preparation method and application thereof

Also Published As

Publication number Publication date
KR102103917B1 (en) 2020-04-24

Similar Documents

Publication Publication Date Title
Han et al. Copper immobilized at a covalent organic framework: an efficient and recyclable heterogeneous catalyst for the Chan–Lam coupling reaction of aryl boronic acids and amines
Li et al. Synthesis of covalent organic frameworks via in situ salen skeleton formation for catalytic applications
Zhang et al. “Click” magnetic nanoparticle-supported palladium catalyst: a phosphine-free, highly efficient and magnetically recoverable catalyst for Suzuki–Miyaura coupling reactions
Puthiaraj et al. Palladium nanoparticles supported on triazine functionalised mesoporous covalent organic polymers as efficient catalysts for Mizoroki–Heck cross coupling reaction
Wang et al. A magnetically separable palladium catalyst containing a bulky N-heterocyclic carbene ligand for the Suzuki–Miyaura reaction
Qiu et al. Highly effective silica gel-supported N-heterocyclic carbene–Pd catalyst for Suzuki–Miyaura coupling reaction
Puthiaraj et al. Aerobic homocoupling of arylboronic acids catalysed by copper terephthalate metal–organic frameworks
Zhang et al. Synthesis of quinazolines via CuO nanoparticles catalyzed aerobic oxidative coupling of aromatic alcohols and amidines
Khalily et al. A supramolecular peptide nanofiber templated Pd nanocatalyst for efficient Suzuki coupling reactions under aqueous conditions
Sobhani et al. A hydrophilic heterogeneous cobalt catalyst for fluoride-free Hiyama, Suzuki, Heck and Hirao cross-coupling reactions in water
KR101459599B1 (en) NOVEL Cu-MOF COMPOUNDS, AND SELECTIVE CO2 SORPTION AND HETEROGENEOUS CATALYSTS FOR TRANSESTERIFICATION COMPRISING THE SAME
Zhao et al. A polyoxometalate-based Pd II-coordinated ionic solid catalyst for heterogeneous aerobic oxidation of benzene to biphenyl
Akkoç et al. N-Methylphthalimide-substituted benzimidazolium salts and PEPPSI Pd–NHC complexes: synthesis, characterization and catalytic activity in carbon–carbon bond-forming reactions
KR102103917B1 (en) Palladium-Supported Porous Polyurea Heterogeneous Catalyst and Suzuki-Miyaura Cross-coupling Reaction using the Same
Ramezanalizadeh et al. Mixed cobalt/nickel metal–organic framework, an efficient catalyst for one-pot synthesis of substituted imidazoles
Ma et al. One-pot cascade syntheses of microporous and mesoporous pyrazine-linked covalent organic frameworks as Lewis-acid catalysts
Jain et al. A novel mesoporous silica-grafted organocatalyst for the Michael addition reaction, synthesized via the click method
Kairouz et al. Imidazolium-functionalized β-cyclodextrin as a highly recyclable multifunctional ligand in water
Nejat et al. Pd-functionalized MCM-41 nanoporous silica as an efficient and reusable catalyst for promoting organic reactions
Kryszak et al. Imidazole immobilization in nanopores of silicas and niobiosilicates SBA-15 and MCF—A new concept towards creation of basicity
Ocansey et al. Synthesis, characterization and evaluation of bulky bis (pyrazolyl) palladium complexes in Suzuki–Miyaura cross-coupling reactions
Zhou et al. Palladium nanoparticles supported on a carbazole functionalized mesoporous organic polymer: synthesis and their application as efficient catalysts for the Suzuki–Miyaura cross coupling reaction
Nguyen et al. Synthesis of imidazo [1, 5-a] pyridines via oxidative amination of the C (sp 3)–H bond under air using metal–organic framework Cu-MOF-74 as an efficient heterogeneous catalyst
Nouri et al. Synthesis of a novel ZnO nanoplates supported hydrazone-based palladacycle as an effective and recyclable heterogeneous catalyst for the Mizoroki-Heck cross-coupling reaction
Mohammadi et al. A polystyrene supported [PdCl–(SeCSe)] complex: a novel, reusable and robust heterogeneous catalyst for the Sonogashira synthesis of 1, 2-disubstituted alkynes and 1, 3-enynes

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right