KR20200024047A - Galvanizing Method of High Strength Steel - Google Patents

Galvanizing Method of High Strength Steel Download PDF

Info

Publication number
KR20200024047A
KR20200024047A KR1020180100704A KR20180100704A KR20200024047A KR 20200024047 A KR20200024047 A KR 20200024047A KR 1020180100704 A KR1020180100704 A KR 1020180100704A KR 20180100704 A KR20180100704 A KR 20180100704A KR 20200024047 A KR20200024047 A KR 20200024047A
Authority
KR
South Korea
Prior art keywords
steel sheet
electroplating
plating
present
steel
Prior art date
Application number
KR1020180100704A
Other languages
Korean (ko)
Inventor
김상헌
Original Assignee
김상헌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김상헌 filed Critical 김상헌
Priority to KR1020180100704A priority Critical patent/KR20200024047A/en
Publication of KR20200024047A publication Critical patent/KR20200024047A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • H01M2/06
    • H01M2/40
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Coating With Molten Metal (AREA)

Abstract

The present invention relates to a method for manufacturing a high-strength molten galvanized steel sheet. In order to improve plating properties of the high-strength steel sheet, electroplating is performed in an aqueous solution containing Ni and Mn after degreasing the steel sheet, so that the total of Ni and Mn is 0.1 to 1 g/m2. In addition, annealing heat treatment is performed under the reduction atmosphere after electroplating such that the ratio of Mn/Ni is 0.1 to 0.5. Using the present invention, it is possible to manufacture the molten galvanized steel sheet without unplating by minimizing an adverse effect of plating property of Si in steel.

Description

고강도 용융도금강판의 제조방법 {Galvanizing Method of High Strength Steel}Manufacturing method of high strength hot-dip galvanized steel sheet {Galvanizing Method of High Strength Steel}

본 발명은 실리콘(Si)이 함유된 냉연강판을 소재로한 용융도금강판의 제조방법에 있어서, 실리콘이 0.3% 이상 첨가된 냉연강판을 열처리하기 전에 니켈 및 망간을 포함한 금속층을 강판 표면에 형성되도록 전기도금을 한 후에 열처리를 하고 도금을 실시하여 미도금이 없는 용융아연도금강판을 제조하는 방법에 관한 것이다. The present invention relates to a method for manufacturing a hot-dip steel sheet made of a cold rolled steel sheet containing silicon (Si), wherein a metal layer including nickel and manganese is formed on the surface of the steel sheet before heat-treating the cold rolled steel sheet containing 0.3% or more of silicon. The present invention relates to a method of manufacturing a hot-dip galvanized steel sheet without electroplating by performing heat treatment and plating after electroplating.

용융도금강판은 건축자재, 가전제품 및 자동차를 제조하는데 널리 사용되고 있으며, 최근에는 Si이 함유된 고강도 용융도금강판의 사용이 증가하는 추세이다.Hot-dip galvanized steel sheet is widely used in manufacturing building materials, home appliances and automobiles, and recently, the use of high-strength hot-dip galvanized steel sheet containing Si is increasing.

Si을 함유한 고강도강을 용융도금할 때는 강판 표면에 부분적으로 도금이 되지 않는 미도금 결함이 발생하기 쉽다. 특히 가공성을 얻기 위하여 첨가한 Si은 고온 열처리 과정에서 강중 Si이 표면으로 확산하여 Si 산화물을 형성하며, 표면에 존재하는 Si의 산화물은 용융아연도금시에 용융아연이 강판에 부착되는 것을 방해하여 도금결함이 더욱 심해지는 문제점이 있다. When hot-dipting high-strength steel containing Si, unplated defects, which are not partially plated on the steel plate surface, are likely to occur. Particularly, Si added to obtain workability is Si diffused into the surface to form Si oxide during the high temperature heat treatment process, and the oxide of Si on the surface prevents the zinc from adhering to the steel sheet during hot dip galvanizing. There is a problem that the defect is more severe.

실리콘을 함유한 강판의 용융도금강판의 제조방법에 대하여 대한민국 특허 공고 10-0902216 및 일본 특허 공보 평11-199999등이 있다. 상기 공지기술은 도금표면에 구리(Cu)를 피복하고 열처리하여, 강중 Si등이 표면에 농화되어 산화피막을 형성하는 것을 방지하는 방법에 대한 것이다. 강판을 열처리하는 열처리로 내부에는 많은 롤들이 있으며, 강판은 롤과 접촉하여 움직인다. Cu의 용융온도가 1085도로 낮으며, 연성이 큰 특징이 있으므로, 강판 표면에 피복된 Cu가 롤을 오염시키며, 심할경우에는 롤에 부착된 Cu에 의해 점상 덴트 결함이 발생하는 문제가 있다.  Korean Patent Publication No. 10-0902216 and Japanese Patent Publication No. Hei 11-199999 have a method for manufacturing a hot dip galvanized steel sheet containing silicon. The above-mentioned known technology is directed to a method of coating copper (Cu) on a plating surface and performing heat treatment to prevent the concentration of Si in steel on the surface to form an oxide film. There are many rolls inside the heat treatment furnace for heat treating the steel sheet, and the steel sheet moves in contact with the roll. Since Cu has a low melting temperature of 1085 degrees and has a large ductility, Cu coated on the surface of the steel sheet contaminates the roll, and in severe cases, a point dent defect occurs due to Cu attached to the roll.

대한민국 등록번호 10-0902216South Korea Registered Number 10-0902216

본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로, Si이 많이 함유된 강을 용융도금강판으로 제조하는데 있어서 미도금을 방지하고 도금밀착성을 향상시킬수 있는 방법을 제공하고자 하는 것에 그 목적이 있다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of preventing unplating and improving plating adhesion in manufacturing a steel containing a lot of Si as a hot-dip steel sheet.

상기 목적을 달성하기 위하여 통상의 용융아연도금공정에 있어서 탈지후에 Ni 및 Mn이 함유된 수용액중에서 전기도금을 하여 Ni 및 Mn의 합계가 0.1~1 g/m2이며, Mn/Ni의 비율이 0.1~0.5되게 전기도금을 한 후에 환원성 분위기하에서 소둔 열처리를 실시한 후에 용융아연도금을 실시하는 것을 특징으로 한다. In order to achieve the above object, in the conventional hot dip galvanizing process, after degreasing, electroplating is carried out in an aqueous solution containing Ni and Mn, and the total Ni and Mn is 0.1-1 g / m2, and the Mn / Ni ratio is 0.1-. After electroplating to 0.5, the annealing heat treatment is carried out in a reducing atmosphere, followed by hot dip galvanizing.

본 발명의 구성과 작용은 다음과 같다. The configuration and operation of the present invention is as follows.

통상의 용융도금강판은 냉연강판을 탈지하여 수소가 10 % 내외로 포함된 환원성 분위기에서 750 도 이상 가열한 후에 용융도금액의 온도 근처로 냉각한 후에 도금포트를 강판이 통과한 후에 도금부착량을 조절한 후에 냉각하여 제조된다. Conventional hot-dip galvanized steel sheets are degreased cold-rolled steel sheets, heated to a temperature of 750 degrees or more in a reducing atmosphere containing about 10% of hydrogen, cooled to near the temperature of the molten plating solution, and then the coating amount is controlled after the steel plate passes through the plating port. After cooling is prepared.

강판을 열처리할때 강중의 Si 혹은 Mn이 표면에 농화되고 산회피막을 만들 경우에 도금이 되지 않는 현상이 발생할 수가 있다. 특히 Si이 농화되어 SiO2를 형성하면 강판 표면에 얇은 막을 형성하여 미도금이 발생한다. When the steel sheet is heat-treated, Si or Mn in the steel is concentrated on the surface and plating may occur when an acid film is formed. In particular, when Si is concentrated to form SiO 2, a thin film is formed on the surface of the steel sheet to cause unplating.

표면에 농화된 Si과 Mn 양에 따라 산회물 상태가 변화된다. 즉 Si/Mn이 1보다 클 때는 SiO2의 형성을 피할수가 없다. Si/Mn 비율이 0.5 이하일때는 MnSiO3 및 Mn2SiO4의 형성이 가능하며 상기 산회물은 입자형태를 가지게 되어 도금성이 크게 저하되지 않는다. The state of the ash is changed according to the amount of Si and Mn concentrated on the surface. In other words, when Si / Mn is larger than 1, formation of SiO 2 is inevitable. When the Si / Mn ratio is 0.5 or less, MnSiO 3 and Mn 2 SiO 4 may be formed, and the acid ash may have a particle form, and thus plating properties may not be significantly reduced.

상기 산화물의 조성을 변화시키는 방법으로 강중 Si 및 Mn 농도를 조정하는 방법이 있지만, Si는 기계적 성질을 개선하는 효과가 있고, 특히 변태유기소성강 (TRIP강)에서는 Si이 Mn 보다 큰 효과를 가지고 있어 강중 Si을 낮추는것이 곤란하다. There is a method of adjusting the concentration of Si and Mn in the steel as a method of changing the composition of the oxide, but Si has an effect of improving the mechanical properties, especially in metamorphic organic steel (TRIP steel) has a greater effect than Mn It is difficult to lower Si in steel.

따라서 본 발명에서는 Ni 및 Mn이 함유된 수용액중에서 전기도금을 하여 Ni 및 Mn의 합계가 0.1~1 g/m2이며, Mn/Ni의 비율이 0.1~0.5되게 전기도금을 한 소재를 열처리하므로써 열처리후의 표면에 형성된 산화피막중의 Mn 량을 많게 하여 표면산화물의 조성을 조정하는 방법을 제안한다. Therefore, in the present invention, the electroplating in an aqueous solution containing Ni and Mn, the total Ni and Mn is 0.1 ~ 1 g / m2, the heat treatment by heat-treating the electroplated material so that the ratio of Mn / Ni is 0.1 ~ 0.5 A method of adjusting the composition of the surface oxide is proposed by increasing the amount of Mn in the oxide film formed on the surface.

본 명에서 Mn 및 Ni의 합계가 0.1 g/m2이하에서는 부착량이 작아 효과가 없다. Mn 및 Ni의 합계가 1 g/m2이상에서는 도금성에 문제가 없지만 부착량을 증가시키기 위해서는 전기도금설비가 커져야 하고 또한 Ni은 고가의 금속이므로 경제적이지 못하다. 또한 Mn/Ni 비율이 0.1 미만에서는 Mn 함량이 적어서 SiO2가 형성될 가능성이 있다. 또한 Mn/Ni 비율이 0.5보다 커질때는 Ni에 의한 도금성 개선효과가 적게 나타나는 문제점이 있다. 이는 Ni이 전착된 부분에서는 열처리시에 소지로 부터 Si 및 Mn의 표면농화가 억제하는 효과가 있는 것을 고려하면 Ni/Mn 비율이 0.5이상에서는 소지로 부터 Si 및 Mn의 표면농화가 심하게 되어 효과가 줄어는 것으로 추정된다. If the sum of Mn and Ni is 0.1 g / m 2 or less in the present name, the amount of adhesion is small and ineffective. If the total amount of Mn and Ni is 1 g / m 2 or more, there is no problem in plating property, but in order to increase the deposition amount, the electroplating equipment must be large, and Ni is an expensive metal and thus it is not economical. In addition, when the Mn / Ni ratio is less than 0.1, there is a possibility that SiO2 is formed because the Mn content is small. In addition, when the Mn / Ni ratio is greater than 0.5 there is a problem that the effect of improving the plating property by Ni is less. In consideration of the fact that the surface concentration of Si and Mn from the substrate is suppressed at the time of heat treatment in the part where Ni is electrodeposited, the surface concentration of Si and Mn from the substrate becomes severe when the Ni / Mn ratio is 0.5 or more. It is estimated to decrease.

본 발명에서 제안하는 바와 같이 소둔 전에 Ni 및 Mn을 함유한 도금층을 미리 도금한 후에 소둔 및 도금을 함으로써 미도금발생이 없는 용융도금제품을 생산할 수 있다. As proposed in the present invention, by annealing and plating the plating layer containing Ni and Mn in advance before annealing, a hot-dip galvanized product can be produced.

표 1은 본 발명의 실시예이다. Table 1 is an embodiment of the present invention.

두께가 0.7 mm이며 강중 탄소가 0.15%, Si이 1.5%, Mn이 1.5%이며 나머지는 철인 조성을 갖는 강판을 표면에 부착된 이물질을 통상의 알카리 탈지를 하고 전기도금을 실시하였다. 전기도금을 실시하는데 있어서 몰농도로 Na2SO4 0.2 M, H3BO3 0.2M, H2SO4 0.01M, MnSO4 0.1M, NiSO4 0.2 M을 기본으로 하여 도금하였으며 피막중 Ni 및 Mn 의 비율을 조정하기 위하여 MnSO4 및 NiSO4 농도를 동일 비율로 조정하였다.The thickness of 0.7 mm, 0.15% carbon in steel, 1.5% Si, 1.5% Mn, and the rest of the steel plate with a composition consisting of iron, degreasing the foreign matter attached to the surface of the conventional alkali plating and electroplating. In electroplating, the coating was performed based on Na2SO4 0.2 M, H3BO3 0.2 M, H2SO4 0.01 M, MnSO4 0.1 M, NiSO4 0.2 M, and the concentrations of MnSO4 and NiSO4 were adjusted to adjust the ratio of Ni and Mn in the coating. The same ratio was adjusted.

상기 도금된 시편은 10%의 수소 농도를 갖는 환원성 분위기의 열처리 로에서 강판온도가 800도까지 가열한 후에 460 도로 냉각시킨 후에 알루미늄이 0.2% 이며 나머지는 아연인 용융도금액에 침적한 후에 부착량이 140 g/m2이 되게 조절하여 도금시편을 제조하였다. 도금된 시편의 육안으로 관찰하여 도금이 되지 않고 소지철이 노출된 경우 "X", 소지철의 노출이 되지 않는 경우는 "O"로 표시하였다. The plated specimen was heated in a reducing atmosphere heat treatment furnace having a hydrogen concentration of 10%, cooled to 460 degrees after the steel plate temperature was heated to 800 degrees, and then deposited in a molten plating solution containing 0.2% aluminum and the remainder zinc. A plating specimen was prepared by adjusting it to 140 g / m 2. The visual observation of the plated specimens indicated that "X" when bare iron was exposed without plating, and "O" when bare iron was not exposed.

비교예1은 Ni 및 Mn 전기도금을 실시하지 않은 경우로 미도금이 발생하였다. 비교예 2는 Ni 및 Mn 부착량이 본 발명에서 제안하는 범위보다 적은 경우로 미도금이 발생하였다. 비교예 3는 Ni 및 Mn 부착량은 본 발명에서 제안하는 범위이나 Mn/Ni 비율이 0.08으로 본 발명의 제안 범위보다 적은 경우로 미도금이 발생하였다. 비교예 4는 Ni 및 Mn 부착량은 본 발명에서 제안하는 범위이나 Mn/Ni 비율이 0.6으로 본 발명의 제안 범위보다 많은 경우로 미도금이 발생하였다.In Comparative Example 1, unplating occurred when Ni and Mn electroplating were not performed. In Comparative Example 2, unplating occurred when the Ni and Mn adhesion amounts were less than the range proposed by the present invention. In Comparative Example 3, unplating occurred in the case where the Ni and Mn adhesion amounts were in the range proposed by the present invention but the Mn / Ni ratio was 0.08, which is smaller than the proposed range of the present invention. In Comparative Example 4, unplating occurred in the case where the Ni and Mn adhesion amounts were in the range proposed by the present invention, but the Mn / Ni ratio was 0.6, which was larger than the proposed range of the present invention.

발명예 1 및 2 및 3은 본 발명의 실시예로 미도금이 없는 양호한 도금상태를 얻었다. Inventive Examples 1, 2 and 3 obtained the preferred plating state without the unplated by the examples of the present invention.

Ni +Mn 부착량(g/m2)Ni + Mn Amount (g / m2) Mn/Ni 비율Mn / Ni ratio 도금상태Plating state 비교예 1Comparative Example 1 00 -- XX 비교예 2Comparative Example 2 0.080.08 0.50.5 XX 비교예 3Comparative Example 3 0.50.5 0.080.08 XX 비교예 4Comparative Example 4 0.70.7 0.60.6 XX 발명예 1Inventive Example 1 0.10.1 0.30.3 O O 발명예 2Inventive Example 2 0.50.5 0.10.1 OO 발명예 3Inventive Example 3 1One 0.40.4 OO

본 발명에서 제안하는 방법을 이용할 때는 강중 Si함량이 많은 고강도강에서도 용융도금강판의 제조가 용이하여져서 고품질의 자동차용 도금제품을 제공할 수 있다. When the method proposed by the present invention is used, the hot-dip steel sheet can be easily manufactured even in high-strength steel having a high Si content in steel, thereby providing a high-quality automotive plating product.

Claims (1)

통상의 용융아연도금공정에 있어서 탈지후에 Ni 및 Mn이 함유된 수용액중에서 전기도금을 하여 Ni 및 Mn의 합계가 0.1~1 g/m2이며, Mn/Ni의 비율이 0.1~0.5되게 전기도금을 한 후에 환원성 분위기하에서 소둔 열처리를 실시하는 것을 특징으로한 용융아연도금강판 제조방법. In the usual hot dip galvanizing process, after degreasing, electroplating is carried out in an aqueous solution containing Ni and Mn, and the total Ni and Mn is 0.1-1 g / m2, and the electroplating is performed so that the ratio of Mn / Ni is 0.1-0.5. After the annealing heat treatment in a reducing atmosphere, characterized in that the hot-dip galvanized steel sheet manufacturing method.
KR1020180100704A 2018-08-27 2018-08-27 Galvanizing Method of High Strength Steel KR20200024047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180100704A KR20200024047A (en) 2018-08-27 2018-08-27 Galvanizing Method of High Strength Steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180100704A KR20200024047A (en) 2018-08-27 2018-08-27 Galvanizing Method of High Strength Steel

Publications (1)

Publication Number Publication Date
KR20200024047A true KR20200024047A (en) 2020-03-06

Family

ID=69802274

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180100704A KR20200024047A (en) 2018-08-27 2018-08-27 Galvanizing Method of High Strength Steel

Country Status (1)

Country Link
KR (1) KR20200024047A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902216B1 (en) 2002-09-12 2009-06-11 주식회사 포스코 Method of manufacturing a hot dip galvanizing steel sheet containing Si

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902216B1 (en) 2002-09-12 2009-06-11 주식회사 포스코 Method of manufacturing a hot dip galvanizing steel sheet containing Si

Similar Documents

Publication Publication Date Title
TWI465581B (en) A steel sheet having a melt-plated galvanized layer having excellent plating wetting property and plating adhesion and a method of manufacturing the same
US10253418B2 (en) Steel sheet provided with a coating offering sacrificial cathodic protection, method for the production of a part using such a sheet, and resulting part
JPWO2009131233A1 (en) Plated steel sheet and hot pressing method for plated steel sheet
KR20070112874A (en) Galvannealed sheet steel and process for production thereof
JP4987510B2 (en) Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
CN114717502A (en) Steel sheet provided with a lanthanum containing coating providing sacrificial cathodic protection
JP2007262463A (en) Method for producing hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet
TWI481744B (en) Galvannealed steel sheet with excellent corrosion resistance after coating
JP2019026893A (en) High strength steel sheet excellent in delayed fracture resistance and corrosion resistance
JP7453583B2 (en) Al-plated hot stamping steel material
KR20200024047A (en) Galvanizing Method of High Strength Steel
KR101500282B1 (en) Method for manufacturing high strength galvanized steel sheet having excellent surface property and coating adhesion
JP2023553616A (en) High-strength hot-dip galvanized steel sheet with excellent plating quality, steel sheet for plating, and manufacturing method thereof
JP2023554307A (en) High-strength hot-dip galvanized steel sheet with excellent plating quality, steel sheet for plating, and manufacturing method thereof
KR20120041619A (en) Galvanizing steel sheet having good galvanizabilty and adhesion and method for manufacturing the same
JP5625442B2 (en) High-strength steel sheet with a tensile strength of 1180 MPa or more with excellent delayed fracture resistance
KR100797364B1 (en) High yield ratio and ultra high strength steel sheet having excellent bendability and the method for manufacturing hot dip galvanized steel sheet using the same
JP2015175040A (en) Method of manufacturing galvanized steel plate and alloyed galvanized steel plate, and galvanized steel plate and alloyed galvanized steel plate
JP4855290B2 (en) Hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
KR100815813B1 (en) Method of improving surface roughness of galvanized steel sheet, and processor for steel sheet
TWI687546B (en) Composite galvanized steel plate having heat-and oxidation-resistance, method of manufacturing the same and application thereof
KR100902216B1 (en) Method of manufacturing a hot dip galvanizing steel sheet containing Si
JP2007146235A (en) Surface treated steel sheet for liquid crystal front frame, its manufacturing method, and liquid crystal front frame manufactured by the manufacturing method
JP5604784B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with good plating properties
JPH07243012A (en) Production of galvannealed steel sheet excellent in external appearance of surface