KR20200014185A - 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법 - Google Patents

반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법 Download PDF

Info

Publication number
KR20200014185A
KR20200014185A KR1020190037135A KR20190037135A KR20200014185A KR 20200014185 A KR20200014185 A KR 20200014185A KR 1020190037135 A KR1020190037135 A KR 1020190037135A KR 20190037135 A KR20190037135 A KR 20190037135A KR 20200014185 A KR20200014185 A KR 20200014185A
Authority
KR
South Korea
Prior art keywords
substituted
unsubstituted
group
formula
composition
Prior art date
Application number
KR1020190037135A
Other languages
English (en)
Inventor
문경수
김재현
나융희
남궁란
전환승
채승용
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/211,145 external-priority patent/US11092889B2/en
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of KR20200014185A publication Critical patent/KR20200014185A/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • C07F7/2224Compounds having one or more tin-oxygen linkages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

본 기재는, 하기 화학식 1로 표현되는 유기금속 화합물 및 용매를 포함하는 반도체 레지스트용 조성물과, 이를 이용한 패턴 형성 방법에 관한 것이다.
[화학식 1]
Figure pat00043

화학식 1에 대한 구체적인 내용은 명세서 상에서 정의된 것과 같다.

Description

반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법{SEMICONDUCTOR RESIST COMPOSITION, AND METHOD OF FORMING PATTERNS USING THE COMPOSITION}
본 기재는 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법에 관한 것이다.
차세대의 반도체 디바이스를 제조하기 위한 요소 기술의 하나로서, EUV(극자외선광) 리소그래피가 주목받고 있다. EUV 리소그래피는 노광 광원으로서 파장 13.5 nm의 EUV 광을 이용하는 패턴 형성 기술이다. EUV 리소그래피에 의하면, 반도체 디바이스 제조 프로세스의 노광 공정에서, 극히 미세한 패턴(예를 들어 20 nm 이하)을 형성할 수 있음이 실증되어 있다.
극자외선(extreme ultraviolet, EUV) 리소그래피의 구현은 16 nm 이하의 공간 해상도(spatial resolutions)에서 수행할 수 있는 호환 가능한 포토 레지스트들의 현상(development)을 필요로 한다. 현재, 전통적인 화학 증폭형(CA: chemically amplified) 포토 레지스트들은, 차세대 디바이스들을 위한 해상도(resolution), 광속도(photospeed), 및 피쳐 거칠기(feature roughness, 라인 에지 거칠기(line edge roughness 또는 LER)로도 불림)에 대한 사양(specifications)을 충족시키기 위해 노력하고 있다.
이들 고분자형 포토 레지스트들에서 일어나는 산 촉매 반응들(acid catalyzed reactions)에 기인한 고유의 이미지 흐려짐(intrinsic image blur)은 작은 피쳐(feature) 크기들에서 해상도를 제한하는데, 이는 전자빔(e-beam) 리소그래피에서 오랫동안 알려져 왔던 사실이다. 화학증폭형 (CA) 포토 레지스트들은 높은 민감도(sensitivity)를 위해 설계되었으나, 그것들의 전형적인 원소 구성(elemental makeup)이 13.5 nm의 파장에서 포토 레지스트들의 흡광도를 낮추고, 그 결과 민감도를 감소시키기 때문에, 부분적으로는 EUV 노광 하에서 더 어려움을 겪을 수 있다.
CA 포토 레지스트들은 또한, 작은 피쳐 크기들에서 거칠기(roughness) 이슈들로 인해 어려움을 겪을 수 있고, 부분적으로 산 촉매 공정들의 본질에 기인하여, 광속도(photospeed)가 감소함에 따라 라인 에지 거칠기(LER)가 증가하는 것이 실험으로 나타났다. CA 포토 레지스트들의 결점들 및 문제들에 기인하여, 반도체 산업에서는 새로운 유형의 고성능 포토 레지스트들에 대한 요구가 있다.
일 구현예는 에치 내성과 감도가 우수하고 취급이 용이한 반도체 레지스트용 조성물을 제공한다.
다른 구현예는 상기 반도체 레지스트용 조성물을 이용한 패턴 형성 방법을 제공한다.
일 구현예에 따른 반도체 레지스트용 조성물은 하기 화학식 1로 표현되는 유기금속 화합물, 및 용매를 포함한다.
[화학식 1]
Figure pat00001
상기 화학식 1 에서,
R1은 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C2 내지 C20 알케닐기, 치환 또는 비치환된 C2 내지 C20 알키닐기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C6 또는 C30 아릴알킬기, 및 -Rc-O-Rd (여기서 Rc, Rd는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기) 중에서 선택되고,
R2 내지 R4는 각각 독립적으로 -ORa 또는 -OC(=O)Rb 중에서 선택되고,
Ra, Rb는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C2 내지 C20 알케닐기, 치환 또는 비치환된 C2 내지 C20 알키닐기, 치환 또는 비치환된 C6 내지 C30 아릴기, 또는 이들의 조합이다.
다른 구현예에 따른 패턴 형성 방법은 기판 위에 식각 대상 막을 형성하는 단계, 상기 식각 대상 막 위에 전술한 반도체 레지스트용 조성물을 적용하여 포토 레지스트 막을 형성하는 단계, 상기 포토 레지스트 막을 패터닝하여 포토 레지스트 패턴을 형성하는 단계 및 상기 포토 레지스트 패턴을 식각 마스크로 이용하여 상기 식각 대상막을 식각하는 단계를 포함한다.
일 구현예에 따른 반도체 레지스트용 조성물은 상대적으로 에치 내성과 감도가 우수하고 취급이 용이하므로, 이를 이용하면 감도와 한계 해상도가 우수하고 높은 종횡비(aspect ratio)를 가지더라도 패턴이 무너지지 않는 포토 레지스트 패턴을 제공할 수 있다.
도 1 내지 도 5는 일 구현예에 따른 반도체 레지스트용 조성물을 이용한 패턴 형성방법을 설명하기 위한 단면도이고,
도 6은 일 구현예에 따른 반도체 레지스트용 조성물을 이용, 3.4 nm의 계산된 선폭 거칠기(LWR)를 갖는 36 nm 피치로 패터닝하여 생성한 레지스트 라인의 SEM 이미지를 나타낸다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 기재를 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 기재의 요지를 명료하게 하기 위하여 생략하기로 한다.
본 기재를 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로 본 기재가 반드시 도시된 바에 한정되지 않는다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서 설명의 편의를 위해 일부 층 및 영역의 두께를 과장되게 나타내었다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
본 기재에서, "치환"이란 수소 원자가 중수소, 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C30 아민기, 니트로기, 치환 또는 비치환된 C1 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 할로알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 사이클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 또는 시아노기로 치환된 것을 의미한다. "비치환"이란 수소 원자가 다른 치환기로 치환되지 않고 수소 원자로 남아있는 것을 의미한다.
본 명세서에서 "알킬(alkyl)기"이란 별도의 정의가 없는 한, 직쇄형 또는 분지쇄형 지방족 탄화수소기를 의미한다. 알킬기는 어떠한 이중결합이나 삼중결합을 포함하고 있지 않은 "포화 알킬(saturated alkyl)기"일 수 있다.
상기 알킬기는 C1 내지 C20인 알킬기일 수 있다. 보다 구체적으로 알킬기는 C1 내지 C10 알킬기 또는 C1 내지 C6 알킬기일 수도 있다. 예를 들어, C1 내지 C4 알킬기는 알킬쇄에 1 내지 4 개의 탄소원자가 포함되는 것을 의미하며, 메틸, 에틸, 프로필, 이소-프로필, n-부틸, 이소-부틸, sec-부틸 및 t-부틸로 이루어진 군에서 선택됨을 나타낸다.
상기 알킬기는 구체적인 예를 들어 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, t-부틸기, 펜틸기, 헥실기, 사이클로프로필기, 사이클로부틸기, 사이클로펜틸기, 사이클로헥실기 등을 의미한다.
본 기재에서 "사이클로알킬(cycloalkyl)기"란 별도의 정의가 없는 한, 1가의 고리형 지방족 탄화수소기를 의미한다.
본 기재에서 "아릴(aryl)기"는 고리형인 치환기의 모든 원소가 p-오비탈을 가지고 있으며, 이들 p-오비탈이 공액(conjugation)을 형성하고 있는 치환기를 의미하고, 모노시클릭 또는 융합 고리 폴리시클릭(즉, 탄소원자들의 인접한 쌍들을 나눠 가지는 고리) 작용기를 포함한다.
본 발명의 일 구현예에 따른 반도체 레지스트용 조성물은 유기금속 화합물 및 용매를 포함한다.
유기금속 화합물은 중심에 위치하는 중심 금속 원자에 다양한 유기기가 결합되어 있는 것으로, 하기 화학식 1로 표시된다.
[화학식 1]
Figure pat00002
상기 화학식 1 에서,
R1은 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C2 내지 C20 알케닐기, 치환 또는 비치환된 C2 내지 C20 알키닐기, 및 -Rc-O-Rd (여기서 Rc, Rd는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기) 중에서 선택되고,
R2 내지 R4는 각각 독립적으로 -ORa 또는 -OC(=O)Rb 중에서 선택되고,
Ra, Rb는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C2 내지 C20 알케닐기, 치환 또는 비치환된 C2 내지 C20 알키닐기, 치환 또는 비치환된 C6 내지 C30 아릴기, 또는 이들의 조합이다.
일 구현예에서, R1은 Sn과 결합을 이루어 유기용매에 대한 용해도를 향상시킬 수 있다. 일 구현예에서, R1은 극자외선 노광 시 Sn-R1 결합이 해리되어 라디칼을 생성할 수 있다. 예를 들어, R1은 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C3 내지 C20 알케닐기, 치환 또는 비치환된 C3 내지 C20 알키닐기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C6 또는 C30 아릴알킬기, 및 -Rc-O-Rd (여기서 Rc, Rd는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기) 중에서 선택될 수 있다.
일 구현예에서, R2 내지 R4는 전술한 R1과는 달리 Sn에 금속-산소 결합을 부여한다. 일 구현예에서, R2 내지 R4 중 적어도 하나는 -OC(=O)Rb 일 수 있다. 구체적으로, R2 내지 R4 중 적어도 둘 이상은 -OC(=O)Rb 일 수 있다. 더욱 구체적으로, R2 내지 R4가 모두 -OC(=O)Rb 일 수 있다. R2 내지 R4 중 적어도 하나가 -OC(=O)Rb 를 포함하는 경우, 이를 포함하는 반도체 레지스트 조성물을 이용하여 형성된 패턴이 우수한 감도와 한계 해상도를 나타낼 수 있다.
단, 일 구현예가 이에 한정되는 것은 아니며, R2 내지 R4 중 적어도 하나가 -ORa 이거나, R2 내지 R4 가 모두 -ORa 일 수도 있다.
일 구현예에서, Ra, Rb는 각각 독립적으로 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C2 내지 C8 알케닐기, 치환 또는 비치환된 C2 내지 C8 알키닐기, 치환 또는 비치환된 C6 내지 C30 아릴알킬기 중에서 선택될 수 있다.
전술한 화학식 1 로 표현되는 유기금속 화합물은 유기주석 화합물로서, 주석은 13.5 nm에서 극자외선광을 강하게 흡수할 수 있으므로, 고에너지를 갖는 광에 대한 감도가 우수하다. 따라서, 일 구현예에 따른 유기주석 화합물은 종래의 유기 및/또는 무기 레지스트 대비 우수한 안정성 및 감도를 나타낼 수 있다.
한편, 일 구현예에서 상기 유기금속 화합물은 하기 화학식 2 내지 화학식 4 중 적어도 하나로 표현될 수 있다.
[화학식 2]
Figure pat00003
[화학식 3]
Figure pat00004
[화학식 4]
Figure pat00005
화학식 2 내지 화학식 4에서,
R1은 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C2 내지 C20 알케닐기, 치환 또는 비치환된 C2 내지 C20 알키닐기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C6 또는 C30 아릴알킬기, 및 -Rc-O-Rd (여기서 Rc, Rd는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기) 중에서 선택되고,
R12 내지 R14, R22 내지 R24, R32 내지 R34는 각각 독립적으로 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C2 내지 C8 알케닐기, 치환 또는 비치환된 C2 내지 C8 알키닐기, 치환 또는 비치환된 C6 내지 C30 아릴알킬기 중에서 선택될 수 있다.
구체적으로, 상기 R1은 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C3 내지 C20 알케닐알킬기, 치환 또는 비치환된 C3 내지 C20 알키닐알킬기, 및 -Rc-O-Rd (여기서 Rc, Rd는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기) 중에서 선택되는 어느 하나일 수 있다.
구체적으로, 일 구현예에 따른 유기금속 화합물은 하기 화학식 5 내지 화학식 12 중 적어도 하나로 표현될 수 있다.
[화학식 5]
Figure pat00006
[화학식 6]
Figure pat00007
[화학식 7]
Figure pat00008
[화학식 8]
Figure pat00009
[화학식 9]
Figure pat00010
[화학식 10]
Figure pat00011
[화학식 11]
Figure pat00012
[화학식 12]
Figure pat00013
일반적으로 사용되는 유기 레지스트의 경우, 에치 내성이 부족하여 높은 종횡비에 패턴이 무너질 우려가 있다.
한편, 종래의 무기 레지스트(예를 들어 메탈 옥사이드 화합물)의 경우 높은 부식성을 갖는 황산과 과산화수소 혼합물을 사용하므로 취급이 어렵고 저장 안정성이 좋지 않으며, 복합 혼합물로서 성능 개선을 위한 구조 변경이 상대적으로 어렵고 고농도의 현상액을 사용해야 한다.
반면, 일 구현예에 따른 반도체 레지스트용 조성물은 전술한 바와 같이 유기금속 화합물이 중심 금속 원자에 다양한 유기기가 결합된 구조단위를 포함함에 따라, 기존 유기 및/또는 무기 레지스트 대비 상대적으로 에치 내성, 감도가 우수하고 취급이 용이하다.
구체적으로, 상기 화학식 1로 표현되는 유기금속 화합물에 있어서 중심 금속 원소에 금속-산소 결합 외에 금속과 R1과 같은 지방족 탄화수소기 또는 -알킬-O-알킬과 같은 관능기가 결합되어 있을 경우 용매에 대한 용해도가 개선되며, 극자외선 노광 시 Sn-R1 결합이 해리되어 라디칼을 생성할 수 있다. 이에 따라 반도체 레지스트용 조성물을 이용해 우수한 감도 및 한계 해상도의 패턴을 형성할 수 있다.
아울러 일 구현예에 따른 반도체 레지스트용 조성물을 이용하여 형성된 패턴은 높은 종횡비(aspect ratio)를 가지더라도 패턴이 무너지지 않을 수 있다.
일 구현예에 따른 반도체 레지스트 조성물에서, 상기 화학식 1로 표현되는 유기금속 화합물은 상기 조성물의 전체 중량을 기준으로 0.01 중량% 내지 10 중량%의 함량으로 포함될 수 있다. 이러한 함량으로 포함될 경우, 보관 안정성이 우수하고, 박막 형성이 용이하다.
한편, 일 구현예에 따른 반도체 레지스트용 조성물은 전술한 유기금속 화합물과 용매로 이루어지는 것이 바람직하다.
상기 구현예에 따른 반도체 레지스트 조성물에 포함되는 용매는 유기용매일 수 있으며, 일 예로, 방향족 화합물류(예를 들어, 자일렌, 톨루엔), 알콜류(예를 들어, 4-메틸-2-펜탄올, 4-메틸-2-프로판올, 1-부탄올, 메탄올, 이소프로필 알콜, 1-프로판올), 에테르류(예를 들어, 아니솔, 테트라하이드로푸란), 에스테르류(n-부틸 아세테이트, 프로필렌 글리콜 모노메틸 에테르 아세테이트, 에틸 아세테이트, 에틸 락테이트), 케톤류(예를 들어, 메틸 에틸 케톤, 2-헵타논), 이들의 혼합물 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에서, 상기 반도체 레지스트 조성물은 상기한 유기금속 화합물과 용매 외에, 추가로 수지를 더 포함할 수 있다.
상기 수지로는 하기 그룹 1에 나열된 방향족 모이어티를 적어도 하나 이상 포함하는 페놀계 수지일 수 있다.
[그룹 1]
Figure pat00014
상기 수지는 중량평균분자량이 500 내지 20,000일 수 있다.
상기 수지는 상기 반도체 레지스트용 조성물의 총 함량에 대하여 0.1 중량% 내지 50 중량%로 포함될 수 있다.
상기 수지가 상기 함량 범위로 함유될 경우, 우수한 내식각성 및 내열성을 가질 수 있다.
한편, 일 구현예에 따른 반도체 레지스트용 조성물은 전술한 유기금속 화합물과 용매, 및 수지로 이루어지는 것이 바람직하다. 다만, 전술한 구현예에 따른 반도체 레지스트용 조성물은 경우에 따라 첨가제를 더 포함할 수 있다. 상기 첨가제의 예시로는 계면활성제, 가교제, 레벨링제, 또는 이들의 조합을 들 수 있다.
계면활성제는 예컨대 알킬벤젠설폰산 염, 알킬피리디늄 염, 폴리에틸렌글리콜, 제4 암모늄 염, 또는 이들의 조합을 사용할 수 있으나, 이에 한정되는 것은 아니다.
가교제는 예컨대 멜라민계, 치환요소계, 또는 이들 폴리머계 등을 들 수 있으나, 이에 한정되는 것은 아니다. 적어도 2개의 가교형성 치환기를 갖는 가교제로, 예를 들면, 메톡시메틸화 글리코루릴, 부톡시메틸화 글리코루릴, 메톡시메틸화 멜라민, 부톡시메틸화 멜라민, 메톡시메틸화 벤조구아나민, 부톡시메틸화 벤조구아나민, 메톡시메틸화요소, 부톡시메틸화요소, 또는 메톡시메틸화 티오요소 등의 화합물을 사용할 수 있다.
레벨링제는 인쇄시 코팅 평탄성을 향상시키기 위한 것으로, 상업적인 방법으로 입수 가능한 공지의 레벨링제를 사용할 수 있다.
상기 이들 첨가제의 사용량은 원하는 물성에 따라 용이하게 조절될 수 있으며, 생략될 수도 있다.
또한 상기 반도체 레지스트용 조성물은 기판과의 밀착력 등의 향상을 위해 (예컨대 반도체 레지스트용 조성물의 기판과의 접착력 향상을 위해), 접착력 증진제로서 실란 커플링제를 첨가제로 더 사용할 수 있다. 상기 실란 커플링제는 예컨대, 비닐트리메톡시실란, 비닐트리에톡시실란, 비닐 트리클로로실란, 비닐트리스(β-메톡시에톡시)실란; 또는 3-메타크릴옥시프로필트리메톡시실란, 3-아크릴옥시프로필트리메톡시실란, p-스티릴 트리메톡시실란, 3-메타크릴옥시프로필메틸디메톡시실란, 3-메타크릴옥시프로필메틸디 에톡시실란; 트리메톡시[3-(페닐아미노)프로필]실란 등의 탄소-탄소 불포화 결합 함유 실란 화합물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 반도체 레지스트용 조성물은 높은 종횡비(aspect ratio)를 가지는 패턴을 형성해도 패턴 무너짐이 발생하지 않거나, 패턴 무너짐이 발생할 위험을 크게 줄일 수 있다. 따라서, 예를 들어, 5 nm 내지 100 nm의 폭을 가지는 미세 패턴, 예를 들어, 5 nm 내지 80 nm의 폭을 가지는 미세 패턴, 예를 들어, 5 nm 내지 70 nm의 폭을 가지는 미세 패턴, 예를 들어, 5 nm 내지 50 nm의 폭을 가지는 미세 패턴, 예를 들어, 5 nm 내지 40 nm의 폭을 가지는 미세 패턴, 예를 들어, 5 nm 내지 30 nm의 폭을 가지는 미세 패턴, 예를 들어, 5 nm 내지 20 nm의 폭을 가지는 미세 패턴을 형성하기 위하여, 5 nm 내지 150 nm 파장의 광을 사용하는 포토 레지스트 공정, 예를 들어, 5 nm 내지 100 nm 파장의 광을 사용하는 포토 레지스트 공정, 예를 들어, 5 nm 내지 80 nm 파장의 광을 사용하는 포토 레지스트 공정, 예를 들어, 5 nm 내지 50 nm 파장의 광을 사용하는 포토 레지스트 공정, 예를 들어, 5 nm 내지 30 nm 파장의 광을 사용하는 포토 레지스트 공정, 예를 들어, 5 nm 내지 20 nm 파장의 광을 사용하는 포토 레지스트 공정에 사용할 수 있다. 따라서, 일 구현예에 따른 반도체 레지스트용 조성물을 이용하면, 약 13.5 nm 파장의 EUV 광원을 사용하는 극자외선 리소그래피를 구현할 수 있다.
한편, 다른 일 구현예에 따르면, 상술한 반도체 레지스트용 조성물을 사용하여 패턴을 형성하는 방법이 제공될 수 있다. 일 예로, 제조된 패턴은 포토 레지스트 패턴일 수 있다.
일 구현예에 다른 패턴 형성 방법은 기판 위에 식각 대상 막을 형성하는 단계, 상기 식각 대상 막 위에 전술한 반도체 레지스트용 조성물을 적용하여 포토 레지스트 막을 형성하는 단계, 상기 포토 레지스트 막을 패터닝하여 포토 레지스트 패턴을 형성하는 단계 및 상기 포토 레지스트 패턴을 식각 마스크로 이용하여 상기 식각 대상막을 식각하는 단계를 포함한다.
이하, 상술한 반도체 레지스트용 조성물을 사용하여 패턴을 형성하는 방법에 대하여 도 1 내지 5를 참고하여 설명한다. 도 1 내지 도 5는 본 발명에 따른 반도체 레지스트용 조성물을 이용한 패턴 형성 방법을 설명하기 위한 단면도들이다.
도 1을 참조하면, 우선 식각 대상물을 마련한다. 상기 식각 대상물의 예로서는 반도체 기판(100) 상에 형성되는 박막(102)일 수 있다. 이하에서는 상기 식각 대상물이 박막(102)인 경우에 한해 설명한다. 상기 박막(102)상에 잔류하는 오염물 등을 제거하기 위해 상기 박막(102)의 표면을 세정한다. 상기 박막(102)은 예컨대 실리콘 질화막, 폴리실리콘막 또는 실리콘 산화막일 수 있다.
이어서, 세정된 박막(102)의 표면상에 레지스트 하층막(104)을 형성하기 위한 레지스트 하층막 형성용 조성물을 스핀 코팅방식을 적용하여 코팅한다. 다만, 일 구현예가 반드시 이에 한정되는 것은 아니고, 공지된 다양한 코팅 방법, 예를 들어 스프레이 코팅, 딥 코팅, 나이프 엣지 코팅, 프린팅법, 예컨대 잉크젯 프린팅 및 스크린 프린팅 등을 이용할 수도 있다.
상기 레지스트 하층막 코팅과정은 생략할 수 있으며 이하에서는 상기 레지스트 하층막을 코팅하는 경우에 대해 설명한다.
이후 건조 및 베이킹 공정을 수행하여 상기 박막(102) 상에 레지스트 하층막(104)을 형성한다. 상기 베이킹 처리는 약 100 내지 약 500℃에서 수행하고, 예컨대 약 100 ℃내지 약 300 ℃에서 수행할 수 있다.
레지스트 하층막(104)은 기판(100)과 포토 레지스트 막(106) 사이에 형성되어, 기판(100)과 포토 레지스트 막(106)의 계면 또는 층간 하드마스크(hardmask)로부터 반사되는 조사선이 의도되지 않은 포토 레지스트 영역으로 산란되는 경우 포토 레지스트 선폭(linewidth)의 불균일 및 패턴 형성성을 방해하는 것을 방지할 수 있다.
도 2를 참조하면, 상기 레지스트 하층막(104) 위에 상술한 반도체 레지스트용 조성물을 코팅하여 포토 레지스트 막(106)을 형성한다. 상기 포토 레지스트 막(106)은 기판(100) 상에 형성된 박막(102) 위에 상술한 반도체 레지스트용 조성물을, 코팅한 후 열처리 과정을 통해 경화한 형태일 수 있다.
보다 구체적으로, 반도체 레지스트용 조성물을 사용하여 패턴을 형성하는 단계는, 상술한 반도체 레지스트용 조성물을 박막(102)이 형성된 기판(100) 상에 스핀 코팅, 슬릿 코팅, 잉크젯 프린팅 등으로 도포하는 공정 및 도포된 반도체 레지스트용 조성물을 건조하여 포토 레지스트 막(106)을 형성하는 공정을 포함할 수 있다.
반도체 레지스트용 조성물에 대해서는 이미 상세히 설명하였으므로, 중복 설명은 생략하기로 한다.
이어서, 상기 포토 레지스트 막(106)이 형성되어 있는 기판(100)을 가열하는 제1 베이킹 공정을 수행한다. 상기 제1 베이킹 공정은 약 80℃ 내지 약 120℃의 온도에서 수행할 수 있다.
도 3을 참조하면, 상기 포토 레지스트 막(106)을 선택적으로 노광한다.
일 예로, 상기 노광 공정에서 사용할 수 있는 광의 예로는 활성화 조사선도 i-line(파장 365nm), KrF 엑시머 레이저(파장 248nm), ArF 엑시머 레이저(파장 193nm) 등의 단파장을 가지는 광 뿐만 아니라, EUV(Extreme UltraViolet; 파장 13.5 nm), E-Beam(전자빔)등의 고에너지 파장을 가지는 광 등을 들 수 있다.
보다 구체적으로, 일 구현예에 따른 노광용 광은 5 nm 내지 150 nm 파장 범위를 가지는 단파장 광일 수 있으며, EUV(Extreme UltraViolet; 파장 13.5 nm), E-Beam(전자빔)등의 고에너지 파장을 가지는 광일 수 있다.
포토 레지스트 막(106) 중 노광된 영역(106a)은 유기금속 화합물간의 축합 등 가교 반응에 의해 중합체를 형성함에 따라 포토 레지스트 막(106)의 미노광된 영역(106b)과 서로 다른 용해도를 갖게 된다.
이어서, 상기 기판(100)에 제2 베이킹 공정을 수행한다. 상기 제2 베이킹 공정은 약 90℃ 내지 약 200℃의 온도에서 수행할 수 있다. 상기 제2 베이킹 공정을 수행함으로 인해, 상기 포토 레지스트 막(106)의 노광된 영역(106a)은 현상액에 용해가 어려운 상태가 된다.
도 4에는, 현상액을 이용하여 상기 미노광된 영역에 해당하는 포토 레지스트 막(106b)을 용해시켜 제거함으로써 형성된 포토 레지스트 패턴(108)이 도시되어 있다. 구체적으로, 2-햅타논(2-heptanone) 등의 유기 용매를 사용하여 상기 미노광된 영역에 해당하는 포토 레지스트 막(106b)을 용해시킨 후 제거함으로써 상기 네가티브 톤 이미지에 해당하는 포토 레지스트 패턴(108)이 완성된다.
앞서 설명한 것과 같이, 일 구현예에 따른 패턴 형성 방법에서 사용되는 현상액은 유기 용매 일 수 있다. 일 구현예에 따른 패턴 형성 방법에서 사용되는 유기 용매의 일 예로, 메틸에틸케톤, 아세톤, 사이클로헥사논, 2-햅타논 등의 케톤 류, 4-메틸-2-프로판올, 1-부탄올, 이소프로판올, 1-프로판올, 메탄올 등의 알코올 류, 프로필렌 글리콜 모노메틸 에스테르 아세테이트, 에틸 아세테이트, 에틸 락테이트, n-부틸 아세테이트, 부티로락톤 등의 에스테르 류, 벤젠, 자일렌, 톨루엔 등의 방향족 화합물, 또는 이들의 조합을 들 수 있다.
다만, 일 구현예에 따른 포토 레지스트 패턴이 반드시 네가티브 톤 이미지로 형성되는 것에 제한되는 것은 아니며, 포지티브 톤 이미지를 갖도록 형성될 수도 있다. 이 경우, 포지티브 톤 이미지 형성을 위해 사용될 수 있는 현상제로는 테트라에틸암모늄 하이드록사이드, 테트라프로필암모늄 하이드록사이드, 테트라부틸암모늄 하이드록사이드 또는 이들의 조합과 같은 제4 암모늄 하이드록사이드 조성물 등을 들 수 있다.
앞서 설명한 것과 같이, i-line(파장 365 nm), KrF 엑시머 레이저(파장 248 nm), ArF 엑시머 레이저(파장 193 nm) 등의 파장을 가지는 광 뿐만 아니라, EUV(Extreme UltraViolet; 파장 13.5 nm), E-Beam(전자빔)등의 고에너지를 가지는 광 등에 의해 노광되어 형성된 포토 레지스트 패턴(108)은 5 nm 내지 100 nm 두께의 폭을 가질 수 있다. 일 예로, 상기 포토 레지스트 패턴(108)은, 5 nm 내지 90 nm, 5 nm 내지 80 nm, 5 nm 내지 70 nm, 5 nm 내지 60 nm, 10 nm 내지 50 nm, 10 nm 내지 40 nm, 10 nm 내지 30 nm, 10 nm 내지 20 nm 두께의 폭으로 형성될 수 있다.
한편, 상기 포토 레지스트 패턴(108)은 약 50 nm 이하, 예를 들어 40 nm 이하, 예를 들어 30 nm 이하, 예를 들어 25 nm 이하의 반피치(half-pitch) 및, 약 10 nm 이하, 약 5 nm 이하의 선폭 거칠기을 갖는 피치를 가질 수 있다.
이어서, 상기 포토 레지스트 패턴(108)을 식각 마스크로 하여 상기 레지스트 하층막(104)을 식각한다. 상기와 같은 식각 공정으로 유기막 패턴(112)이 형성된다. 형성된 상기 유기막 패턴(112) 역시 포토 레지스트 패턴(108)에 대응되는 폭을 가질 수 있다.
도 5를 참조하면, 상기 포토 레지스트 패턴(108)을 식각 마스크로 적용하여 노출된 박막(102)을 식각한다. 그 결과 상기 박막은 박막 패턴(114)으로 형성된다.
상기 박막(102)의 식각은 예컨대 식각 가스를 사용한 건식 식각으로 수행할 수 있으며, 식각 가스는 예컨대 CHF3, CF4, Cl2, BCl3 및 이들의 혼합 가스를 사용할 수 있다.
앞서 수행된 노광 공정에서, EUV 광원을 사용하여 수행된 노광 공정에 의해 형성된 포토 레지스트 패턴(108)을 이용하여 형성된 박막 패턴(114)은 상기 포토 레지스트 패턴(108)에 대응되는 폭을 가질 수 있다. 일 예로, 상기 포토 레지스트 패턴(108)과 동일하게 5 nm 내지 100 nm의 폭을 가질 수 있다. 예를 들어, EUV 광원을 사용하여 수행된 노광 공정에 의해 형성된 박막 패턴(114)은 상기 포토 레지스트 패턴(108)과 마찬가지로 5 nm 내지 90 nm, 5 nm 내지 80 nm, 5 nm 내지 70 nm, 5 nm 내지 60 nm, 10 nm 내지 50 nm, 10 nm 내지 40 nm, 10 nm 내지 30 nm, 10 nm 내지 20 nm의 폭을 가질 수 있으며, 보다 구체적으로 20 nm 이하의 폭으로 형성될 수 있다.
이하, 상술한 화합물의 합성 및 이를 포함하는 반도체 레지스트용 조성물의 제조에 관한 실시예를 통하여 본 발명을 더욱 상세하게 설명하도록 한다. 그러나 하기 실시예들에 의하여 본 발명의 기술적 한정되는 것은 아니다.
합성예 1
하기 화학식 A-1로 표현되는 화합물 (10 g, 25.6 mmol)에 25 ml의 아세트산을 상온에서 천천히 적가한 후, 110 ℃에서 24시간 가열 환류하였다.
[화학식 A-1]
Figure pat00015
이후, 온도를 상온으로 내린 후 아세트산을 진공 증류하여 하기 화학식 5로 표현되는 화합물을 얻었다 (수율: 90 %).
[화학식 5]
Figure pat00016
합성예 2
하기 화학식 A-2로 표현되는 화합물 (10 g, 25.4 mmol)에 25 ml의 아크릴산을 상온에서 천천히 적가한 후, 80 ℃에서 6시간 가열 환류하였다.
[화학식 A-2]
Figure pat00017
이후, 온도를 상온으로 내린 후 아크릴산을 진공 증류하여 하기 화학식 6으로 표현되는 화합물을 얻었다 (수율: 50 %).
[화학식 6]
Figure pat00018
합성예 3
하기 화학식 A-3으로 표현되는 화합물 (10 g, 23.7 mmol)에 25 ml의 프로피온산을 상온에서 천천히 적가한 후, 110 ℃에서 24시간 가열 환류하였다.
[화학식 A-3]
Figure pat00019
이후, 온도를 상온으로 내린 후 프로피온산을 진공 증류하여 하기 화학식 7로 표현되는 화합물을 얻었다 (수율: 95 %).
[화학식 7]
Figure pat00020
합성예 4
상기 합성예 2의 화학식 A-2로 표현되는 화합물 (10 g, 25.4 mmol)에 25 ml의 이소부틸산을 상온에서 천천히 적가한 후, 110 ℃에서 24시간 가열 환류하였다.
이후, 온도를 상온으로 내린 후 이소부틸산을 진공 증류하여 하기 화학식 8로 표현되는 화합물을 얻었다 (수율: 95 %).
[화학식 8]
Figure pat00021
합성예 5
하기 화학식 A-4로 표현되는 화합물 (10 g, 24.6 mmol)에 25 ml의 프로피온산을 상온에서 천천히 적가한 후, 110 ℃에서 24시간 가열 환류하였다.
[화학식 A-4]
Figure pat00022
이후, 온도를 상온으로 내린 후 프로피온산을 진공 증류하여 하기 화학식 9로 표현되는 화합물을 얻었다 (수율: 90 %).
[화학식 9]
Figure pat00023
합성예 6
전술한 화학식 A-1로 표현되는 화합물(10 g, 24.6 mmol)을 50 mL의 CH2Cl2에 녹이고, 4M HCl 디에틸에테르 용액(3 당량, 36.9 mmol)을 -78 ℃에서 30분간 천천히 적가하였다. 이후 상온에서 12 시간 교반 후 용매를 농축하여 하기 화학식 A-5로 표현되는 화합물을 얻었다 (수율: 80 %)
[화학식 A-5]
Figure pat00024
상기 화학식 A-5로 표현되는 화합물(10 g, 35.4 mmol)을 무수 펜탄 30 ml에 녹이고 온도를 0 ℃로 낮추었다. 이후, 디에틸아민(7.8 g, 106.3 mmol)을 천천히 적가한 후, 이어 t-BuOH (7.9 g, 106.3 mmol)을 첨가하고 상온에서 1시간 교반하였다. 반응이 종료되면 여과하고 농축 후, 진공 건조하여 하기 화학식 10으로 표현되는 화합물을 얻었다 (수율: 60 %).
[화학식 10]
Figure pat00025
합성예 7
전술한 화학식 A-5로 표현되는 화합물 합성 과정에서 전술한 화학식 A-1로 표현되는 화합물 대신 전술한 화학식 A-2로 표현되는 화합물을 사용한 것을 제외하고는 나머지 조건들을 동일하게 하여, 하기 화학식 A-6으로 표현되는 화합물을 얻었다 (수율: 75 %)
[화학식 A-6]
Figure pat00026
상기 화학식 A-6으로 표현되는 화합물 (10 g, 37.3 mmol)을 무수 펜탄에 녹이고 온도를 0 ℃로 낮추었다. 이후, 디에틸아민(8.2 g, 111.9 mmol)을 천천히 적가한 후, 이어 이소프로판올 (6.7 g, 111.9 mmol)을 첨가하고 상온에서 1시간 교반하였다. 반응이 종료되면 여과하고 농축 후, 진공 건조하여 하기 화학식 11로 표현되는 화합물을 얻었다 (수율: 65 %).
[화학식 11]
Figure pat00027
합성예 8
전술한 화학식 A-5로 표현되는 화합물 합성 과정에서 전술한 화학식 A-1로 표현되는 화합물 대신 전술한 화학식 A-3으로 표현되는 화합물을 사용한 것을 제외하고는 나머지 조건들을 동일하게 하여, 하기 화학식 A-7으로 표현되는 화합물을 얻었다 (수율: 70 %)
[화학식 A-7]
Figure pat00028
상기 화학식 A-7으로 표현되는 화합물 (10 g, 18.7 mmol)을 무수 펜탄에 녹이고 온도를 0 ℃로 낮추었다. 이후, 디에틸아민(7.4 g, 101.3 mmol)을 천천히 적가한 후, 이어 에탄올 (6.1 g, 101.3 mmol)을 첨가하고 상온에서 1시간 교반하였다. 반응이 종료되면 여과하고 농축 후, 진공 건조하여 하기 화학식 12로 표현되는 화합물을 얻었다 (수율: 60 %).
[화학식 12]
Figure pat00029
비교합성예
디부틸주석 디클로라이드 (Dibutyltin dichloride, 10 g, 33 mmol)을 30 mL의 에테르에 녹인 후, 1M의 수산화나트륨(NaOH) 수용액 70 mL을 첨가한 다음 1시간 동안 교반하였다. 교반 후, 생성된 고체를 여과하고 탈이온수 25 mL로 3 회 세척한 다음, 100 ℃에서 감압 건조를 수행하여, 하기 화학식 13으로 표시되는 중량평균 분자량 1,500의 유기금속 화합물을 얻었다.
[화학식 13]
Figure pat00030
실시예
합성예 1 내지 8에서 합성된 유기금속 화합물을 각각 자일렌(xylene)에 2 wt%의 농도로 녹인 후, 0.1 ㎛ PTFE 시린지 필터로 여과하여 실시예 1 내지 8의 반도체 레지스트용 조성물을 제조하였다.
네이티브-산화물 표면을 가지는 4인치 원형 실리콘 웨이퍼를 박막 필름 증착을 위한 기판으로서 사용하였으며, 상기 기판을 UV 오존 클리닝 시스템 하에서 10 분간 사전 처리하였다. 이후, 실시예 1 내지 8에 따른 상기 반도체용 레지스트 조성물을 1500 rpm 으로 30초 동안 상기 사전 처리된 기판 위에 스핀 코팅하고, 핫플레이트 위에서 100 ℃로 120초 간 소성 (적용 후 소성, post-apply bake, PAB)하여 박막을 형성하였다.
코팅 및 베이킹 후 필름의 두께는 편광계측법(ellipsometry)을 통해 측정하였으며, 측정된 두께는 약 40 nm였다.
비교예
비교합성예에서 합성된 화학식 13의 화합물을 4-메틸-2-펜타놀(4-methyl-2-pentanol)에 1 wt%의 농도로 녹인 후, 0.1 ㎛ PTFE 시린지 필터로 여과하여 반도체 레지스트용 조성물을 제조하였다.
이후, 제조된 비교예에 따른 반도체 레지스트용 조성물에 대하여 전술한 실시예와 동일한 과정을 거쳐 기판 위에 박막을 형성하였다.
코팅 및 베이킹 후 필름의 두께는 편광계측법(ellipsometry)을 통해 측정하였으며, 측정된 두께는 약 40 nm였다.
평가 1
직경이 500㎛인 50개의 원형 패드 직선 어레이를 EUV 광(Lawrence Berkeley National Laboratory Micro Exposure Tool, MET)을 사용하여 실시예 1내지 8 및 비교예의 레지스트가 코팅된 웨이퍼에 투사하였다. 패드 노출 시간을 조절하여 EUV 증가 선량이 각 패드에 적용되도록 하였다.
이후 레지스트와 기재를 hotplate 상에서 150 ℃ 에서 120 초 동안 노출 후 소성(post-exposure bake, PEB)하였다. 소성된 필름을 현상액(2-heptanone)에 각각 30 초 동안 침지시킨 후, 동일한 현상제로 추가로 10초간 세정하여 네가티브 톤 이미지를 형성, 즉 비노출된 코팅 부분을 제거하였다. 최종적으로 150 ℃, 2 분 열판 소성을 수행하여 공정을 종결하였다.
편광계측법(Ellipsometer)을 사용하여 노출된 패드의 잔류 레지스트 두께를 측정하였다. 각 노출양에 대해 남아있는 두께를 측정하여 노출양에 대한 함수로 그래프화 하여, 레지스트의 종류별로 Dg(현상이 완료되는 에너지 레벨)를 하기 표 1에 표시했다.
한편, 전술한 실시예 1 내지 실시예 8 및 비교예에 따른 반도체용 레지스트 조성물에 대하여, 하기와 같은 기준으로 조성물의 용해도 및 보관안정성을 평가하여, 하기 표 1에 함께 표시했다.
[용해도]
합성예 1 내지 8의 화학식 5 내지 12 및 비교합성예의 화학식 13의 화합물을 자일렌(xylene)에 하기 중량으로 용해하였을 때를 기준으로 용해도 정도를 하기 3 단계로 평가하였다.
○ : 자일렌에 3 중량% 이상 용해됨
△ : 자일렌에 1 중량% 이상 3 중량% 미만으로 용해됨
X : 자일렌에 1 중량% 미만으로 용해됨
[보관안정성]
상온(0 ℃ 내지 30 ℃) 조건에서 특정 기간 방치 시 침전이 발생되는 정도를 육안으로 관찰 후 보관 가능하다는 기준으로 설정하여, 하기 3단계로 평가하였다.
○ : 1 개월 이상 보관 가능
△ :1 주 내지 1 개월 미만 보관 가능
X : 1 주 미만 보관 가능
용해도 보관안정성 Dg(mJ/cm2)
실시예 1 22.72
실시예 2 5.85
실시예 3 25.21
실시예 4 18.44
실시예 5 15.75
실시예 6 31.18
실시예 7 25.21
실시예 8 31.18
비교예 X - -
표 1의 결과로부터, 실시예 1 내지 8에 따른 반도체용 레지스트 조성물은 비교예 대비 우수한 용해도와 보관안정성을 나타내며, 이를 이용하여 형성된 패턴 또한 비교예 대비 우수한 감도를 나타내는 것을 확인할 수 있다. 반면, 비교예에 따른 반도체 레지스트 조성물은 자일렌 용매에 대한 용해도가 좋지 못하므로, 상기 조성물의 보관 안정성 평가와 이를 이용한 패턴 형성 평가가 사실상 어려움을 확인할 수 있다.
평가 2
실시예 1 내지 8 및 비교예의 레지스트로 코팅된 기재를 극자외선 광선(Lawrence Berkeley National Laboratory Micro Exposure Tool)에 노출시켰다. 36nm 피치의 18 nm 라인 패턴을, 13.5nm 파장 방사선, 쌍극자 조명(dipole illumination) 및 0.3의 개구수(numerical aperture) 및 67 mJ/cm2의 이미징 선량을 사용하여 웨이퍼 상에 투사하였다. 이어서, 패터닝된 레지스트 및 기재를 열판 상에서 2분 동안 180℃에서 노출 후 소성(PEB)시켰다. 이어서, 노출된 필름을 2-헵탄온에 30초 동안 침지시키고 동일한 현상제로 추가 15 초 동안 세정하여 네가티브 톤 이미지를 형성, 즉 비노출된 코팅 부분을 제거하였다. 현상 후에 최종적으로 150 ℃에서 5 분 열판 소성을 수행하였다. 도 6은 3.4 nm의 계산된 선폭 거칠기(LWR)를 갖는 36 nm 피치로 패터닝되어 생성된 레지스트 라인의 SEM 이미지를 나타낸다.
도 6을 참고하면, 패턴의 무너짐 없이 목표 라인 앤드 스페이스(line and space)를 만족하는 포토레지스트 패턴이 잘 형성됨을 확인할 수 있다.
앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.
100: 기판 102: 박막
104: 레지스트 하층막 106: 포토 레지스트 막
106a: 노광된 영역 106b: 미노광된 영역
108: 포토 레지스트 패턴 112: 유기막 패턴
114: 박막 패턴

Claims (12)

  1. 하기 화학식 1로 표현되는 유기금속 화합물, 및
    용매를 포함하는, 반도체 레지스트용 조성물:
    [화학식 1]
    Figure pat00031

    상기 화학식 1 에서,
    R1은 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C2 내지 C20 알케닐기, 치환 또는 비치환된 C2 내지 C20 알키닐기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C6 또는 C30 아릴알킬기, 및 -Rc-O-Rd (여기서 Rc, Rd는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기) 중에서 선택되고,
    R2 내지 R4는 각각 독립적으로 -ORa 또는 -OC(=O)Rb 중에서 선택되고,
    Ra, Rb는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C2 내지 C20 알케닐기, 치환 또는 비치환된 C2 내지 C20 알키닐기, 치환 또는 비치환된 C6 내지 C30 아릴기, 또는 이들의 조합이다.
  2. 제1항에서,
    R1은 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C3 내지 C20 알케닐알킬기, 치환 또는 비치환된 C3 내지 C20 알키닐알킬기, 및 -Rc-O-Rd (여기서 Rc, Rd는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기) 중에서 선택되는, 반도체 레지스트용 조성물.
  3. 제1항에서,
    Ra, Rb는 각각 독립적으로 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C2 내지 C8 알케닐기, 치환 또는 비치환된 C2 내지 C8 알키닐기, 치환 또는 비치환된 C6 내지 C30 아릴알킬기 중에서 선택되는, 반도체 레지스트용 조성물.
  4. 제1항에서,
    상기 R2 내지 R4 중 적어도 하나는 -OC(=O)Rb 인, 반도체 레지스트용 조성물.
  5. 제1항에서,
    상기 유기금속 화합물은 하기 화학식 2 내지 화학식 4 중 적어도 하나로 표현되는, 반도체 레지스트용 조성물:
    [화학식 2]
    Figure pat00032

    [화학식 3]
    Figure pat00033

    [화학식 4]
    Figure pat00034

    화학식 2 내지 화학식 4에서,
    R1은 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C2 내지 C20 알케닐기, 치환 또는 비치환된 C2 내지 C20 알키닐기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C6 또는 C30 아릴알킬기, 및 -Rc-O-Rd (여기서 Rc, Rd는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기) 중에서 선택되고,
    R12 내지 R14, R22 내지 R24, R32 내지 R34는 각각 독립적으로 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C2 내지 C8 알케닐기, 치환 또는 비치환된 C2 내지 C8 알키닐기, 치환 또는 비치환된 C6 내지 C30 아릴알킬기 중에서 선택된다.
  6. 제5항에서,
    R1은 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C3 내지 C20 알케닐기, 치환 또는 비치환된 C3 내지 C20 알키닐기, 및 -Rc-O-Rd (여기서 Rc, Rd는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기) 중에서 선택되는, 반도체 레지스트용 조성물.
  7. 제1항에서,
    상기 조성물은 계면활성제, 가교제, 레벨링제, 또는 이들의 조합의 첨가제를 더 포함하는 반도체 레지스트용 조성물.
  8. 제1항에서,
    상기 유기금속 화합물은 하기 화학식 5 내지 화학식 12 중 적어도 하나로 표현되는 반도체 레지스트용 조성물:
    [화학식 5]
    Figure pat00035

    [화학식 6]
    Figure pat00036

    [화학식 7]
    Figure pat00037

    [화학식 8]
    Figure pat00038

    [화학식 9]
    Figure pat00039

    [화학식 10]
    Figure pat00040

    [화학식 11]
    Figure pat00041

    [화학식 12]
    Figure pat00042
  9. 식각 대상 막 위에 제1항 내지 제8항 중 어느 한 항에 따른 반도체 레지스트용 조성물을 적용하여 포토 레지스트 막을 형성하는 단계;
    상기 포토 레지스트 막을 패터닝하여 포토 레지스트 패턴을 형성하는 단계; 및
    상기 포토 레지스트 패턴을 식각 마스크로 이용하여 상기 식각 대상막을 식각하는 단계를 포함하는 패턴 형성 방법.
  10. 제9항에서,
    상기 포토 레지스트 패턴을 형성하는 단계는 5 nm 내지 150 nm 파장의 광을 사용하는 패턴 형성 방법.
  11. 제9항에서,
    상기 식각 대상 막을 기판 위에 형성하는 단계를 더 포함하는 패턴 형성 방법.
  12. 제9항에서,
    상기 포토 레지스트 패턴은 5 nm 내지 100 nm의 폭을 가지는 패턴 형성 방법.
KR1020190037135A 2018-07-31 2019-03-29 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법 KR20200014185A (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20180089414 2018-07-31
KR1020180089414 2018-07-31
US16/211,145 US11092889B2 (en) 2018-07-31 2018-12-05 Semiconductor resist composition, and method of forming patterns using the composition
US16/211,145 2018-12-05
JP2019061839 2019-03-27
JPJP-P-2019-061839 2019-03-27

Publications (1)

Publication Number Publication Date
KR20200014185A true KR20200014185A (ko) 2020-02-10

Family

ID=69627403

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190037135A KR20200014185A (ko) 2018-07-31 2019-03-29 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법

Country Status (1)

Country Link
KR (1) KR20200014185A (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210123138A (ko) * 2020-04-02 2021-10-13 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20210128794A (ko) * 2020-04-17 2021-10-27 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20210128796A (ko) * 2020-04-17 2021-10-27 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20210138416A (ko) * 2020-05-12 2021-11-19 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20220088011A (ko) * 2020-12-18 2022-06-27 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물, 이의 제조 방법 및 이를 이용한 패턴 형성 방법
KR20220095940A (ko) * 2020-12-30 2022-07-07 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물, 및 이를 이용한 패턴 형성 방법
KR102446355B1 (ko) * 2022-02-04 2022-09-22 성균관대학교산학협력단 포토레지스트 조성물
US12013635B2 (en) 2020-12-18 2024-06-18 Samsung Sdi Co., Ltd. Semiconductor photoresist composition and method of forming patterns using the composition
EP4394506A1 (en) * 2022-12-27 2024-07-03 Samsung Electronics Co., Ltd. Resist composition and method of forming pattern by using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210123138A (ko) * 2020-04-02 2021-10-13 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20210128794A (ko) * 2020-04-17 2021-10-27 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20210128796A (ko) * 2020-04-17 2021-10-27 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20210138416A (ko) * 2020-05-12 2021-11-19 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20220088011A (ko) * 2020-12-18 2022-06-27 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물, 이의 제조 방법 및 이를 이용한 패턴 형성 방법
US12013635B2 (en) 2020-12-18 2024-06-18 Samsung Sdi Co., Ltd. Semiconductor photoresist composition and method of forming patterns using the composition
KR20220095940A (ko) * 2020-12-30 2022-07-07 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물, 및 이를 이용한 패턴 형성 방법
KR102446355B1 (ko) * 2022-02-04 2022-09-22 성균관대학교산학협력단 포토레지스트 조성물
WO2023149669A1 (ko) * 2022-02-04 2023-08-10 성균관대학교산학협력단 포토레지스트 조성물
EP4394506A1 (en) * 2022-12-27 2024-07-03 Samsung Electronics Co., Ltd. Resist composition and method of forming pattern by using the same

Similar Documents

Publication Publication Date Title
KR102296813B1 (ko) 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102307977B1 (ko) 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20200014185A (ko) 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102606844B1 (ko) 반도체 포토 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102296793B1 (ko) 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
JP6865794B2 (ja) 半導体レジスト用組成物およびこれを用いたパターン形成方法
KR102690557B1 (ko) 반도체 포토레지스트용 조성물, 이의 제조 방법 및 이를 이용한 패턴 형성 방법
KR102211158B1 (ko) 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102577300B1 (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102555497B1 (ko) 반도체 포토 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102296818B1 (ko) 반도체 레지스트용 조성물, 및 이를 이용한 패턴 형성 방법
KR102577299B1 (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102586112B1 (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102573328B1 (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102538092B1 (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102678333B1 (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102586110B1 (ko) 반도체 포토레지스트용 조성물, 및 이를 이용한 패턴 형성 방법
KR102446360B1 (ko) 반도체 포토 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20230160087A (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20240025957A (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20240018224A (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20240063601A (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20230166367A (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20230023410A (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20240040479A (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application