KR20200016814A - 무선 통신 시스템에서 노드의 자원 사용 방법 및 상기 방법을 이용하는 장치 - Google Patents

무선 통신 시스템에서 노드의 자원 사용 방법 및 상기 방법을 이용하는 장치 Download PDF

Info

Publication number
KR20200016814A
KR20200016814A KR1020190096202A KR20190096202A KR20200016814A KR 20200016814 A KR20200016814 A KR 20200016814A KR 1020190096202 A KR1020190096202 A KR 1020190096202A KR 20190096202 A KR20190096202 A KR 20190096202A KR 20200016814 A KR20200016814 A KR 20200016814A
Authority
KR
South Korea
Prior art keywords
resource
node
soft
allocation information
communication
Prior art date
Application number
KR1020190096202A
Other languages
English (en)
Other versions
KR102187281B1 (ko
Inventor
조순기
송화월
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20200016814A publication Critical patent/KR20200016814A/ko
Application granted granted Critical
Publication of KR102187281B1 publication Critical patent/KR102187281B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • H04W72/0493
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/0406
    • H04W72/082
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1438Negotiation of transmission parameters prior to communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 노드의 자원 사용 방법 및 상기 방법을 이용하는 장치를 제공한다. 상기 방법은 부모 노드(parent node)와의 통신에 관련된 제1 할당 정보 및 자녀 노드(child node)와의 통신에 관련된 제2 할당 정보를 수신하고, 상기 제1 할당 정보 및 상기 제2 할당 정보에 기반하여 특정 자원을 사용하여 상기 부모 노드 또는 상기 자녀 노드와 통신을 수행한다. 상기 제1 할당 정보는 상기 특정 자원의 자원 타입을 3가지 중 하나로 알려주고, 상기 제2 할당 정보는 상기 특정 자원의 자원 타입을 7가지 중 하나로 알려주되, 상기 제2 할당 정보가 상기 특정 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려준 경우, 상기 특정 자원이 상기 자녀 노드와의 통신에 사용 가능하다는 별도의 명시적 지시가 없으면, 상기 특정 자원은 상기 부모 노드와의 통신에 사용되는 것을 특징으로 한다.

Description

무선 통신 시스템에서 노드의 자원 사용 방법 및 상기 방법을 이용하는 장치{A method for a resource usage of node in a wireless communication systemand apparatus using the same}
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 노드의 자원 사용 방법 및 이 방법을 이용하는 장치에 관한 것이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 라디오 액세스 기술(radio access technology; RAT)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (massive Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다.
뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 확장된 이동 광대역(enhanced mobile broadband: eMBB)통신, massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술(technology)을 new RAT 또는 NR이라고 부른다. NR은 5 세대(fifth generation: 5G) 시스템이라 칭하기도 한다.
NR과 같은 장래 무선통신 시스템에서는, 대역폭 부분(bandwidth part: BWP)를 도입할 수 있다. 광대역을 사용하는 무선통신 시스템에서 상기 광대역을 지원하기 어려운 단말을 위해 일부 대역을 할당하기 위해, 대역폭 부분이 사용될 수 있다.
한편, NR에서는, LTE(long term evolution)에 비하여 넓은 대역폭(bandwidth)를 사용할 수 있고, 또한 매시브(massive) MIMO(multi-input multi-output), 다중 빔(multi beam)을 사용할 수 있다.
또한, 한편, NR에서는, 더 높은 데이터율(data rates) 및 용량의 필요로 인해, 통합 액세스 및 백홀(Integrated access and backhaul: IAB)의 도입을 고려하고 있다. 여기서, 액세스란, 예를 들어, 기지국-단말을 의미할 수 있고, 백홀이란 예를 들어, 기지국-기지국 또는 기지국-코어 네트워크(core network)을 의미할 수 있다. NR에서는 액세스와 백홀에서 서로 다른 무선 자원/무선 채널을 사용할 수도 있지만, 동일한 무선 자원 및/또는 무선 채널을 사용하는 것도 고려하고 있다. 예를 들어, 제1 기지국이 액세스 링크를 통해 연결된 단말들을 서빙 하는데 사용하는 무선 자원과 무선 채널을, 상기 제1 기지국과 제2 기지국 간의 백홀 링크에도 사용할 수 있는 것이다.
여기서, 기지국, 단말 등의 용어는 편의상 사용된 것이며, 다른 용어 예를 들어, 노드(node)라는 용어로 대체될 수도 있다. 예를 들어, 제2 기지국이 제1 기지국과의 백홀 링크를 거쳐 제1 기지국에 액세스 링크를 통해 연결된 단말을 제어/스케줄링한다고 가정해 보자. 이 경우, 제1 기지국의 관점에서 제2 기지국은 부모 노드(parent node) 또는 도너 노드(donor node)라 칭할 수 있고, 단말은 자녀 노드(child node)라고 칭할 수도 있다. 그리고, 제1 기지국은 중계 노드(relay node) 또는 IAB 노드라 칭할 수도 있다.
IAB 환경에서는, IAB 노드가 부모 노드의 관계에서 단말(Mobile Terminal: MT)와 같이 동작할 수 있고, 자녀 노드와의 관계에서 분산 장치(Distributed Unit: DU), 즉 기지국과 같이 동작할 수 있다. 이러한 측면에서, IAB 노드에 대한 자원 할당 역시 MT 측면에서의 자원 할당과 DU 측면에서의 자원 할당이 주어질 수 있다.
그런데, 이러한 2개의 자원 할당들이 주어질 경우, 특정 자원에 대해 자원의 사용 방법/방향이 동일하지 않게 주어질 수도 있다. 이러한 경우, 어떠한 방식으로 자원의 사용 방법을 결정할 것인지 문제될 수 있다.
본 발명이 해결하고자 하는 기술적 과제는 무선 통신 시스템에서 노드의 동작 동작 방법 및 이를 이용하는 장치를 제공하는 것이다.
일 측면에서, 무선 통신 시스템에서 노드의 자원 사용 방법을 제공한다. 상기 방법은 부모 노드(parent node)와의 통신에 관련된 제1 할당 정보 및 자녀 노드(child node)와의 통신에 관련된 제2 할당 정보를 수신하고, 상기 제1 할당 정보 및 상기 제2 할당 정보에 기반하여 특정 자원을 사용하여 상기 부모 노드 또는 상기 자녀 노드와 통신을 수행하되, 상기 제1 할당 정보는 상기 특정 자원의 자원 타입을 3가지 중 하나로 알려주고, 상기 제2 할당 정보는 상기 특정 자원의 자원 타입을 7가지 중 하나로 알려주되, 상기 제2 할당 정보가 상기 특정 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려준 경우, 상기 특정 자원이 상기 자녀 노드와의 통신에 사용 가능하다는 별도의 명시적 지시가 없으면, 상기 특정 자원은 상기 부모 노드와의 통신에 사용되는 것을 특징으로 한다.
상기 제1 할당 정보는 상기 특정 자원의 자원 타입을, 하향링크, 상향링크 및 플렉서블(flexible) 중 하나로 알려줄 수 있다.
상기 제2 할당 정보는 상기 특정 자원의 자원 타입을 하드 하향링크, 소프트(soft) 하향링크, 하드 상향링크, 소프트 상향링크, 하드 플렉서블(hard flexible), 소프트 플렉서블(soft flexible) 및 가용하지 않음(not-available) 중 하나로 알려줄 수 있다.
상기 하드 하향링크는 상기 특정 자원이, 상기 노드가 상기 자녀 노드에게 신호를 전송하는 것이 항상 가능한(always available) 자원임을 나타내고, 상기 소프트 하향링크는 상기 특정 자원이, 상기 노드가 상기 자녀 노드에게 신호를 전송하는 것이 상기 부모 노드에 의하여 제어되는 자원임을 나타낼 수 있다.
상기 하드 상향링크는 상기 특정 자원이, 상기 노드가 상기 자녀 노드로부터 신호를 수신하는 것이 항상 가능한(always available) 자원임을 나타내고, 상기 소프트 상향링크는 상기 특정 자원이, 상기 노드가 상기 자녀 노드로부터 신호를 수신하는 것이 상기 부모 노드에 의하여 제어되는 자원임을 나타낼 수 있다.
상기 하드 플렉서블은 상기 특정 자원이 상기 노드와 상기 자녀 노드와의 관계에서 항상 플렉서블 자원임을 나타내고, 상기 소프트 플렉서블은 상기 특정 자원이 상기 노드와 상기 자녀 노드와의 관계에서 플렉서블 자원인지 여부가 상기 부모 노드에 의하여 제어되는 자원임을 나타낼 수 있다.
상기 가용하지 않음은, 상기 특정 자원이 상기 노드와 상기 자녀 노드와의 관계에서 사용될 수 없는 자원임을 나타낼 수 있다.
상기 제2 할당 정보가 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려준 경우, 상기 자원이 상기 제1 할당 정보에 의하여 상기 노드에게 할당되면, 상기 자원은 상기 부모 노드와의 통신에 사용되는 것으로 간주될 수 있다.
상기 제2 할당 정보가 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려준 경우, 상기 자원이 상기 제1 할당 정보에 의하여 상기 노드에게 할당되지 않으면, 상기 자원은 상기 자녀 노드와의 통신에 사용되는 것으로 간주될 수 있다.
상기 제1 할당 정보 및 상기 제2 할당 정보를 상기 부모 노드로부터 수신할 수 있다.
상기 자녀 노드는 상기 노드에 연결된 단말일 수 있다.
상기 제2 할당 정보가 상기 특정 자원을 항상 상기 자녀 노드와의 통신에 사용할 수 있는 하드(hard) 자원으로 지시할 경우, 상기 제1 할당 정보에 관계없이 상기 특정 자원을 상기 자녀 노드와의 통신에 사용할 수 있다.
다른 측면에서 제공되는 노드는, 무선 신호를 송신 및 수신하는 트랜시버(transceiver) 및 상기 트랜시버와 결합하여 동작하는 프로세서를 포함하되, 상기 프로세서는, 부모 노드(parent node)와의 통신에 관련된 제1 할당 정보 및 자녀 노드(child node)와의 통신에 관련된 제2 할당 정보를 수신하고, 상기 제1 할당 정보 및 상기 제2 할당 정보에 기반하여 특정 자원을 사용하여 상기 부모 노드 또는 상기 자녀 노드와 통신을 수행하되, 상기 제1 할당 정보는 상기 특정 자원의 자원 타입을 3가지 중 하나로 알려주고, 상기 제2 할당 정보는 상기 특정 자원의 자원 타입을 7가지 중 하나로 알려주되, 상기 제2 할당 정보가 상기 특정 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려준 경우, 상기 특정 자원이 상기 자녀 노드와의 통신에 사용 가능하다는 별도의 명시적 지시가 없으면, 상기 특정 자원은 상기 부모 노드와의 통신에 사용되는 것을 특징으로 한다.
또 다른 측면에서, 무선 통신 시스템에서 부모 노드의 동작 방법을 제공한다. 상기 방법은 노드(node)와의 통신에 관련된 제1 할당 정보 및 상기 노드의 자녀 노드(child node)와 상기 노드의 통신에 관련된 제2 할당 정보를 전송하고, 상기 제1 할당 정보 및 상기 제2 할당 정보에 기반하여 특정 자원을 사용하여 상기 노드와 통신을 수행하되, 상기 제1 할당 정보는 상기 특정 자원의 자원 타입을 3가지 중 하나로 알려주고, 상기 제2 할당 정보는 상기 특정 자원의 자원 타입을 7가지 중 하나로 알려주고, 상기 특정 자원을 상기 제2 할당 정보에 의하여 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 지시한 경우, 상기 특정 자원이 상기 노드와 상기 자녀 노드와의 통신에 사용 가능하다는 별도의 명시적 지시를 하지 않으면, 상기 특정 자원은 상기 부모 노드와 상기 노드 간의 통신에 사용되는 것을 특징으로 한다.
본 발명에 따르면, 특정 자원에 대한 액세스 링크에 대한 자원 할당과 백홀 링크에 대한 자원 할당이 동일한 자원 방향이나 자원 타입을 지시하지 않는 경우에도 모호성 없이 상기 특정 자원을 사용할 수 있다.
도 1은 기존 무선통신 시스템을 예시한다.
도 2는 NR이 적용되는 차세대 무선 접속 네트워크(New Generation Radio Access Network: NG-RAN)의 시스템 구조를 예시한다.
도 3은 본 발명을 수행하는 전송 장치(10) 및 수신 장치(20)의 구성 요소를 나타내는 블록도이다.
도 4는 전송 장치(10) 내 신호 처리 모듈 구조의 일 예를 도시한 것이다.
도 5는은 전송 장치(10) 내 신호 처리 모듈 구조의 다른 예를 도시한 것이다.
도 6은 본 발명의 구현 예에 따른 무선 통신 장치의 일 예를 도시한 것이다.
도 7은 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 8은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 9는 NR에서 적용될 수 있는 프레임 구조를 예시한다.
도 10은 CORESET을 예시한다.
도 11은 종래의 제어 영역과 NR에서의 CORESET의 차이점을 나타내는 도면이다.
도 12는 NR에서 새롭게 도입된 반송파 대역폭 부분(carrier bandwidth part)을 예시한다.
도 13은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다.
도 14는 동기화 신호 및 PBCH(SS/PBCH) 블록을 개략적으로 도시한 것이다.
도 15는 차세대 통신에서 사용될 수 있는 무선 프레임의 구조를 예시한다.
도 16은 차세대 통신에서 사용되는 프레임의 슬롯 구조를 예시한다.
도 17은 자기-완비(self-contained) 슬롯의 구조를 예시한다.
도 18는 통합 액세스 및 백홀 (IAB) 링크가 있는 네트워크의 일 예를 나타낸다.
도 19는, 기지국, 중계 노드, 단말을 포함하는 시스템을 예시한다.
도 20은 IAB 환경에서 노드들을 예시한다.
도 21은 IAB에서, IAB 노드의 자원 방향과 부모 노드, 단말 각각의 자원 방향을 나타낸 도면이다.
도 22는 IAB에서, IAB 노드의 자원 방향과 부모 노드, 단말 각각의 자원 방향의 다른 예를 나타낸 도면이다.
도 23은, IAB 노드가 받는 MT 측면에서의 D/U 할당에 포함된 자원 타입들과 DU 측면에서의 D/U 할당에 포함된 자원 타입들을 예시한다.
도 24는, 본 발명의 일 실시예에 따른 노드(IAB 노드)의 자원 사용방법을 나타낸다.
도 25는 자녀 노드, IAB 노드, 부모 노드를 포함하는 무선통신 시스템에서 각 노드들의 동작 방법을 나타낸다.
도 26은 본 발명의 일 실시예에 따른 노드의 자원 사용 방법을 나타낸다.
도 1은 기존 무선통신 시스템을 예시한다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
기존 무선 통신 시스템은, 새로운 무선 접속 기술(new radio access technology; new RAT)을 사용하는 시스템(또는 NR(new radio) 시스템)으로 대체되거나 공존할 수 있다. 이하, NR 시스템에 대해 설명한다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술(radio access technology; RAT)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (massive Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 확장된 모바일 브로드밴드 커뮤니케이션(enhanced mobile broadband communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술(technology)을 new RAT 또는 NR이라고 부른다.
도 2는 NR이 적용되는 차세대 무선 접속 네트워크(New Generation Radio Access Network: NG-RAN)의 시스템 구조를 예시한다.
도 2를 참조하면, NG-RAN은, 단말에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 gNB 및/또는 eNB를 포함할 수 있다. 도 4에서는 gNB만을 포함하는 경우를 예시한다. gNB 및 eNB는 상호 간에 Xn 인터페이스로 연결되어 있다. gNB 및 eNB는 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결되어 있다. 보다 구체적으로, AMF(access and mobility management function)과는 NG-C 인터페이스를 통해 연결되고, UPF(user plane function)과는 NG-U 인터페이스를 통해 연결된다.
gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(RB control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU 처리 등의 기능을 제공할 수 있다.
도 3은 본 발명을 수행하는 전송 장치(10) 및 수신 장치(20)의 구성 요소를 나타내는 블록도이다. 여기서, 상기 전송 장치 및 수신 장치는 각각 기지국 또는 단말일 수 있다.
전송 장치(10) 및 수신 장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 트랜시버(13, 23)와, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 트랜시버(13, 23) 및 메모리(12, 22) 등의 구성요소와 연결되어, 상기 구성요소를 제어하여 해당 장치가 후술하는 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 트랜시버(13, 23)을 제어하도록 구성된(configured) 프로세서(11, 21)를 각각 포함할 수 있다.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)는 버퍼로서 활용될 수 있다.
프로세서(11, 21)는 통상적으로 전송 장치 또는 수신 장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(11, 21)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.
전송 장치(10)의 프로세서(11)는, 외부로 전송할 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 트랜시버(13)에 전송할 수 있다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 코드워드를 생성할 수 있다. 코드워드는 MAC 계층이 제공하는 데이터 블록인 전송 블록과 등가의 정보들을 포함할 수 있다. 하나의 전송 블록(transport block, TB)은 하나의 코드워드로 부호화될 수 있다. 각 코드워드는 하나 이상의 레이어를 통해 수신 장치에 전송될 수 있다. 주파수 상향 변환(frequency up-convert)을 위해 트랜시버(13)는 오실레이터(oscillator)를 포함할 수 있다. 트랜시버(13)는 하나의 또는 복수의 전송 안테나들을 포함할 수 있다.
수신 장치(20)의 신호 처리 과정은 전송 장치(10)의 신호 처리 과정의 역으로 구성될 수 있다. 프로세서(21)의 제어 하에, 수신 장치(20)의 트랜시버(23)는 전송 장치(10)에 의해 전송된 무선 신호를 수신할 수 있다. 상기 트랜시버(23)는 하나 또는 복수개의 수신 안테나를 포함할 수 있다. 상기 트랜시버(23)는 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원할 수 있다. 트랜시버(23)는 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송 장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.
트랜시버(13, 23)는 하나 또는 복수개의 안테나를 구비할 수 있다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, 트랜시버(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 트랜시버(13, 23)으로 전달하는 기능을 수행할 수 있다. 안테나는 안테나 포트로 칭할 수도 있다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될(configured) 수 있다. 각 안테나로부터 전송된 신호는 수신 장치(20)에 의해 더는 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신 장치(20)의 관점에서 본 안테나를 정의하며, 채널이 하나의 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신 장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 할 수 있다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의될 수 있다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 트랜시버의 경우에는 2개 이상의 안테나와 연결될 수 있다.
*도 4은 전송 장치(10) 내 신호 처리 모듈 구조의 일 예를 도시한 것이다. 여기서, 신호 처리는 도 3의 프로세서(11)와 같은 기지국/단말의 프로세서에서 수행될 수 있다.
도 4을 참조하면, 단말 또는 기지국 내의 전송 장치(10)는 스크램블러(301), 모듈레이터(302), 레이어 맵퍼(303), 안테나 포트 맵퍼(304), 자원 블록 맵퍼(305), 신호 생성기(306)를 포함할 수 있다.
전송 장치(10)는 하나 이상의 코드워드(codeword)를 전송할 수 있다. 각 코드워드 내 부호화된 비트(coded bits)는 각각 스크램블러(301)에 의해 스크램블링되어 물리채널 상에서 전송된다. 코드워드는 데이터 열로 지칭될 수도 있으며, MAC 계층이 제공하는 데이터 블록인 전송 블록과 등가일 수 있다.
스크램블된 비트는 모듈레이터(302)에 의해 복소 변조 심볼(Complex-valued modulation symbols)로 변조된다. 모듈레이터 (302)는 상기 스크램블된 비트를 변조 방식에 따라 변조하여 신호 성상(signal constellation) 상의 위치를 표현하는 복소 변조 심볼로 배치할 수 있다. 변조 방식(modulation scheme)에는 제한이 없으며, m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation) 등이 상기 부호화된 데이터의 변조에 이용될 수 있다. 모듈레이터는 모듈레이션 맵퍼(modulation mapper)로 지칭될 수 있다.
상기 복소 변조 심볼은 레이어 맵퍼(303)에 의해 하나 이상의 전송 레이어로 맵핑될 수 있다. 각 레이어 상의 복소 변조 심볼은 안테나 포트 상에서의 전송을 위해 안테나 포트 맵퍼(304)에 의해 맵핑될 수 있다.
자원 블록 맵퍼(305)는 각 안테나 포트에 대한 복소 변조 심볼을 전송을 위해 할당된 가상 자원 블록(Virtual Resource Block) 내의 적절한 자원 요소에 맵핑할 수 있다. 자원 블록 맵퍼는 상기 가상 자원 블록을 적절한 맵핑 기법(mapping scheme)에 따라 물리 자원 블록(Physical Resource Block)에 맵핑할 수 있다. 상기 자원 블록 맵퍼(305)는 상기 각 안테나 포트에 대한 복소 변조 심볼을 적절한 부반송파에 할당하고, 사용자에 따라 다중화할 수 있다.
신호 생성기(306)는 상기 각 안테나 포트에 대한 복소 변조 심볼, 즉, 안테나 특정 심볼을 특정 변조 방식, 예컨대, OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조하여, 복소 시간 도메인(complex-valued time domain) OFDM 심볼 신호를 생성할 수 있다. 신호 생성기는 안테나 특정 심볼에 대해 IFFT(Inverse Fast Fourier Transform)를 수행할 수 있으며, IFFT가 수행된 시간 도메인 심볼에는 CP(Cyclic Prefix)가 삽입될 수 있다. OFDM 심볼은 디지털-아날로그(digital-to-analog) 변환, 주파수 상향 변환 등을 거쳐 각 송신 안테나를 통해 수신 장치로 송신된다. 신호 생성기는 IFFT 모듈 및 CP 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
도 5은 전송 장치(10) 내 신호 처리 모듈 구조의 다른 예를 도시한 것이다. 여기서, 신호 처리는 도 3의 프로세서(11) 등 단말/기지국의 프로세서에서 수행될 수 있다.
도 5을 참조하면, 단말 또는 기지국 내 전송 장치(10)는 스크램블러(401), 모듈레이터(402), 레이어 맵퍼(403), 프리코더(404), 자원 블록 맵퍼(405), 신호 생성기(406)를 포함할 수 있다.
전송 장치(10)는 하나의 코드워드에 대해, 코드워드 내 부호화된 비트(coded bits)를 스크램블러(401)에 의해 스크램블링한 후 물리 채널을 통해 전송할 수 있다.
스크램블된 비트는 모듈레이터(402)에 의해 복소 변조 심볼로 변조된다. 상기 모듈레이터는 상기 스크램블된 비트를 기결정된 변조 방식에 따라 변조하여 신호 성상(signal constellation) 상의 위치를 표현하는 복소 변조 심볼로 배치할 수 있다. 변조 방식(modulation scheme)에는 제한이 없으며, pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation) 등이 상기 부호화된 데이터의 변조에 이용될 수 있다.
상기 복소 변조 심볼은 상기 레이어 맵퍼(403)에 의해 하나 이상의 전송 레이어로 맵핑될 수 있다.
각 레이어 상의 복소 변조 심볼은 안테나 포트상에서의 전송을 위해 프리코더(404)에 의해 프리코딩될 수 있다. 여기서, 프리코더는 복소 변조 심볼에 대한 트랜스폼 프리코딩(transform precoding)을 수행한 이후에 프리코딩을 수행할 수도 있다. 또는, 프리코더는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수도 있다. 프리코더(404)는 상기 복소 변조 심볼을 다중 송신 안테나에 따른 MIMO 방식으로 처리하여 안테나 특정 심볼들을 출력하고 상기 안테나 특정 심볼들을 해당 자원 블록 맵퍼(405)로 분배할 수 있다. 프리코더(404)의 출력 z는 레이어 맵퍼(403)의 출력 y를 N×M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 레이어의 개수이다.
자원 블록 맵퍼(405)는 각 안테나 포트에 대한 복조 변조 심볼을 전송을 위해 할당된 가상 자원 블록 내에 있는 적절한 자원 요소에 맵핑한다.
자원 블록 맵퍼(405)는 복소 변조 심볼을 적절한 부반송파에 할당하고, 사용자에 따라 다중화할 수 있다.
신호 생성기(406)는 복소 변조 심볼을 특정 변조 방식 예컨대, OFDM 방식으로 변조하여 복소시간도메인(complex-valued time domain) OFDM(Orthogonal Frequency Division Multiplexing) 심볼 신호를 생성할 수 있다. 신호 생성기(406)는 안테나 특정 심볼에 대해 IFFT(Inverse Fast Fourier Transform)를 수행할 수 있으며, IFFT가 수행된 시간 도메인 심볼에는 CP(Cyclic Prefix)가 삽입될 수 있다. OFDM 심볼은 디지털-아날로그(digital-to-analog) 변환, 주파수 상향변환 등을 거쳐, 각 송신 안테나를 통해 수신장치로 송신된다. 신호 생성기(406)는 IFFT 모듈 및 CP 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
수신장치(20)의 신호 처리 과정은 송신기의 신호 처리 과정의 역으로 구성될 수 있다. 구체적으로, 전송장치(10)의 프로세서(21)는 외부에서 트랜시버(23)의 안테나 포트(들)을 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행한다. 상기 수신장치(20)는 복수개의 다중 수신 안테나를 포함할 수 있으며, 수신 안테나를 통해 수신된 신호 각각은 기저대역 신호로 복원된 후 다중화 및 MIMO 복조화를 거쳐 전송장치(10)가 본래 전송하고자 했던 데이터열로 복원된다. 수신장치(20)는 수신된 신호를 기저대역 신호로 복원하기 위한 신호 복원기, 수신 처리된 신호를 결합하여 다중화하는 다중화기, 다중화된 신호열을 해당 코드워드로 복조하는 채널복조기를 포함할 수 있다. 상기 신호 복원기 및 다중화기, 채널복조기는 이들의 기능을 수행하는 통합된 하나의 모듈 또는 각각의 독립된 모듈로 구성될 수 있다. 조금 더 구체적으로, 상기 신호 복원기는 아날로그 신호를 디지털 신호로 변환하는 ADC(analog-to-digital converter), 상기 디지털 신호로부터 CP를 제거하는 CP 제거기, CP가 제거된 신호에 FFT(fast Fourier transform)를 적용하여 주파수 도메인 심볼을 출력하는 FFT 모듈, 상기 주파수 도메인 심볼을 안테나 특정 심볼로 복원하는 자원요소디맵퍼(resource element demapper)/등화기(equalizer)를 포함할 수 있다. 상기 안테나 특정 심볼은 다중화기에 의해 전송레이어로 복원되며, 상기 전송레이어는 채널복조기에 의해 송신장치가 전송하고자 했던 코드워드로 복원된다.
도 6는 본 발명의 구현 예에 따른 무선 통신 장치의 일 예를 도시한 것이다.
도 6를 참조하면, 무선 통신 장치, 예를 들어, 단말은 디지털 신호 프로세서(Digital Signal Processor; DSP) 또는 마이크로프로세서 등의 프로세서(2310), 트랜시버(2335), 전력 관리 모듈(2305), 안테나(2340), 배터리(2355), 디스플레이(2315), 키패드(2320), GPS(Global Positioning System) 칩(2360), 센서(2365), 메모리(2330), SIM(Subscriber Identification Module) 카드(2325), 스피커(2345), 마이크로폰(2350) 중 적어도 하나를 포함할 수 있다. 상기 안테나 및 프로세서는 복수 개일 수 있다.
프로세서(2310)는 본 명세서에서 설명한 기능, 절차, 방법들을 구현할 수 있다. 도 6의 프로세서(2310)는 도 3의 프로세서(11, 21)일 수 있다.
메모리(2330)는 프로세서(2310)와 연결되어, 프로세서의 동작과 관련된 정보를 저장한다. 메모리는 프로세서의 내부 또는 외부에 위치할 수 있고, 유선 연결 또는 무선 연결과 같은 다양한 기술을 통해 프로세서와 연결될 수 있다. 도 6의 메모리(2330)는 도 3의 메모리(12, 22)일 수 있다.
사용자는 키패드(2320)의 버튼을 누르거나 마이크로폰(2350)을 이용하여 소리를 활성화시키는 등 다양한 기술을 이용하여 전화 번호와 같은 다양한 종류의 정보를 입력할 수 있다. 프로세서(2310)는 사용자의 정보를 수신하여 프로세싱하고, 입력된 전화 번호에 전화를 거는 등 적절한 기능을 수행할 수 있다. 일부 시나리오에서는, 데이터가 적절한 기능을 수행하기 위해 SIM 카드(2325) 또는 메모리(2330)로부터 검색될 수 있다. 일부 시나리오에서는, 프로세서(2310)는 사용자의 편의를 위해 디스플레이(2315)에 다양한 종류의 정보와 데이터를 표시할 수 있다.
트랜시버(2335)는 프로세서(2310)와 연결되어, RF(Radio Frequency) 신호와 같은 무선 신호를 송신 및/또는 수신한다. 프로세서는 통신을 개시하거나 음성 통신 데이터 등 다양한 종류의 정보 또는 데이터를 포함한 무선 신호를 전송하기 위해 트랜시버를 제어할 수 있다. 트랜시버는 무선 신호의 송신 및 수신을 위해 송신기 및 수신기를 포함한다. 안테나(2340)는 무선 신호의 송신 및 수신을 용이하게 할 수 있다. 일부 구현 예에서, 트랜시버는 무선 신호를 수신하면 프로세서에 의한 처리를 위해 신호를 기저대역 주파수로 포워딩하고 변환할 수 있다. 처리된 신호는 스피커(2345)를 통해 출력되도록 가청 또는 판독 가능한 정보로 변환되는 등 다양한 기술에 의해 처리될 수 있다. 도 6의 트랜시버는 도 3의 트랜시버(13, 23)일 수 있다.
도 6에 도시되어 있지는 않지만, 카메라, USB(Universal Serial Bus) 포트 등 다양한 구성 요소가 단말에 추가적으로 포함될 수 있다. 예를 들어, 카메라는 프로세서(2310)와 연결될 수 있다.
도 6는 단말에 대한 하나의 구현 예일 뿐이고, 구현 예는 이에 제한되지 않는다. 단말은 도 6의 모든 요소들을 필수적으로 포함해야 하는 것은 아니다. 즉, 일부 구성 요소 예를 들어, 키패드(2320), GPS(Global Positioning System) 칩(2360), 센서(2365), SIM 카드(2325) 등은 필수적인 요소가 아닐 수도 있으며 이 경우, 단말에 포함되지 않을 수도 있다.
도 7은 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 8은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 7 및 8을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 맵핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심볼과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심볼(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심볼들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심볼들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
도 9는 NR에서 적용될 수 있는 프레임 구조를 예시한다.
도 9를 참조하면, 프레임은 10 ms (millisecond)로 구성될 수 있고, 1 ms로 구성된 서브프레임 10개를 포함할 수 있다. 시간 영역의 다양한 필드들은 시간 단위 Tc = 1/(ΔfmaxNf)에 의하여 나타낼 수 있다. 여기서, Δfmax = 480103Hz, Nf = 4096일 수 있다.
반송파에는 상향링크에 하나의 프레임들의 집합이 있고, 하향링크에 하나의 프레임들의 집합이 있을 수 있다. 상향링크 프레임 i의 전송은 대응하는 하향링크 프레임 i의 시작보다 TTA=(NTA+NTA,offset)Tc만큼 앞서 시작될 수 있다.
서브프레임 내에는 부반송파 간격(subcarrier spacing)에 따라 하나 또는 복수의 슬롯(slot)들이 포함될 수 있다.
다음 표는 부반송파 간격 설정(subcarrier spacing configuration) μ를 예시한다.
[표 1]
Figure pat00001
다음 표 2-1은 노멀 CP(cyclic prefix)에서 부반송파 간격 설정(subcarrier spacing configuration) μ에 따라, 프레임 내 슬롯 개수(Nframe,μ slot), 서브프레임 내 슬롯 개수(Nsubframe,μ slot), 슬롯 내 심볼 개수(Nslot symb) 등을 예시한다. 표 2-2는 확장 CP에서 부반송파 간격 설정(subcarrier spacing configuration) μ에 따라, 프레임 내 슬롯 개수(Nframe,μ slot), 서브프레임 내 슬롯 개수(Nsubframe,μ slot), 슬롯 내 심볼 개수(Nslot symb) 등을 예시한다.
[표 2-1]
Figure pat00002
[표 2-2]
Figure pat00003
도 9에서는, μ=0, 1, 2에 대하여 예시하고 있다.
슬롯 내에는 복수의 OFDM(orthogonal frequency division multiplexing) 심볼들이 포함될 수 있다. 슬롯 내 복수의 OFDM 심볼들은 하향링크(downlink, D로 표시), 플렉서블(flexible, X로 표시), 상향링크(uplink, U로 표시)로 구분될 수 있다. 슬롯 내 OFDM 심볼들이 상기 D, X, U 중 어떤 것으로 구성되는지에 따라 상기 슬롯의 포맷(format)이 결정될 수 있다.
다음 표는 슬롯 포맷의 일 예를 나타낸다.
[표 3]
Figure pat00004
Figure pat00005
단말은 상위 계층 신호를 통해 슬롯의 포맷을 설정 받거나, DCI를 통해 슬롯의 포맷을 설정 받거나, 상위 계층 신호 및 DCI의 조합에 기반하여 슬롯의 포맷을 설정 받을 수 있다.
안테나 포트는, 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 전달되는 채널의 대규모 특성이 다른 안테나 포트 상의 심볼이 전달되는 채널로부터 추론될 수 있다면, 상기 2 개의 안테나 포트들은 유사 위치(quasi co-located)에 있다고 말해진다. 상기 대규모 특성은 지연 확산(delay spread), 도플러 확산(Doppler spread), 도플러 시프트(Doppler shift), 평균 이득(average gain), 평균 지연(average delay) 및 공간 Rx 파라미터들(spatial Rx parameters) 중 적어도 하나 이상을 포함할 수 있다.
자원 그리드(resource grid)는 각 뉴머롤로지 및 반송파에 대해, 특정 개수의 부반송파들 및 OFDM 심볼들을 포함하도록 정의될 수 있으며 상위 계층 시그널링에 의해 지시된 공통 자원 블록에서 시작될 수 있다.
자원 요소(resource element: RE)는 안테나 포트 및 부반송파 간격 설정에 대한 자원 그리드의 각 요소를 자원 요소라고 하며, 복소 값(complex value)에 대응할 수 있다.
자원 블록(resource block: RB)은 주파수 영역에서 연속적인 부반송파(예컨대, 12개)로서 정의될 수 있다. 기준 자원 블록(reference resource block)은 주파수 영역에서 0부터 위로 넘버링될 수 있다. 기준 자원 블록 0의 부반송파 0은 '기준점 A'로도 표시되며, 모든 부반송파 간격 설정들에 공통된다. 또한, 다른 자원 블록 그리드에 대한 공통 참조점(reference point)으로 사용될 수 있으며, 기준점 A는 상위 계층 파라미터로부터 얻어질 수 있다.
공통 자원 블록(common resource block)은 부반송파 간격 설정을 위해 주파수 영역에서 0 부터 위로 넘버링될 수 있다. 부반송파 간격 설정을 위한 공통 자원 블록 0의 부반송파 0은 상기 '기준점 A'와 일치할 수 있다.
물리적 자원 블록(physical resource block) 및 가상 자원 블록(virtual resource block)은 반송파 대역폭 부분 내에 정의되고, 0에서부터 위로 넘버링될 수 있다.
반송파 집성(carrier aggregation)에 의하면, 프라이머리 셀 이 외에 15 개까지의 세컨더리 셀들을 집성하여 사용할 수 있다. 즉, 단말에게는 최대 16 개의 서빙 셀들이 집성될 수 있다.
PDCCH(physical downlink control channel)은 다음 표와 같이 하나 또는 그 이상의 CCE(control channel element)들로 구성될 수 있다.
[표 4]
Figure pat00006
즉, PDCCH는 1, 2, 4, 8 또는 16개의 CCE들로 구성되는 자원을 통해 전송될 수 있다. 여기서, CCE는 6개의 REG(resource element group)로 구성되며, 하나의 REG는 주파수 영역에서 하나의 자원 블록, 시간 영역에서 하나의 OFDM(orthogonal frequency division multiplexing) 심볼로 구성된다.
한편, 장래 무선통신 시스템에서는, 제어 자원 집합(control resource set: CORESET)이라는 새로운 단위를 도입할 수 있다. 단말은 CORESET에서 PDCCH를 수신할 수 있다.
도 10은 CORESET을 예시한다.
도 10을 참조하면, CORESET은 주파수 영역에서 NCORESET RB 개의 자원 블록들로 구성되고, 시간 영역에서 NCORESET symb ∈ {1, 2, 3}개의 심볼로 구성될 수 있다. NCORESET RB, NCORESET symb 는 상위 계층 신호를 통해 기지국에 의하여 제공될 수 있다. 도 6에 도시한 바와 같이 CORESET 내에는 복수의 CCE들(또는 REG들)이 포함될 수 있다.
단말은 CORESET 내에서, 1, 2, 4, 8 또는 16개의 CCE들을 단위로 PDCCH 검출을 시도할 수 있다. PDCCH 검출을 시도할 수 있는 하나 또는 복수 개의 CCE들을 PDCCH 후보라 할 수 있다.
단말은 복수의 CORESET들을 설정 받을 수 있다.
도 11은 종래의 제어 영역과 NR에서의 CORESET의 차이점을 나타내는 도면이다.
도 11을 참조하면, 종래의 무선통신 시스템(예컨대, LTE/LTE-A)에서의 제어 영역(300)은 기지국이 사용하는 시스템 대역 전체에 걸쳐 구성되었다. 좁은 대역만을 지원하는 일부 단말(예를 들어, eMTC/NB-IoT 단말)을 제외한 모든 단말은, 기지국이 전송하는 제어 정보를 제대로 수신/디코딩하기 위해서는 상기 기지국의 시스템 대역 전체의 무선 신호를 수신할 수 있어야 했다.
반면, 장래 무선통신 시스템에서는, 전술한 CORESET을 도입하였다. CORESET(301, 302, 303)은 단말이 수신해야 하는 제어정보를 위한 무선 자원이라 할 수 있으며, 시스템 대역 전체 대신 일부만을 사용할 수 있다. 기지국은 각 단말에게 CORESET을 할당할 수 있으며, 할당한 CORESET을 통해 제어 정보를 전송할 수 있다. 예를 들어, 도 6에서 제1 CORESET(301)은 단말 1에게 할당하고, 제2 CORESET (302)는 제2 단말에게 할당하고, 제3 CORESET(303)은 단말 3에게 할당할 수 있다. NR에서의 단말은 시스템 대역 전체를 반드시 수신하지 않더라도 기지국의 제어 정보를 수신할 수 있다.
CORESET에는, 단말 특정적 제어 정보를 전송하기 위한 단말 특정적 CORESET과 모든 단말에게 공통적인 제어 정보를 전송하기 위한 공통적 CORESET이 있을 수 있다.
도 12는 NR에서 새롭게 도입된 반송파 대역폭 부분(carrier bandwidth part)을 예시한다.
도 12를 참조하면, 반송파 대역폭 부분은 간단히 대역폭 부분(bandwidth part: BWP)으로 약칭할 수 있다. 전술한 바와 같이, 장래 무선통신 시스템에서는 동일한 반송파에 대해 다양한 numerology(예컨대, 다양한 부반송파 간격들)가 지원될 수 있다. NR은 주어진 반송파에서 주어진 numerology에 대하여 공통 자원 블록(common resource block: CRB)을 정의할 수 있다.
대역폭 부분은, 주어진 반송파에서 주어진 numerology에 대한 공통 자원 블록(common resource block: CRB)들의 연속적인 부분 집합들 중에서 선택된 연속된 물리적 자원 블록(physical resource block: PRB)들의 집합이다.
도 12에 도시한 바와 같이, 어떤 반송파 대역에 대한 numerology 예컨대, 어떤 부반송파 간격을 사용하는가에 따라 공통 자원 블록이 정해질 수 있다. 공통 자원 블록은 반송파 대역의 가장 낮은 주파수부터 인덱싱(0부터 시작)될 수 있고, 공통 자원 블록을 단위로 하는 자원 그리드(resource grid, 이를 공통 자원 블록 자원 그리드라 칭할 수 있음)가 정의될 수 있다.
대역폭 부분은, 가장 낮은 인덱스를 가지는 CRB (이를 CRB 0이라 하자)를 기준으로 지시될 수 있다. 가장 낮은 인덱스를 가지는 CRB 0을 포인트 A라 칭하기도 한다.
예를 들어, 주어진 반송파의 주어진 numerology하에서, i번 대역폭 부분은 Nstart BWP,i 및 Nsize BWP,i에 의하여 지시될 수 있다. Nstart BWP,i 는 CRB 0을 기준으로 i번 BWP의 시작 CRB를 지시할 수 있고, Nsize BWP,i는 i번 BWP의 주파수 영역에서의 크기를 지시(예컨대, PRB 단위로)할 수 있다. 각 BWP 내의 PRB들은 0부터 인덱싱 될 수 있다. 각 BWP 내의 CRB의 인덱스는 PRB의 인덱스에 맵핑될 수 있다. 예컨대, nCRB = nPRB + Nstart BWP,i와 같이 맵핑될 수 있다.
단말은, 하향링크에서 최대 4개의 하향링크 대역폭 부분을 설정 받을 수 있으나, 주어진 시점에서 하나의 하향링크 대역폭 부분만 활성화될 수 있다. 단말은 하향링크 대역폭 부분들 중에서 활성화된 하향링크 대역폭 부분 외에서는 PDSCH, PDCCH, CSI-RS 등을 수신하는 것을 기대하지 않는다. 각 하향링크 대역폭 부분은 적어도 하나의 CORESET를 포함할 수 있다.
단말은, 상향링크에서 최대 4개의 상향링크 대역폭 부분을 설정 받을 수 있으나, 주어진 시점에서 하나의 상향링크 대역폭 부분만 활성화될 수 있다. 단말은 상향링크 대역폭 부분들 중에서 활성화된 상향링크 대역폭 부분 외에서는 PUSCH, PUCCH 등을 전송하지 않는다.
NR은 종래 시스템에 비해 광대역에서 동작하는데, 모든 단말이 이러한 광대역을 지원하지 못할 수 있다. 대역폭 부분(BWP)은, 상기 광대역을 지원할 수 없는 단말도 동작할 수 있게 해주는 특징이라 할 수 있다.
서빙 셀의 대역폭 부분(BWP)에서 동작하도록 설정된 단말은 상기 서빙 셀을 위한 상위 계층에 의해 최대 4 개의 대역폭 부분 (BWP) 집합을 설정 받을 수 있다.
초기 활성화 DL BWP는 타입 0-PDCCH 공통 검색 공간을 위한 제어 자원 집합에 대한 인접한 PRB들의 위치 및 개수, 부반송파 간격 및 CP에 의해 정의될 수 있다. 프라이머리 셀에서의 동작을 위해, 단말은 랜덤 액세스 절차를 위한 상위 계층 파라미터들을 제공 받을 수 있다.
페이링되지 않은 스펙트럼 동작(unpaired spectrum operation)의 경우, 단말은 DL BWP에 대한 중심 주파수가 UL BWP에 대한 중심 주파수와 동일할 것으로 기대할 수 있다.
이제 자원 할당 타입(resource allocation type)에 대해 설명한다. 자원 할당 타입은, 스케줄러(예컨대, 기지국)가 각 전송에 대해 자원 블록들을 할당하는 방식을 규정한다. 예를 들어, 기지국이 복수의 자원블록들로 구성된 대역을 단말에게 할당한다고 할 때, 상기 대역의 각 자원 블록에 대응하는 비트들로 구성된 비트맵을 통해 상기 단말에게 할당되는 자원 블록들을 알려줄 수 있다. 이 경우, 자원 할당의 유연성은 가장 커지겠지만 자원 할당을 위하여 사용되는 정보량이 커지는 단점이 있다.
이러한 장단점을 고려하여, 다음 3가지 자원 할당 타입들을 정의/사용할 수 있다.
1) 자원 할당 타입 0는 비트맵을 통해 자원을 할당하되, 상기 비트맵의 각 비트는 자원블록이 아니라 자원블록그룹(resource block group: RBG)를 지시하는 방식이다. 즉, 자원 할당 타입 0에서는, 자원 할당이 자원블록 레벨이 아니라 자원블록그룹 단위로 수행된다. 다음 표는, 시스템 대역이 NDL RB개의 자원블록들로 구성된 경우, 사용되는 RBG의 크기를 예시한다.
[표 5]
Figure pat00007
2) 자원 할당 타입 1은, RBG 서브셋(subset) 단위로 자원을 할당하는 방식이다. 하나의 RBG 서브셋은 복수의 RBG들로 구성될 수 있다. 예를 들어, RBG 서브셋 #0은 RBG #0, 3, 6, 9..., RBG 서브셋 #1은 RBG #1,4,7,10,..., RBG 서브셋 #2는 RBG #2,5,8,11... 등과 같이 구성될 수 있다. 하나의 RBG 서브셋 내에 포함된 RBG들의 개수와 하나의 RBG 내에 포함된 자원 블록(RB)의 개수는 동일하게 설정된다. 자원 할당 타입 1은 RBG 서브셋 들 중 어느 RBG 서브셋이 사용되는지 및 사용되는 RBG 서브셋 내에서 어떤 RB가 사용되는지를 알려준다.
3) 자원 할당 타입 2는, 할당되는 대역 시작 위치(RB 번호) 및 연속된 자원블록들의 개수를 알려주는 방식으로 자원 할당을 하는 방법이다. 상기 연속된 자원블록들은 상기 시작 위치부터 시작될 수 있다. 다만, 연속된 자원블록들은 반드시 물리적으로 연속된다는 의미에 한정되는 것이 아니며 논리적 또는 가상적 자원 블록 인덱스가 연속된다는 의미일 수도 있다.
장래의 무선통신 시스템에서는, RBG(또는 RB들의 그룹)을 구성하는 자원 블록의 개수가 유동적으로 변경될 수 있다. 이 때, 해당 RBG에 대한 정보 예컨대, RBG를 구성하는 자원 블록의 개수를 알려주는 정보는, 스케줄링 DCI 혹은 제 3의 물리 계층(L1) 시그널링 혹은 RRC 메시지와 같은 상위 계층 신호를 통해 전송될 수 있다.
또한, 장래의 무선통신 시스템에서는, 자원 할당 정보(예컨대, 전술한 RBG에 대한 정보)는 주파수 영역(frequency domain)에 대한 정보 외에 시간 영역(time-domain)에 대한 정보를 포함할 수 있으며, 어떤 정보를 포함하는지 어떤 방식으로 포함하는지 등도 역시 유동적으로 변경될 수 있다.
이하에서는, 물리 채널 및 신호 전송 과정에 대해 설명한다.
도 13은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink: DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink: UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S11). 이를 위해 단말은 기지국으로부터 PSCH(Primary Synchronization Channel) 및 SSCH(Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel: PBCH)을 수신하여 셀 내 방송 정보를 획득할 수 있다. 또한, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal: DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel: PDCCH) 및 이에 대응되는 물리 하향링크 공유 채널(Physical Downlink Shared Channel: PDSCH)를 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다(S12).
이후, 단말은 기지국에 접속을 완료하기 위해 임의 접속 과정(Random Access Procedure)을 수행할 수 있다(S13~S16). 구체적으로, 단말은 PRACH(Physical Random Access Channel)를 통해 프리앰블을 전송하고(S13), PDCCH 및 이에 대응하는 PDSCH를 통해 프리앰블에 대한 RAR(Random Access Response)을 수신할 수 있다(S14). 이후, 단말은 RAR 내의 스케줄링 정보를 이용하여 물리 상향링크 공유 채널(Physical Uplink Shared Channel: PUSCH)을 전송하고(S15), PDCCH 및 이에 대응하는 PDSCH과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S16).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S17) 및 PUSCH/PUCCH(Physical Uplink Control Channel) 전송(S18)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 상향링크 제어 정보(Uplink Control Information: UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), 스케줄링 요청(Scheduling Request: SR), 채널 상태 정보(Channel State Information: CSI) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수도 있다. 또한, 네트워크의 요청/지시에 따라 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수도 있다.
이하에서는, 셀 탐색(Cell Search)에 대해 설명한다.
셀 탐색은 단말이 셀에 대해 시간 및 주파수 동기를 획득하고 상기 셀의 물리 계층 셀 ID를 검출하는 절차이다. 단말은 셀 탐색을 수행하기 위해 프라이머리 동기화 신호(Primary Synchronization Signal: PSS) 및 세컨더리 동기화 신호(Secondary Synchronization Signal: SSS)를 수신한다.
단말은 PBCH, PSS, 및 SSS의 수신 시점(reception occasion)이 연속적인 심볼에 걸쳐 있고 SS/PBCH 블록을 형성한다고 가정할 수 있다. 상기 단말은 SSS, PBCH DM-RS, 및 PBCH 데이터가 동일한 EPRE를 갖는다고 가정할 수 있다. 상기 단말은 해당 셀의 SS/PBCH 블록에서 SSS EPRE 대 PSS EPRE의 비율이 0dB 또는 3dB라고 가정할 수 있다.
단말의 셀 탐색 절차는 다음 표 A와 같이 요약할 수 있다.
[표 A]
Figure pat00008
도 14는 동기화 신호 및 PBCH(SS/PBCH) 블록을 개략적으로 도시한 것이다.
도 14를 참조하면, SS/PBCH 블록은 각각 1개의 심볼 및 127개의 부반송파들을 차지하는 PSS 및 SSS, 및 3개의 OFDM 심볼들 및 240개의 부반송파들에 걸쳐 있으나 하나의 심볼 상에는 SSS를 위한 미사용 부분이 중간에 남겨진 PBCH로 구성될 수 있다. SS/PBCH 블록의 주기성은 네트워크에 의해 설정될 수 있고 SS/PBCH 블록이 전송될 수 있는 시간 위치는 부반송파 간격(subcarrier spacing)에 의해 결정된다.
PBCH에 대해서는 폴라 코딩(Polar Coding)이 사용될 수 있다. 단말은 네트워크가 상이한 부반송파 간격을 단말이 가정하도록 설정하지 않는 한 SS/PBCH 블록에 대해 밴드-특정적인 부반송파 간격을 가정할 수 있다.
PBCH 심볼들은 자신의 주파수-다중화된 DMRS를 운반할 수 있다. PBCH에 대해 QPSK 변조가 사용될 수 있다.
1008개의 고유한 물리 계층 셀 ID가 다음 식 1에 의해 주어질 수 있다.
[식 1]
Figure pat00009
한편, PSS에 대한 PSS 시퀀스 dPSS(n)는 다음 식 2에 의해 정의될 수 있다.
[식 2]
Figure pat00010
상기 시퀀스는 도 14에 도시된 물리 자원에 맵핑될 수 있다.
한편, SSS에 대한 SSS 시퀀스 dSSS(n)은 다음 식 3에 의해 정의될 수 있다.
[식 3]
Figure pat00011
상기 시퀀스는 도 14에 도시된 물리 자원에 맵핑될 수 있다.
SS/PBCH 블록들을 갖는 하프 프레임(half frame)에 대하여, 후보 SS/PBCH 블록들에 대한 첫 번째 심볼 인덱스들은 후술하는 SS/PBCH 블록들의 부반송파 간격에 따라 결정될 수 있다.
케이스(case) A - 부반송파 간격 15kHz: 후보 SS/PBCH 블록들의 첫 번째 심볼들은 {2, 8}+14*n의 인덱스를 갖는다. 3GHz 이하의 반송파 주파수에 대하여, n=0, 1이다. 3GHz 초과 6GHz 이하의 반송파 주파수에 대하여, n=0, 1, 2, 3이다.
케이스 B - 부반송파 간격 30kHz: 후보 SS/PBCH 블록들의 첫 번째 심볼들은 {4, 8, 16, 20}+28*n의 인덱스를 갖는다. 3GHz 이하의 반송파 주파수에 대하여, n=0이다. 3GHz 초과 6GHz 이하의 반송파 주파수에 대하여, n=0, 1이다.
케이스 C - 부반송파 간격 30kHz: 후보 SS/PBCH 블록들의 첫 번째 심볼들은 {2, 8}+14*n의 인덱스를 갖는다. 3GHz 이하의 반송파 주파수에 대하여, n=0, 1이다. 3GHz 초과 6GHz 이하의 반송파 주파수에 대하여, n=0, 1, 2, 3이다.
케이스 D - 부반송파 간격 120kHz: 후보 SS/PBCH 블록들의 첫 번째 심볼들은 {4, 8, 16, 20}+28*n의 인덱스를 갖는다. 6GHz 초과의 반송파 주파수에 대하여, n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.
케이스 E - 부반송파 간격 240kHz: 후보 SS/PBCH 블록들의 첫 번째 심볼들은 {8, 12, 16, 20, 32, 36, 40, 44}+56*n의 인덱스를 갖는다. 6GHz 초과의 반송파 주파수에 대하여, n=0, 1, 2, 3, 5, 6, 7, 8이다.
하프 프레임 내 후보 SS/PBCH 블록들은 시간 축에서 0부터 L-1까지 오름차순으로 인덱싱될 수 있다. 단말은 PBCH 내에서 전송된 DM-RS 시퀀스의 인덱스와의 일 대 일 맵핑으로부터 하프 프레임 당 SS/PBCH 블록 인덱스의 L=4에 대한 2 LSB 비트를, L>4에 대한 3 LSB 비트를 결정해야 한다. L=64에 대하여, 단말은 PBCH 페이로드 비트
Figure pat00012
에 의한 하프 프레임 당 SS/PBCH 블록 인덱스의 3 MSB 비트를 결정해야 한다.
단말은 상위 계층 파라미터 'SSB-transmitted-SIB1'에 의하여, 단말이 SS/PBCH 블록들에 대응하는 RE들과 오버렙되는 RE들 내에서 다른 신호 또는 채널들을 수신할 수 없는 SS/PBCH 블록들의 인덱스가 설정될 수 있다. 단말은 또한 상위 계층 파라미터 'SSB-transmitted'에 의하여, SS/PBCH 블록들과 대응하는 RE들에 오버랩되는 RE들 내에서 단말이 다른 신호 또는 채널들을 수신할 수 없는 서빙 셀 당 SS/PBCH 블록들의 인덱스가 설정될 수 있다. 'SSB-transmitted'에 의한 설정은 'SSB-transmitted-SIB1'에 의한 설정에 우선할 수 있다. 단말은 상위 계층 파라미터 'SSB-periodicityServingCell'에 의해 서빙 셀 당 SS/PBCH 블록들의 수신에 대한 하프 프레임의 주기성이 설정될 수 있다. 만약 단말이 SS/PBCH 블록들의 수신에 대한 하프 프레임의 주기성을 설정받지 못하면, 단말은 하프 프레임의 주기성을 가정할 수 있다. 단말은 서빙 셀 내 모든 SS/PBCH 블록들에 대해 주기성이 동일하다고 가정할 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴머놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, 서브프레임, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
도 15는 차세대 통신에서 사용될 수 있는 무선 프레임의 구조를 예시한다.
무선 프레임은 10 ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1 ms 서브프레임(Subframe, SF)을 포함할 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할될 수 있으며, 서브프레임 내 슬롯 개수는 부반송파 간격(Subcarrier Spacing: SCS)에 따라 결정될 수 있다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함할 수 있다.
노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함할 수 있다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
도 16은 차세대 통신에서 사용되는 프레임의 슬롯 구조를 예시한다.
슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다. 이는 표준 규격에 따라 다르게 설정될 수 있다.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP가 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 17은 자기-완비(self-contained) 슬롯의 구조를 예시한다.
하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터 채널, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 지원할 수 있다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다.
일 예로, 하나의 슬롯은 다음의 구성들 중 어느 하나일 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
여기서, DL 영역은 (i) DL 데이터 영역 또는 (ii) DL 제어 영역 + DL 데이터 영역, UL 영역은 (i) UL 데이터 영역 또는 (ii) UL 데이터 영역 + UL 제어 영역일 수 있다.
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
이하, IAB (Integrated Access and Backhaul)시스템에서 자원 방향을 정하는(설정하는) 방법에 대해서 제안한다.
먼저, 약어를 정의한다.
IAB: Integrated Access and Backhaul
CSI-RS: Channel State Information Reference Signal
SFI: Slot Format related Information
CORESET: Control resource set
IAB: Integrated Access & Backhaul
DgNB: Donor gNB
RN: Relay node
D: downlink
U: uplink
F(or X): flexible
AC: Access
BH: Backhaul
DU: 분산 장치(Distributed Unit)
MT: 이동 단말(Mobile terminal)
CU: 중앙 장치(Centralized Unit)
이하에서, IAB-노드는 단말의 무선 접속을 지원하고, 액세스 트래픽을 다른 노드(예컨대, 기지국이나 중계기, 다른 단말 등)에게 전달할 수 있는 노드를 의미한다.
IAB-도너(IAB-donor)는 단말에게 코어 네트워크와의 인터페이스를 제공하고, IAB-노드에게 무선 백홀 기능을 제공하는 노드를 의미한다.
이하의 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE-A, NR)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 발명의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다.
이하, 통합 액세스 및 백홀(Integrated Access and Backhaul: IAB)에 관하여 설명한다.
장래의 셀룰러 네트워크 배치 시나리오 및 애플리케이션을 가능하게 하는 잠재적인 기술 중 하나는 무선 백홀 및 릴레이 링크를 지원함으로써 전송 네트워크의 과밀화 없이도 NR 셀들을 유연하게 그리고 밀집하여 배치하는 것이다.
NR에서는 매시브(massive) MIMO 또는 멀티 빔(multi-beam) 시스템을 기본적으로 사용/배치할 수 있고, LTE에 비해 NR에서 사용할 것으로 예상되는 대역폭이 크다. 따라서, 통합 액세스 및 백홀(IAB) 링크가 필요하며, 이를 통해 단말에 대한 액세스를 제공하기 위해 정의된 다수의 제어 및 데이터 채널/절차를 구축할 수 있다.
IAB 환경에서, 다수의 노드(node) 및 단말 간 간섭(interference)을 막기 위해서는 자원 방향(resource direction) 충돌을 최소화 해야 한다. 예를 들어, 동일 시점, 동일 주파수 대역에서 제1 단말이 제1 노드에게 상향링크 신호를 전송하기 위해 할당된 자원은 상향링크(U)용 자원이고, 제2 단말이 제2 노드로부터 하향링크 신호를 수신하기 위해 할당된 자원은 하향링크(D)용 자원이라고 가정해 보자. 이 경우, 제1 단말이 할당 받은 상기 자원을 이용하여 전송하는 상향링크 신호는, 상기 제2 단말이 할당 받은 자원에서 간섭으로 작용할 수 있다.
물론, IAB 환경에서 다양한 간섭요인이 있을 수 있으나, 최소한 자원 방향을 노드/단말 간 간섭을 최소화하도록 정의해 줄 수 있다면 IAB 시스템의 안정성과 성능을 더욱 보장할 수 있을 것이다.
도 18은 통합 액세스 및 백홀 (IAB) 링크가 있는 네트워크의 일 예를 나타낸다.
단말(191)과 중계 노드 또는 기지국 노드(192)간의 무선 링크를 액세스 링크라 칭하고, 중계 노드 또는 기지국 노드(192)와 다른 중계 노드 또는 기지국 노드(193)간의 무선 링크를 백홀 링크라 칭할 수 있다. 적어도 하나의 기지국 노드 또는 중계 노드는 유선으로 코어 네트워크와 연결될 수 있다.
액세스 링크와 백홀 링크는 동일한 주파수 대역을 사용할 수도 있고, 또는 서로 다른 주파수 대역을 사용할 수도 있다.
한편, 밀리미터 파 스펙트럼에서 NR 시스템을 운영하는 것은 현재의 RRC 기반의 핸드 오버 메커니즘으로는 줄일 수 없는 심한 블록킹 현상(단기적인 차단 현상)을 경험하게 할 수 있다. 상기 블록킹 현상을 극복하려면 중계 노드들(또는 기지국 노드, 이하 동일) 간에 빠르게 스위칭이 일어날 수 있도록 RAN 기반의 메커니즘이 필요할 수 있다.
이를 위해, 액세스 및 백홀 링크의 신속한 스위칭을 가능하게 하는 통합된 체제(framework)의 개발이 필요하다. 중계 노느들 간의 OTA (Over-the-Air) 조정(coordination)은 간섭을 완화하고 종단 간 경로 선택 및 최적화를 지원하는 것으로 간주될 수 있다.
NR을 위한 IAB는 다음 요구 사항 및 측면을 고려해야 한다.
1) 실내 및 실외 시나리오에서 대역 내 및 대역 외 중계를 위한 효율적이고 유연한 운영, 2) 다중 홉(multi-hop) 및 중복 연결, 3) 종단 간 경로 선택 및 최적화, 4) 높은 스펙트럼 효율로 백홀 링크 지원, 5) 레거시 NR 단말 지원.
도 19는, IAB 환경에서 기지국, 중계 노드, 단말을 포함하는 시스템을 예시한다.
도 19를 참조하면, IAB 시나리오에서, 하프 듀플렉스(half-duplex)가 지원될 수 있다. 또한, IAB 시나리오에서 풀 듀플렉스(full duplex)가 지원될 수도 있다.
만약, 각 중계 노드(RN)가 스케줄링 능력을 갖지 않으면, 기지국(DgNB)은 기지국, 관련 중계 노드 및 단말들 사이의 전체 링크를 스케줄링해야 한다. 다시 말해서, 기지국은 모든 관련된 중계 노드에서 트래픽 정보를 수집하여 모든 링크에 대한 스케줄링 결정을 내린 후, 각 중계 노드에게 스케줄링 정보를 알릴 수 있다.
예를 들어, 백홀 및 액세스 링크는 도 19과 같이 구성 할 수 있다. 이 경우, 기지국은 단말 1(UE 1)의 스케줄링 요청을 수신할 뿐만 아니라 단말 2(UE 2) 및 단말 3(UE 3)의 스케줄링 요청도 수신할 수 있다. 그 후, 두 개의 백홀 링크들(201, 202)와 세 개의 액세스 링크들(203, 204, 205)의 스케줄링 결정을 내리고 스케줄링 결과를 알려줄 수 있다. 이러한 중앙 집중식 스케줄링에는 지연 스케줄링과 대기 시간 문제가 포함될 수 있다.
반면, 분산 스케줄링은 각 중계 노드가 스케줄링 능력을 가지는 경우, 이루어질 수 있다. 그러면 단말의 상향링크 스케줄링 요청에 대해 즉각적인 스케줄링이 이루어질 수 있고, 주변 트래픽 상황을 반영하여 백홀/액세스 링크가 보다 융통성 있게 활용될 수 있다.
<백홀 링크 디스커버리 및 측정>
IAB 노드 초기 접속(initial access)
IAB 노드는 초기에 부모(parent) IAB 노드 또는 IAB 도너(donor)에게 연결을 설정하기 위해 셀 검색, 시스템 정보 획득 및 랜덤 액세스를 포함하여 단말과 동일한 초기 액세스 절차를 따를 수 있다. SSB/CSI-RS 기반 RRM 측정은 IAB 노드 발견 및 측정의 시작점일 수 있다.
IAB 노드들 간에 충돌하는 SSB를 구성하는 것을 방지하고, CSI-RS 기반의 IAB 노드 디스커버리를 실현하기 위해, 하프 듀플렉스 제한 조건 및 다중 홉(multi-hop) 토폴로지(topologies)에 따라 IAB 노드들 간의 디스커버리 절차를 고려할 수 있다. 주어진 IAB 노드에서 사용하는 셀 ID를 고려할 때 다음 두 가지 케이스들을 고려할 수 있다.
케이스 1: IAB 도너(donor)와 IAB 노드가 동일한 셀 ID를 공유하는 경우.
케이스 2: IAB 도너와 IAB 노드가 별개의 셀 ID를 유지하는 경우.
또한, 단말로부터의 RACH 전송 및 IAB 노드로부터의 RACH 전송의 다중화(multiplexing)을 위한 메커니즘도 고려되어야 한다.
*<백홀 링크 측정>
링크 관리 및 경로 선택을 위해 다중 백홀 링크들의 측정을 고려해야 할 수 있다. 주어진 IAB 노드의 관점에서 하프 듀플렉스 제약 조건을 지원하기 위해, IAB는 셀 검색 및 측정을 위해 액세스 단말에서 사용되는 자원과 시간상으로 직교하는 자원을 사용하는 후보 백홀 링크들(초기 접속 이후)의 검색 및 측정을 지원할 수 있다. 이와 관련하여 다음 사항을 더 고려할 수 있다.
1) SSB의 TDM(예: 홉 순서, 셀 ID 등에 따라 다름), 2) IAB 노드 간 SSB 뮤팅, 3) 하프 프레임 또는 하프 프레임들에 걸쳐 액세스 단말 및 IAB 용 SSB들의 다중화, 4) Rel-15 SSB 전송과 TDM되는 IAB 노드 디스커버리 신호(예: CSI-RS), 5) 오프 래스터(off-raster) SSB 사용, 6) 액세스 단말에 의하여 사용되는 주기와 상이한, 백홀 링크 검출 및 측정에 대한 전송 주기.
IAB 노드들에 대한 참조 신호 전송 및 측정 기회들의 조정을 위한 메커니즘도 고려해야 할 수 있다. IAB 노드들에 대한 RRM 측정을 지원하기 위한 SMTC 및 CSI-RS 구성의 향상도 필요할 수 있다.
<백홀 링크 관리>
IAB 노드는 Rel-15 메커니즘을 기반으로 백홀 링크 장애(failure)를 감지/ 복구하기 위한 메커니즘을 지원할 수 있다. RLM RS 및 IAB 관련 절차 개선을 더 고려할 수 있다.
<다중 백홀 링크들에서 경로 스위칭 또는 전송/수신 메커니즘>
여러 개의 백홀 링크들에서 동시에 효율적인 경로 스위칭 또는 송수신을 위한 메커니즘(예: 다중 TRP 작동 및 주파수 내 이중 연결성)을 고려해야 할 수 있다.
<스케줄링 및 자원 할당/조정>
1. 백홀 및 액세스 링크 스케줄링
하향링크 IAB 노드 전송(즉, IAB 노드에서 자녀 IAB 노드(child IAB node)로 의 백홀 링크 전송 및 IAB 노드에서 단말들로의 액세스 링크 전송)은 상기 IAB 노드 자체에 의하여 스케줄링될 수 있다. 상향링크 IAB 전송(즉, IAB 노드에서 부모 IAB 노드 또는 IAB 도너로의 전송)은 상기 부모 IAB 노드 또는 IAB 도너에 의하여 스케줄링될 수 있다.
2. 액세스 및 백홀 링크의 다중화
IAB는 IAB 노드에서 액세스 링크 및 백홀 링크 간에 TDM, FDM 및/또는 SDM을 지원할 수 있으며, 하프 듀플렉스 제약 조건이 적용될 수 있다.
IAB 노드의 하프 듀플렉스 제약을 고려한 다중 홉을 통한 액세스/백홀 트래픽의 효율적인 TDM/FDM/SDM 다중화 메카니즘을 고려해야 할 수 있다.
다양한 다중화 옵션들에 대해 다음 사항들을 고려할 수 있다.
1) 하나 또는 여러 홉들에서 액세스 및 백홀 링크간에 시간 슬롯 또는 주파수 자원들을 직교 분할하는 메커니즘, 2) 액세스 및 백홀 링크에 대해 서로 다른 DL/UL 슬롯 구성 활용, 3) 백홀 및 액세스 링크의 패널 내 FDM 및 SDM을 허용하는 DL 및 UL 전력 제어 향상 및 타이밍 요건, 4) 상호 간섭을 포함한 간섭 관리.
3. 자원 조정(Resource coordination)
IAB 노드/IAB 도너 및 다중 백홀 홉 전반에 걸친 스케줄링 조정, 자원 할당 및 라우트 선택 메커니즘을 고려해야 할 수 있다. IAB 노드들 간 자원(주파수, 슬롯/슬롯 포맷 등의 관점에서의 시간)에 대해 (RRC 신호의 타임 스케일에서) 반정적(semi-static)인 설정 방법이 지원될 수 있다. 다음 측면을 더 고려할 수 있다.
1) 분산 또는 중앙 집중식 조정 메커니즘, 2) 필요한 시그널링의 자원의 그래뉼리티(granularity) (예: TDD 설정 패턴), 3) IAB 노드들 간 L1 및/또는 L3 측정 값 교환, 4) 백홀 링크의 물리 계층 설계 연구에 영향을 미치는 토폴로지 관련 정보 교환(예: 홉 순서), 5) 반-정적 조정보다 빠른 자원(슬롯/슬롯 포맷 등의 관점에서 시간, 주파수 등)의 조정
4. IAB 노드 동기화 및 타이밍 정렬
OTA(over-the-air) 동기화의 가능성(feasibility) 및 타이밍 오정렬(misalignment)이 IAB 성능(예: 지원 가능한 홉 수)에 미치는 영향을 고려해야 할 수 있다. 다중 홉 NR-IAB 네트워크에서 타이밍 정렬을 위한 메커니즘을 고려해야 할 수 있다. IAB는 여러 백홀 홉을 포함하는 IAB 노드들 간에서 TA(timing advanced) 기반의 동기화를 지원할 수 있다. 기존 타이밍 정렬 메커니즘의 향상 역시 고려할 수 있다.
IAB 노드들과 IAB 도너들 간의 전송 타이밍 정렬에 대한 다음 예들을 고려할 수 있다.
1) 사례 1: IAB 노드들과 IAB 도너들에 걸친 DL 전송 타이밍 정렬
2) 사례 2: DL 및 UL 전송 타이밍이 IAB 노드 내에서 정렬
3) 사례 3: DL 및 UL 수신 타이밍이 IAB 노드 내에서 정렬
4) 사례 4: IAB 노드 내에서 사례 2를 사용하여 전송하고, 사례 3을 사용하여 수신
5) 사례 5: 액세스 링크 타이밍의 경우 사례 1을 적용, IAB 노드 내의 다른 시간 슬롯에서의 백홀 링크 타이밍의 경우 사례 4 적용.
IAB 노드들/IAB 도너들 또는 IAB 노드 내에서 다음과 같은 수준(level)의 정렬을 고려할 수 있다.
1) 슬롯 수준 정렬, 2) 심볼 수준 정렬, 3) 정렬 없음.
5. 교차 링크 간섭(cross link interference: CLI) 측정 및 관리
액세스 및 백홀 링크 (다중 홉을 포함하여)에 대한 교차 링크 간섭(CLI)의 영향을 고려할 수 있다.
1) CLI 완화 기술
고급(advanced) 수신기 및 송신기 조정을 포함한 CLI 완화 기술을 고려할 수 있다. 이 때, 복잡성과 성능 측면에서 우선 순위를 정해야 할 수 있다. CLI 완화 기술은 다음과 같은 IAB 간 간섭 시나리오를 관리 할 수 있어야 한다. i) 사례 1: 피해자 IAB 노드가 MT를 통해 DL에서 수신 중이고 간섭 IAB 노드가 MT를 통해 UL에서 전송 중인 경우, ii) 사례 2: 피해자 IAB 노드가 자신의 MT를 통해 DL에서 수신 중이고 간섭 IAB 노드가 DU를 통해 DL에서 전송 중인 경우, iii) 사례 3: 피해자 IAB 노드가 DU를 통해 UL에서 수신 중이고 간섭 IAB 노드가 MT를 통해 UL에서 전송 중인 경우, iv)사례 4: 피해자 IAB 노드가 DU를 통해 UL에서 수신 중이며 간섭 IAB 노드가 DU를 통해 DL에서 전송 중인 경우.
주어진 IAB 노드에서 액세스 및 백홀 링크 간에서 FDM/SDM 수신하는 경우, 상기 IAB 노드에서 경험하는 간섭을 고려할 수 있다.
2) CLI 측정 기술
IAB에서 CLI 완화를 하려면, 단기(short-term) 및 장기(long term) 측정, 다중 안테나 및 빔포밍(beamforming)과 같은 CLI 측정을 고려해야 한다.
백홀 링크를 위하여 1024 QAM을 지원할 수 있다.
이제 전술한 내용들을 기반으로, 본 발명에 대해 보다 상세히 기술한다.
본 발명에서, 액세스란, 예를 들어, 기지국-단말을 의미할 수 있고, 백홀이란 예를 들어, 기지국-기지국 또는 기지국-코어 네트워크(core network)을 의미할 수 있다. NR에서는 액세스와 백홀에서 서로 다른 무선 자원/무선 채널을 사용할 수도 있지만, 동일한 무선 자원 및/또는 무선 채널을 사용하는 것도 고려하고 있다. 예를 들어, 제1 기지국이 액세스 링크를 통해 연결된 단말들을 서빙 하는데 사용하는 무선 자원과 무선 채널을, 상기 제1 기지국과 제2 기지국 간의 백홀 링크에도 사용할 수 있다.
상기 기술 내용에서, 기지국, 단말 등의 용어는 편의상 사용된 것이며, 다른 용어 예를 들어, 노드(node)라는 용어로 대체될 수도 있다. 예를 들어, 제2 기지국이 제1 기지국과의 백홀 링크를 거쳐 제1 기지국에 액세스 링크를 통해 연결된 단말을 제어/스케줄링한다고 가정해 보자(제2 기지국-제1 기지국-단말과 같은 형태). 이 경우, 제1 기지국의 관점에서 제2 기지국은 부모 노드(parent node) 또는 도너 노드(donor node)라 칭할 수 있고, 단말은 자녀 노드(child node)라고 칭할 수도 있다. 제1 기지국은 중계 노드(중계기 노드) 또는 IAB 노드라 칭할 수 있다. 또한 제2 기지국의 관점에서 제1 기지국은 자녀 노드라고 할 수 있다.
도 20은 IAB 환경에서 노드들을 예시한다.
도 20을 참조하면, IAB 노드는 부모 노드와의 관계에서 단말과 유사하다고 할 수 있고 IAB 노드 입장에서 부모 노드를 단말(mobile terminal: MT) 관점에서 볼 수 있다. 이러한 측면에서, IAB 노드가 부모 노드와 통신을 수행하는 것을 IAB 노드의 MT 동작이라 할 수 있다.
또한, IAB 노드는 자녀 노드와의 관계에서 기지국 또는 중계기와 같은 분산 장치(distributed unit: DU)와 유사하다고 할 수 있으며 IAB 노드 입장에서 자녀 노드를 DU(distributed unit) 관점에서 볼 수 있다고 칭한다. 이러한 측면에서, IAB 노드가 자녀 노드와 통신을 수행하는 것을 IAB 노드의 DU 동작이라 할 수 있다.
한편, IAB 환경에서, 각 노드 또는 단말은 심볼 방향(symbol direction)이 공통적으로 또는 개별적으로 정의될 수 있다. 즉, 무선 자원의 특정 단위(예컨대, 전술한 심볼)가 공통적으로 또는 개별적으로 정의될 수 있다. 상기 노드들 중 일부는 중계 노드(중계기)일 수 있다.
1. 동작 방향의 지시(Operation direction indication)
심볼의 포맷을 D, U, X와 같이 링크 방향(link direction)으로 알려주는 대신에, 해당 포맷을 받는 노드 또는 단말의, '동작에 대한 방향' (예를 들어, 전송, 수신)을 주도록 정의할 수 있다.
즉, 심볼의 포맷을 예컨대, 전송(Tx, 또는 T로 표시), 수신(Rx, 또는 R로 표시), 무(None, 또는 N으로 표시)중 적어도 하나와 같이 줄 수 있고 해당 포맷들의 의미는 다음과 같다.
i) 전송(Tx 또는 T): 노드 또는 단말이, 링크와 상관없이 신호를 송신하는 구간임을 나타낼 수 있다.
ii) 수신(Rx 또는 R): 노드 또는 단말이, 링크와 상관없이 신호를 수신하는 구간임을 나타낼 수 있다.
iii) 무(None 또는 N): 노드 또는 단말이, 아무런 동작도 하지 않는 구간임을 나타낼 수 있다.
2. 액세스 링크 및 백홀 링크에 대한 포맷들(Formats for Access link and Backhaul link)
IAB 환경에서 액세스 링크와 백홀 링크의 명확한 자원 구분을 위해서 새로운 심볼 포맷이 필요할 수 있다. 예를 들어, 심볼 포맷을 A, B라 칭하고, 이 때, 그 의미는 다음과 같을 수 있다.
i) A: 액세스 링크만을 위해 사용할 수 있는 심볼, ii) B: 백홀 링크만을 위해 사용할 수 있는 심볼.
노드 또는 단말에게 슬롯 포맷을 알려줄 때, D, X, U 뿐만 아니라 상기 A, B도 추가적으로 알려주거나 사용할 수 있다.
3. 액세스 링크 및/또는 백홀 링크를 위한 엔트리(Entry for Access link and/or Backhaul link)
포맷을 따로 정의하지 않고, 표준 규격(specification)에 정의된 슬롯 포맷의 엔트리(entry) 자체를 액세스 링크용 또는 백홀 링크용 자원임을 지시할 수 있는 엔트리로 정의할 수도 있다.
예를 들어, 전술한 표 3에는 슬롯 포맷의 예로써 0부터 255까지의 인덱스를 가지는 포맷들을 예시하고 있으며, 인덱스 56 - 255에 대해서는 'reserved(유보)' 상태이다. 상기 표 3에서 각 슬롯 포맷을 엔트리(entry)라고 표현할 수 있다. 만약, 노드/단말에게 표준 규격(예컨대, 표 3)의 엔트리 253을 슬롯 포맷의 하나로 알려주면, 상기 노드/단말은 이를 백홀 링크만 사용 가능하다는 것을 의미하는 슬롯 포맷으로 인지할 수 있다. 또는 표준 규격(예컨대, 표 3)의, 엔트리 254를 슬롯 포맷의 하나로 알려주면 상기 노드/단말은 이를 액세스 링크만 사용 가능하다는 것을 의미하는 슬롯 포맷으로 인지할 수 있다. 물론 엔트리 번호는 상기 예시가 아닌, 다른 번호가 될 수도 있다. 발명의 주요 개념은, 백홀 링크와 액세스 링크의 독자적인 사용을 위한 자원(예컨대, 슬롯)임을 나타내는 엔트리가 표준 규격에 명시될 수 있다는 것이다.
4. 액세스 링크 및/또는 백홀 링크를 위한 검색 공간(Search space for Access link and/or Backhaul link)
슬롯 포맷에 대한 정보(슬롯 포맷 정보)는 상위 노드(이를 부모(Parent)노드 또는 단순히 부모라고 칭할 수도 있다)로부터 하위 노드(이를 자녀(Child)노드 또는 단순히 자녀라고 칭할 수도 있다)로 전달될 수 있다. 또는 각 노드에서 해당 노드에 연결된 단말에게 전달될 수 있다. 슬롯 포맷에 대한 정보가 전송될 수 있는 검색 공간이 설정(configure)될 수 있는데, 상기 검색 공간을 설정하는 방법으로 다음과 같은 옵션(option)들을 고려할 수 있다.
i) 옵션 1: 액세스 링크와 백홀 링크에서의 슬롯 포맷 정보를 전달하는 제어 채널을 위한 각각의 검색 공간은 서로 자원이 겹치지 않게 배치할 수 있다. 이는 각 링크의 코어셋(CORESET)의 자원 또한 겹치지 않는 경우를 포함할 수 있다.
ii) 옵션 2: 액세스 링크와 백홀 링크에서의 슬롯 포맷 정보를 전달하는 제어 채널을 위한 각각의 검색 공간의 모니터링 주기를 (무조건) 다르게 줄 수 있다.
옵션 2-1: 각 검색 공간의 모니터링 주기가 겹치고 자원도 겹칠 경우에는 백홀 링크에 대한 검색 공간만 모니터링하도록 하거나 백홀 링크에 대한 검색 공간만 모니터링하는 것으로 가정할 수 있다.
옵션 2-2: 각 검색 공간의 모니터링 주기가 겹치고 자원도 겹칠 경우에는 액세스 링크에 대한 검색 공간만 모니터링하도록 하거나, 액세스 링크에 대한 검색 공간만 모니터링하는 것으로 가정할 수 있다.
5. 포맷 구조(Format structure)
일반적인 자원(예컨대, 슬롯내의 심볼들)의 포맷 구조는 시간 순으로 D - X - U를 가질 수 있다. 상기 포맷 구조라 함은 하나의 슬롯에서 심볼 집합들의 자원 방향을 뜻하며, D - X - U라 함은 슬롯 내에서 D인 심볼 집합(심볼이 하나 또는 그 이상을 포함할 수 있음. 이하 동일)이 먼저 배치되고 그 다음에 X인 심볼 집합, 마지막으로 U인 심볼 집합이 배치된 구조를 뜻한다. 단말이 상향링크를 전송하기 위해서는 GP(guard period)와 상향링크 전송을 준비하는 시간이 필요하기 때문에 D와 U 사이에는 필연적으로 유연한(flexible) 자원이 필요하다.
한편, IAB에서는 어떤 자녀 노드(IAB 노드)의 자원 방향이 '수신(reception)'이라 하더라도 상기 자원에서 부모 노드로부터는 하향링크, 단말로부터는 상향링크일 수 있다.
도 21은 IAB에서, IAB 노드의 자원 방향과 부모 노드, 단말 각각의 자원 방향을 나타낸 도면이다.
도 21을 참조하면, IAB 노드의 자원 방향이 '수신(Rx)'으로 설정된 자원(212)에서 상기 IAB 노드의 부모 노드의 대응하는 자원(213)은 하향링크(D), 상기 IAB 노드에 연결된 단말의 대응하는 자원(211)은 상향링크(U)로 설정될 수 있다.
이처럼 하나의 노드의 입장에서 볼 때, 수신을 해야 하는 자원이라 하더라도 관련된 다른 노드/단말 입장에서 보면, 상기 자원의 방향(링크 방향 또는 자원 방향, 이하 동일)이 다를 수 있다. 특정 노드에게 특정 자원에 대하여 전술한 동작 방향(예컨대, Rx)을 알려 주면, 상기 특정 노드는 상기 특정 자원의 동작 방향을 인지할 수 있지만, 상기 특정 자원 내에서 상향링크와 하향링크 모두 공존할 수 있는 것이다.
도 22는 IAB에서, IAB 노드의 자원 방향과 부모 노드, 단말 각각의 자원 방향의 다른 예를 나타낸 도면이다.
도 22를 참조하면, IAB 노드가 자원들(212, 215, 218)에 대하여 동작 방향으로 'Rx - None - Tx'와 같이 동작 방향을 설정 받았다고 가정하자. 이 때, 상기 Rx 자원(212)에서는 부모 노드로부터의 하향링크 전송 또는 자녀 노드/단말로부터의 상향링크 전송을 받을 수 있다. 즉, 상기 IAB 노드 입장에서 Rx 자원으로 설정된 자원(212)은, 부모 노드 입장에서는 하향링크 자원(213)으로, 자녀 노드/단말 입장에서는 상향링크 자원(211)으로 설정 받을 수 있다. 상기 IAB 노드는 자녀 노드 또는 단말에게 자원 방향을 알려줄 수 있는데, 이 때, 그 자원들(211, 214, 217)에 대해 'U - X - D'형태의 포맷 구조를 알려줄 수 있다. 이처럼, 'U - X - D'의 포맷 구조를 만들 필요가 있으며, 그 외 부가적인 포맷 구조로서(즉, 하나의 슬롯에 대한 포맷 구조로서) 다음 옵션들을 고려할 수 있다.
i) 옵션 1: 포맷 구조가 X로 시작하는 형태, ii) 옵션 2: 포맷 구조가 'U - D'형태에서 U와 D 사이에 X가 있는 형태, iii)옵션 3: 포맷 구조가 D 앞에 X가 있는 형태, iv) 옵션 4: 포맷 구조가 U 뒤에 X가 있는 형태, v)옵션 5: 전술한 표 3에 있는 슬롯 포맷의 앞, 뒤에 X가 있는 형태 등을 고려할 수 있다.
상기 옵션들 중 적어도 하나를 반영하여, 아래 표와 같은 다양한 포맷 구조들을 고려할 수 있다.
[표 6]
Figure pat00013
6. 슬롯 포맷 지시 방법(slot format indication method)
예를 들어, 동적인 슬롯 포맷 관련 정보(Dynamic SFI)를 줄 때, 미리 정해진(예컨대, 표준 규격에 정의된) 슬롯 포맷들을 기반으로 슬롯 포맷 조합을 알려 줄 수 있다.
이러한 방법 외에, 동적 SFI(slot format indicator 또는 slot format information)를 주는 방법으로 자원 방향 슬롯과 심볼 개수를 알려줄 수도 있다.
즉, D(하향링크)에 해당하는 슬롯과 심볼 개수, X에 해당하는 슬롯과 심볼 개수, U(상향링크)에 해당하는 슬롯과 심볼 개수를 알려줄 수 있다. 또한, 각 방향에도 순서가 있으므로 각 방향에 대한 파라미터의 순서도 같이 정의될 수 있다.
7. 슬롯 포맷 적용 타이밍(Slot format application timing application timing)
기지국(gNB)으로부터 슬롯 포맷에 관련된 정보가 전송되는 슬롯 인덱스를 n이라고 하면, 각 노드 및 단말의 슬롯 포맷 전송 수신 슬롯은 슬롯 n+k라고 정의할 수 있다. 즉, 슬롯 포맷에 관련된 정보가 슬롯 n에서 수신되면 노드 또는 단말은 상기 정보에 기반하여 결정된 슬롯 포맷을 슬롯 n+k 또는 슬롯 n+k+1부터 적용할 수 있다. 또는 슬롯 n+k+a부터 적용할 수도 있는데, 이 때 a는 표준 규격에 의하여 정해질 수 있고 또는 RRC/상위 계층 시그널링에 의해서 설정될 수도 있다.
기지국(gNB)이 모든 자녀 노드 및 단말에 대한 슬롯 포맷을 정의하고 전송을 하게 되면, 해당 슬롯 포맷을 알려주는 정보가 각 노드 및 단말에게 전달되기까지 시간이 필요하기 때문에 이러한 과정이 필요할 수 있다.
8. 소프트 타입 시간 자원(Soft type time resource)
일반적인 시간 자원의 방향은 하향링크(D), 유연(F), 상향링크(U)가 있을 수 있다. IAB 환경에서는 도너(donor) 노드가 자신의 모든 자녀 노드들(즉, 상기 도너에 연결된 모든 IAB 노드)에 대해서 자원 할당을 할 수 있다.
그 중 하나의 방법은, 각 IAB 노드들의 반정적인(semi-static) D/U 할당(assignment)을 도너 노드가 전부 결정하여 각 IAB 노드들에게 알려주는 것이다. 이 때, 도너 노드의 입장에서 미래의 각 IAB 노드들의 데이터 부하(data load)를 예측하기 어려우므로, D/F/U를 알려주면서 동시에 각 IAB 노드가 조건부로 가용 가능한 자원도 할당해 줄 수 있다. 이러한 자원을 '소프트(soft)' 자원이라고 정의할 수 있다. 이에 대응되는 것으로 '하드(Hard)' 자원도 정의할 수 있다. 하드 자원에는 하드 D/F/U가 있을 수 있고, 소프트 자원에는 소프트 D/F/U가 있을 수 있다. 하드 자원과 소프트 자원은 예컨대, 다음과 같이 정의될 수 있다.
i) 하드 D/F/U: 각 IAB 노드가 DU로서 동작할 때 D/F/U 자원으로서 아무런 제약 없이 사용할 수 있는 자원.
ii) 소프트 D/F/U: IAB 노드의 부모 노드에 의해서 활성화(activation)될 수 있는 자원으로서, 활성화될 경우에, 상기 IAB 노드가 DU로서 동작할 때 하드 자원과 동일하게 사용할 수 있는 자원.
하드 자원과 소프트 자원에 대한 보다 구체적인 정의는 아래 해당 부분에서 설명한다.
소프트 자원 또한 도너 노드가 하드 자원과 함께 같이 할당해 줄 수 있다.
1) 소프트 자원의 위치
소프트 자원이 배치될 수 있는 영역은 아무런 규칙이 없다면 도너 노드가 임의로 배치할 수 있다. 그러나 소프트 자원이 현재와 가까운 미래의 데이터 부하(data load)에 따라서 가용 여부가 결정되므로, 사용하기 적절한 위치에 배치를 하는 것이 IAB 노드 입장에서 자원 낭비가 적을 수 있다. 도너 노드는 다음 규칙에 따라서 소프트 자원을 배치할 수 있다.
i) 소프트 D:
옵션 1: 하드 D와 하드 F 사이에 배치될 수 있다. 또는 옵션 2: 하드 D와 소프트 F 사이에 배치될 수 있다.
ii) 소프트 F: 옵션 1: 소프트 D와 소프트 U 사이에 배치될 수 있다. 또는 옵션 2: 하드 F 내(예컨대 하드 F와 겹치게)에 배치될 수 있다.
iii) 소프트 U: 옵션 1: 하드 F와 하드 U 사이에 배치될 수 있다. 또는 옵션 2: 소프트 F와 하드 U 사이에 배치될 수 있다.
2) 자원 타입 지시(Resource type Indication)
소프트 자원을 IAB 노드에게 지시해주는 방법은 RRC 파라미터를 통해 알려주는 방법과 표준에 정의된 슬롯 포맷을 이용하는 방법이 있을 수 있다.
i) RRC 파라미터를 이용하는 방법
*기지국이 단말에게 알려주는 반정적인 D/U 할당(semi-static D/U assignment)에는, 셀 특정적 D/U 할당(cell-specific semi-static D/U assignment) 및/또는 단말 특정적 D/U 할당(UE-specific semi-static D/U assignment)이 있다.
셀 특정적으로 D/U 할당을 알려주는 방법은, 반정적(semi-static) 주기와, 그 주기의 처음부터 시작하는 D 슬롯의 개수(x1) 및 그 다음 슬롯 내의 D 심볼 개수(x2), 그 주기의 끝에서부터 역으로 시작하는 U 슬롯의 개수(y1) 및 그 다음 슬롯 내의 U 심볼의 개수(y2)를 알려준다.
단말 특정적으로 D/U 할당을 알려주는 방법은, 반정적 주기 내의 어떤 슬롯을 지정하고, 그 슬롯 내의 처음부터 시작하는 D 심볼의 개수 또는 U 심볼을 알려준다. 단말 특정적으로 D/U 할당을 알려주는 방법에서는 하나의 슬롯에 대해서 자원 방향을 정의할 수 있으므로 다수의 슬롯에 대해서 단말-특정적으로 알려주려면 다수의 단말-특정적인 지시(indication)가 정의될 수 있다.
이러한 방법을 응용하여 소프트 자원을 정의해주는 방법을 고려해볼 수 있다.
첫번째 옵션(Opt1)은 셀 특정적 방법을 응용하여, 반정적 D/U 할당을 알려줄 때, '하드 D - 소프트 D - F - 소프트 U - 하드 U'의 순서를 가정하고, 각각에 대해서 슬롯 개수 및 그 다음 슬롯 내 심볼 개수를 알려줄 수 있다.
이때, 상기 x2와 상기 y2가 지시된(알려진) 슬롯에서는 방향이 정해지지 않은 심볼이 남아 있을 수 있는데 이에 대해서도 소프트 D/U를 정의할 수 있다. 예를 들어, x2와 y2가 0보다 큰 숫자로 지시되고 소프트 D/U가 다음 슬롯부터 설정될 경우 해당 심볼들은 모두 소프트 D/U로 정의할 수 있다.
소프트 D/U 또한 하드 D/U처럼 2개의 파라미터를 사용하여 슬롯 개수와 심볼 개수를 알려줄 수 있다.
두번째 옵션(Opt2)은 단말-특정적인 방법을 응용하여, 반정적 D/U 할당을 알려줄 때, 소프트 D/F/U에 대해서만 알려주는 RRC 시그널링을 정의할 수 있다. 하나의 슬롯을 정해서 해당 슬롯 내의 소프트 D/F/U 심볼 숫자(인덱스, 개수)를 알려줄 수도 있다.
ii) 슬롯 포맷 표를 이용하는 방법
전술한 표 3와 같은 형태로, 슬롯 단위의 슬롯 포맷을 하드 D/F/U 뿐만 아니라 소프트 D/F/U를 포함하여 정의하고, 이러한 슬롯 포맷을 도너 노드가 IAB 노드에게 알려줌으로써 소프트 D/F/U를 정의할 수 있다.
<소프트 자원의 활성화>
1. 활성화 시그널링
도너 노드에 의해서 소프트 자원이 정의가 되면, IAB 노드의 부모 노드는 자신의 데이터 부하 및 자녀 노드의 데이터 부하 상황에 따라서 소프트 자원을 활성화시킬 수 있다. 이 때, 소프트 자원을 활성화 시키는 방법에 대해 설명한다.
1)단일 소프트 자원의 활성화
소프트로 정의된 자원을 일정 단위로 정의하여, 하나의 소프트 자원 단위 별로 활성화를 시킬 수 있다. '하나'의 소프트 자원 집합은 연속된 소프트 자원 심볼의 묶음으로 볼 수 있다. 부모 노드는 소프트 자원 집합 별로 인덱스를 정하고, 특정 인덱스를 별도로 자신의 자녀 노드에게 알려줌으로써 상기 특정 인덱스에 해당하는 소프트 자원 집합을 자녀 노드가 DU로서 동작할 때 사용할 수 있는 자원으로 전환시켜줄 수 있다. 이 때, 인덱스를 별도로 알려주는 방법은 새로운 DCI 포맷을 만들어 사용할 수도 있고, 기존 DCI 포맷에 필드를 추가해서 알려줄 수도 있다. 또는 DCI 포맷 2_0에서 SFI 인덱스를 전송하는데, 이를 이용하여 소프트 자원 집합을 활성화시킬 수도 있다.
2) 모든 소프트 자원의 활성화
활성화 신호가 오면 하나의 주기에 대해서만 소프트 자원을 활성화시킬 수 있다. 또는, 활성화할 주기도 같이 시그널링해 줄 수 있다.
또는, N 주기에 대해서 소프트 자원을 활성화시킬 수 있다. 이 때, 상기 N은 활성화 신호를 통해 알려줄 수도 있고 별도의 RRC 시그널링을 통해 미리 정의해둘 수도 있다. 활성화 신호를 별도로 알려주는 방법은 새로운 DCI 포맷을 만들어 알려줄 수도 있고, 기존 DCI 포맷에 필드를 추가해서 알려줄 수도 있다.
2. 슬롯 포맷 지시 시그널링을 통한 활성화
부모 노드가 자녀 노드에게, 소프트 영역까지 명확하게 자원 방향을 정의한 슬롯 포맷을 지시할 수 있다. 슬롯 포맷을 지시하는 방법은 DCI 포맷 2_0을 이용하는 방법을 적용할 수 있다.
<IAB 노드에 대한 우선 순위 규칙들(Priority rules for IAB node)>
IAB 노드는 단말(mobile terminal: MT) 측면에서의 D/U(downlink/uplink) 할당과 분산 장치(distributed unit: DU) 측면에서의 D/U(downlink/uplink) 할당 모두를 받을 수 있다.
도 23은, IAB 노드가 받는 MT 측면에서의 D/U 할당에 포함된 자원 타입들과 DU 측면에서의 D/U 할당에 포함된 자원 타입들을 예시한다.
도 23을 참조하면, MT 측면에서의 D/U 할당은 자원 타입으로 D(downlink)/F(flexible)/U(uplink)를 포함한다. F로 표시되는 자원은 D 또는 U로 사용될 수 있는 유연한 자원일 수 있다. MT 측면에서의 D/U 할당이라는 측면에서, 이하에서 MT 측면에서의 D/U 할당에 따른 D를 MT-D, U를 MT-U, F를 MT-F라고 표시할 수도 있다.
DU 측면에서의 D/U 할당은 자원 타입으로 하드(hard) D/F/U와 소프트(soft) D/F/U 그리고 가용하지 않음(not-available: NA)을 지시 받을 수 있다. 즉, 특정 자원에 대해 총 7가지의 자원 타입 중 하나를 지시할 수 있다.
하드 자원은, IAB 노드와 자녀 노드 즉, DU 자녀 링크(DU child link)에 대해 항상 표시된 방향대로 사용 가능한 자원일 수 있다.
소프트 자원은 상기 DU 자녀 링크에 대해 사용할 수 있는지(availability) 여부가 명시적 및/또는 묵시적으로 상기 IAB 노드의 부모 노드에 의하여 제어되는 자원일 수 있다.
예를 들어, 하드 하향링크(H-D)는 IAB 노드가 자신의 자녀 노드에게 신호를 전송하는 것이 항상 가능한(always available) 자원임을 나타내고, 소프트 하향링크(S-D)는 IAB 노드가 자신의 자녀 노드에게 신호를 전송하는 것이 자신의 부모 노드에 의하여 제어되는 자원임을 나타낼 수 있다.
하드 상향링크(H-U)는 IAB 노드가 상기 자녀 노드로부터 신호를 수신하는 것이 항상 가능한(always available) 자원임을 나타내고, 소프트 상향링크(S-U)는 IAB 노드가 상기 자녀 노드로부터 신호를 수신하는 것이 상기 부모 노드에 의하여 제어되는 자원임을 나타낼 수 있다.
하드 플렉서블(H-F)은 IAB 노드와 상기 자녀 노드와의 관계에서 항상 플렉서블 자원임을 나타내고, 소프트 플렉서블(S-F)은 IAB 노드와 상기 자녀 노드와의 관계에서 플렉서블 자원인지 여부가 상기 부모 노드에 의하여 제어되는 자원임을 나타낼 수 있다.
가용하지 않음(NA)은, IAB 노드와 상기 자녀 노드와의 관계에서 사용될 수 없는 자원임을 나타낼 수 있다.
MT 측면에서의 D/U 할당과 DU 측면에서의 D/U 할당은 동일한 뉴머롤로지(numerology)와 파라미터에 의하여 정의될 수도 있지만, 서로 독립적으로 정의될 수도 있다. 서로 의존적 또는 독립적으로 정의가 된다 하더라도, 자원을 할당하는 도너 노드가 자원을 할당 받는 모든 노드들에 대하여 완벽하게 간섭이 없게(zero interference를 구현)하는 자원 방향을 상기 모든 노드들에게 할당한다는 것은 불가능할 수 있다.
따라서, MT 측면에서의 D/U 할당과 DU 측면에서의 D/U 할당 간에 서로 충돌이 발생할 경우, IAB 노드가 어떠한 할당에 우선순위를 두고 동작해야 할지 규칙을 정할 필요가 있다.
MT 측면에서의 D/U 할당에서 D(MT-D)의 경우 다음의 옵션이 가능하다.
1) 옵션 1: 반정적 F(flexible) 자원을 모두 카운트하지 않는 방식.
동적 SFI가 구성되지 않은 경우로, 반정적 DL 이거나 반정적 F(flexible) 인데 RRC로 하향링크 자원이 구성된 경우일 수 있다.
동적 SFI가 구성된 경우, 반정적 DL 이거나 반정적 F(flexible)가 RRC로 하향링크 자원으로 구성된 경우에 대해 설명한다. 이 때, 동적 SFI로 취소된 경우, 해당 자원은 가용하지 않음(NA) 또는 여전히 MT-D로 간주할 수 있다. 그리고 반정적 F(flexible)인데 동적으로 D로 변경된 자원의 경우, 이러한 변경을 모를 수 있으므로, MT-D로 간주하지 않을 수 있다.
2) 옵션 2: 반정적 F/D를 모두 MT-D로 간주하는 방식
MT-U의 경우도 위와 유사하게 F자원을 RRC에 의해서 UL로 바뀐 자원만 포함하거나 또는 F 자원을 U로 간주할 수도 있다. 혹은 F 자원은 RRC로 알려주지 않은 경우 모두 DL로 간주할 수도 있다. 혹은 MT-D와 MT-U는 반정적 D 또는 U로 간주하고 MT-F(flexible)을 고려할 수도 있다. 여기서는 옵션 1에 맞추어 설명하나 옵션 2 혹은 반정적 D/U만 간주한 것에도 적용 가능하다.
하드(hard) DU 자원들은 다른 자원들 예컨대, MT 측면에서의 D/U 할당에 따른 자원들 및 소프트 DU 자원들에 비해 더 높은 우선 순위를 가질 수 있다. 즉, 하드 자원들과 MT 측면에서의 D/U 할당에 따른 자원들(또는 소프트 자원들)이 상호 간에 방향이 다르게 설정되는 경우, 하드 자원의 방향이 더 높은 우선 순위를 가지고, 노드 또는 단말은 하드 자원의 방향에 맞는 동작을 수행할 수 있다.
소프트 자원의 묵시적 자원 방향 결정은 다음과 같이 수행할 수 있다.
만약, RRC 설정이나 동적 스케줄링에 의하여 소프트 자원이 명시적으로 단말에게 할당되지 않았다면, 상기 소프트 자원은 DU를 위하여 사용되는 것으로 가정할 수 있다.
만약, RRC 설정이나 동적 스케줄링에 의하여 소프트 자원이 명시적으로 단말에게 할당되었다면, 상기 소프트 자원은 단말을 위하여 사용되는 것으로 가정할 수 있다.
<규칙 1>
도 24는, 본 발명의 일 실시예에 따른 노드(IAB 노드)의 자원 사용 방법을 나타낸다. 도 24에서는, 부모 노드-노드(IAB 노드)-자녀 노드와 같이 IAB 환경에서의 연결 상태를 가정한다.
도 24를 참조하면, IAB 노드(이하 노드로 약칭)는 부모 노드(parent node)와의 통신에 관련된 제1 할당 정보 및 자녀 노드(child node)와의 통신에 관련된 제2 할당 정보를 수신한다(S101). 제1 할당 정보 및 제2 할당 정보는 개별적으로 수신될 수도 있고, 하나의 메시지를 통해 수신될 수도 있다. 개별적으로 수신될 경우, 제1 할당 정보는 상위 계층 신호(RRC 메시지와 같은 상위 계층 신호, F1 Application Protocol (F1AP))를 통해 수신되고, 제2 할당 정보는 물리 계층 신호(PDCCH를 통해 수신되는 DCI)를 통해 수신될 수 있다. 또는 제1 할당 정보는 물리 계층 신호(PDCCH를 통해 수신되는 DCI)를 통해 수신되고, 제2 할당 정보는 상위 계층 신호(RRC 메시지와 같은 상위 계층 신호)를 통해 수신될 수 있다. 또는, 제1, 2 할당 정보 모두 상위 계층 신호들을 통해 수신되거나 또는 물리 계층 신호들(DCI들)을 통해 수신될 수 있다. 하나의 메시지를 통해 제1, 2 할당 정보가 수신될 경우, 예컨대, RRC 메시지와 같은 상위 계층 신호 또는 PDCCH를 통해 수신되는 DCI를 통해 수신될 수 있다.
한편, 상기 제1 할당 정보는 자원의 가용성(resource availability)를 (반정적/명시적으로) 알려주는 정보, 상기 제2 할당 정보는 소프트 자원 가용성(soft resource availability)을 (동적/명시적으로) 알려주는 정보라고 할 수도 있다.
상기 제1 할당 정보는 특정 자원의 자원 타입을 3가지 중 하나로 알려주고, 상기 제2 할당 정보는 상기 특정 자원의 자원 타입을 7가지 중 하나로 알려줄 수 있다. 예를 들어, 제1 할당 정보는 전술한 MT 측면에서의 D/U 할당일 수 있고, 제2 할당 정보는 전술한 DU 측면에서의 D/U 할당일 수 있다. 전술한 바와 같이 MT 측면에서의 D/U 할당은 특정 자원을 D(downlink)/F(flexible)/U(uplink) 중 어느 하나의 자원 타입으로 지시할 수 있다(알려줄 수 있다). 또한, DU 측면에서의 D/U 할당은 특정 자원을 하드(hard) D/F/U, 소프트(soft) D/F/U 그리고 가용하지 않음(not-available: NA)과 같은 7가지 타입들 중 어느 하나로 지시할 수 있다(알려줄 수 있다). 노드는 상기 제1 할당 정보 및 상기 제2 할당 정보를 상기 부모 노드(도너 노드)로부터 수신할 수 있다.
노드는, 상기 제1 할당 정보 및 상기 제2 할당 정보에 기반하여 특정 자원을 사용하여 상기 부모 노드 또는 상기 자녀 노드와 통신을 수행한다(S102).
이 때, 상기 특정 자원에 대하여 제1 할당 정보가 지시하는(알려주는) 자원 타입과 제2 할당 정보가 지시하는(알려주는) 자원 타입이 반드시 일치하는 것은 아닐 수 있다. 즉, 상기 특정 자원에 대하여 제1 할당 정보가 지시하는(알려주는) 자원 타입과 제2 할당 정보가 지시하는(알려주는) 자원 타입이 서로 다르거나 충돌할 수도 있다. 이 경우, 어떻게 처리를 할 것인지가 문제될 수 있다.
본 발명에 따르면, 예컨대, 상기 제2 할당 정보가 특정 자원에 대해, 항상 자녀 노드와의 통신에 사용할 수 있는 하드(hard) 자원으로 지시할 경우, 상기 제1 할당 정보에 관계없이 상기 특정 자원을 상기 노드가 상기 자녀 노드와의 통신에 사용할 수 있다.
또한, 상기 제2 할당 정보가 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려주었는데, 상기 자원이 상기 제1 할당 정보에 의하여 상기 노드에게 할당되면, 상기 자원은 상기 부모 노드와의 통신에 사용되는 것으로 간주될 수 있다.
상기 제2 할당 정보가 자원을 소프트 자원(예컨대, 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블)으로 알려주었는데, 상기 자원이 자녀 노드와의 통신(즉, DU 동작)을 위해 사용 가능하다는 별도의 명시적지시/시그널링이 없으면, 상기 자원을 상기 부모 노드와의 통신(MT 동작)에 사용할 수 있다(S103).
소프트 자원에서 MT 동작을 수행하는 것은 그러한 명시적 지시가 있을 때 뿐만 아니라 명시적 지시가 없을 때에서도 허용될 수 있다. 그러면,부모 노드로부터의 PDCCH를 IAB 노드가 모니터링할 수 있는 기회가 더 많아질 것이다.
만약, 명시적 지시가 없을 때 소프트 자원에서 MT 동작을 수행하는 것이 허용되지 않는다면, IAB 노드의 DU 설정에 NA 자원이 없을 경우 문제가 될 수 있다. 이 경우, IAB 노드는 PDCCH를 모니터링할 수 없어 DU 소프트 자원에 대한 가용한 자원 설정을 위한 L1(물리 계층) 신호를 수신하지 못할 수 있고, 그러면, 부모 노드와의 통신에 문제가 발생할 수 있다.
또는, 상기 제2 할당 정보가 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려준 경우, 상기 자원이 상기 제1 할당 정보에 의하여 상기 노드에게 명시적으로 할당되지 않으면, 상기 자원은 상기 자녀 노드와의 통신에 사용되는 것으로 간주될 수 있다.
상기 제2 할당 정보가 자원을 소프트 자원(예컨대, 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블)으로 알려주었는데, 상기 자원이 부모 노드와의 통신(즉, MT 동작)을 위해 사용 가능하다는 별도의 명시적/묵시적 지시/시그널링이 없으면, 상기 자원을 상기 자녀 노드와의 통신(DU 동작)에 사용할 수 있다.
예를 들어, TDM 동작에서는, IAB노드의 DU 측면에서의 전송과 MT 측면에서의 전송이 동시에 수행될 수 없을 수 있고 또한, DU 측면에서의 수신과 MT 측면에서의 수신 역시 동시에 수행될 수 없을 수 있다. 다음 표는 DU 측면에서의 D/U 할당(편의상 DU 설정이라 약칭)과 MT 측면에서의 D/U 할당(편의상 MT 설정이라 약칭)이 주어진 상황에서 노드(IAB 노드)가 어떤 동작을 하는지를 예시한다.
[표 7]
Figure pat00014
상기 표에서 DU는 IAB 노드와 자녀 노드 간에서의 동작임을 표시하고, MT는 IAB 노드와 부모 노드 간에서의 동작임을 표시할 수 있다.
구체적으로, 상기 표에서, “MT: 전송”은 단말(MT, 자녀 노드)가 스케줄링되면 전송해야 함(MT should transmit if scheduled)을 의미할 수 있다. “DU: 전송”은 IAB 노드(즉, DU)가 전송할 수 있음(DU may transmit)을 의미할 수 있다. “MT: 수신”은 단말이 (수신할 것이 있다면) 수신을 할 수 있어야 함(MT should be able to receive (if there is anything to receive))을 의미할 수 있다. “DU: 수신”은 IAB 노드가 자녀 노드 또는 단말로부터의 상향링크 전송을 스케줄링할 수 있음(DU may schedule uplink transmissions from child nodes or UEs)을 의미할 수 있다. “MT: 전송/수신”은 단말(자녀 노드)이 스케줄링되면 전송을 해야 하고, 수신도 할 수 있어야 함을 의미하는데, 다만 동시에 수행되는 것은 아님을 의미(MT should transmit if scheduled and should be able to receive, but not simultaneously)할 수 있다. “DU: 전송/수신”은 IAB 노드가 전송을 할 수 있고, 자녀 노드 또는 단말로부터의 상향링크 전송을 스케줄링할 수 있으나 다만 동시에 수행되는 것은 아님(DU may transmit and may schedule uplink transmission from child nodes and UEs, but not simultaneously)을 의미할 수 있다. “IA”는 IAB 노드(DU) 자원이 (명시적 또는 묵시적으로) 사용 가능함을 지시 받은 것을 의미(the DU resource is explicitly or implicitly indicated as available)할 수 있다.
“INA”는 IAB 노드(DU) 자원이 (명시적 또는 묵시적으로) 사용 가능하지 않음을 지시 받은 것을 의미(the DU resource is explicitly or implicitly indicated as not available)할 수 있다.
“MT: NULL”은 단말(자녀 노드)가 전송을 하지 않고 수신하는 것이 가능할 필요가 없음(MT does not transmit and does not have to be able to receive)을 나타낼 수 있다. “DU: NULL”은 IAB 노드(DU)가 전송을 하지 않고 자녀 노드 또는 단말로부터의 상향링크 전송을 스케줄링하지 않음(DU does not transmit and does not schedule uplink transmission from child nodes and UEs)을 의미할 수 있다.
상기 표는 풀 듀플렉스 동작은 가능하지 않은 IAB 환경에 대한 것일 수 있다.
도 25는 자녀 노드, IAB 노드, 부모 노드를 포함하는 무선통신 시스템에서 각 노드들의 동작 방법을 나타낸다.
도 25를 참조하면, IAB 노드는 부모 노드(parent node)와의 통신에 관련된 제1 할당 정보 및 자녀 노드(child node)와의 통신에 관련된 제2 할당 정보를 부모 노드로부터 수신한다(S1010).
IAB 노드는 상기 제1 할당 정보 및 상기 제2 할당 정보에 기반하여 상기 자녀 노드와 통신(S1011-1) 또는 부모 노드와 통신(S1011-2)을 수행한다.
이 때, 도 24를 참조하여 이미 설명한 바와 같이, 상기 제2 할당 정보가 특정 자원에 대해, 항상 자녀 노드와의 통신에 사용할 수 있는 하드(hard) 자원으로 지시할 경우, 상기 제1 할당 정보에 관계없이 상기 특정 자원을 상기 노드가 상기 자녀 노드와의 통신에 사용할 수 있다.
또한, 상기 제2 할당 정보가 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려주었는데, 상기 자원이 상기 제1 할당 정보에 의하여 상기 노드에게 할당되면, 상기 자원은 상기 부모 노드와의 통신에 사용되는 것으로 간주될 수 있다.
또는, 상기 제2 할당 정보가 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려준 경우, 상기 자원이 상기 제1 할당 정보에 의하여 상기 노드에게 명시적으로 할당되지 않으면, 상기 자원은 상기 자녀 노드와의 통신에 사용되는 것으로 간주될 수 있다.
도 26은, 자녀 노드와의 통신에 관련된 자원의 사용 방법을 예시한다.
도 26을 참조하면, IAB 노드는, 자녀 노드와의 통신에 관련된 자원이 자원 할당 정보(예컨대, 전술한 제2 할당 정보)에 의하여 하드 자원(Hard resource)으로 지시되었는지 여부를 판단한다(S251). 상기 자원 할당 정보(즉, DU 측면에서의 D/U 할당)는 상기 자원을 하드(hard) D/F/U, 소프트(soft) D/F/U 그리고 가용하지 않음(not-available: NA)과 같은 7가지 타입들 중 어느 하나로 지시할 수 있다(알려줄 수 있다).
만약, 상기 자원이 하드 자원을 지시되었다면, 상기 자원을 이용하여 자녀 노드와의 통신(즉, DU 동작)을 수행할 수 있다(S252).
만약, 상기 자원이 하드 자원으로 지시되지 않았다면, 상기 자원이 소프트 자원으로 지시되었는지 여부를 판단한다(S253).
만약, 상기 자원이 소프트 자원으로 지시되지 않았다면, 상기 자원은 가용하지 않음(not-available: NA)로 지시된 것이므로, IAB노드는 상기 자원을 자녀 노드와의 통신에 사용할 수 없다(S254).
만약, 상기 자원이 소프트 자원으로 지시된 경우, 명시적/묵시적(explicit/implicit)으로 상기 소프트 자원을 자녀 노드와의 통신(DU 동작)에 사용할 수 있다는 지시가 없으면, 부모 노드와의 통신(MT 동작)에 상기 자원을 사용하고, 상기 지시가 있으면 상기 자녀 노드와의 통신에 사용할 수 있다(S255).
동일한 IAB노드가 DU 동작 즉, 자녀 노드와의 통신을 수행할 때 DU라 칭할 수 있고, MT 동작 즉 부모 노드와의 통신을 수행할 때 MT라 칭할 수 있다. 만약, 어떤 자원이 '가용하지 않음(not available: NA)'으로 설정되면, DU는 상기 자원을 사용한다고 가정할 수 없다. 하드 DU 자원들의 경우, DU는 MT의 설정에 무관하게 상기 하드 DU 자원들을 사용할 수 있다고 가정할 수 있다.
소프트 DU 자원들의 경우, 만약, 상기 소프트 DU 자원이 가용하다고 지시되면, DU는 상기 소프트 DU 자원을 사용할 수 있다고 가정할 수 있다. 만약, 소프트 자원이 가용하다고 지시되지 않으면, DU는 상기 소프트 자원을 사용할 수 있다고 가정할 수 없다. 소프트 자원의 사용이란 DU에서 특정 신호 및 채널(예컨대, PDSCH/PUSCH)의 전송/수신을 포함할 수 있다.
소프트 자원의 가용성에 대한 묵시적 지시 및 명시적 지시 모두 지원될 수 있다. 소프트 DU 자원 가용성의 묵시적 지시의 경우, IAB 노드는 간접적인 수단에 기반한 설정 및 스케줄링에 따라, MT의 전송/수신 능력에 영향을 미치지 않으면서, DU 자원이 사용될 수 있음을 알고 있다. 상기 수단은 예컨대, 1) MT에서 상향링크 스케줄링 그랜트의 부족, 2) MT 전송에 사용할 수 있는 데이터가 없음, 3) 설정된 MT 검색 공간, 4) 설정된 RS 측정 시기(예: SSB/CSI-RS) 등이 될 수 있다.
한편, 자원이 사용 가능하다는 명시적 지시는 DCI 지시를 기반으로 할 수 있다. 이 때, 다음과 같은 옵션을 고려할 수 있다. 1) DCI 포맷 2_0을 통한, SFI와 유사한 지시, 2) 2 개의 SFI 지시들을 사용(예: 다중 슬롯 스케줄링 메커니즘 기반), 3) 새로운 DCI 포맷을 정의하여 사용 등.
정리하면, DU 자원이 명시적으로 하드(hard)라고 설정되면 DU 동작을 수행하고, 가용하지 않음(NA)라고 설정되면 MT 동작을 수행할 수 있다.
DU 자원이 명시적으로 소프트(soft)라고 설정되고, 명시적으로 IA라고 설정되면 DU 동작, INA라고 설정되면 MT 동작을 수행할 수 있다.
DU 자원이 명시적으로 소프트라고 설정되고, 명시적으로 IA/INA가 설정되지 않은 경우, MT의 동작이 요구되면 MT 동작, 그렇지 않으면 DU 동작을 수행할 수 있다.
이하에서는, MT 측면에서의 D/U 할당(제1 할당 정보)과 DU 측면에서의 D/U 할당(제2 할당 정보)에 의하여 동일 자원에 대한 자원 타입에 충돌이 발생하는 경우 어떤 식으로 처리할 것인지를 보다 구체적인 예들 각각에 대해 설명한다.
1. MT-D와 충돌하는 경우.
DU-하드 D: DU-하드 D에 우선순위를 두고 동작할 수 있다. 즉, MT-D 자원은 MT 입장에서 가용하지 않음(unavailable)으로 간주할 수 있다.
DU-소프트 D: MT-D에 우선순위를 두고 동작할 수 있다. 즉, DU-소프트 D의 자원은 가용하지 않음(unavailable)으로 간주할 수 있다.
DU-하드 U: DU-하드 U에 우선순위를 두고 동작할 수 있다. 즉, MT-D 자원은 IAB가 FDM/SDM을 지원하는 경우 MT-D/DU-U로 간주하고, 그렇지 않은 경우, 해당 자원(MT-D)은 가용하지 않음(unavailable)으로 간주할 수 있다.
DU-소프트 U: MT-D에 우선순위를 두고 동작할 수 있다. 즉, MT-D 자원은 IAB가 FDM/SDM을 지원하는 경우 MT-D/DU-U로 간주하고, 그렇지 않은 경우, 해당 자원(DU-소프트 U)은 가용하지 않음(unavailable)으로 간주할 수 있다.
DU-하드 F: 해당 자원은 IAB 노드에 유연한 자원이므로 IAB가 FDM/SDM을 지원하는 경우, MT-D에 맞추어 MT-D/DU-U로 설정하고, 그렇지 않은 경우, DU자원으로 설정하고 MT를 가용하지 않음으로 가정할 수 있다.
DU-소프트 F: 해당 자원은 MT-D에 우선 순위를 두고 IAB가 FDM/SDM을 지원하는 경우, MT-D에 맞추어 MT-D/DU-U로 설정하고, 그렇지 않은 경우, MT 자원으로 설정하고 DU를 가용하지 않음으로 가정할 수 있다.
DU-가용하지 않음(unavailable): 해당 경우는 MT-D의 MT 기능(function)을 가정할 수 있다. 해당 자원은 DU가 사용하지 않는 것이므로 MT의 기능을 우선권 없이 할 수 있으며, 이는 DU의 가용하지 않음에 해당하는 자원들에서 다 적용할 수 있다. 위와 유사한 방식을 MT-U에도 적용할 수 있다.
2. MT-U와 충돌하는 경우.
DU-하드 D: DU-하드 D에 우선순위를 두고 동작할 수 있다.
DU-소프트 D: MT-U에 우선순위를 두고 동작할 수 있다.
DU-하드 U: DU-하드 U에 우선 순위를 두고 동작할 수 있다.
DU-소프트 U: MT-U에 우선 순위를 두고 동작할 수 있다.
한편, 단순히 D/U 할당들끼리 충돌이 날 수도 있지만, 코어셋, CSI-RS, 그랜트 없이 사용할 수 있는 자원(grant free resource), 상위 계층에 의하여 설정된 PDSCH, PUCCH, PUSCH와 같은 반정적인 자원 설정과도 충돌이 날 수 있다. 이러한 설정은 MT 측면에서 받았을 때, DU의 자원들과 방향이 충돌이 날 경우 다음과 같은 규칙을 적용할 수 있다.
1) MT-F에서의 MT 하향링크 설정(예컨대, 코어셋, CSI-RS, 상위 계층에 의하여 설정된 PDSCH)과 충돌하는 경우,
DU-하드 D: DU-하드 D에 우선순위를 두고 동작할 수 있다.
DU-소프트 D: MT-하향링크 설정에 우선 순위를 두고 동작할 수 있다.
DU-하드 U: DU-하드 U에 우선 순위를 두고 동작할 수 있다.
DU-소프트 U: MT-하향링크 설정에 우선순위를 두고 동작할 수 있다.
2) MT-F에서의 MT 상향링크 설정(예컨대, 그랜트 프리 자원, 상위 계층에 의하여 설정된 PUCCH, PUSCH)과 충돌하는 경우,
DU-하드 D: DU-하드 D에 우선순위를 두고 동작할 수 있다.
DU-소프트 D: MT-U에 우선 순위를 두고 동작할 수 있다.
DU-하드 U: DU-하드 U에 우선 순위를 두고 동작할 수 있다.
DU-소프트 U: MT-상향링크 설정에 우선순위를 두고 동작할 수 있다.
<규칙 2>
MT-D와 DU-하드 D/U, DU-소프트 D/U가 충돌했을 경우, 항상 MT-D에 우선순위를 두고 동작할 수 있다. 즉, MT-D로 간주하고 동작할 수 있다.
MT-U와 DU-하드 D/U, DU-소프트 D/U가 충돌했을 경우, 항상 MT-U에 우선순위를 두고 동작할 수 있다. 즉, MT-U로 간주하고 동작할 수 있다.
MT-F내의 MT 하향링크 설정(예컨대, 코어셋, CSI-RS, 상위 계층에 의하여 설정된 PDSCH)과 DU-하드 D/U, DU-소프트 D/U가 충돌하는 경우, 옵션 1은 항상 MT-하향링크 설정에 우선순위를 두고 동작하는 것이고, 옵션 2는 항상 DU의 할당에 우선순위를 두고 동작하는 것이다.
MT-F 내의 MT 상향링크 설정(예컨대, 그랜트 프리 자원, 상위 계층에 의하여 설정된 PUCCH, PUSCH)과 DU-하드 D/U, DU-소프트 D/U가 충돌하는 경우, 옵션 1은 항상 MT-상향링크 설정에 우선순위를 두고 동작하는 것이고, 옵션 2는 항상 DU의 할당에 우선순위를 두고 동작하는 것이다.
<규칙 3>
MT D/U와 DU 하드 F가 충돌하는 경우, 옵션 1은, DU 하드 F는 사용 여부가 불분명하므로 MT로 동작하는 것이다. 즉, MT D/U에 우선 순위를 줄 수 있다. 옵션 2는, DU 하드 F는 DU가 스케줄링에 사용할 수도 있으므로 MT의 D/U를 무시하고 DU로 동작하는 것이다.
MT D/U와 DU 소프트 F가 충돌하는 경우, MT로 동작할 수 있다.
MT D/U와 DU 가용하지 않음(not-available) 자원이 충돌하는 경우, MT로 동작할 수 있다.
<규칙 4>
단말(MT)과 노드(분산 장치: DU) 간에서는, 1) 옵션 1: 부모 노드와의 연결이 항상 우선 순위에 있어 MT 동작이 DU 동작보다 항상 우선할 수 있다. 2) 옵션 2: 자녀 노드와의 연결이 서비스 유지를 위해 항상 우선순위에 있어 DU 동작이 MT 동작보다 항상 우선할 수 있다.
<규칙 5>
MT와 DU 소프트 자원 간에서는, 옵션 1: DU 소프트로 유지가 될 때 소프트 자원은 가용하지 않은 자원과 마찬가지이므로 MT 동작이 우선할 수 있다. 옵션 2: 부모 노드로부터 소프트 자원 활성화가 언제 올지 모르고, 또 활성화 신호가 왔으나 이를 놓쳤을(miss) 수도 있으므로, 소프트 자원에서는 MT 동작을 하지 않을 수도 있다.
MT와 DU 하드 자원 간에서는, 옵션 1: 부모 노드와의 연결이 항상 우선 순위가 있으므로 MT 동작을 DU 동작보다 항상 우선할 수 있다. 또는 옵션 2: 자녀 노드로의 연결이 서비스 유지를 위해 항상 우선순위가 있으므로 DU 동작이 MT 동작보다 항상 우선할 수 있다.
<규칙 6>
MT F 내의 MT 자원 설정과 DU 소프트 자원 간에서는, 옵션 1: 부모 노드와의 연결이 항상 우선순위가 있으므로 항상 MT 자원 설정에 따라 동작할 수 있다. 또는 옵션 2: 자녀 노드와의 연결이 서비스 유지를 위해 항상 우선순위가 있으므로 DU 동작이 MT 동작보다 항상 우선할 수 있다.
단말의 MT 자원 설정과 DU F 자원 간에서는, 옵션 1: 부모 노드와의 연결에 항상 우선순위가 있으므로 항상 MT 자원 설정에 따라 동작할 수 있다. 또는 옵션 2: 자녀 노드와의 연결이 서비스 유지를 위해 항상 우선순위가 있으므로 DU F에 스케줄링을 할 수 있으므로, MT 자원 설정을 무시할 수 있다.
<DU의 자녀 노드에 대한 우선 순위 규칙>
DU 측면에서의 소프트 자원이기 때문에 DU가 해당 자원에 설정을 할 수 있는지 여부가 중요하다. 또한 DU는 소프트 자원 설정을 가지고 있지만 MT 또한 소프트 자원 설정을 볼 수 있는 지 여부 또한 중요하다.
소프트 자원은 DU가 당장은 사용할 수 없지만, 사용 가능한 자원으로 볼 수 있다. 또한 자원 설정 자체가 해당 자원의 실제 가용 여부와 상관없이 설정될 수 있으므로 소프트 자원 구간이라고 해서 설정이 없다고 가정할 수는 없다. 즉, DU는 소프트 자원과는 별도로 코어셋, CSI-RS, 그랜트 프리 자원, 상위 계층에 의하여 설정된 PDSCH, PUCCH, PUSCH와 같은 반정적인 자원을 설정할 수 있는데, (또는 도너 노드가 해당 DU 대신 이러한 설정을 내려줄 수도 있다) 이러한 설정 자원의 위치가 소프트 자원과 겹칠 수도 있다.
만약, DU의 자녀 노드(또는 단말)가, 상기 DU가 사용할 D/F/U 자원 구조를 알고(소프트, 가용하지 않음(NA) 포함해서) 해당 설정 또한 전달 받았을 때, 취할 수 있는 동작은 다음과 같다.
1) DU의 자녀 노드(또는 단말)는 소프트 D에서 하향링크에 해당하는 설정을 그대로 수행할 수 있다. 2) DU의 자녀 노드(또는 단말)는 소프트 U에서 상향링크에 해당하는 설정이 있을 경우 해당하는 상향링크를 전송할 준비를 할 수 있다. 이 때, 준비는 하되, 전송 전까지(TA를 고려한 전송 시간) 하드 D라는 지시가 없으면 해당 상향링크는 전송하지 않고, 하드 D라는 지시가 있거나 해당 상향링크를 스케줄링 받으면 전송할 수 있다.
3) DU의 자녀 노드(또는 단말)는 소프트 F에 존재하는, '하향링크에 해당하는 설정'은 그대로 수행하고, '상향링크에 해당하는 설정'이 있을 경우 해당하는 상향링크를 전송할 준비를 할 수 있다. 준비는 하되, 전송 전까지(TA를 고려한 전송 시간) 하드 D라는 지시가 없으면 해당 상향링크는 전송하지 않고, 하드 D라는 지시가 있거나 해당 상향링크를 스케줄링 받으면 전송할 수 있다.
<가용하지 않은(Not-available) 자원>
가용하지 않은 자원은 IAB 노드가 DU의 역할로서 동작할 때 DU가 사용할 수 없는 자원이라고 정의할 수 있다. 소프트 자원과는 다르게 가용하지 않은 자원은 DU가 추가적인 시그널링을 받더라도 절대 사용할 수 없는 자원으로 정의될 수 있다. 이러한 정의는 도너 노드로부터 정해져 전달될 수 있으며, IAB 노드는 해당 자원을 제외하고 나머지 자원에 대해서 임의로 사용할 수 있다. 소프트 자원이 있다면 소프트 자원이 부모 노드에 의해서 활성화된 경우는 소프트 자원을 사용할 수 있다.
1. 가용하지 않은 자원의 위치
IAB 노드는 MT와 DU 역할을 모두 할 수 있고, MT 측면에서의 D/U 할당과 DU 측면에서의 D/U 할당이 다를 수 있다. 그러나 MT 측면에서의 D/U 할당 정보를 통해 DU 측면에서의 가용하지 않은 자원을 알려줄 필요는 없다. MT 동작에서는 부모 노드에게 스케줄링 받은 대로만 동작하면 되기 때문이다. MT 측면에서의 동작 여부가 명확하지 않은 자원 내에 DU 측면에서의 가용하지 않은 자원이 정의되는 것이 MT와 DU 동작 모두의 혼선을 최소화 할 수 있을 것이다. 즉, MT 측면에서의 유연한(flexible) 자원 내에 DU에 대한 가용하지 않은 자원이 도너 노드로부터 정의될 수 있다.
전술한 방법들은 도 3 내지 도 6의 장치들 중 적어도 하나에 의하여 수행될 수 있다.
10: 전송 장치, 20: 수신 장치

Claims (14)

  1. 무선 통신 시스템에서 노드의 자원 사용 방법에 있어서,
    부모 노드(parent node)와의 통신에 관련된 제1 할당 정보 및 자녀 노드(child node)와의 통신에 관련된 제2 할당 정보를 수신하고, 및
    상기 제1 할당 정보 및 상기 제2 할당 정보에 기반하여 특정 자원을 사용하여 상기 부모 노드 또는 상기 자녀 노드와 통신을 수행하되,
    상기 제1 할당 정보는 상기 특정 자원의 자원 타입을 3가지 중 하나로 알려주고, 상기 제2 할당 정보는 상기 특정 자원의 자원 타입을 7가지 중 하나로 알려주되,
    상기 제2 할당 정보가 상기 특정 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려준 경우, 상기 특정 자원이 상기 자녀 노드와의 통신에 사용 가능하다는 별도의 명시적 지시가 없으면, 상기 특정 자원은 상기 부모 노드와의 통신에 사용되는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 제1 할당 정보는 상기 특정 자원의 자원 타입을, 하향링크, 상향링크 및 플렉서블(flexible) 중 하나로 알려주는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서, 상기 제2 할당 정보는 상기 특정 자원의 자원 타입을 하드 하향링크, 소프트(soft) 하향링크, 하드 상향링크, 소프트 상향링크, 하드 플렉서블(hard flexible), 소프트 플렉서블(soft flexible) 및 가용하지 않음(not-available) 중 하나로 알려주는 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서, 상기 하드 하향링크는 상기 특정 자원이, 상기 노드가 상기 자녀 노드에게 신호를 전송하는 것이 항상 가능한(always available) 자원임을 나타내고, 상기 소프트 하향링크는 상기 특정 자원이, 상기 노드가 상기 자녀 노드에게 신호를 전송하는 것이 상기 부모 노드에 의하여 제어되는 자원임을 나타내는 것을 특징으로 하는 방법.
  5. 제 3 항에 있어서, 상기 하드 상향링크는 상기 특정 자원이, 상기 노드가 상기 자녀 노드로부터 신호를 수신하는 것이 항상 가능한(always available) 자원임을 나타내고, 상기 소프트 상향링크는 상기 특정 자원이, 상기 노드가 상기 자녀 노드로부터 신호를 수신하는 것이 상기 부모 노드에 의하여 제어되는 자원임을 나타내는 것을 특징으로 하는 방법.
  6. 제 3 항에 있어서, 상기 하드 플렉서블은 상기 특정 자원이 상기 노드와 상기 자녀 노드와의 관계에서 항상 플렉서블 자원임을 나타내고, 상기 소프트 플렉서블은 상기 특정 자원이 상기 노드와 상기 자녀 노드와의 관계에서 플렉서블 자원인지 여부가 상기 부모 노드에 의하여 제어되는 자원임을 나타내는 것을 특징으로 하는 방법.
  7. 제 3 항에 있어서, 상기 가용하지 않음은, 상기 특정 자원이 상기 노드와 상기 자녀 노드와의 관계에서 사용될 수 없는 자원임을 나타내는 것을 특징으로 하는 방법.
  8. 제 1 항에 있어서, 상기 제2 할당 정보가 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려준 경우, 상기 자원이 상기 제1 할당 정보에 의하여 상기 노드에게 할당되면, 상기 자원은 상기 부모 노드와의 통신에 사용되는 것으로 간주되는 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서, 상기 제2 할당 정보가 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려준 경우, 상기 자원이 상기 제1 할당 정보에 의하여 상기 노드에게 할당되지 않으면, 상기 자원은 상기 자녀 노드와의 통신에 사용되는 것으로 간주되는 것을 특징으로 하는 방법.
  10. 제 1 항에 있어서, 상기 제1 할당 정보 및 상기 제2 할당 정보를 상기 부모 노드로부터 수신하는 것을 특징으로 하는 방법.
  11. 제 1 항에 있어서, 상기 자녀 노드는 상기 노드에 연결된 단말인 것을 특징으로 하는 방법.
  12. 제 1 항에 있어서, 상기 제2 할당 정보가 상기 특정 자원을 항상 상기 자녀 노드와의 통신에 사용할 수 있는 하드(hard) 자원으로 지시할 경우, 상기 제1 할당 정보에 관계없이 상기 특정 자원을 상기 자녀 노드와의 통신에 사용하는 것을 특징으로 하는 방법.
  13. 노드는,
    무선 신호를 송신 및 수신하는 트랜시버(transceiver); 및
    상기 트랜시버와 결합하여 동작하는 프로세서;를 포함하되, 상기 프로세서는,
    부모 노드(parent node)와의 통신에 관련된 제1 할당 정보 및 자녀 노드(child node)와의 통신에 관련된 제2 할당 정보를 수신하고,
    상기 제1 할당 정보 및 상기 제2 할당 정보에 기반하여 특정 자원을 사용하여 상기 부모 노드 또는 상기 자녀 노드와 통신을 수행하되,
    상기 제1 할당 정보는 상기 특정 자원의 자원 타입을 3가지 중 하나로 알려주고, 상기 제2 할당 정보는 상기 특정 자원의 자원 타입을 7가지 중 하나로 알려주되,
    상기 제2 할당 정보가 상기 특정 자원을 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 알려준 경우, 상기 특정 자원이 상기 자녀 노드와의 통신에 사용 가능하다는 별도의 명시적 지시가 없으면, 상기 특정 자원은 상기 부모 노드와의 통신에 사용되는 것을 특징으로 하는 노드.
  14. 무선 통신 시스템에서 부모 노드의 동작 방법에 있어서,
    노드(node)와의 통신에 관련된 제1 할당 정보 및 상기 노드의 자녀 노드(child node)와 상기 노드의 통신에 관련된 제2 할당 정보를 전송하고, 및
    상기 제1 할당 정보 및 상기 제2 할당 정보에 기반하여 특정 자원을 사용하여 상기 노드와 통신을 수행하되,
    상기 제1 할당 정보는 상기 특정 자원의 자원 타입을 3가지 중 하나로 알려주고, 상기 제2 할당 정보는 상기 특정 자원의 자원 타입을 7가지 중 하나로 알려주되,
    상기 특정 자원을 상기 제2 할당 정보에 의하여 소프트 하향링크, 소프트 상향링크 또는 소프트 플렉서블로 지시한 경우, 상기 특정 자원이 상기 노드와 상기 자녀 노드와의 통신에 사용 가능하다는 별도의 명시적 지시를 하지 않으면, 상기 특정 자원은 상기 부모 노드와 상기 노드 간의 통신에 사용되는 것을 특징으로 하는 방법.
KR1020190096202A 2018-08-07 2019-08-07 무선 통신 시스템에서 노드의 자원 사용 방법 및 상기 방법을 이용하는 장치 KR102187281B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180091846 2018-08-07
KR20180091846 2018-08-07
KR1020180133757 2018-11-02
KR20180133757 2018-11-02

Publications (2)

Publication Number Publication Date
KR20200016814A true KR20200016814A (ko) 2020-02-17
KR102187281B1 KR102187281B1 (ko) 2020-12-04

Family

ID=69415600

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190096202A KR102187281B1 (ko) 2018-08-07 2019-08-07 무선 통신 시스템에서 노드의 자원 사용 방법 및 상기 방법을 이용하는 장치

Country Status (5)

Country Link
US (1) US11303349B2 (ko)
EP (1) EP3672343A4 (ko)
KR (1) KR102187281B1 (ko)
CN (1) CN111066363B (ko)
WO (1) WO2020032578A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022086306A1 (ko) * 2020-10-23 2022-04-28 엘지전자 주식회사 상향링크 전송에 대한 전력 제어

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3651526B1 (en) * 2018-08-07 2022-03-30 LG Electronics Inc. Operation method of node in wireless communication system and apparatus using same method
WO2020041951A1 (en) * 2018-08-27 2020-03-05 Nec Corporation Method, device and computer readable medium for iab transmission
US20220060277A1 (en) * 2019-01-09 2022-02-24 Apple Inc. Dynamic indication of soft resource availability via sfi procedure in iab
EP3785480B1 (en) * 2019-01-09 2023-03-29 Ofinno, LLC Resource configuration for integrated access and backhaul nodes
GB2580589B (en) * 2019-01-11 2021-08-18 Samsung Electronics Co Ltd Method for integrated access backhaul resource multiplexing
WO2020198692A1 (en) * 2019-03-28 2020-10-01 Apple Inc. Synchronization signal blocks for inter-integrated backhaul access (iab) discovery and measurements
WO2020198430A1 (en) * 2019-03-28 2020-10-01 Apple Inc. Dynamic indication of soft resource availability
CN115426084A (zh) * 2019-05-03 2022-12-02 华为技术有限公司 一种通信的方法及装置
US11672016B2 (en) * 2019-12-09 2023-06-06 Qualcomm Incorporated RACH configuration for different power classes
US11743826B2 (en) * 2019-12-26 2023-08-29 Qualcomm Incorporated Power management priority handling in integrated access and backhaul
US11792804B2 (en) * 2020-02-14 2023-10-17 Qualcomm Incorporated Techniques for resource allocation in an integrated access and backhaul (IAB) system
US11729750B2 (en) 2020-02-14 2023-08-15 Qualcomm Incorporated Techniques for resource allocation in an integrated access and backhaul (IAB) system
US11641682B2 (en) 2020-03-13 2023-05-02 Qualcomm Incorporated Scheduling coordination in an integrated access and backhaul network
KR20220164532A (ko) * 2020-04-02 2022-12-13 레노보 (싱가포르) 피티이. 엘티디. 리소스 속성 구성
US11659531B2 (en) * 2020-04-22 2023-05-23 Qualcomm Incorporated Signaling to adjust slot format in a wireless communication system
US20210360641A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Time division duplexing downlink-uplink configuration signaling
US11824817B2 (en) * 2020-05-13 2023-11-21 Qualcomm Incorporated Cross-link interference signaling for integrated access and backhaul
US20220014344A1 (en) * 2020-07-10 2022-01-13 Qualcomm Incorporated Mobility reporting for full-duplex communication or simultaneous half-duplex communication with multiple transmit receive points
WO2022024312A1 (ja) * 2020-07-30 2022-02-03 株式会社Nttドコモ 無線通信ノード
CN116195289A (zh) * 2020-07-30 2023-05-30 株式会社Ntt都科摩 无线通信节点
CN114079993B (zh) * 2020-08-12 2023-07-18 维沃移动通信有限公司 保护间隔确定方法、装置、网络节点和存储介质
US20220104215A1 (en) * 2020-09-25 2022-03-31 Qualcomm Incorporated Enhancements for periodic resources in an integrated access and backhaul network
CN114520987A (zh) * 2020-11-20 2022-05-20 维沃移动通信有限公司 Iab节点的冲突处理方法、装置、设备及可读存储介质
WO2023212157A1 (en) * 2022-04-29 2023-11-02 Kyocera Corporation Full duplex interference management based on sidelink channel reports
CN115915429A (zh) * 2022-09-08 2023-04-04 中兴通讯股份有限公司 一种资源块集合的确定方法、通信节点及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140077327A (ko) * 2012-12-14 2014-06-24 한국전자통신연구원 무선 백홀 시스템에서 백홀 중계기와 기지국 사이의 자원 할당 방법
US20180092139A1 (en) * 2016-09-29 2018-03-29 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (iab) wireless networks
WO2018084952A1 (en) * 2016-11-04 2018-05-11 Qualcomm Incorporated Network configured uplink control feedback for 5g new radio (nr)
US20180192412A1 (en) * 2017-01-05 2018-07-05 At&T Intellectual Property I, L.P. Long-term evolution assisted new radio initial access and mobility for 5g or other next generation networks

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8160600B2 (en) * 2008-11-04 2012-04-17 Motorola Solutions, Inc. Method and apparatus for resource allocation
JP4923161B1 (ja) * 2010-09-29 2012-04-25 シャープ株式会社 移動通信システム、移動局装置、基地局装置、通信方法および集積回路
EP2854301B1 (en) * 2013-09-30 2019-01-02 Alcatel Lucent A method of operating a wireless communications system, a corresponding antenna controller, and radio access node
EP3429245B1 (en) * 2016-03-10 2020-11-11 Sharp Kabushiki Kaisha Terminal apparatus and base station apparatus
US10375707B2 (en) * 2016-08-04 2019-08-06 Qualcomm Incorporated Dynamic resource allocation in wireless network
US10645689B2 (en) * 2016-08-11 2020-05-05 Qualcomm Incorporated Link establishment in a wireless backhaul network using radio access technology
US10333574B2 (en) * 2016-09-15 2019-06-25 Qualcomm Incorporated Wireless resource allocation for a vehicle acting as a base station
CN110476469B (zh) * 2017-02-02 2024-01-16 株式会社Ntt都科摩 用户终端以及无线通信方法
DK3641438T3 (da) * 2017-06-15 2024-01-08 Ntt Docomo Inc Brugerterminal og trådløs kommunikationsfremgangsmåde
US11516788B2 (en) * 2017-07-28 2022-11-29 Ntt Docomo, Inc. Terminal and radio communication method
BR112020001618A2 (pt) * 2017-07-28 2020-07-21 Ntt Docomo, Inc. terminal e método de radiocomunicação para um terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140077327A (ko) * 2012-12-14 2014-06-24 한국전자통신연구원 무선 백홀 시스템에서 백홀 중계기와 기지국 사이의 자원 할당 방법
US20180092139A1 (en) * 2016-09-29 2018-03-29 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (iab) wireless networks
WO2018084952A1 (en) * 2016-11-04 2018-05-11 Qualcomm Incorporated Network configured uplink control feedback for 5g new radio (nr)
US20180192412A1 (en) * 2017-01-05 2018-07-05 At&T Intellectual Property I, L.P. Long-term evolution assisted new radio initial access and mobility for 5g or other next generation networks

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Ericsson, R1-1812042, Updated summary of 7.2.3.1 Enhancements to support NR backhaul links, 3GPP TSG RAN WG1 #94bis, 3GPP 서버공개일(2018.10.12.) *
Huawei et al., R1-1803695, Physical layer enhancement on IAB, 3GPP TSG RAN WG1 #92bis, 3GPP 서버공개일(2018.04.06.) *
Qualcomm Incorporated, R2-1808006, IAB resource partitioning for architecture group 1, 3GPP TSG RAN WG2 #102, 3GPP 서버공개일(2018.05.11.) *
Qualcomm Incorporated, R2-1808007, Resource Coordination across IAB Topology, 3GPP TSG RAN WG2 #102, 3GPP 서버공개일(2018.05.10.) *
Qualcomm Incorporated, R3-183731, IAB topology adaptation for architecture group 1, 3GPP TSG RAN WG3 #AHGS, 3GPP 서버공개일(2018.06.25.) *
vivo, R2-1809864, Discussion on IAB node access and resource allocation, 3GPP TSG RAN WG2 #AHS, 3GPP 서버공개일(2018.06.22.) *
ZTE, R1-1806024, Overview of physical layer enhancements for IAB, 3GPP TSG RAN WG1 #93, 3GPP 서버공개일(2018.05.12.) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022086306A1 (ko) * 2020-10-23 2022-04-28 엘지전자 주식회사 상향링크 전송에 대한 전력 제어

Also Published As

Publication number Publication date
EP3672343A4 (en) 2020-11-11
EP3672343A1 (en) 2020-06-24
WO2020032578A1 (ko) 2020-02-13
CN111066363B (zh) 2023-04-18
KR102187281B1 (ko) 2020-12-04
US20210367660A1 (en) 2021-11-25
US11303349B2 (en) 2022-04-12
CN111066363A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
KR102187281B1 (ko) 무선 통신 시스템에서 노드의 자원 사용 방법 및 상기 방법을 이용하는 장치
KR102187290B1 (ko) 무선 통신 시스템에서 노드의 동작 방법 및 상기 방법을 이용하는 장치
KR102213102B1 (ko) 무선 통신 시스템에서 제어 신호 모니터링 방법 및 상기 방법을 이용하는 장치
KR102444331B1 (ko) 무선 통신 시스템에서 초기 접속을 수행하는 방법 및 장치
US11805498B2 (en) Flexible multiplexing of users with difference requirements in a 5G frame structure
US11082994B2 (en) Method for V2X communication performed by means of terminal in wireless communication system and terminal using same
JP6995972B2 (ja) 無線通信システムにおける端末の動作方法及び前記方法を利用する装置
CN109997327B (zh) 在无线通信系统中发送上行链路信号的方法及其装置
WO2019142524A1 (ja) 通信装置及び通信方法
JP2021507546A (ja) スケジューリング要求リソース設定
JP2020511907A (ja) 複数の搬送波が設定された端末の電力割当方法及び上記方法を利用する端末
CN109565709B (zh) 通信设备、通信方法和记录介质
US10433322B2 (en) Base station and wireless device used in wireless communication system
KR20230084130A (ko) 반복 또는 주파수 홉핑을 위한 향상된 pucch 송신
KR20240010472A (ko) 무선 통신 시스템에서 단말간 조정 정보의 송수신 방법및 그 장치
KR20240011687A (ko) 사이드링크 구성 그랜트들의 증가된 수량에 대한 지원
CN116018769A (zh) 具有重叠资源的重复传输
US20230254887A1 (en) Phy-layer handling of multiple relayed transport blocks by an af/df-relay ue in sidelink
US20230309067A1 (en) Method for operating iab node in wireless communication system, and device using method
KR20220129018A (ko) 무선통신 시스템에서 복수의 부모 노드들과 연결된 iab 노드의 동작 방법 및 상기 방법을 이용하는 장치
US11641259B2 (en) Enhanced sounding reference signal resource allocation using a selected reference resource
KR20230164026A (ko) 통합된 tci 표시를 갖는 dci 에서의 더미 표시들
EP4189886A1 (en) Activating sidelink relay mac-ce

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant