KR20200021928A - 크라이오펌프 및 크라이오펌프 제어방법 - Google Patents

크라이오펌프 및 크라이오펌프 제어방법 Download PDF

Info

Publication number
KR20200021928A
KR20200021928A KR1020197036180A KR20197036180A KR20200021928A KR 20200021928 A KR20200021928 A KR 20200021928A KR 1020197036180 A KR1020197036180 A KR 1020197036180A KR 20197036180 A KR20197036180 A KR 20197036180A KR 20200021928 A KR20200021928 A KR 20200021928A
Authority
KR
South Korea
Prior art keywords
stage
temperature
temperature control
cooling
cryopump
Prior art date
Application number
KR1020197036180A
Other languages
English (en)
Other versions
KR102420419B1 (ko
Inventor
카케루 타카하시
Original Assignee
스미도모쥬기가이고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미도모쥬기가이고교 가부시키가이샤 filed Critical 스미도모쥬기가이고교 가부시키가이샤
Priority to KR1020227023533A priority Critical patent/KR102479504B1/ko
Publication of KR20200021928A publication Critical patent/KR20200021928A/ko
Application granted granted Critical
Publication of KR102420419B1 publication Critical patent/KR102420419B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

크라이오펌프(10)는, 1단크라이오패널(18)과, 2단크라이오패널(19)과, 1단크라이오패널(18) 및 2단크라이오패널(19)에 열적으로 결합되어, 1단크라이오패널(18)을 1단냉각온도로 냉각하고, 2단크라이오패널(19)을 1단냉각온도보다 낮은 2단냉각온도로 냉각하는 냉동기(16)와, 1단냉각온도를 1단목표온도로 제어하는 1단온도제어를 실행하도록 구성된 제어장치(100)를 구비한다. 제어장치(100)는, 1단온도제어의 실행 중에 2단냉각온도의 상승을 검지하여 냉동기(16)의 냉동능력을 증가시키도록 구성되어 있다.

Description

크라이오펌프 및 크라이오펌프 제어방법
본 발명은, 크라이오펌프 및 크라이오펌프 제어방법에 관한 것이다.
크라이오펌프는, 극저온으로 냉각된 크라이오패널에 기체분자를 응축 또는 흡착에 의하여 포착하여 배기하는 진공펌프이다. 크라이오펌프는 반도체회로제조프로세스 등에 요구되는 청정한 진공환경을 실현하기 위하여 일반적으로 이용된다.
특허문헌 1: 일본 특허공보 제4912438호
장기의 사용에 의하여 크라이오펌프의 배기성능이 열화한 경우, 크라이오펌프의 수선 또는 새로운 크라이오펌프와의 교환 등의 메인터넌스를 행하는 것이 추천된다. 그러나, 크라이오펌프의 용도에 따라서는, 메인터넌스가 가능한 시기는 제약된다. 예를 들면, 공장설비로 크라이오펌프가 사용되고 있는 경우, 제품의 제조효율을 최대화하도록 계획된 타이밍에서 메인터넌스를 행하는 것이 요구된다. 따라서, 크라이오펌프의 배기성능에 열화의 조짐이 보일 때, 그 후 어느 기간에 걸쳐, 혹은, 바람직하게는 계획된 메인터넌스시기까지, 배기성능의 열화를 억제하면서 크라이오펌프의 운전을 계속하는 것이 바람직하다.
본 발명의 일 양태의 예시적인 목적의 하나는, 크라이오펌프의 수명을 어느 정도 늘리는 것에 있다.
본 발명의 일 양태에 의하면, 크라이오펌프는, 1단크라이오패널과, 2단크라이오패널과, 상기 1단크라이오패널 및 상기 2단크라이오패널에 열적으로 결합되어, 상기 1단크라이오패널을 1단냉각온도로 냉각하고, 상기 2단크라이오패널을 상기 1단냉각온도보다 낮은 2단냉각온도로 냉각하는 냉동기와, 상기 1단냉각온도를 1단목표온도로 제어하는 1단온도제어를 실행하도록 구성된 제어장치로서, 상기 1단온도제어의 실행 중에 상기 2단냉각온도의 상승을 검지하여 상기 냉동기의 냉동능력을 증가시키도록 구성된 제어장치를 구비한다.
본 발명의 일 양태에 의하면, 크라이오펌프의 제어방법으로서, 상기 크라이오펌프는, 1단크라이오패널과, 2단크라이오패널과, 상기 1단크라이오패널 및 상기 2단크라이오패널에 열적으로 결합되어, 상기 1단크라이오패널을 1단냉각온도로 냉각하고, 상기 2단크라이오패널을 상기 1단냉각온도보다 낮은 2단냉각온도로 냉각하는 냉동기를 구비하며, 본 방법은, 상기 1단냉각온도를 1단목표온도로 제어하는 1단온도제어를 실행함으로써, 상기 1단온도제어의 실행 중에 상기 2단냉각온도의 상승을 검지하여 상기 냉동기의 냉동능력을 증가시키는 것을 구비한다.
다만, 이상의 구성요소의 임의의 조합이나, 본 발명의 구성요소나 표현을 장치, 방법, 시스템, 컴퓨터프로그램, 컴퓨터프로그램을 저장한 기록매체 등의 사이에서 서로 치환한 것도 또한, 본 발명의 양태로서 유효하다.
본 발명에 의하면, 크라이오펌프의 수명을 어느 정도 늘릴 수 있다.
도 1은 일 실시형태에 관한 크라이오펌프를 모식적으로 나타내는 도이다.
도 2는 일 실시형태에 관한 크라이오펌프의 제어장치의 구성을 개략적으로 나타내는 도이다.
도 3은 전형적인 크라이오펌프가 장기간 사용된 결과로서 취할 수 있는 온도프로파일의 일례를 나타내는 도이다.
도 4는 일 실시형태에 관한 크라이오펌프의 제어방법을 나타내는 플로차트이다.
도 5는 일 실시형태에 관한 크라이오펌프의 제어방법을 나타내는 플로차트이다.
도 6은 일 실시형태에 관한 크라이오펌프가 장기간 사용된 결과로서 취할 수 있는 온도프로파일의 일례를 나타내는 도이다.
도 7은 일 실시형태에 관한 크라이오펌프가 장기간 사용된 결과로서 취할 수 있는 온도프로파일의 다른 일례를 나타내는 도이다.
도 8은 다른 실시형태에 관한 크라이오펌프의 제어방법을 나타내는 플로차트이다.
이하, 도면을 참조하면서, 본 발명을 실시하기 위한 형태에 대하여 상세하게 설명한다. 설명 및 도면에 있어서 동일 또는 동등한 구성요소, 부재, 처리에는 동일한 부호를 붙여, 중복되는 설명은 적절히 생략한다. 도시되는 각부의 축척이나 형상은, 설명을 용이하게 하기 위하여 편의적으로 설정되어 있고, 특별히 언급이 없는 한 한정적으로 해석되는 것은 아니다. 실시형태는 예시이며, 본 발명의 범위를 한정하는 것은 아니다. 실시형태에 기술되는 모든 특징이나 그 조합은, 반드시 발명의 본질적인 것이라고는 할 수 없다.
전형적인 크라이오펌프는 2단식의 극저온냉동기로 냉각된다. 극저온냉동기의 운전주파수를 1단과 2단에서 다르게 할 수는 없기 때문에, 1단과 2단의 냉동능력은 개별적으로 제어할 수 없다. 크라이오펌프, 특히 하이엔드의 크라이오펌프에 있어서는 통례, 1단의 냉각온도를 목표온도로 유지하도록 온도제어가 이루어지고 있다. 극저온냉동기의 1단 또는 2단에 제어 가능한 히터가 설치되는 경우는 별개로 하고, 2단의 냉각온도는 제어되어 있지 않다.
장기의 사용에 의하여 극저온냉동기의 냉동능력은 서서히 열화해 간다. 열화의 영향은, 보다 저온인 2단의 냉동능력에 현저하게 나타난다. 그 때문에, 길게 사용된 크라이오펌프에 있어서는, 1단냉각온도는 제어에 의하여 유지되지만 2단냉각온도는 신품의 크라이오펌프 정도로는 낮게 할 수 없는 것과 같은 운전상황이 발생할 수 있다. 그러한 상황이 진행되어, 2단냉각온도가 어느 한계까지 높아지면, 크라이오펌프의 배기능력을 보증할 수 없다. 이 경우, 크라이오펌프의 수선 또는 새로운 크라이오펌프와의 교환 등의 메인터넌스를 행하는 것이 추천된다.
그러나, 반도체회로제조설비 등 공장설비로 크라이오펌프가 사용되고 있는 경우, 크라이오펌프의 메인터넌스의 가능한 시기는 제약된다. 이러한 공장에서는, 제품의 제조효율을 최대화하도록 계획된 타이밍에서 메인터넌스를 행하는 것이 강하게 요청되기 때문이다.
예기치 못한 메인터넌스를 피하기 위하여, 계획된 메인터넌스시기에 크라이오펌프를 예방적으로 교환하는 것도 자주 행해지고 있다. 이것은, 열화의 조짐없이 건전하게 운전되고 있던 크라이오펌프가 신품의 크라이오펌프로 교환된다는 것이다. 여력을 남긴 크라이오펌프의 나머지 수명을 이용하지 않고, 낭비하고 있기 때문에, 아깝다.
따라서, 일 실시형태에 관한 크라이오펌프의 제어장치는, 1단온도제어의 실행 중에 2단냉각온도의 상승을 검지하여 상기 냉동기의 냉동능력을 증가시키도록 구성되어 있다. 제어장치는, 크라이오펌프의 성능의 열화의 조짐으로서, 1단온도제어의 실행 중에 발생하는 2단냉각온도의 상승을 검지한다. 그와 같은 조짐이 검지된 경우에, 제어장치는, 그 검지시점 이후의 냉동능력을 그 이전에 비하여 증강하도록 극저온냉동기를 제어한다.
이와 같이 하면, 냉동능력을 증강하지 않고 1단온도제어를 그대로 계속한 경우에 비하여, 2단냉각온도의 상승을 늦출 수 있다. 크라이오펌프의 메인터넌스를 필요로 하는 한계의 온도까지 크라이오펌프의 2단냉각온도가 도달하는 시간을 늘릴 수 있다. 이렇게 하여, 크라이오펌프의 수명을 어느 정도 늘릴 수 있다. 크라이오펌프의 운전을, 바람직하게는 계획된 메인터넌스시기까지, 배기성능의 열화를 억제하면서 계속하는 것이 가능해진다.
도 1은, 일 실시형태에 관한 크라이오펌프(10)를 모식적으로 나타내는 도이다. 크라이오펌프(10)는, 예를 들면 이온주입장치나 스퍼터링장치 등의 진공챔버에 장착되고, 진공챔버 내부의 진공도를 원하는 프로세스에 요구되는 레벨까지 높이기 위하여 사용된다.
크라이오펌프(10)는, 기체를 수용하기 위한 흡기구(12)를 갖는다. 흡기구(12)는 크라이오펌프(10)의 내부공간(14)에 대한 입구이다. 크라이오펌프(10)가 장착된 진공챔버로부터 흡기구(12)를 통하여, 배기되어야 할 기체가 크라이오펌프(10)의 내부공간(14)에 진입한다.
다만 이하에서는, 크라이오펌프(10)의 구성요소의 위치관계를 알기 쉽게 나타내기 위하여, "축방향", "직경방향"이라는 용어를 사용하는 경우가 있다. 축방향은 흡기구(12)를 통과하는 방향을 나타내고, 직경방향은 흡기구(12)를 따르는 방향을 나타낸다. 편의상, 축방향에 관하여 흡기구(12)에 상대적으로 가까운 것을 "상측", 상대적으로 먼 것을 "하측"이라고 부르는 경우가 있다. 즉, 크라이오펌프(10)의 바닥부로부터 상대적으로 먼 것을 "상측", 상대적으로 가까운 것을 "하측"이라고 부르는 경우가 있다. 직경방향에 관해서는, 흡기구(12)의 중심에 가까운 것을 "내측", 흡기구(12)의 둘레가장자리에 가까운 것을 "외측"이라고 부르는 경우가 있다. 다만, 이러한 표현은 크라이오펌프(10)가 진공챔버에 장착되었을 때의 배치와는 관계되지 않는다. 예를 들면, 크라이오펌프(10)는 연직방향으로 흡기구(12)를 하향으로 하여 진공챔버에 장착되어도 된다.
크라이오펌프(10)는, 냉각시스템(15)과, 1단크라이오패널(18)과, 2단크라이오패널(19)을 구비한다. 냉각시스템(15)은, 1단크라이오패널(18) 및 2단크라이오패널(19)을 냉각하도록 구성되어 있다. 냉각시스템(15)은, 냉동기(16)와, 압축기(36)를 구비한다.
냉동기(16)는, 예를 들면 기포드·맥마흔식 냉동기(이른바 GM냉동기) 등의 극저온냉동기이다. 냉동기(16)는, 제1 냉각스테이지(20), 제2 냉각스테이지(21), 제1 실린더(22), 제2 실린더(23), 제1 디스플레이서(24), 및 제2 디스플레이서(25)를 구비하는 2단식의 냉동기이다. 따라서, 냉동기(16)의 고온단(高溫段)은, 제1 냉각스테이지(20), 제1 실린더(22), 및 제1 디스플레이서(24)를 구비한다. 냉동기(16)의 저온단(低溫段)은, 제2 냉각스테이지(21), 제2 실린더(23), 및 제2 디스플레이서(25)를 구비한다. 따라서 이하에서는 제1 냉각스테이지(20) 및 제2 냉각스테이지(21)를 각각 고온단의 저온단(低溫端) 및 저온단의 저온단이라고 부를 수도 있다.
제1 실린더(22)와 제2 실린더(23)는 직렬로 접속되어 있다. 제1 냉각스테이지(20)는, 제1 실린더(22)와 제2 실린더(23)와의 결합부에 설치되어 있다. 제2 실린더(23)는 제1 냉각스테이지(20)와 제2 냉각스테이지(21)를 연결한다. 제2 냉각스테이지(21)는, 제2 실린더(23)의 말단에 설치되어 있다. 제1 실린더(22) 및 제2 실린더(23) 각각의 내부에는 제1 디스플레이서(24) 및 제2 디스플레이서(25)가 냉동기(16)의 길이방향(도 1에 있어서 좌우방향)으로 이동 가능하게 배치되어 있다. 제1 디스플레이서(24)와 제2 디스플레이서(25)는 일체로 이동 가능하게 연결되어 있다. 제1 디스플레이서(24) 및 제2 디스플레이서(25)에는 각각 제1 축랭기 및 제2 축랭기(도시하지 않음)가 포함되어 있다.
냉동기(16)의 실온부에는, 구동기구(17)가 마련되어 있다. 구동기구(17)는, 제1 디스플레이서(24) 및 제2 디스플레이서(25)의 각각이 제1 실린더(22) 및 제2 실린더(23)의 내부를 왕복이동 가능하도록 제1 디스플레이서(24) 및 제2 디스플레이서(25)에 접속되어 있다. 또 구동기구(17)는, 작동기체의 흡입과 토출을 주기적으로 반복하도록 작동기체의 유로를 전환하는 유로전환기구를 포함한다. 유로전환기구는 예를 들면 밸브부와 밸브부를 구동하는 구동부를 포함한다. 밸브부는 예를 들면 로터리밸브를 포함하고, 구동부는 로터리밸브를 회전시키기 위한 모터를 포함한다. 모터는, 예를 들면 AC모터 또는 DC모터여도 된다. 또 유로전환기구는 리니어모터에 의하여 구동되는 직동식의 기구여도 된다.
냉동기(16)는 고압도관(34) 및 저압도관(35)을 통하여 압축기(36)에 접속된다. 냉동기(16)는, 압축기(36)로부터 공급되는 고압의 작동기체(예를 들면 헬륨)를 내부에서 팽창시켜 제1 냉각스테이지(20) 및 제2 냉각스테이지(21)에 한랭을 발생시킨다. 압축기(36)는, 냉동기(16)에서 팽창한 작동기체를 회수하고 재차 가압하여 냉동기(16)에 공급한다.
구체적으로는, 먼저 구동기구(17)가 고압도관(34)와 냉동기(16)의 내부공간을 연통시킨다. 압축기(36)로부터 고압도관(34)을 통하여 냉동기(16)에 고압의 작동기체가 공급된다. 냉동기(16)의 내부공간이 고압의 작동기체로 채워지면, 구동기구(17)는 냉동기(16)의 내부공간을 저압도관(35)에 연통시키도록 유로를 전환한다. 이로써 작동기체는 팽창한다. 팽창한 작동기체는 압축기(36)로 회수된다. 이러한 작동기체의 급배(給排)에 동기하여, 제1 디스플레이서(24) 및 제2 디스플레이서(25)의 각각이 제1 실린더(22) 및 제2 실린더(23)의 내부를 왕복이동한다. 이와 같은 열사이클을 반복함으로써 냉동기(16)는 제1 냉각스테이지(20) 및 제2 냉각스테이지(21)에 한랭을 발생시킨다.
냉동기(16)는, 제1 냉각스테이지(20)을 1단냉각온도로 냉각하고, 제2 냉각스테이지(21)를 2단냉각온도로 냉각하도록 구성되어 있다. 2단냉각온도는 1단냉각온도보다 저온이다. 예를 들면, 제1 냉각스테이지(20)는 60K~130K 정도, 또는 65K~120K 정도, 또는 바람직하게는 80K~100K로 냉각되고, 제2 냉각스테이지(21)는 10K~20K 정도로 냉각된다.
냉동기(16)는, 고온단을 통하여 저온단에 작동기체를 흘리도록 구성되어 있다. 즉, 압축기(36)로부터 유입하는 작동기체는, 제1 실린더(22)로부터 제2 실린더(23)로 흐른다. 이때 제1 디스플레이서(24) 및 그 축랭기에 의하여 작동기체는 제1 냉각스테이지(20)의 온도로 냉각된다. 이렇게 하여 냉각된 작동기체가 저온단에 공급된다.
도시되는 크라이오펌프(10)는, 이른바 가로형의 크라이오펌프이다. 가로형의 크라이오펌프란 일반적으로, 냉동기(16)가 크라이오펌프(10)의 축방향으로 교차하도록(통상은 직교하도록) 배치되어 있는 크라이오펌프이다.
2단크라이오패널(19)은, 크라이오펌프(10)의 내부공간(14)의 중심부에 마련되어 있다. 2단크라이오패널(19)은 예를 들면, 복수의 크라이오패널부재(26)를 포함한다. 크라이오패널부재(26)는 예를 들면, 각각이 원뿔대의 측면의 형상, 이른바 우산상의 형상을 갖는다. 각 크라이오패널부재(26)에는 통상 활성탄 등의 흡착제(도시하지 않음)가 마련되어 있다. 흡착제는 예를 들면 크라이오패널부재(26)의 이면에 접착되어 있다. 이와 같이 하여, 2단크라이오패널(19)은, 기체분자를 흡착하기 위한 흡착영역을 구비한다.
크라이오패널부재(26)는 크라이오패널장착부재(28)에 장착되어 있다. 크라이오패널장착부재(28)는 제2 냉각스테이지(21)에 장착되어 있다. 이와 같이 하여, 2단크라이오패널(19)은, 제2 냉각스테이지(21)에 열적으로 접속되어 있다. 따라서, 2단크라이오패널(19)은 2단냉각온도로 냉각된다.
1단크라이오패널(18)은, 방사실드(30)와 입구크라이오패널(32)을 구비한다. 1단크라이오패널(18)은, 2단크라이오패널(19)을 포위하도록 2단크라이오패널(19)의 외측에 마련되어 있다. 1단크라이오패널(18)은 제1 냉각스테이지(20)에 열적으로 접속되어 있고, 1단크라이오패널(18)은 1단냉각온도로 냉각된다.
방사실드(30)는 주로, 크라이오펌프(10)의 하우징(38)으로부터의 복사열로부터 2단크라이오패널(19)을 보호하기 위하여 마련되어 있다. 방사실드(30)는, 하우징(38)과 2단크라이오패널(19)의 사이에 있고, 2단크라이오패널(19)을 둘러싼다. 방사실드(30)는, 흡기구(12)를 향하여 축방향 상단이 개방되어 있다. 방사실드(30)는, 축방향 하단이 폐색된 통형(예를 들면 원통)의 형상을 갖고, 컵상으로 형성되어 있다. 방사실드(30)의 측면에는 냉동기(16)의 장착을 위한 구멍이 있고, 거기에서 제2 냉각스테이지(21)가 방사실드(30) 중에 삽입되어 있다. 그 장착구멍의 외주부에서 방사실드(30)의 외면에 제1 냉각스테이지(20)가 고정되어 있다. 이렇게 하여 방사실드(30)는 제1 냉각스테이지(20)에 열적으로 접속되어 있다.
입구크라이오패널(32)은, 2단크라이오패널(19)의 축방향 상방에 마련되고, 흡기구(12)에 있어서 직경방향을 따라 배치되어 있다. 입구크라이오패널(32)은 그 외주부가 방사실드(30)의 개구단에 고정되고, 방사실드(30)에 열적으로 접속되어 있다. 입구크라이오패널(32)은, 예를 들면, 루버구조나 셰브런구조로 형성된다. 입구크라이오패널(32)은, 방사실드(30)의 중심축을 중심으로 하는 동심원상으로 형성되어 있어도 되고, 혹은 격자상 등 다른 형상으로 형성되어 있어도 된다.
입구크라이오패널(32)은, 흡기구(12)에 들어가는 기체를 배기하기 위하여 마련되어 있다. 입구크라이오패널(32)의 온도에서 응축하는 기체(예를 들면 수분)가 그 표면에 포착된다. 또, 입구크라이오패널(32)은, 크라이오펌프(10)의 외부의 열원(예를 들면, 크라이오펌프(10)가 장착된 진공챔버 내의 열원)으로부터의 복사열로부터 2단크라이오패널(19)을 보호하기 위하여 마련되어 있다. 복사열뿐만 아니라 기체분자의 진입도 제한된다. 입구크라이오패널(32)은, 흡기구(12)를 통한 내부공간(14)으로의 기체유입을 원하는 양으로 제한하도록 흡기구(12)의 개구면적의 일부를 점유한다.
크라이오펌프(10)는, 하우징(38)을 구비한다. 하우징(38)은, 크라이오펌프(10)의 내부와 외부를 구획하기 위한 진공용기이다. 하우징(38)은, 크라이오펌프(10)의 내부공간(14)의 압력을 기밀로 유지하도록 구성되어 있다. 하우징(38) 중에, 1단크라이오패널(18)과 냉동기(16)가 수용되어 있다. 하우징(38)은, 1단크라이오패널(18)의 외측에 마련되어 있고, 1단크라이오패널(18)을 둘러싼다. 또, 하우징(38)은 냉동기(16)를 수용한다. 즉, 하우징(38)은, 1단크라이오패널(18) 및 2단크라이오패널(19)을 둘러싸는 크라이오펌프용기이다.
하우징(38)은, 1단크라이오패널(18) 및 냉동기(16)의 저온부에 비접촉이도록, 냉동기(16)의 실온부(예를 들면 구동기구(17))에 고정되어 있다. 하우징(38)의 외면은 외부환경에 노출되어 있고, 냉각되어 있는 1단크라이오패널(18)보다 온도가 높다(예를 들면 실온 정도).
또, 하우징(38)은 그 개구단으로부터 직경방향 외측을 향하여 뻗는 흡기구플랜지(56)를 구비한다. 흡기구플랜지(56)는, 장착위치의 진공챔버에 크라이오펌프(10)를 장착하기 위한 플랜지이다. 진공챔버의 개구에는 게이트밸브가 마련되어 있고(도시하지 않음), 흡기구플랜지(56)는 그 게이트밸브에 장착된다. 그와 같이 하여 입구크라이오패널(32)의 축방향 상방에 게이트밸브가 위치한다. 예를 들면 크라이오펌프(10)를 재생할 때에 게이트밸브는 폐쇄가 되고, 크라이오펌프(10)가 진공챔버를 배기할 때에 개방이 된다.
크라이오펌프(10)는, 제1 냉각스테이지(20)의 온도를 측정하기 위한 제1 온도센서(90)와, 제2 냉각스테이지(21)의 온도를 측정하기 위한 제2 온도센서(92)를 구비한다. 제1 온도센서(90)는, 제1 냉각스테이지(20)에 장착되어 있다. 제2 온도센서(92)는, 제2 냉각스테이지(21)에 장착되어 있다. 제1 온도센서(90)의 측정온도는 1단냉각온도를 나타내고, 제2 온도센서(92)의 측정온도는 2단냉각온도를 나타낸다. 다만, 제1 온도센서(90)는 1단크라이오패널(18)에 장착되어 있어도 된다. 제2 온도센서(92)는 2단크라이오패널(19)에 장착되어 있어도 된다.
또, 크라이오펌프(10)는, 크라이오펌프제어장치(이하, 제어장치라고도 함)(100)를 구비한다. 제어장치(100)는 크라이오펌프(10)에 일체로 마련되어 있어도 되고, 크라이오펌프(10)와는 별체의 제어장치로서 구성되어 있어도 된다.
제어장치(100)는, 크라이오펌프(10)의 진공배기운전, 재생운전, 및 쿨다운운전을 위하여 냉동기(16)를 제어하도록 구성되어 있다. 제어장치(100)에는, 제1 온도센서(90) 및 제2 온도센서(92)를 포함하는 각종 센서의 측정결과를 수신하도록 구성되어 있다. 제어장치(100)는, 그러한 측정결과에 근거하여, 냉동기(16)에 부여하는 제어지령을 연산한다.
제어장치(100)는, 냉각스테이지온도가 목표의 냉각온도에 추종하도록 냉동기(16)를 제어한다. 제1 냉각스테이지(20)의 목표온도는 통상, 일정값으로 설정된다. 제1 냉각스테이지(20)의 목표온도는 예를 들면, 크라이오펌프(10)가 장착되는 진공챔버에서 행해지는 프로세스에 따라 사양으로서 정해진다. 다만, 크라이오펌프의 운전 중에, 목표온도는 필요에 따라 변경되어도 된다.
예를 들면, 제어장치(100)는, 제1 냉각스테이지(20)의 목표온도와 제1 온도센서(90)의 측정온도와의 편차를 최소화하도록 피드백제어에 의하여 냉동기(16)의 운전주파수를 제어한다. 즉, 제어장치(100)는, 구동기구(17)의 모터회전수를 제어함으로써, 냉동기(16)에 있어서의 열사이클(예를 들면 GM사이클)의 주파수를 제어한다.
크라이오펌프(10)에 대한 열부하가 증가했을 때 제1 냉각스테이지(20)의 온도가 높아질 수 있다. 제1 온도센서(90)의 측정온도가 목표온도보다 고온인 경우에는, 제어장치(100)는, 냉동기(16)의 운전주파수를 증가시킨다. 그 결과, 냉동기(16)에 있어서의 열사이클의 주파수도 증가되어, 제1 냉각스테이지(20)는 목표온도를 향하여 냉각된다. 반대로 제1 온도센서(90)의 측정온도가 목표온도보다 저온인 경우에는, 냉동기(16)의 운전주파수는 감소되고 제1 냉각스테이지(20)는 목표온도를 향하여 승온된다. 이렇게 하여, 제1 냉각스테이지(20)의 온도를 목표온도의 근방의 온도범위로 유지할 수 있다. 열부하에 따라 냉동기(16)의 운전주파수를 적절히 조정할 수 있기 때문에, 이러한 제어는 크라이오펌프(10)의 소비전력의 저감에 도움이 된다.
제1 냉각스테이지(20)의 온도가 목표온도에 따르도록 냉동기(16)를 제어하는 것을, 이하에서는 "1단온도제어"라고 부르는 경우가 있다. 크라이오펌프(10)가 진공배기운전을 하고 있을 때에는 통상, 1단온도제어가 실행된다. 1단온도제어의 결과, 제2 냉각스테이지(21) 및 2단크라이오패널(19)은, 냉동기(16)의 사양 및 외부로부터의 열부하에 의하여 정해지는 온도로 냉각된다. 동일하게 하여, 제어장치(100)는, 제2 냉각스테이지(21)의 온도가 목표온도에 따르도록 냉동기(16)를 제어하는, 이른바 "2단온도제어"를 실행할 수도 있다.
도 2는, 일 실시형태에 관한 크라이오펌프(10)의 제어장치(100)의 구성을 개략적으로 나타내는 도이다. 이러한 제어장치는, 하드웨어, 소프트웨어, 또는 그들의 조합에 의하여 실현된다. 또, 도 2에 있어서는, 관련된 냉동기(16)의 일부의 구성을 개략적으로 나타낸다.
냉동기(16)의 구동기구(17)는, 냉동기(16)를 구동하는 냉동기모터(80)와, 냉동기(16)의 운전주파수를 제어하는 냉동기인버터(82)를 구비한다. 상술한 바와 같이 냉동기(16)는 작동기체의 팽창기이기 때문에, 냉동기모터(80) 및 냉동기인버터(82)는 각각 팽창기모터 및 팽창기인버터라고 부를 수도 있다.
냉동기(16)의 운전주파수(운전속도라고도 함)란, 냉동기모터(80)의 운전주파수 또는 회전수, 냉동기인버터(82)의 운전주파수, 열사이클의 주파수, 또는 이들 중 어느 하나를 나타낸다. 열사이클의 주파수란, 냉동기(16)에 있어서 행해지는 열사이클의 단위시간당 횟수이다.
제어장치(100)는, 냉동기제어부(102), 기억부(104), 입력부(106), 및 출력부(108)를 구비한다.
냉동기제어부(102)는, 1단온도제어, 2단온도제어, 또는 그 외의 크라이오패널온도제어로부터 어느 하나를 선택하여 실행하도록 구성되어 있다. 냉동기제어부(102)는, 1단온도제어의 실행 중에 2단냉각온도의 상승을 검지하여 냉동기(16)의 냉동능력을 증가시키도록 구성되어 있다. 예를 들면, 냉동기제어부(102)는, 1단온도제어의 실행 중에 2단냉각온도의 상승을 검지하여 1단온도제어로부터 2단온도제어로 전환하도록 구성되어 있다.
기억부(104)는, 크라이오펌프(10)의 제어에 관련된 데이터를 저장하도록 구성되어 있다. 입력부(106)는, 유저 또는 다른 장치로부터의 입력을 받도록 구성되어 있다. 입력부(106)는 예를 들면, 유저로부터의 입력을 받기 위한 마우스나 키보드 등의 입력수단, 및/또는, 다른 장치와의 통신을 하기 위한 통신수단을 포함한다. 출력부(108)는, 크라이오펌프(10)의 제어에 관련된 데이터를 출력하도록 구성되고, 디스플레이나 프린터 등의 출력수단을 포함한다.
기억부(104), 입력부(106), 및 출력부(108)는 각각 냉동기제어부(102)와 통신 가능하게 접속되어 있다. 따라서, 냉동기제어부(102)는, 필요에 따라 데이터를, 기억부(104)로부터 독출 및/또는 기억부(104)에 저장할 수 있다. 또, 냉동기제어부(102)는, 입력부(106)로부터 데이터의 입력을 받고, 및/또는 출력부(108)에 데이터를 출력할 수 있다.
냉동기제어부(102)는, 온도제어부(110), 1단온도감시부(112), 2단온도감시부(114), 통지부(116)를 구비한다.
온도제어부(110)는, 1단온도제어 및 2단온도제어를 실행하도록 구성되고, 1단온도제어 또는 2단온도제어의 중 어느 하나를 선택하여 실행 가능하다. 온도제어부(110)는, 크라이오펌프(10)의 현황(예를 들면, 1단크라이오패널(18) 및/또는 2단크라이오패널(19)의 온도)에 근거하여, 1단온도제어로부터 2단온도제어로, 또는 2단온도제어로부터 1단온도제어로 전환하도록 구성되어 있다.
온도제어부(110)는, 상술한 바와 같이, 크라이오패널의 측정온도와 목표온도와의 편차의 함수로서(예를 들면 PID제어에 의하여) 냉동기모터(80)의 운전주파수를 결정하도록 구성되어 있다. 온도제어부(110)는, 미리 정해진 운전주파수범위 내에 있어서 냉동기모터(80)의 운전주파수를 결정한다. 운전주파수범위는, 미리 정해진 운전주파수의 상한 및 하한에 의하여 정의된다. 온도제어부(110)는, 결정된 운전주파수를 냉동기인버터(82)에 출력한다.
냉동기인버터(82)는, 냉동기모터(80)의 가변주파수제어를 제공하도록 구성되어 있다. 냉동기인버터(82)는, 입력전력을, 온도제어부(110)로부터 입력된 운전주파수를 갖도록 변환한다. 냉동기인버터(82)에 대한 입력전력은, 냉동기전원(도시하지 않음)으로부터 공급된다. 냉동기인버터(82)는, 변환된 전력을 냉동기모터(80)에 출력한다. 이렇게 하여 냉동기모터(80)는, 온도제어부(110)에 의하여 결정되어 냉동기인버터(82)로부터 출력된 운전주파수로 구동된다.
이와 같이 냉동기(16)의 냉동능력이 인버터방식으로 제어되는 경우에는, 1단온도제어에 있어서 2단냉각온도는 직접 제어되지 않는다. 1단온도제어에 있어서 2단냉각온도는, 냉동기(16)의 2단의 냉동능력과, 외부로부터 제2 냉각스테이지(21)로의 열부하에 의하여 정해진다. 동일하게, 2단온도제어에 있어서 1단냉각온도는 직접 제어되지 않는다. 2단온도제어에 있어서 1단냉각온도는, 냉동기(16)의 1단의 냉동능력과, 외부로부터 제1 냉각스테이지(20)로의 열부하에 의하여 정해진다.
냉동기(16)의 냉동능력은, 히터방식에 의하여, 또는 인버터방식과 히터방식의 조합에 의하여, 제어되어도 된다. 온도제어부(110)는, 냉동기모터(80)의 운전주파수와 함께(또는 냉동기모터(80)의 운전주파수 대신), 냉동기(16)에 부설된 히터를 제어해도 된다. 도 1에 나타나는 바와 같이, 냉동기(16)는, 제1 냉각스테이지(20) 및 1단크라이오패널(18)을 가열하도록 제1 냉각스테이지(20)(또는 1단크라이오패널(18))에 장착된 제1 히터(94)를 구비해도 된다. 또, 냉동기(16)는, 제2 냉각스테이지(21) 및 2단크라이오패널(19)을 가열하도록 제2 냉각스테이지(21)(또는 2단크라이오패널(19))에 장착된 제2 히터(96)를 구비해도 된다. 냉동기(16)에 히터가 마련되는 경우에는, 1단온도제어 및 2단온도제어에 있어서 1단냉각온도와 2단냉각온도를 개별적으로 제어 가능하다.
냉동기(16)의 냉동능력이 인버터방식으로 제어되는 경우에는, 제1 히터(94) 및 제2 히터(96)는 냉동기(16)에 마련되지 않아도 된다.
1단온도감시부(112)는, 1단냉각온도가 소정의 1단하한온도 T1min 이상인지 여부를 판정하도록 구성되어 있다. 1단온도감시부(112)는, 2단온도제어의 실행 중에, 1단냉각온도가 소정의 1단하한온도 T1min 이상인지 여부를 판정해도 된다.
1단하한온도 T1min은, 크라이오펌프(10)의 진공배기운전 중에 1단냉각온도로서 허용되는 최저온도에 해당한다. 예를 들면, 크라이오펌프(10)에 의하여 배기해야 할 주된 기체가 물, 아르곤, 및 제논인 경우에는, 1단크라이오패널(18)에서 물을 배기하고, 2단크라이오패널(19)에서 아르곤 및 제논을 배기하게 된다. 1단크라이오패널(18)의 온도가 과잉되게 낮으면, 2단크라이오패널(19) 상에 본래 응축시켜야 할 아르곤 및 제논이 1단크라이오패널(18)에도 응축될 수 있다. 그러나, 이것은 크라이오펌프(10)의 이상거동을 초래할 수 있기 때문에 방지해야 한다. 크라이오펌프(10)에 의하여 실현해야 할 진공도를 10-8Pa라고 할 때, 각종 기체의 증기압선도로부터, 1단냉각온도는, 60K로부터 130K이면 되는 것을 알 수 있다.
따라서, 1단하한온도 T1min은, 예를 들면, 약 60K로부터 약 65K의 온도범위로부터 선택되어도 된다. 1단하한온도 T1min은, 예를 들면, 60K로 설정할 수 있다. 1단하한온도 T1min은, 예를 들면, 65K로 설정되어도 된다.
2단온도감시부(114)는, 2단냉각온도가 소정의 2단상한온도 T2max 이하인지 여부를 판정하도록 구성되어 있다. 2단온도감시부(114)는, 1단온도제어의 실행 중에, 2단냉각온도가 소정의 2단상한온도 T2max 이하인지 여부를 판정해도 된다.
2단냉각온도는 예를 들면, 약 10K로부터 약 15K의 온도범위, 바람직하게는 약 11K로부터 약 13K의 온도범위로 유지되는 것이 바람직하다. 따라서, 2단상한온도 T2max는 예를 들면, 약 14K로부터 약 20K의 온도범위에서, 또는 약 15K로부터 약 17K의 온도범위에서 선택되어도 된다. 2단상한온도 T2max는 예를 들면, 15K로 설정되어도 된다. 2단상한온도는 예를 들면, 14K로 설정되어도 된다.
통지부(116)는, 1단온도제어로부터 2단온도제어로의 전환을 사용자에게 통지하도록 구성되어 있다. 통지부(116)는, 온도제어부(110)에 있어서 1단온도제어로부터 2단온도제어로의 전환이 행해진 경우, 제1 전환통지신호를 생성하고, 출력부(108)에 출력한다. 출력부(108)는, 제1 전환통지신호를 수신하면, 1단온도제어로부터 2단온도제어로의 전환이 행해진 것을 디스플레이에 표시시키거나, 또는 그 외의 방법으로 사용자에 알린다.
또, 통지부(116)는, 2단온도제어로부터 1단온도제어로의 전환을 사용자에게 통지하도록 구성되어 있다. 통지부(116)는, 온도제어부(110)에 있어서 2단온도제어로부터 1단온도제어로의 전환이 행해진 경우, 제2 전환통지신호를 생성하고, 출력부(108)에 출력한다. 출력부(108)는, 제2 전환통지신호를 수신하면, 2단온도제어로부터 1단온도제어로의 전환이 행해진 것을 디스플레이에 표시시키거나, 또는 그 외의 방법으로 사용자에 알린다.
상기의 구성의 크라이오펌프(10)의 진공배기운전을 이하에 설명한다. 크라이오펌프(10)의 작동 시에는, 먼저 그 작동 전에 다른 적당한 러핑펌프로 진공챔버 내부를 1Pa 정도까지 러프펌핑한다. 그 후, 크라이오펌프(10)를 작동시킨다. 냉동기(16)의 구동에 의하여 제1 냉각스테이지(20) 및 제2 냉각스테이지(21)가 각각 1단냉각온도 및 2단냉각온도로 냉각된다. 따라서, 이들에 열적으로 결합되어 있는 1단크라이오패널(18), 2단크라이오패널(19)도 각각 1단냉각온도 및 2단냉각온도로 냉각된다.
입구크라이오패널(32)은, 진공챔버로부터 크라이오펌프(10)를 향하여 비래하는 기체를 냉각한다. 입구크라이오패널(32)의 표면에는, 1단냉각온도에서 증기압이 충분히 낮은(예를 들면 10-8Pa 이하인) 기체가 응축한다. 이 기체는, 제1종 기체라고 칭해져도 된다. 제1종 기체는 예를 들면 수증기이다. 이렇게 하여, 입구크라이오패널(32)은, 제1종 기체를 배기할 수 있다. 1단냉각온도에서 증기압이 충분히 낮지 않은 기체의 일부는, 흡기구(12)로부터 내부공간(14)으로 진입한다. 혹은, 기체의 다른 일부는, 입구크라이오패널(32)에서 반사되어, 내부공간(14)에 진입하지 않는다.
내부공간(14)에 진입한 기체는, 2단크라이오패널(19)에 의하여 냉각된다. 2단크라이오패널(19)의 표면에는, 2단냉각온도에서 증기압이 충분히 낮은(예를 들면 10-8Pa 이하인) 기체가 응축한다. 이 기체는, 제2종 기체라고 칭해져도 된다. 제2종 기체는 예를 들면 아르곤이다. 이렇게 하여, 2단크라이오패널(19)은, 제2종 기체를 배기할 수 있다.
제2 냉각온도에서 증기압이 충분히 낮지 않은 기체는, 2단크라이오패널(19)의 흡착재에 흡착된다. 이 기체는, 제3종 기체라고 칭해져도 된다. 제3종 기체는 예를 들면 수소이다. 이렇게 하여, 2단크라이오패널(19)은, 제3종 기체를 배기할 수 있다. 따라서, 크라이오펌프(10)는, 다양한 기체를 응축 또는 흡착에 의하여 배기하여, 진공챔버의 진공도를 원하는 레벨에 도달시킬 수 있다.
도 3은, 전형적인 크라이오펌프가 장기간 사용된 결과로서 취할 수 있는 온도프로파일의 일례를 나타내는 도이다. 도 3의 세로축 및 가로축은 각각 온도 및 시간을 나타낸다. 도 3에는, 1단냉각온도 T1 및 2단냉각온도 T2의 시간변화를 개략적으로 나타낸다.
상술한 바와 같이, 장기의 사용에 의하여 크라이오펌프를 냉각하는 극저온냉동기의 냉동능력은 서서히 열화해 간다. 그 결과, 도 3에 나타나는 바와 같이, 1단냉각온도 T1은 제어에 의하여 유지되지만 2단냉각온도 T2는 서서히 높아져 간다. 이러한 승온경향은, 극저온냉동기의 냉동능력의 열화를 반영하고 있다. 따라서, 크라이오펌프의 운전기간이 길어져 크라이오펌프의 열화가 진행됨에 따라, 2단의 승온경향은 현저해진다. 2단냉각온도 T2가 높아짐에 따라, 크라이오펌프의 2단의 배기능력이 불충분해질 수 있다.
크라이오펌프가 설치된 반도체회로제조설비가 크라이오펌프의 배기능력부족인 채로 가동하는 것을 예방하기 위하여, 전형적인 크라이오펌프에 있어서는, 2단냉각온도 T2가 운전정지온도 T2f에 도달하면, 운전이 정지되고 메인터넌스가 행해진다. 운전정지온도 T2f는 예를 들면 17K 이상의 온도여도 된다. 이러한 운전정지가 발생하면, 제조설비도 멈춰야하기 때문에, 바람직하지 않다. 크라이오펌프의 메인터넌스는, 반도체제품의 제조계획에 부여하는 영향을 최소화할 수 있는 타이밍에서 행하는 것이 바람직하다. 그러한 메인터넌스 실행 가능한 타이밍까지 크라이오펌프의 수명을 늘리는 것이 바람직하다.
도 4 및 도 5는, 일 실시형태에 관한 크라이오펌프(10)의 제어방법을 나타내는 플로차트이다. 도 4 및 도 5에는, 1단온도제어와 2단온도제어와의 전환처리가 예시된다. 냉동기제어부(102)는, 크라이오펌프(10)의 진공배기운전 중에 본 처리를 주기적으로 실행한다.
도 4에 나타나는 바와 같이, 처리가 개시되면, 온도제어부(110)는, 크라이오펌프(10)의 운전상태를 판정한다(S10). 온도제어부(110)는, 현재 선택되어 있는 온도제어가 1단온도제어와 2단온도제어 중 어느 쪽인지를 판정한다. 제어장치(100)에 있어서는, 다른 복수의 운전상태 각각에 대응하는 운전상태플래그가 미리 정해져 있어도 된다. 기억부(104)는, 이들의 운전상태플래그를 기억하고 있어도 된다. 제어장치(100)는, 현재 선택되어 있는 온도제어가 1단온도제어인 경우에는, 1단온도제어플래그를 기억하고, 현재 선택되어 있는 온도제어가 2단온도제어인 경우에는, 2단온도제어플래그를 기억하도록 구성되어 있어도 된다. 온도제어부(110)는, 이와 같은 운전상태플래그를 참조하여 크라이오펌프(10)의 운전상태를 판정해도 된다.
1단온도제어가 현재 선택되어 있는 경우에는(S10의 I), 온도제어부(110)는, 1단온도제어를 실행한다(S12). 온도제어부(110)는, 1단냉각온도로서 예를 들면 제1 온도센서(90)의 측정온도를 취득한다. 온도제어부(110)는, 취득된 1단냉각온도와 미리 설정되어 있는 1단목표온도에 근거하여 냉동기모터(80)의 운전주파수를 제어한다. 또, 냉동기모터(80)의 운전주파수와 함께(또는 냉동기모터(80)의 운전주파수 대신), 온도제어부(110)는, 취득된 1단냉각온도와 미리 설정되어 있는 1단목표온도에 근거하여 제1 히터(94) 및/또는 제2 히터(96)의 출력(예를 들면 히터전류)을 제어해도 된다.
1단목표온도는 예를 들면, 60K로부터 100K의 온도범위로부터, 또는 65K로부터 80K의 온도범위로부터 선택된다. 1단목표온도는 예를 들면, 80K여도 된다. 1단목표온도는 예를 들면, 65K여도 된다.
2단온도감시부(114)는, 1단온도제어의 실행 중에, 2단냉각온도 T2가 소정의 2단상한온도 T2max 이하인지 여부를 판정한다(S14). 2단온도감시부(114)는, 2단냉각온도로서 예를 들면 제2 온도센서(92)의 측정온도를 취득한다. 2단온도감시부(114)는, 취득된 2단냉각온도 T2를 미리 설정되어 있는 2단상한온도 T2max와 비교한다. 이와 같이 하여, 1단온도제어의 실행 중에 2단냉각온도 T2의 상승이 검지된다. 2단냉각온도 T2가 2단상한온도 T2max 이하인 경우에는(S14의 Y), 본 처리는 종료된다. 1단온도제어로부터 2단온도제어로의 전환은 행해지지 않는다.
이와 같이 하여, 1단온도제어의 실행 중에, 2단냉각온도 T2가 2단상한온도 T2max 이하인 경우에는, 온도제어부(110)는, 1단온도제어를 계속한다. 크라이오펌프(10)의 배기능력이 정상적인 수준에 있는 경우에는, 2단냉각온도 T2는 2단상한온도 T2max보다 낮을 것이다. 따라서, 크라이오펌프(10)가 정상적으로 운전하고 있을 때에는, 1단온도제어가 행해진다.
한편, 2단냉각온도 T2가 2단상한온도 T2max를 초과하는 경우에는(S14의 N), 온도제어부(110)는, 1단온도제어로부터 2단온도제어로 전환한다(S20). 2단온도제어에서 사용되는 2단목표온도는, 2단상한온도 T2max로 설정된다. 2단온도제어플래그가 설정되고, 기억부(104)에 기억된다. 또, 1단온도제어에 있어서 설정되어 있던 1단목표온도의 값이 기억부(104)에 기억된다. 통지부(116)는, 온도제어부(110)에 있어서 1단온도제어로부터 2단온도제어로의 전환이 행해진 것을 사용자에게 통지한다(S22). 이렇게 하여, 1단온도제어는 종료되고, 2단온도제어가 개시된다.
도 5에는, 도 4의 S10에 계속되는 처리가 나타나 있다. 2단온도제어가 현재 선택되어 있는 경우에는(도 4의 S10의 II), 온도제어부(110)는, 2단온도제어를 실행한다(S24). 온도제어부(110)는, 2단냉각온도 T2로서 예를 들면 제2 온도센서(92)의 측정온도를 취득한다. 온도제어부(110)는, 취득된 2단냉각온도 T2와 미리 설정되어 있는 2단목표온도(즉, 2단상한온도 T2max)에 근거하여 냉동기모터(80)의 운전주파수를 제어한다. 또, 냉동기모터(80)의 운전주파수와 함께(또는 냉동기모터(80)의 운전주파수 대신), 온도제어부(110)는, 취득된 2단냉각온도 T2와 미리 설정되어 있는 2단목표온도에 근거하여 제1 히터(94) 및/또는 제2 히터(96)의 출력(예를 들면 히터전류)을 제어해도 된다.
1단온도감시부(112)는, 2단온도제어의 실행 중에, 1단냉각온도 T1이 소정의 1단하한온도 T1min 이상, 소정의 1단상한온도 T1max 이하의 온도범위에 있는지 여부를 판정한다(S26). 1단온도감시부(112)는, 1단냉각온도로서 예를 들면 제1 온도센서(90)의 측정온도를 취득한다. 1단온도감시부(112)는, 취득된 1단냉각온도 T1을 미리 설정되어 있는 1단하한온도 T1min과 비교한다. 이와 같이 하여, 2단온도제어의 실행 중에 1단냉각온도 T1의 과잉된 저하가 검지된다. 또, 1단온도감시부(112)는, 취득된 1단냉각온도 T1을 미리 설정되어 있는 1단상한온도 T1max와 비교한다. 이와 같이 하여, 2단온도제어의 실행 중에 일시적으로 발생할 수 있는 1단냉각온도 T1의 과잉된 상승이 검지된다. 1단상한온도 T1max는 예를 들면, 최근의 1단온도제어에 있어서 설정되어 있던 1단목표온도의 값과 동일해도 된다.
1단냉각온도 T1이 1단하한온도 T1min 이상 1단상한온도 T1max 이하인 경우에는(S26의 T1max≥T1≥T1min), 본 처리는 종료된다. 2단온도제어로부터 1단온도제어로의 전환은 행해지지 않는다.
이와 같이 하여, 2단온도제어의 실행 중에, 1단냉각온도 T1이 1단하한온도 T1min 이상 1단상한온도 T1max 이하의 온도범위에 있는 경우에는, 온도제어부(110)는, 2단온도제어를 계속한다. 2단목표온도가 2단상한온도 T2max로 설정되어 있기 때문에, 2단냉각온도 T2를 2단상한온도 T2max로 유지할 수 있다. 이것은, 2단온도제어의 아래에서, 도 3을 참조하여 설명한 2단의 승온경향에 대항하도록 냉동기(16)의 2단의 냉동능력이 증가된 것을 의미한다.
한편, 1단냉각온도 T1이 1단하한온도 T1min을 밑도는 경우에는(S26의 T1<T1min), 온도제어부(110)는, 2단온도제어로부터 1단온도제어로 전환한다(S28). 이렇게 하여, 크라이오펌프(10)는, 2단온도제어로부터 1단온도제어에 복귀한다. 복귀 후의 1단온도제어에서 사용되는 1단목표온도는, 1단하한온도 T1min으로 설정된다(S30). 1단온도제어플래그가 설정되고, 기억부(104)에 기억된다. 통지부(116)는, 온도제어부(110)에 있어서 2단온도제어로부터 1단온도제어로의 전환이 행해진 것을 사용자에게 통지한다(S32). 2단온도제어는 종료되고, 1단온도제어가 개시된다.
복귀 후의 1단온도제어에서 사용되는 1단목표온도는, 당초의 1단온도제어에서 사용되는 1단목표온도보다 낮기 때문에, 냉동기(16)의 1단의 냉동능력이 증가된 것이 된다. 다만, 복귀 후의 1단온도제어에서 사용되는 1단목표온도는, 1단하한온도 T1min과 달라도 된다. 복귀 후의 1단온도제어에서 사용되는 1단목표온도는, 당초의 1단온도제어에서 사용되는 1단목표온도보다 낮고, 1단하한온도 T1min보다 높아도 된다.
1단냉각온도 T1이 1단상한온도 T1max를 웃도는 경우에는(S26의 T1>T1max), 온도제어부(110)는, 2단온도제어로부터 1단온도제어로 전환한다(S34). 이렇게 하여, 크라이오펌프(10)는, 2단온도제어로부터 1단온도제어에 복귀한다. 복귀 후의 1단온도제어에서 사용되는 1단목표온도는, 원래의 1단목표온도, 즉, 최근의 1단온도제어에 있어서 설정되어 있던 1단목표온도의 값으로 설정된다(S36). 1단온도제어플래그가 설정되어 기억부(104)에 기억된다. 통지부(116)는, 온도제어부(110)에 있어서 2단온도제어로부터 1단온도제어로의 전환이 행해진 것을 사용자에게 통지한다(S38). 2단온도제어는 종료되고, 1단온도제어가 개시된다.
다만, 통지부(116)에 의한 통지 또는 경보의 타이밍이 1단온도제어와 2단온도제어의 전환과 동시인 것은, 필수는 아니다. 다양한 타이밍이 있을 수 있다. 예를 들면, 통지타이밍은, 2단온도제어의 개시 후에 발생하는 1단냉각온도의 저하량이 임곗값(예를 들면 약 10K)을 초과할 때, 2단온도제어의 실행 중에 냉동기(16)의 운전주파수가 소정값을 초과할 때, 또는 2단온도제어의 실행 중에 제1 히터(94)의 출력이 소정값을 밑돌 때여도 된다. 통지부(116)는, 1단온도제어와 2단온도제어의 전환시점에서 제1 경보를 통지하고, 그 후에 제2 경보를 통지한다는 바와 같이, 복수단계의 경보를 생성해도 된다. 제2 경보는, 2단온도제어의 개시 후에 발생하는 1단냉각온도의 저하량이 임곗값(예를 들면 약 10K)을 초과할 때, 2단온도제어의 실행 중에 냉동기(16)의 운전주파수가 소정값을 초과할 때, 또는 2단온도제어의 실행 중에 제1 히터(94)의 출력이 소정값을 밑돌 때에 통지되어도 된다.
필요에 따라, 통지부(116)에 의한 통지 또는 경보의 타이밍은, 2단온도제어로부터 1단온도제어로 전환하기 전이어도 된다. 예를 들면, 통지부(116)는, 2단온도제어의 실행 중에 있어서 1단냉각온도 T1이, 1단하한온도 T1min보다 약간 높은 임곗값온도를 밑도는 경우에, 통지 또는 경보를 내도 된다. 임곗값온도는 예를 들면, 1단하한온도 T1min에 비하여 1K로부터 5K 높은 온도여도 된다. 이와 같이 하여, 2단온도제어로부터 1단온도제어로의 복귀 전에 사전에 통지 또는 경보가 나와도 된다.
도 6은, 일 실시형태에 관한 크라이오펌프(10)가 장기간 사용된 결과로서 취할 수 있는 온도프로파일의 일례를 나타내는 도이다. 크라이오펌프(10)에 있어서는, 도 5에 나타나는 제어처리가 실행되고 있다. 여기에서, 냉동기(16)의 냉동능력은 인버터방식으로 제어되고 있다. 도 3과 동일하게, 도 6의 세로축 및 가로축은 각각 온도 및 시간을 나타낸다. 도 6에 있어서는 비교를 위하여, 도 3에 나타내는 온도프로파일을 파선으로 나타낸다.
도 6에 나타나는 경우에 있어서도, 도 3에 나타나는 경우와 동일하게, 장기의 사용에 의하여 크라이오펌프(10)를 냉각하는 냉동기(16)의 냉동능력은 서서히 열화해 간다. 1단온도제어가 실행되고 있는 동안, 1단냉각온도 T1은 당초의 1단목표온도 T1a로 유지되지만 2단냉각온도 T2는 서서히 높아져 간다(시점 t1로부터 t2).
그런데, 도 6에 있어서는 도 3과 달리, 2단냉각온도 T2가 2단상한온도 T2max까지 승온하면(시점 t2), 크라이오펌프(10)의 온도제어는, 1단온도제어로부터 2단온도제어로 전환된다. 2단온도제어가 실행되고 있는 동안, 2단냉각온도 T2는 2단상한온도 T2max로 유지되지만 1단냉각온도 T1은 서서히 내려간다(시점 t2로부터 t3). 이것은, 1단온도제어로부터 2단온도제어로 전환하여 2단온도제어를 실행함으로써, 도 6에 파선으로 나타나는 바와 같은 승온경향을 억제하도록 냉동기(16)의 2단의 냉동능력이 증가되기 때문이다. 냉동기(16)의 2단의 냉동능력이 증가되면 1단의 냉동능력도 증가되기 때문에, 1단냉각온도 T1은 저하된다.
그 후, 1단냉각온도 T1이 1단하한온도 T1min까지 강온(降溫)하면(시점 t3), 크라이오펌프(10)의 온도제어는, 2단온도제어로부터 1단온도제어로 다시 전환된다. 여기에서, 1단온도제어에서 사용되는 1단목표온도는 1단하한온도 T1min이기 때문에, 1단냉각온도 T1이 1단하한온도 T1min로 유지된다. 2단냉각온도 T2는 다시 서서히 높아져 간다(시점 t3로부터 t5). 2단냉각온도 T2가 운전정지온도 T2f에 도달하면, 크라이오펌프(10)의 운전이 정지된다(시점 t5).
도 6으로부터 이해되는 바와 같이, 크라이오펌프(10)의 운전정지시점 t5는, 파선으로 나타나는 전형적인 크라이오펌프의 운전정지시점 t4보다 늦다. 즉, 일 실시형태에 관한 크라이오펌프(10)의 수명이, 전형적인 크라이오펌프에 비하여 Δt(=t5-t4)만큼 늘어나 있다.
본 실시형태에 의하면, 크라이오펌프(10)는, 1단온도제어의 실행 중에 2단냉각온도 T2의 상승을 검지하여 냉동기(16)의 냉동능력을 증가시킬 수 있다. 구체적으로는, 1단온도제어의 실행 중에 2단냉각온도 T2가 2단상한온도 T2max를 초과하는 경우에, 1단온도제어가 종료되고 2단온도제어가 개시되고 있다.
그로써, 냉동능력을 증강하지 않고 1단온도제어를 그대로 계속한 경우에 비하여, 2단냉각온도의 상승을 늦출 수 있다. 크라이오펌프(10)의 운전정지온도 T2f까지 크라이오펌프(10)의 2단냉각온도 T2가 도달하는 시간을 늘릴 수 있다. 이렇게 하여, 크라이오펌프(10)의 수명을 어느 정도 늘릴 수 있다. 크라이오펌프(10)의 운전을, 바람직하게는 계획된 메인터넌스시기까지, 배기성능의 열화를 억제하면서 계속하는 것이 가능해진다.
도 7은, 일 실시형태에 관한 크라이오펌프(10)가 장기간 사용된 결과로서 취할 수 있는 온도프로파일의 다른 일례를 나타내는 도이다. 크라이오펌프(10)에 있어서는, 도 5에 나타나는 제어처리가 실행되고 있다. 여기에서, 냉동기(16)의 냉동능력은 히터방식으로 제어되고 있다. 본 발명은, 냉동기(16)의 냉동능력이 인버터방식으로 제어되는 경우뿐만 아니라, 냉동기(16)의 냉동능력이 히터방식으로 제어되는 경우에도, 적용 가능하다.
도 7에 나타나는 경우에 있어서도, 도 3에 나타나는 경우와 동일하게, 장기의 사용에 의하여 크라이오펌프(10)를 냉각하는 냉동기(16)의 냉동능력은 서서히 열화해 간다. 1단온도제어가 실행되고 있는 동안, 1단냉각온도 T1은 당초의 1단목표온도 T1a로 유지된다(시점 t1로부터 t3). 냉동기(16)의 2단의 냉동능력에 여유가 있는 크라이오펌프(10)의 정상적인 운전상태에 있어서는, 제2 히터(96)를 동작시킴으로써, 2단냉각온도 T2를 1단냉각온도 T1와는 독립적으로 제어할 수 있다. 이렇게 하여, 1단온도제어의 실행 중에, 1단냉각온도 T1뿐만 아니라, 2단냉각온도 T2도 2단목표온도 T2a로 유지할 수 있다.
2단냉각온도 T2를 2단목표온도 T2a로 유지하기 위하여, 온도제어부(110)는, 냉동기(16)의 2단의 냉동능력이 열화함에 따라, 제2 히터(96)의 출력을 저하시키고, 최종적으로는 제2 히터(96)를 오프로 한다(시점 t2). 그 후에는, 1단온도제어가 실행되고 있는 동안, 1단냉각온도 T1은 당초의 1단목표온도 T1a로 유지되지만 2단냉각온도 T2는 서서히 높아져 간다(시점 t2로부터 t3).
2단냉각온도 T2가 2단상한온도 T2max까지 승온하면(시점 t3), 크라이오펌프(10)의 온도제어는, 1단온도제어로부터 2단온도제어로 전환된다. 2단온도제어에 있어서는, 온도제어부(110)는, 제1 히터(94)를 제어함으로써, 2단냉각온도 T2를 제어한다. 제1 히터(94)의 출력을 저하시키면, 1단냉각온도 T1은 저하되고, 1단으로부터 2단으로의 열유입이 감소된다. 그 때문에, 냉동기(16)의 2단의 냉동능력이 증가하고, 2단냉각온도 T2가 내려간다. 반대로 제1 히터(94)의 출력을 증가시키면, 냉동기(16)의 2단의 냉동능력이 저하되고 2단냉각온도 T2가 올라간다.
2단온도제어가 실행되고 있는 동안, 2단냉각온도 T2는 2단상한온도 T2max로 유지되지만 1단냉각온도 T1은 서서히 내려간다(시점 t3로부터 t4). 1단온도제어로부터 2단온도제어로 전환하여 2단온도제어를 실행함으로써, 크라이오펌프(10)의 경시적인 열화에 따른 상술한 승온경향을 억제하도록 냉동기(16)의 냉동능력이 증가되기 때문이다.
그 후, 1단냉각온도 T1이 1단하한온도 T1min까지 강온하면(시점 t4), 크라이오펌프(10)의 온도제어는, 2단온도제어로부터 1단온도제어로 다시 전환된다. 여기에서, 1단온도제어에서 사용되는 1단목표온도는 1단하한온도 T1min이기 때문에, 1단냉각온도 T1이 1단하한온도 T1min로 유지된다. 2단냉각온도 T2는 다시 서서히 높아져 간다(시점 t4로부터 t5). 2단냉각온도 T2가 운전정지온도 T2f에 도달하면, 크라이오펌프(10)의 운전이 정지된다(시점 t5).
이와 같이, 본 발명은, 냉동기(16)의 냉동능력이 인버터방식으로 제어되는 경우뿐만 아니라, 냉동기(16)의 냉동능력이 히터방식으로 제어되는 경우에도, 적용 가능하다.
도 8은, 다른 실시형태에 관한 크라이오펌프(10)의 제어방법을 나타내는 플로차트이다. 제어장치(100)는, 1단온도제어의 실행 중에 2단냉각온도의 상승을 검지하여 1단목표온도를 저하시키도록 구성되어 있다. 상술한 실시형태와는 달리, 1단온도제어로부터 2단온도제어로 전환하는 것이 아니라, 2단냉각온도의 상승을 검지해도 1단온도제어가 계속된다. 1단목표온도를 저하시킴으로써, 냉동기(16)의 냉동능력이 증가된다.
도 8에 나타나는 바와 같이, 온도제어부(110)는, 1단온도제어를 실행한다(S40). 2단온도감시부(114)는, 1단온도제어의 실행 중에, 2단냉각온도 T2가 소정의 2단상한온도 T2max 이하인지 여부를 판정한다(S42). 2단냉각온도 T2가 2단상한온도 T2max 이하인 경우에는(S42의 Y), 본 처리는 종료된다. 1단목표온도는 변경되지 않는다.
2단냉각온도 T2가 2단상한온도 T2max를 초과하는 경우에는(S42의 N), 온도제어부(110)는, 1단목표온도를 저하시킨다(S44). 예를 들면, 온도제어부(110)는, 1단목표온도를 1단하한온도 T1min으로 변경한다. 혹은, 온도제어부(110)는, 1단목표온도를, 현재의 1단목표온도와 1단하한온도 T1min과의 사이의 온도값으로 변경해도 된다. 이렇게 하여, 이후의 1단온도제어에서는, 변경 후의 1단목표온도가 사용된다. 다만, 1단목표온도가 이미 1단하한온도 T1min까지 저하되고 있는 경우에는, 온도제어부(110)는, 1단목표온도를 변경하지 않는다.
통지부(116)는, 온도제어부(110)에 있어서 1단목표온도가 저하된 것을 사용자에게 통지한다(S46). 이렇게 하여, 본 처리는 종료된다. 이후, 본 처리는, 크라이오펌프(10)의 진공배기운전 중에 주기적으로 실행된다.
이와 같이 해도, 크라이오펌프(10)는, 1단온도제어의 실행 중에 2단냉각온도 T2의 상승을 검지하여 냉동기(16)의 냉동능력을 증가시킬 수 있다. 그로써, 크라이오펌프(10)의 수명을 어느 정도 늘릴 수 있다. 크라이오펌프(10)의 운전을, 바람직하게는 계획된 메인터넌스시기까지, 배기성능의 열화를 억제하면서 계속하는 것이 가능해진다.
도 8에 나타나는 제어처리는, 도 4 및 도 5에 나타나는 제어처리와 조합하는 것도 가능하다. 2단온도감시부(114)는, 1단온도제어의 실행 중에, 2단냉각온도 T2가 소정의 온도임곗값 이하인지 여부를 판정해도 된다. 온도임곗값은, 2단상한온도 T2max보다 낮아도 된다. 온도제어부(110)는, 2단냉각온도 T2가 온도임곗값 이하인 경우에는 1단목표온도를 유지하고, 2단냉각온도 T2가 온도임곗값을 초과하는 경우에는 1단목표온도를 저하시켜도 된다. 이와 같이 하면, 예를 들면, 도 7에 나타나는 시점 t2로부터 t3에 있어서, 1단목표온도를 저하시키고, 2단냉각온도의 상승을 억제할 수 있다.
이상, 본 발명을 실시예에 의거하여 설명했다. 본 발명은 상기 실시형태에 한정되지 않고, 다양한 설계변경이 가능하며, 다양한 변형예가 가능한 것, 또 그러한 변형예도 본 발명의 범위에 있는 것은, 당업자에게 이해되는 바이다.
10 크라이오펌프
16 냉동기
18 1단크라이오패널
19 2단크라이오패널
100 제어장치
110 온도제어부
112 1단온도감시부
114 2단온도감시부
116 통지부
산업상 이용가능성
본 발명은, 크라이오펌프 및 크라이오펌프 제어방법의 분야에 있어서의 이용이 가능하다.

Claims (7)

1단크라이오패널과,
2단크라이오패널과,
상기 1단크라이오패널 및 상기 2단크라이오패널에 열적으로 결합되어, 상기 1단크라이오패널을 1단냉각온도로 냉각하고, 상기 2단크라이오패널을 상기 1단냉각온도보다 낮은 2단냉각온도로 냉각하는 냉동기와,
상기 1단냉각온도를 1단목표온도로 제어하는 1단온도제어를 실행하도록 구성된 제어장치로서, 상기 1단온도제어의 실행 중에 상기 2단냉각온도의 상승을 검지하여 상기 냉동기의 냉동능력을 증가시키도록 구성된 제어장치를 구비하는 것을 특징으로 하는 크라이오펌프.
제1항에 있어서,
상기 제어장치는, 상기 1단온도제어와, 상기 2단냉각온도를 2단목표온도로 제어하는 2단온도제어를 실행하도록 구성되고, 상기 1단온도제어의 실행 중에 상기 2단냉각온도의 상승을 검지하여 상기 1단온도제어로부터 상기 2단온도제어로 전환하는 것을 특징으로 하는 크라이오펌프.
제2항에 있어서,
상기 제어장치는,
상기 1단온도제어의 실행 중에, 상기 2단냉각온도가 소정의 2단상한온도 이하인지 여부를 판정하도록 구성된 2단온도감시부와,
상기 1단온도제어와 상기 2단온도제어를 실행하도록 구성된 온도제어부로서, 상기 1단온도제어의 실행 중에, 상기 2단냉각온도가 상기 소정의 2단상한온도 이하인 경우에는 상기 1단온도제어를 계속하고, 상기 2단냉각온도가 상기 소정의 2단상한온도를 초과하는 경우에는 상기 1단온도제어로부터 상기 2단온도제어로 전환하는 온도제어부를 구비하는 것을 특징으로 하는 크라이오펌프.
제3항에 있어서,
상기 제어장치는, 상기 2단온도제어의 실행 중에, 상기 1단냉각온도가 소정의 1단하한온도 이상인지 여부를 판정하도록 구성된 1단온도감시부를 구비하고,
상기 온도제어부는, 상기 2단온도제어의 실행 중에, 상기 1단냉각온도가 상기 소정의 1단하한온도 이상인 경우에는 상기 2단온도제어를 계속하며, 상기 1단냉각온도가 상기 소정의 1단하한온도를 밑도는 경우에는 상기 2단온도제어로부터 상기 1단온도제어로 전환하는 것을 특징으로 하는 크라이오펌프.
제2항 내지 제4항 중 어느 한 항에 있어서,
상기 1단온도제어로부터 상기 2단온도제어로의 전환을 사용자에게 통지하는 통지부를 구비하는 것을 특징으로 하는 크라이오펌프.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 제어장치는, 상기 1단온도제어의 실행 중에 상기 2단냉각온도의 상승을 검지하여 상기 1단목표온도를 저하시키도록 구성되어 있는 것을 특징으로 하는 크라이오펌프.
크라이오펌프의 제어방법으로서, 상기 크라이오펌프는, 1단크라이오패널과, 2단크라이오패널과, 상기 1단크라이오패널 및 상기 2단크라이오패널에 열적으로 결합되어, 상기 1단크라이오패널을 1단냉각온도로 냉각하고, 상기 2단크라이오패널을 상기 1단냉각온도보다 낮은 2단냉각온도로 냉각하는 냉동기를 구비하며,
상기 1단냉각온도를 1단목표온도로 제어하는 1단온도제어를 실행하는 것과,
상기 1단온도제어의 실행 중에 상기 2단냉각온도의 상승을 검지하여 상기 냉동기의 냉동능력을 증가시키는 것을 구비하는 것을 특징으로 하는 방법.
KR1020197036180A 2017-06-23 2018-06-11 크라이오펌프 및 크라이오펌프 제어방법 KR102420419B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227023533A KR102479504B1 (ko) 2017-06-23 2018-06-11 크라이오펌프 및 크라이오펌프 제어방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017122848A JP6734817B2 (ja) 2017-06-23 2017-06-23 クライオポンプ及びクライオポンプ制御方法
JPJP-P-2017-122848 2017-06-23
PCT/JP2018/022241 WO2018235661A1 (ja) 2017-06-23 2018-06-11 クライオポンプ及びクライオポンプ制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227023533A Division KR102479504B1 (ko) 2017-06-23 2018-06-11 크라이오펌프 및 크라이오펌프 제어방법

Publications (2)

Publication Number Publication Date
KR20200021928A true KR20200021928A (ko) 2020-03-02
KR102420419B1 KR102420419B1 (ko) 2022-07-13

Family

ID=64737579

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020197036180A KR102420419B1 (ko) 2017-06-23 2018-06-11 크라이오펌프 및 크라이오펌프 제어방법
KR1020227023533A KR102479504B1 (ko) 2017-06-23 2018-06-11 크라이오펌프 및 크라이오펌프 제어방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020227023533A KR102479504B1 (ko) 2017-06-23 2018-06-11 크라이오펌프 및 크라이오펌프 제어방법

Country Status (6)

Country Link
US (1) US11428216B2 (ko)
JP (1) JP6734817B2 (ko)
KR (2) KR102420419B1 (ko)
CN (2) CN110741159B (ko)
TW (1) TWI672439B (ko)
WO (1) WO2018235661A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016200940A1 (de) * 2016-01-22 2017-07-27 Ford Global Technologies, Llc Verbrauchsoptimierungssystem für Kraftfahrzeuge durch Anpassung der Innenraumklimatisierung
GB2621830A (en) * 2022-08-22 2024-02-28 Atomic Energy Authority Uk Improvements in and relating to fusion reactor fuel recovery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912438B1 (ko) 1969-07-17 1974-03-25
JP2004027866A (ja) * 2002-06-21 2004-01-29 Aisin Seiki Co Ltd クライオポンプ装置及びクライオポンプ装置の運転方法
WO2010097888A1 (ja) * 2009-02-24 2010-09-02 キヤノンアネルバテクニクス株式会社 二段式冷凍機の運転制御方法、二段式冷凍機を有するクライオポンプの運転制御方法、二段式冷凍機、クライオポンプ及び真空基板処理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445187B2 (ja) * 2002-04-18 2010-04-07 住友重機械工業株式会社 極低温冷凍機
JP4912438B2 (ja) * 2009-07-16 2012-04-11 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの監視方法
JP5084794B2 (ja) * 2009-07-22 2012-11-28 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの監視方法
JP5738174B2 (ja) * 2011-12-27 2015-06-17 住友重機械工業株式会社 クライオポンプシステム、極低温システム、圧縮機ユニットの制御装置及びその制御方法
JP5808691B2 (ja) * 2012-02-23 2015-11-10 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの再生方法
JP6053551B2 (ja) * 2013-02-18 2016-12-27 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの運転方法
JP6253464B2 (ja) * 2014-03-18 2017-12-27 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの再生方法
JP6410589B2 (ja) * 2014-12-17 2018-10-24 住友重機械工業株式会社 クライオポンプ、クライオポンプの制御方法、及び冷凍機
JP6410590B2 (ja) * 2014-12-17 2018-10-24 住友重機械工業株式会社 コールドトラップ及びコールドトラップの制御方法
JP6710604B2 (ja) * 2015-08-10 2020-06-17 住友重機械工業株式会社 クライオポンプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912438B1 (ko) 1969-07-17 1974-03-25
JP2004027866A (ja) * 2002-06-21 2004-01-29 Aisin Seiki Co Ltd クライオポンプ装置及びクライオポンプ装置の運転方法
WO2010097888A1 (ja) * 2009-02-24 2010-09-02 キヤノンアネルバテクニクス株式会社 二段式冷凍機の運転制御方法、二段式冷凍機を有するクライオポンプの運転制御方法、二段式冷凍機、クライオポンプ及び真空基板処理装置

Also Published As

Publication number Publication date
US20200132064A1 (en) 2020-04-30
US11428216B2 (en) 2022-08-30
KR102479504B1 (ko) 2022-12-19
CN113700629A (zh) 2021-11-26
JP6734817B2 (ja) 2020-08-05
CN110741159A (zh) 2020-01-31
JP2019007395A (ja) 2019-01-17
KR102420419B1 (ko) 2022-07-13
TWI672439B (zh) 2019-09-21
CN110741159B (zh) 2021-08-27
WO2018235661A1 (ja) 2018-12-27
KR20220101769A (ko) 2022-07-19
TW201905333A (zh) 2019-02-01
CN113700629B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
KR101721171B1 (ko) 크라이오펌프, 크라이오펌프의 제어 방법, 및 냉동기
CN101963144B (zh) 低温泵及低温泵的监控方法
KR102420419B1 (ko) 크라이오펌프 및 크라이오펌프 제어방법
KR101144189B1 (ko) 크라이오펌프 및 크라이오펌프의 감시 방법
KR102138409B1 (ko) 크라이오펌프, 크라이오펌프 제어장치 및 크라이오펌프 제어방법
JP6952168B2 (ja) クライオポンプ及びクライオポンプ制御方法
KR102597865B1 (ko) 크라이오펌프 및 크라이오펌프의 감시방법
WO2023157586A1 (ja) クライオポンプおよびクライオポンプの運転方法
JP2011208645A (ja) 真空排気システム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right