KR20200012236A - Novel lactic acid bacteria and method of preparing fermented product having effect of anti-obesity and anti-diabets using the same - Google Patents

Novel lactic acid bacteria and method of preparing fermented product having effect of anti-obesity and anti-diabets using the same Download PDF

Info

Publication number
KR20200012236A
KR20200012236A KR1020180087270A KR20180087270A KR20200012236A KR 20200012236 A KR20200012236 A KR 20200012236A KR 1020180087270 A KR1020180087270 A KR 1020180087270A KR 20180087270 A KR20180087270 A KR 20180087270A KR 20200012236 A KR20200012236 A KR 20200012236A
Authority
KR
South Korea
Prior art keywords
lactic acid
acid bacteria
fermentation
fermented product
sweet potato
Prior art date
Application number
KR1020180087270A
Other languages
Korean (ko)
Other versions
KR102097509B1 (en
Inventor
박주웅
이상은
신은지
강태욱
Original Assignee
바이오스트림테크놀러지스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바이오스트림테크놀러지스(주) filed Critical 바이오스트림테크놀러지스(주)
Priority to KR1020180087270A priority Critical patent/KR102097509B1/en
Publication of KR20200012236A publication Critical patent/KR20200012236A/en
Application granted granted Critical
Publication of KR102097509B1 publication Critical patent/KR102097509B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • A23L19/10Products from fruits or vegetables; Preparation or treatment thereof of tuberous or like starch containing root crops
    • A23L19/105Sweet potatoes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/39Convolvulaceae (Morning-glory family), e.g. bindweed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/328Foods, ingredients or supplements having a functional effect on health having effect on glycaemic control and diabetes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/332Promoters of weight control and weight loss
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/175Rhamnosus
    • A23Y2220/73
    • C12R1/225
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Diabetes (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Botany (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Emergency Medicine (AREA)
  • Epidemiology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Endocrinology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

According to one embodiment, the present invention relates to novel lactic acid bacteria, a fermented product of the novel lactic acid bacteria in a sweet potato medium, a composition containing the fermented product of the lactic acid bacteria as an active ingredient and having anti-diabetes and anti-obesity effects, and a method for preparing the composition. The fermented product of the lactic acid bacteria has an effect of inhibiting the activity of at least one of α-amylase, α-glucosidase and lipase in vivo, inhibits factors involved in adipocyte differentiation, such as C/εΒΡα, C/εΒΡβ, PPARγ and FABP4 in preadipocyte cells, and increases the activity of Glut4 to increase intracellular glucose inflow. Therefore, the composition containing the fermented product of the lactic acid bacteria as an active ingredient can be used as a pharmaceutical composition having an effect of preventing or treating obesity or diabetes, or as a health functional food capable of preventing or alleviating obesity or diabetes.

Description

신규 유산균 및 이를 이용한 항비만 및 항당뇨 효능을 갖는 유산균 발효물의 제조방법{NOVEL LACTIC ACID BACTERIA AND METHOD OF PREPARING FERMENTED PRODUCT HAVING EFFECT OF ANTI-OBESITY AND ANTI-DIABETS USING THE SAME} Novel Lactic Acid Bacteria AND METHOD OF PREPARING FERMENTED PRODUCT HAVING EFFECT OF ANTI-OBESITY AND ANTI-DIABETS USING THE SAME}

본 발명은 신규 유산균, 고구마를 상기 유산균으로 발효시켜 수득한 항비만 및 항당뇨 효능이 있는 조성물 및 이의 제조방법에 관한 것이다.The present invention relates to a composition having a anti-obesity and anti-diabetic effect obtained by fermenting novel lactic acid bacteria and sweet potatoes with the lactic acid bacteria, and a method for preparing the same.

유산균은 당류를 발효하여 에너지를 획득하고 다량의 락트산을 생성하는 세균이다. 이는 농산물이나 식품, 사람이나 동물의 체내 등 자연계에 널리 분포하고 있다. 치즈, 발효유, 김치, 제빵 등의 발효에 많이 이용된다. 일반적으로 유산균을 섭취하면, 장내 미생물들 중 유해균이 억제될 뿐 아니라, 음식물의 소화, 흡수, 분해하는 것을 돕는 유익균이 증가하는 것으로 알려져 있다. 따라서, 유산균을 섭취하면, 혈중 콜레스테롤 감소, 면역력 증진, 내인성 감염 억제, 간경화 개선, 항암 효과 등의 다양한 효능이 있다는 점이 보고되어 있다. 그뿐 아니라, 최근 유산균으로 발효된 천연물의 효능 증대에 대한 연구도 이루어지고 있다.Lactic acid bacteria are bacteria that ferment sugars to obtain energy and produce large amounts of lactic acid. It is widely distributed in the natural world such as agricultural products, foods, and human and animal bodies. It is widely used for fermentation of cheese, fermented milk, kimchi, and baking. In general, ingesting lactic acid bacteria, it is known that not only harmful bacteria among intestinal microorganisms are suppressed, but also beneficial bacteria that help digestion, absorption and decomposition of food are increased. Therefore, it is reported that ingesting lactic acid bacteria has various effects such as reducing blood cholesterol, enhancing immunity, suppressing endogenous infection, improving liver cirrhosis, and anticancer effect. In addition, research on increasing the efficacy of natural products fermented with lactic acid bacteria has recently been made.

한편, 고구마는 메꽃과의 한해살이 뿌리 채소로, 주로 전분이 많고 단 맛이 나는 혹 줄기를 가진 재배용 작물이다. 고구마에서 주로 먹는 부분은 뿌리이며, 고구마는 뿌리에 영양분이 축적되어 둥그렇고 크기가 크다. 고구마는 다량의 섬유질을 함유하는 알칼리성 식품이다. 즉, 고구마는 식물성 섬유소가 풍부하므로 변비와 혈중 콜레스테롤의 균형을 돕고 이 외에도 혈압조절, 노화방지, 항암작용 및 피부미용에도 효과가 있는 것으로 알려져 있다. 또한, 고구마는 수분을 제외한 대부분이 에너지 공급원인 탄수화물로 열량이 높은 식품이면서 비타민 C와 카로티노이드, 안토시아닌, 폴리페놀, 무기질, 식이섬유 등의 함량이 높아 훌륭한 식량자원으로 평가되고 있다.On the other hand, sweet potatoes are a year-round root vegetable of the family buckwheat, and is a cultivated crop mainly having starch-rich and sweet hump stems. The main part of the sweet potato eats roots, and the sweet potatoes are round and large due to the accumulation of nutrients in the roots. Sweet potatoes are alkaline foods containing large amounts of fiber. That is, sweet potatoes are rich in vegetable fiber, which helps to balance constipation and blood cholesterol. In addition, it is known to be effective in blood pressure control, anti-aging, anticancer action and skin beauty. In addition, sweet potatoes are carbohydrates, most of which are energy sources except water, and are high in calorie foods and are high in vitamin C, carotenoids, anthocyanins, polyphenols, minerals, and dietary fiber.

최근에는 이러한 고구마의 효능에 주목하여 고구마를 이용한 다양한 가공식품이 개발 및 시판되고 있으나, 여기에 유산균을 접목시켜 기능성을 증진시킨 소재에 대한 연구는 미미한 실정이다.Recently, various processed foods using sweet potatoes have been developed and marketed by paying attention to the efficacy of such sweet potatoes, but research on materials that enhance functionality by incorporating lactic acid bacteria is insignificant.

대한민국 특허 공개공보 제10-2001-00048371호Republic of Korea Patent Publication No. 10-2001-00048371 대한민국 특허 공개공보 제10-2013-0021119호Republic of Korea Patent Publication No. 10-2013-0021119 대한민국 특허 공개공보 제10-2014-0067533호Republic of Korea Patent Publication No. 10-2014-0067533 대한민국 특허 공개공보 제10-2015-0139153호Republic of Korea Patent Publication No. 10-2015-0139153

본 발명의 일 실시예는 현대 사회의 주요 질병인 비만과 당뇨의 예방과 치료를 위해 발명된 것으로서, 고구마를 인변에서 분리한 신규 유산균 이용하여 발효시킴으로써 항비만 및 항당뇨 효능을 가지는 유산균 발효물, 이를 포함하는 약학적 조성물, 건강기능식품 및 이의 제조방법을 제공하는 것을 목적으로 한다.One embodiment of the present invention is invented for the prevention and treatment of obesity and diabetes, a major disease in modern society, by fermentation of sweet potato using a novel lactic acid bacteria isolated from the stool lactic acid bacteria fermentation having anti-obesity and anti-diabetic efficacy, An object of the present invention is to provide a pharmaceutical composition, a health functional food, and a method for preparing the same.

상기 목적을 달성하기 위해, In order to achieve the above object,

본 발명의 일 구현예는, 기탁번호 KCTC 13517BP로 기탁된 락토바실러스 람노서스(Lactobacillus rhamnosus) 균주를 제공할 수 있다.One embodiment of the present invention may provide a Lactobacillus rhamnosus strain deposited with accession number KCTC 13517BP.

또한, 본발명의 다른 구현예는 상기 균주로 발효된 유산균 발효물을 제공할 수 있다.In addition, another embodiment of the present invention may provide a lactic acid bacteria fermented product fermented with the strain.

또한, 본 발명의 또 다른 구현예는 상기 유산균 발효물을 유효성분으로 포함하는 당뇨 또는 비만의 예방 또는 치료용 약학적 조성물을 제공할 수 있다.In addition, another embodiment of the present invention may provide a pharmaceutical composition for preventing or treating diabetes or obesity, including the lactic acid bacteria fermentation as an active ingredient.

또한, 본 발명의 다른 구현예는 상기 유산균 발효물을 유효성분으로 포함하는 당뇨 또는 비만의 예방 또는 개선용 건강기능식품을 제공할 수 있다.In addition, another embodiment of the present invention can provide a dietary supplement for preventing or improving diabetes or obesity, including the lactic acid bacteria fermented product as an active ingredient.

또한, 본 발명의 또 다른 구현예는 고구마에 기탁번호 KCTC 13517BP로 기탁된 락토바실러스 람노서스 균주를 접종하는 단계를 포함하는 유산균 발효물의 제조방법을 제공할 수 있다.In addition, another embodiment of the present invention may provide a method for preparing a lactic acid bacteria fermentation product comprising the step of inoculating sweet potato with the Lactobacillus rhamnosus strain deposited with accession number KCTC 13517BP.

본 발명의 일 실시예에 따른 고구마의 신규 유산균 발효물은, 체내에서 α-아밀라아제, α-글루코시다아제 및 리파아제 중 적어도 하나의 활성을 저해하는 효과가 있다. 또한, 지방 전구세포에서 C/EBPα, C/EBPβ, PPARγ, FABP4와 같은 지방 세포 분화에 관여하는 인자를 억제시키고 Glut4의 활성을 증가시켜 세포 내 포도당 유입을 증가시킬 수 있는 효과가 있다. 따라서, 본 발명의 일 실시예에 따른 유산균 발효물을 유효성분으로 함유하는 조성물은, 비만 또는 당뇨를 예방 또는 치료하는 효과가 있는 약학적 조성물 또는 비만 또는 당뇨를 예방 또는 개선할 수 있는 건강기능식품으로 이용될 수 있다.The novel lactic acid bacteria fermentation product of sweet potatoes according to one embodiment of the present invention has the effect of inhibiting the activity of at least one of α-amylase, α-glucosidase and lipase in the body. In addition, there is an effect of inhibiting factors involved in adipocyte differentiation, such as C / EBPa, C / EBB, PPARγ, FABP4, and increasing the activity of Glut4 in adipocyte progenitor cells, thereby increasing intracellular glucose influx. Therefore, the composition containing the lactic acid bacteria fermented product according to an embodiment of the present invention as an active ingredient, a pharmaceutical composition having an effect of preventing or treating obesity or diabetes or a health functional food capable of preventing or improving obesity or diabetes It can be used as.

도 1은 본 발명의 일 실시예에 따른 고구마 배지를 사용한 유산균 발효물과 대조군 YG배지, 탈지분유 배지의 발효물의 동결건조 후 유산균의 생존률을 나타낸 그래프이다.
도 2는 본 발명의 일 실시예에 따른 고구마 배지를 사용한 유산균 발효물과 대조군 YG배지 발효물의 총폴리페놀함량을 보여주는 그래프이다.
도 3은 지방전구세포 3T3-L1세포주에 본 발명의 일 실시예에 따른 유산균 발효물 상등액 건조물을 농도별 및 시간별로 처리하였을 때의 세포 생존율을 나타낸 그래프이다.
도 4는 지방전구세포 3T3-L1을 지방세포로 분화시킨 세포주에 본 발명의 일 실시예에 따른 유산균 발효물 상등액 건조물을 농도별 및 시간별로 처리하였을 때의 세포 생존율을 나타낸 그래프이다.
도 5는 지방전구세포 3T3-L1세포주에 본 발명의 일 실시예에 따른 멸균한 유산균 발효물을 농도별 및 시간별로 처리하였을 때의 세포 생존율을 나타낸 그래프이다.
도 6은 지방전구세포 3T3-L1을 지방세포로 분화시킨 세포주에 본 발명의 일 실시예에 따른 멸균한 유산균 발효물을 농도별 및 시간별로 처리하였을 때의 세포 생존율을 나타낸 그래프이다.
도 7은 지방전구세포 3T3-L1세포주를 지방세포로 분화시킬 때 본 발명의 일 실시예에 따른 유산균 발효물 상등액 건조물을 처리하지 않은 군과 처리한 군의 지방세포의 분포를 Oil Red O 염색을 통해 현미경으로 관찰하여 비교한 사진이다.
도 8은 지방전구세포 3T3-L1세포주를 지방세포로 분화시킬 때 본 발명의 일 실시예에 따른 유산균 발효물 상등액 건조물을 처리하지 않은 군과 처리한 군의 지방세포의 분포를 Oil Red O 염색을 통해 흡광도를 비교한 그래프이다.
도 9는 지방전구세포 3T3-L1세포주를 지방세포로 분화시킬 때 본 발명의 일 실시예에 따른 유산균 발효물 상등액 건조물을 처리하지 않은 군과 처리한 군의 지방세포 분화 인자를 단백질 단계에서 웨스턴 블랏을 통해 확인한 결과이다.
도 10은 지방전구세포 3T3-L1세포주를 지방세포로 분화시킬 때 본 발명의 일 실시예에 따른 멸균한 유산균 발효물을 처리하지 않은 군과 처리한 군의 지방세포의 분포를 Oil Red O 염색을 통해 흡광도를 비교한 그래프이다.
도 11은 지방전구세포 3T3-L1세포주를 지방세포로 분화시킬 때 본 발명의 일 실시예에 따른 멸균한 유산균 발효물을 처리하지 않은 군과 처리한 군의 지방세포의 분포를 Oil Red O 염색을 통해 흡광도를 비교한 그래프이다.
도 12는 지방전구세포 3T3-L1세포주를 지방세포로 분화시킬 때 본 발명의 일 실시예에 따른 유산균 발효물 상등액 건조물을 처리하지 않은 군과 처리한 군의 지방세포 분화 인자를 단백질 단계에서 웨스턴 블랏을 통해 확인한 결과이다.
도 13은 지방전구세포 3T3-L1을 지방세포로 분화시킨 세포주에 본 발명의 일 실시예에 따른 유산균 발효물 상등액 건조물을 처리한 군, 처리하지 않은 군과 양성대조군인 인슐린을 처리한 군에 Glucose analog인 2-NBDG를 처리하여 Glucose uptake를 비교한 그래프이다.
도 14는 지방전구세포 3T3-L1을 지방세포로 분화시킨 세포주에 본 발명의 일 실시예에 따른 유산균 발효물 상등액 건조물을 처리한 군과 처리하지 않은 군, 양성대조군인 인슐린을 처리한 군에 대해 포도당 전사인자 Glut4의 단백질 발현 양상을 웨스턴 블랏을 통해 확인한 결과이다.
도 15는 지방전구세포 3T3-L1을 지방세포로 분화시킨 세포주에 본 발명의 일 실시예에 따른 멸균한 유산균 유산균 발효물을 처리한 군, 처리하지 않은 군과 양성대조군인 인슐린을 처리한 군에 Glucose analog인 2-NBDG를 처리하여 Glucose uptake를 비교한 그래프이다.
도 16은 지방전구세포 3T3-L1을 지방세포로 분화시킨 세포주에 본 발명의 일 실시예에 따른 멸균한 유산균 유산균 발효물을 처리한 군, 처리하지 않은 군과 양성대조군인 인슐린을 처리한 군에 대해 포도당 전사인자 Glut4의 단백질 발현 양상을 웨스턴 블랏을 통해 확인한 결과이다.
1 is a graph showing the survival rate of lactic acid bacteria after lyophilization of the fermented product of lactic acid bacteria fermentation product and the control YG medium, skim milk powder medium using sweet potato medium according to an embodiment of the present invention.
Figure 2 is a graph showing the total polyphenol content of lactic acid bacteria fermentation and control YG medium fermentation using sweet potato medium according to an embodiment of the present invention.
Figure 3 is a graph showing the cell survival rate when treated with a concentration and time to the lactic acid bacteria fermented product supernatant dry according to an embodiment of the present invention to the fat precursor cell 3T3-L1 cell line.
Figure 4 is a graph showing the cell survival rate when treated with a concentration and time of the lactic acid bacteria fermented product supernatant dry according to an embodiment of the present invention in a cell line differentiated into adipocytes 3T3-L1 fat cells.
Figure 5 is a graph showing the cell survival rate when treated with sterilized lactic acid bacteria fermentation in accordance with an embodiment of the present invention to the fat precursor cell 3T3-L1 cell line by concentration and time.
Figure 6 is a graph showing the cell survival rate when treated with sterilized lactic acid bacteria fermentation according to an embodiment of the present invention in a cell line differentiated into adipocytes 3T3-L1 fat cells.
Figure 7 Oil Red O staining of the distribution of fat cells in the group treated with the supernatant dry lactic acid bacteria fermented product according to an embodiment of the present invention when differentiating the progenitor cell 3T3-L1 cell line It is a photograph compared with observation under a microscope.
8 is Oil Red O staining of the distribution of fat cells of the group treated with the supernatant of lactic acid bacteria fermented product supernatant dried according to an embodiment of the present invention when differentiating progenitor cell 3T3-L1 cell line It is a graph comparing the absorbance through.
Figure 9 Western blot at the protein stage of the adipocyte differentiation factor of the group treated with the lactic acid bacteria fermented product supernatant dry according to an embodiment of the present invention when differentiating the progenitor cell 3T3-L1 cell line with adipocytes This is the result confirmed through.
10 is Oil Red O staining of the distribution of fat cells of the group treated with the sterilized lactic acid bacteria fermented product and the treated group according to an embodiment of the present invention when differentiating adipocyte 3T3-L1 cell line into adipocytes. It is a graph comparing the absorbance through.
11 is Oil Red O staining of the distribution of fat cells of the group and the group not treated with the sterilized lactic acid bacteria fermentation in accordance with an embodiment of the present invention when differentiating progenitor cell 3T3-L1 cell line It is a graph comparing the absorbance through.
Figure 12 Western blot at the protein stage of the adipocyte differentiation factor of the group treated with lactic acid bacteria fermented product supernatant dry according to an embodiment of the present invention when differentiating the progenitor cell 3T3-L1 cell line with adipocytes This is the result confirmed through.
Figure 13 is a group of cells treated with lactic acid bacteria fermented product supernatant dried according to an embodiment of the present invention in a cell line in which fat precursor cells 3T3-L1 were differentiated into adipocytes, an untreated group and a positive control group, Glucose. This is a graph comparing Glucose uptake by treating analog 2-NBDG.
Figure 14 is a group treated with lactic acid bacteria fermented product supernatant dry according to an embodiment of the present invention in a cell line differentiated into adipocytes 3T3-L1 adipocytes and a group treated with insulin as a positive control group The protein expression pattern of glucose transcription factor Glut4 was confirmed by Western blot.
Figure 15 is a group treated with sterilized lactic acid bacteria lactic acid bacteria fermentation, according to an embodiment of the present invention in a cell line differentiated into adipocytes 3T3-L1 adipocytes, in the group treated with insulin as a positive control group This is a graph comparing Glucose uptake by processing 2-NBDG which is Glucose analog.
Figure 16 is a group treated with sterilized lactic acid bacteria lactic acid bacteria fermentation, according to an embodiment of the present invention in a cell line differentiated into adipocytes 3T3-L1 adipocytes, in the group treated with insulin as a positive control group The protein expression pattern of the glucose transcription factor Glut4 was confirmed by Western blot.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 측면은, 신규한 락토바실러스 람노서스(Lactobacillus rhamnosus) 균주를 제공할 수 있다. One aspect of the present invention can provide a novel Lactobacillus rhamnosus strain.

구체적으로, 상기 락토바실러스 람노서스균주는 국제기탁기관인 한국생명공학연구원 미생물자원센터(Korean Collection for Type Culture; KCTC)에 2018년 4월 27일자로 기탁되었으며, 그로부터 기탁번호 KCTC 13517BP를 부여받았다.Specifically, the Lactobacillus rhamnosus strain was deposited on April 27, 2018 at the Korea Collection for Type Culture (KCTC), an international depository institution, and was granted accession number KCTC 13517BP.

상기 균주는 사람의 분변으로부터 분리한 것으로서, 염기서열을 통한 계통 분류 결과를 바탕으로 락토바실러스 람노서스에 속하는 새로운 균주로 분류될 수 있다.The strain is isolated from human feces, and can be classified as a new strain belonging to Lactobacillus rhamnosus based on the phylogenetic results through sequencing.

본 발명자들은 상기 신규한 유산균 균주를 분리 동정하였다. 특히, 이 균주로 고구마를 발효시킨 발효물이 항당뇨 및 항비만 효능이 있는 것을 확인하여 본 발명을 완성하였다. 본원에서 사용되는 용어 “비만”은 체내에 체지방이 과도하게 축적되는 것을 의미한다. 또한, 본원에서 사용되는 용어 "당뇨"는 포도당-비관용(intolerance)을 초래하는 인슐린의 분비량이 부족하거나 정상적인 기능이 이루어지지 않는 등의 대사질환의 일종을 의미한다.The present inventors have isolated and identified the novel lactic acid bacteria strain. In particular, the present invention was completed by confirming that the fermented product fermented with sweet potato strain has anti-diabetic and anti-obesity effects. As used herein, the term "obesity" refers to the excessive accumulation of body fat in the body. In addition, the term "diabetes" as used herein refers to a kind of metabolic disease, such as a lack of insulin secretion or normal function that causes glucose-intolerance.

즉, 본 발명의 다른 측면은, 고구마를 사용하여 상기 균주로 발효된 유산균 발효물을 제공할 수 있다. 상기 고구마는 고구마 다이스, 이의 분쇄물, 고구마 페이스트, 고구마 배지 등의 형태로 사용될 수 있다. 또한, 상기 고구마는 자색고구마, 호박고구마, 꿀고구마, 황색고구마, 밤고구마, 물고구마, 맛젤고구마로 이루어진 군에서 선택되는 적어도 하나일 수 있으며, 바람직하게는 밤고구마일 수 있다.That is, another aspect of the present invention can provide a lactic acid bacteria fermented product fermented with the strain using sweet potato. The sweet potato may be used in the form of sweet potato dice, its pulverized product, sweet potato paste, sweet potato medium and the like. In addition, the sweet potato may be at least one selected from the group consisting of purple sweet potato, pumpkin sweet potato, honey sweet potato, yellow sweet potato, chestnut sweet potato, water sweet potato, sweet potato sweet potato, preferably may be chestnut sweet potato.

또한, 상기 유산균 발효물은 고구마 배지를 발효시킨 것일 수 있으며, 상기 고구마 배지는 고구마 원료와 물을 2 : 1 내지 1 : 2의 중량비로 포함할 수 있다. 아울러, 포함된 물의 1 내지 3배의 물을 더 첨가한 후 발효시킬 수 있다.In addition, the lactic acid bacteria fermented product may be a fermented sweet potato medium, the sweet potato medium may include a sweet potato raw material and water in a weight ratio of 2: 1 to 1: 2. In addition, it may be fermented after further adding 1 to 3 times the water contained.

또한, 상기 유산균을 YG 배지, 탈지분유 배지 및 고구마 배지를 발효시킨 후에 발효물을 동결건조 후 건조물 내 유산균의 생존율을 측정한 결과, 고구마 배지의 생존율이 7 배 내지 1.4 배 높았다. 즉, 고구마는 상기 유산균 발효물을 동결건조시키는 경우 유산균의 보존성을 향상시키는 효과가 있는 바, 고구마가 상기 유산균의 동결건조 보존제로 사용될 수 있다.In addition, after fermenting the lactic acid bacteria YG medium, skim milk powder medium and sweet potato medium, after lyophilization of the fermented product, the survival rate of the lactic acid bacteria in the dried product was found to be 7 times to 1.4 times higher. That is, the sweet potato has an effect of improving the preservation of the lactic acid bacteria when the freeze-dried lactic acid bacteria fermented product, sweet potato may be used as a lyophilized preservative of the lactic acid bacteria.

또한, 상기 유산균 발효물의 폴리페놀 함량은 발효 전 고구마, 예를 들어 고구마 배지의 폴리페놀 함량의 1.5 배 내지 4 배일 수 있다. 폴리페놀은 하이드록시기를 2개 이상 갖고 있는 물질로, 유해산소를 제거하는 항산화 작용 및 항염증 작용이 있을 뿐만 아니라, 혈당과 체내지질대사를 조절하는 효과가 있는 것으로 알려진 물질이다. 본 발명의 신규 유산균 균주로 고구마 배지를 발효시킴으로써, 고구마를 포함하는 조성물의 폴리페놀의 함량을 효과적으로 증가시킬 수 있다.In addition, the polyphenol content of the lactic acid bacteria fermentation may be 1.5 to 4 times the polyphenol content of the sweet potato, for example, sweet potato medium before fermentation. Polyphenols are substances that have two or more hydroxyl groups, and are known to have antioxidant and anti-inflammatory effects of removing harmful oxygen, as well as to regulate blood glucose and body metabolism. By fermenting the sweet potato medium with the novel lactic acid bacteria strain of the present invention, it is possible to effectively increase the content of polyphenols of the composition comprising sweet potatoes.

한편, 상기 유산균 발효물은 α-아밀라아제, α-글루코시다아제 및 리파아제 중 적어도 하나의 활성을 저해할 수 있다. On the other hand, the lactic acid bacteria fermentation may inhibit the activity of at least one of α-amylase, α-glucosidase and lipase.

α-아밀라아제 또는 α-글루코시다아제는 생체 내 탄수화물 분해효소이며, 리파아제는 지방 분해효소이다. 당뇨병 또는 비만의 병증이 있는 환자의 혈당 조절과 지질 대사 개선을 위해 이러한 효소들의 활성을 저해하는 약제가 개발되고 있으나, 각종 부작용과 합성의 어려움으로 인해 유사 활성을 갖는 천연물에 대한 요구가 있어 왔다. 본 발명의 일 실시예에 따른 상기 유산균 발효물은 상기 효소들의 활성을 저해하는 효과가 있는바, 탄수화물과 지방의 분해를 직접적으로 억제함으로써 당뇨병 및 비만의 예방, 치료, 개선에 유용하게 사용될 수 있다.α-amylase or α-glucosidase is a carbohydrate degrading enzyme in vivo and lipase is a lipolytic enzyme. Drugs that inhibit the activity of these enzymes have been developed to improve blood sugar control and lipid metabolism in patients with diabetes or obesity, but there have been demands for natural products having similar activities due to various side effects and difficulty in synthesis. The lactic acid bacteria fermentation product according to an embodiment of the present invention has an effect of inhibiting the activity of the enzymes, and thus can be usefully used for preventing, treating and improving diabetes and obesity by directly inhibiting the decomposition of carbohydrates and fats. .

또한, 상기 유산균 발효물은 C/EBPα(CCAAT-enhancer-binding protein α), C/EBPβ(CCAAT-enhancer-binding protein β), PPARγ(peroxisome proliferator activated receptorγ), 아디포넥틴(Adiponectin) 및 FABP4(fatty acid binding protein 4) 중 적어도 하나의 발현을 억제하고, GLUT4(Glucose transporter type 4)의 발현을 증가시키는 효과가 있다.In addition, the lactic acid bacteria fermentation products are C / EBPα (CCAAT-enhancer-binding protein α), C / EBPβ (CCAAT-enhancer-binding protein β), PPARγ (peroxisome proliferator activated receptorγ), adiponectin (Adiponectin) and FABP4 (fatty acid) It inhibits the expression of at least one of binding protein 4) and increases the expression of GLUT4 (Glucose transporter type 4).

지방세포분화는 형태, 호르몬 민감성 및 유전자 발현에서의 변화가 수반되는 복잡한 과정이다. 몇몇 전사 인자는 지방세포분화에서 중요한 역할을 하는 것으로 나타났다. 지방세포의 형성과정에 관여하는 주요 전사인자로는 C/EBPα와 PPARγ가 있다. 또한, PPARγ는 아디포넥틴 또는 FABP4등의 지방분화 마커 유전자들의 발현을 증가시킨다.Adipocyte differentiation is a complex process that involves changes in morphology, hormone sensitivity and gene expression. Several transcription factors have been shown to play an important role in adipocyte differentiation. The major transcription factors involved in the formation of adipocytes are C / EBPa and PPARγ. In addition, PPARγ increases the expression of adifferentiation marker genes such as adiponectin or FABP4.

아울러, GULT4는 인슐린 수송로로서, 인슐린에 의한 자극이 오면 세포 내 GULT4는 원형질막으로 이동하여 포도당 수송을 촉진한다. 따라서, GLUT4는 혈중 글루코오스의 세포 내 유입을 원활하게 하여 혈당을 낮추는 역할을 한다. 즉, 글루코오스 수송에 관여하는 GLUT4의 활성 및 발현이 증가할수록 항당뇨 효과가 증가한다.In addition, GULT4 is an insulin transport pathway, and when stimulation by insulin comes, intracellular GULT4 moves to the plasma membrane to promote glucose transport. Therefore, GLUT4 plays a role in lowering blood glucose by facilitating the inflow of glucose into the blood. That is, the antidiabetic effect increases as the activity and expression of GLUT4 involved in glucose transport increases.

또한, 상기 유산균 발효물은 동결건조된 것일 수 있으며, 동결건조된 발효물을 분말화하여 기능성 식품 등 여러가지 제제의 원료로 활용할 수 있다.In addition, the lactic acid bacteria fermentation may be lyophilized, it can be used as a raw material of various formulations, such as functional food by powdering the lyophilized fermentation.

본 발명의 또 다른 측면은, 전술한 유산균 발효물을 유효성분으로 포함하는 당뇨 또는 비만의 예방 또는 치료용 약학적 조성물을 제공할 수 있다.Another aspect of the present invention can provide a pharmaceutical composition for preventing or treating diabetes or obesity, including the above-described lactic acid bacteria fermentation as an active ingredient.

상기 약학적 조성물은 상기 유산균 발효물 뿐만 아니라 본 명세서에 기술되거나 기재되지 않은 영양또는 약제학적 용도에 유용한 임의의 추가 또는 선택 성분을 포함할 수 있다. 이러한 다수의 선택 성분은 경구투여에 안전하고 효과적이며 본 발명의 조성물의 필수 및 다른 선택 성분과 상용성이 있다면, 본 발명의 조성물에도 사용될 수 있다.The pharmaceutical composition may comprise the lactic acid bacteria fermentation as well as any additional or optional ingredients useful for nutritional or pharmaceutical uses not described or described herein. Many of these optional ingredients can be used in the compositions of the present invention as long as they are safe and effective for oral administration and are compatible with the essential and other optional ingredients of the compositions of the present invention.

또한, 상기 약학적 조성물은 상기 유효 성분 이외에 통상적인 제약학적으로 허용가능한 담체 및/또는 부형제를 추가로 포함할 수 있으며, 이 외에도 바인더, 분해제, 코팅제, 윤활제, 방부제, 산화방지제, 완충제, 다른 약제학적 활성제, 감미료, 착색제, 향미료, 향미료 증강제, 증점제 및 안정화제, 유화제 등과 같은 제약학적으로 통상적으로 사용되는 다양한 선택 성분들과 함께 제형화되어 조제될 수 있다.In addition, the pharmaceutical composition may further include conventional pharmaceutically acceptable carriers and / or excipients in addition to the active ingredient, in addition to binders, disintegrating agents, coatings, lubricants, preservatives, antioxidants, buffers, other It may be formulated and formulated with a variety of pharmaceutically conventionally used optional ingredients such as pharmaceutical actives, sweeteners, colorants, flavors, flavor enhancers, thickeners and stabilizers, emulsifiers and the like.

또한, 본 발명의 다른 측면은, 전술한 유산균 발효물을 유효성분으로 포함하는 당뇨 또는 비만의 예방 또는 개선용 건강기능식품을 제공할 수 있다.In addition, another aspect of the present invention can provide a dietary supplement for preventing or improving diabetes or obesity, including the above-mentioned lactic acid bacteria fermented product as an active ingredient.

상기 건강기능식품은 수득된 유산균 발효물을 직접 섭취가 가능하도록 포장하여 제품화될 수 있고, 또는 동결건조된 유산균 발효물을 식품의 보조원료로 첨가하여 기능성 식품으로 제공될 수 있다. 예를 들어, 상기 유산균 발효물을 음료형태로 가공하거나, 캡술 형태로 가공하거나, 정제 형태로 가공하여 제품화할 수 있다.The health functional food may be commercialized by packaging the obtained lactic acid bacteria fermentation so as to be directly ingested, or may be provided as a functional food by adding lyophilized lactic acid bacteria fermentation as a supplementary ingredient of the food. For example, the lactic acid bacteria fermented product may be processed into a beverage form, processed into a capsule form, or processed into a tablet form to produce a product.

또한, 본 발명의 또 다른 측면은, 고구마, 예를 들어 고구마 배지를 포함하는 조성물에 기탁번호 KCTC 13517BP로 기탁된 락토바실러스 람노서스 균주를 접종하는 단계 및 상기 조성물을 발효시키는 단계를 포함하는 유산균 발효물의 제조방법을 제공할 수 있다. 특히, 발효를 위해 질소원 및/또는 탄소원을 더 첨가할 수 있다. 예를 들어, 효모 추출물 및/또는 당분을 첨가할 수 있다.In addition, another aspect of the present invention, lactic acid bacteria fermentation comprising the step of inoculating a sweet potato, for example, a composition comprising sweet potato medium, Lactobacillus rhamnosus strain deposited with accession number KCTC 13517BP and fermenting the composition It is possible to provide a method for producing water. In particular, a nitrogen source and / or a carbon source may be further added for the fermentation. For example, yeast extract and / or sugar can be added.

예를 들어, 상기 접종하는 단계는, 1) 고구마를 포함하는 조성물을 준비하는 단계, 2) 상기 조성물에 효모 추출물을 첨가 후 멸균하는 단계, 3) 멸균된 조성물에 글루코오스를 포함하는 조성물을 첨가한 후, KCTC 13517BP 균주를 접종하는 단계를 포함하는 유산균 발효물의 제조방법을 제공할 수 있다.For example, the step of inoculating may include 1) preparing a composition comprising sweet potatoes, 2) sterilizing and then adding a yeast extract to the composition, and 3) adding a composition comprising glucose to the sterilized composition. Then, it can provide a method for producing a lactic acid bacteria fermentation comprising the step of inoculating KCTC 13517BP strain.

상기 고구마를 포함하는 조성물은 다양한 종류의 고구마를 분쇄하고 물과 균질화시켜 제조한 고구마 배지일 수 있고, 상기 고구마 조성물 100 중량부 대비 고구마 원료를 10 내지 40 중량부, 15 내지 35 중량부, 20 내지 30 중량부 또는 25 내지 28 중량부로 포함할 수 있다.The sweet potato composition may be a sweet potato medium prepared by pulverizing various kinds of sweet potatoes and homogenizing with water, and 10 to 40 parts by weight, 15 to 35 parts by weight, and 20 to about 30 parts by weight of sweet potato raw material. 30 parts by weight or 25 to 28 parts by weight.

또한, 상기 고구마를 포함하는 조성물에 질소원으로서 효모 추출물을 첨가할 수 있고, 이때 전체 조성물 중 효모 추출물이 2.5 g/L 내지 20 g/L, 5 g/L 내지 15 g/L 또는 7 g/L 내지 12 g/L의 농도가 되도록 첨가할 수 있다. 아울러, 효모 추출물을 첨가한 후, 조성물의 pH 값을 5 내지 8, 5.5 내지 7.5 또는 6 내지 7 정도로 조절하는 것이 유기산 생산량 측면에서 가장 바람직하다. 아울러, 효모 추출물을 첨가한 후 100℃ 내지 130℃의 온도로 10 분 내지 30 분간 멸균시킬 수 있다.In addition, the yeast extract may be added as a nitrogen source to the composition comprising sweet potatoes, wherein the yeast extract in the total composition is 2.5 g / L to 20 g / L, 5 g / L to 15 g / L or 7 g / L Can be added to a concentration of from 12 g / L. In addition, after adding the yeast extract, adjusting the pH value of the composition to about 5 to 8, 5.5 to 7.5 or 6 to 7 is most preferred in terms of organic acid production. In addition, the yeast extract may be added and then sterilized at a temperature of 100 ° C. to 130 ° C. for 10 minutes to 30 minutes.

이렇게 멸균된 고구마 배지 조성물에, 멸균된 글루코오스 또는 수크로오스 등의 당분을 포함하는 조성물을 첨가할 수 있고, 이때 전체 조성물 중 당분을 포함하는 조성물이 10 g/L 내지 40 g/L, 15 g/L 내지 30 g/L 또는 18 g/L 내지 25 g/L의 농도가 되도록 첨가할 수 있다.To the sterilized sweet potato medium composition, a composition containing sugar such as sterile glucose or sucrose may be added, wherein the composition containing sugar in the total composition is 10 g / L to 40 g / L and 15 g / L. To 30 g / L or 18 g / L to 25 g / L.

또한, 상기 발효시키는 단계에서, 20℃ 내지 40℃, 35℃ 내지 39℃, 또는 36℃ 내지 38℃의 온도에서 발효시키는 전발효를 수행할 수 있다. 상기 전발효는 20 내지 100 시간, 40 내지 90 시간, 50 시간 내지 80 시간, 또는 65 시간 내지 75 시간 동안 수행될 수 있다. In addition, in the step of fermentation, it is possible to perform the pre-fermentation to fermentation at a temperature of 20 ℃ to 40 ℃, 35 ℃ to 39 ℃, or 36 ℃ to 38 ℃. The prefermentation may be performed for 20 to 100 hours, 40 to 90 hours, 50 hours to 80 hours, or 65 hours to 75 hours.

상기 전발효 과정을 거친 후, 1℃ 내지 10℃, 3℃ 내지 7℃ 또는 4℃ 내지 5℃의 온도에서 발효시키는 후발효 단계를 더 포함할 수 있다. 상기 후발효는 50 내지 150 시간, 70 시간 내지 120 시간, 또는 95 시간 내지 105 시간 동안 수행될 수 있다. After the pre-fermentation process, it may further comprise a post-fermentation step of fermentation at a temperature of 1 ℃ to 10 ℃, 3 ℃ to 7 ℃ or 4 ℃ to 5 ℃. The post-fermentation may be performed for 50 to 150 hours, 70 hours to 120 hours, or 95 hours to 105 hours.

이와 같이 상이한 조건의 전발효 및 후발효의 두가지 공정의 발효를 수행함으로써, 당뇨와 비만과 관련된 효소의 활성을 억제하는 성분의 함량을 증가시킬 수 있어, 보다 효과적으로 관련 질병을 예방 및 치료할 수 있는 효능을 갖는 유산균 발효물을 제공할 수 있다. By carrying out the fermentation of the two processes of pre-fermentation and post-fermentation under different conditions as described above, it is possible to increase the content of a component that inhibits the activity of enzymes related to diabetes and obesity, thereby more effectively preventing and treating related diseases. It can provide a lactic acid bacteria fermented product.

이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

제조예 1. 발효균주의 분리Preparation Example 1 Isolation of Fermented Strains

무작위로 선정한 20명의 인변 샘플을 멸균한 PBS에 10진법으로 희석하여 준비하였다. 이를 MRS agar 배지에 도말한 뒤 37℃에서 혐기적인 조건으로 24 내지 48시간 배양하였다. 배양 후 가장 큰 콜로니를 선별하여 MRS broth에 접종하여 37℃에서 혐기적인 조건으로 24시간 정치 배양한 후, 600 nm에서 OD 1.0이상 자란 균주를 선별하였다. 선별된 균주를 skim milk 배지에 접종하여 커드(curd) 형성이 원활한 균주들을 다시 한 번 선별하였다. Skim milk 배지에 자란 유산균을 다시 도말한 후 단일 콜로니를 선별하여 유산균 고구마 발효물의 제조에 이용하였다. Twenty randomly selected phosphate samples were prepared by diluting in sterile PBS in decimal. It was plated in MRS agar medium and incubated at 37 ° C. under anaerobic conditions for 24 to 48 hours. After incubation, the largest colonies were selected, inoculated in MRS broth, and cultured at 37 ° C. under anaerobic conditions for 24 hours, and strains grown at OD 1.0 or higher at 600 nm were selected. Selected strains were inoculated in skim milk medium to select strains with smooth curd. After smearing the lactic acid bacteria grown in the skim milk medium, a single colony was selected and used for the production of lactic acid bacteria sweet potato fermentation.

제조예Production Example 2. 고구마 배지의 제조 2. Preparation of Sweet Potato Medium

밤고구마, 호박고구마, 맛젤고구마 등 국내에서 생산되는 고구마를 세척 후 껍질을 제거하여 절단한 후 고구마 중량과 동량의 물을 넣어 곱게 갈아 준비하였다. 준비한 고구마 페이스트와 이의 1 내지 3배의 물을 혼합하여 호모게나이저를 이용하여 10,000rpm에서 10분간 곱게 갈았다. 여기에 2.5 내지 20 g/L의 효모 추출물을 혼합하였다. 이후, 1M HCl을 이용하여 pH를 6.5 내지 8.0으로 조절하였다. 이를 121℃에서 15분간 멸균한 뒤 10 내지 40 g/L의 글루코오스가 포함되도록 멸균한 글루코오스 용액을 첨가한 배지에 분리한 유산균(Lactobacillus rhamnosus(BST.L-601) KCTC 13517BP) 약 1

Figure pat00001
106 CFU를 10%의 부피가 되도록 접종하였다. 37℃에서 1 내지 4일간 발효 후, 4℃에서 3 내지 4일간 후발효하여 발효액을 제조하였다.Domestic sweet potatoes, such as chestnut sweet potato, pumpkin sweet potato, and flavored sweet potato, were washed and removed after peeling, and then, the sweet potato weight and the same amount of water were added to grind finely. The prepared sweet potato paste and 1 to 3 times of water were mixed and ground finely at 10,000 rpm for 10 minutes using a homogenizer. To this was mixed 2.5 to 20 g / L yeast extract. Then, the pH was adjusted to 6.5 to 8.0 using 1M HCl. Lactobacillus rhamnosus (BST.L-601) KCTC 13517BP), which was sterilized at 121 ° C. for 15 minutes and then separated into a medium containing 10 to 40 g / L of glucose solution sterilized.
Figure pat00001
10 6 CFU was inoculated to a volume of 10%. After fermentation at 37 ° C. for 1 to 4 days, the fermentation broth was prepared by post-fermentation at 4 ° C. for 3 to 4 days.

제조예 3. 유산균 발효액의 건조Preparation Example 3 Drying of Lactic Acid Bacteria Fermentation Solution

제조예 2에서 제조한 고구마 배지를 사용하여 유산균을 발효시킨 유산균 발효액의 pH를 5N NaOH 용액을 이용하여 pH 7.0으로 조절하였다. 이후, 동량의 물을 혼합하여 2시간동안 교반 후 8,000 rpm에서 1 시간동안 원심분리하였다. 이의 상등액을 분리하여 -70℃에서 7일간 동결건조하여 동결건조분말을 제조하였다.The pH of the lactic acid bacteria fermentation broth in which the lactic acid bacteria were fermented using the sweet potato medium prepared in Preparation Example 2 was adjusted to pH 7.0 using 5N NaOH solution. Thereafter, the same amount of water was mixed and stirred for 2 hours, followed by centrifugation for 1 hour at 8,000 rpm. The supernatant was separated and freeze-dried at -70 ° C for 7 days to prepare a lyophilized powder.

제조예Production Example 4. 유산균  4. Lactobacillus 발효물의Fermented product 멸균 Sterile

제조예 2에서 제조한 고구마 배지를 사용하여 유산균을 발효시킨 유산균 발효액의 pH를 5N NaOH 용액을 이용하여 pH 7.0으로 조절하였다. 이후, 동량의 물을 혼합하여 2시간동안 교반 후 121℃에서 15분간 고압 멸균하여 멸균된 유산균 발효물을 제조하였다.The pH of the lactic acid bacteria fermentation broth in which the lactic acid bacteria were fermented using the sweet potato medium prepared in Preparation Example 2 was adjusted to pH 7.0 using 5N NaOH solution. Thereafter, the same amount of water was mixed and stirred for 2 hours, followed by autoclaving at 121 ° C. for 15 minutes to prepare sterilized lactic acid bacteria fermented product.

실험예Experimental Example 1. 유산균의 동정 1. Identification of Lactic Acid Bacteria

제조예 1에서 분리한 균주의 중 BST.L-601의 생리학적 특성과 16s rDNA 서열을 분석하여 균주의 종을 확인하였다. 구체적으로, 생리학적 특성 중 탄소원 이용성을 확인하기 위하여 API kit(API CHL)를 이용하였고, 당 발효 시험으로 분석하여 그 결과를 표 1에 나타내었다(표 1에서 (+)는 탄소원 이용성이 양성인 경우를 의미하고 (-)는 탄소원 이용성이 음성인 경우를 의미함).The species of the strain was confirmed by analyzing the physiological characteristics and 16s rDNA sequence of BST.L-601 in the strain isolated in Preparation Example 1. Specifically, API kit (API CHL) was used to confirm the carbon source availability among the physiological properties, and the results were analyzed by the sugar fermentation test and the results are shown in Table 1 ((+) in Table 1 when the carbon source availability was positive). (-) Means the carbon source availability is negative).

No.No. SubstrateSubstrate BST.L-601BST.L-601 No.No. SubstrateSubstrate BST.L-601BST.L-601 00 ControlControl -- 2525 EsculineEsculine ++ 1One GlycerolGlycerol -- 2626 SalicineSalicine ++ 22 ErtythritolErtythritol -- 2727 CellobioseCellobiose ++ 33 D-ArabinoseD-Arabinose -- 2828 MaltoseMaltose -- 44 L-ArabinoseL-Arabinose -- 2929 LactoseLactose ++ 55 RiboseRibose ++ 3030 MelibioseMelibiose -- 66 D-XyloseD-Xylose -- 3131 SaccharoseSaccharose -- 77 L-XyloseL-Xylose -- 3232 TerhaloseTerhalose ++ 88 AdonitolAdonitol -- 3333 InulineInuline -- 99 β methyl-xylosideβ methyl-xyloside -- 3434 MelezitoseMelezitose ++ 1010 GalactoseGalactose ++ 3535 D-RaffinoseD-Raffinose -- 1111 D-GlucoseD-Glucose ++ 3636 AmidonAmidon -- 1212 D-FructoseD-Fructose ++ 3737 GlycogeneGlycogene -- 1313 D-MannoseD-Mannose ++ 3838 XylitolXylitol -- 1414 L-SorboseL-Sorbose ++ 3939 β gentiobioseβ gentiobiose -- 1515 RhamnoseRhamnose ++ 4040 D-TuranoseD-Turanose ++ 1616 DulcitolDulcitol -- 4141 D-LyxoseD-Lyxose -- 1717 InositolInositol -- 4242 D-TagatoseD-Tagatose ++ 1818 MannitolMannitol ++ 4343 D-FucoseD-Fucose -- 1919 SorbitolSorbitol ++ 4444 L-FucoseL-Fucose -- 2020 α Methyl-D-mannosideα Methyl-D-mannoside -- 4545 D-ArabitolD-Arabitol -- 2121 α Methyl-D-glucosideα Methyl-D-glucoside ++ 4646 L-ArabitolL-Arabitol -- 2222 N Acetyl glucosamineN Acetyl glucosamine ++ 4747 GluconateGluconate -- 2323 AmygdalineAmygdaline ++ 4848 2 ceto-gluconate2 ceto-gluconate -- 2424 ArbutineArbutine ++ 4949 5 ceto-gluconate5 ceto-gluconate --

또한 BST.L_601의 화학분류학적 특성으로 16s rDNA 분석을 한국미생물보존센터에서 의뢰한 결과, L.rhamnosus와 99% 상동성을 보였다.In addition, 16s rDNA analysis was commissioned by the Korea Center for Microbiological Conservation and showed 99% homology with L.rhamnosus.

실험예Experimental Example 2. 고구마 배지에 적합한 유산균 확인 2. Identification of lactic acid bacteria suitable for sweet potato medium

실험예Experimental Example 2.1. 유산균  2.1. Lactobacillus 발효물의Fermented product pH 측정 pH measurement

제조예 2와 동일한 방법으로 고구마 배지를 사용하여 유산균을 발효시킨 유산균 발효액의 pH를 비교하여 표 2에 나타내었다. pH 측정은 pH meter를 이용하여 측정하였다. BST.L-601, L.acidophilus, S.thermophilus 및 김치유산균 균주를 각각 접종하여 생산한 고구마 발효물의 pH를 비교하였다. 그 결과, L,acidophilus와 S.tehrmophilus를 접종한 군에 비해 BST.L-601과 김치유산균을 접종한 군의 pH가 더 많이 감소하는 것을 확인하였다. The pH of the lactic acid bacteria fermentation broth fermented with lactic acid bacteria using the sweet potato medium in the same manner as in Preparation Example 2 is shown in Table 2. pH measurement was measured using a pH meter. The pH of sweet potato fermented products inoculated with BST.L-601, L.acidophilus, S.thermophilus and Kimchi lactic acid bacteria strains were compared. As a result, it was confirmed that the pH of the group inoculated with BST.L-601 and kimchi lactic acid bacteria decreased more than the group inoculated with L, acidophilus and S.tehrmophilus.

접종된 균주Inoculated strain pHpH - (고구마 배지)-(Potato badge) 6.346.34 BST.L_601(제조예 2)BST.L_601 (Manufacturing Example 2) 3.543.54 L. acidophilusL. acidophilus 3.833.83 S. S. thermophilusthermophilus 6.016.01 김치유산균Kimchi lactic acid bacteria 3.513.51

실험예 2.2. 유산균 생균수 측정Experimental Example 2.2. Lactobacillus viable count

실험예 2.2.1. 유산균 발효물의 생균수 측정Experimental Example 2.2.1. Measurement of Viable Cell Count of Lactic Acid Bacteria Fermentation

생균수 측정은 발효액에 존재하는 균체수를 확인하기 위하여 멸균 식염수에 희석한 발효액을 MRS 한천 배지에 도말한 후 37℃에서 2일간 배양하여 생성된 콜로니의 개수를 통해 균체수를 확인하였으며, 동결건조한 유산균 발효물 전체를 pH 7.0으로 조절하여 무균적으로 동결건조 후에 유산균 발효물 건조물을 약 1g을 달아 식염수에 희석하여 MRS한천배지에 도말한 후 37℃에서 2일간 배양하여 생성된 콜로니의 개수를 통해 균체수를 확인하였다.The viable cell count was confirmed by counting the number of colonies generated by culturing the fermentation broth diluted in sterile saline solution in MRS agar medium for 2 days and then culturing at 37 ° C for 2 days to confirm the number of cells present in the fermentation broth. After adjusting the entire lactic acid bacteria fermented product to pH 7.0, aseptically lyophilized, weighed about 1 g of lactic acid bacteria fermented product, diluted in saline solution, smeared on MRS agar medium, and incubated at 37 ° C for 2 days. The number of cells was confirmed.

제조예 2와 동일한 방법으로 효모 추출물을 5 g/L 첨가하고, pH는 7.0로 조절한 고구마 배지에 글루코오스 10 g/L를 가하고, 상기 4가지 유산균을 1Х106 내지 1Х107 CFU/ml 로 고구마 배지에 10% 접종하였다. 이를 37℃에서 3일간 발효 후 4℃에서 3일간 숙성과정을 거친 후 생균수를 측정하였다. 그 결과는 표 3에 나타내었다. BST.L-601는 약 87.23%의 생존율을 나타내어, 고구마 배지에 가장 적합한 유산균 균주로 확인되었다.5 g / L of the yeast extract was added in the same manner as in Preparation Example 2, 10 g / L of glucose was added to the sweet potato medium adjusted to pH 7.0, and the four lactic acid bacteria were added at 1Х10 6 to 1Х10 7 CFU / ml. Was inoculated at 10%. After fermentation at 37 ° C. for 3 days, the cells were aged at 4 ° C. for 3 days, and the number of viable cells was measured. The results are shown in Table 3. BST.L-601 exhibited a survival rate of about 87.23%, making it the most suitable lactic acid strain for sweet potato medium.

접종된 균주명Inoculated strain name 전발효
생균수(CFU/g)
Fermentation
Viable cell count (CFU / g)
후발효
생균수(CFU/g)
Post fermentation
Viable cell count (CFU / g)
생존율(%)Survival rate (%)
BST.L_601(제조예 2)BST.L_601 (Manufacturing Example 2) 4.7x1011 4.7 x 10 11 4.1x1011 4.1 x 10 11 87.2387.23 L. acidophilusL. acidophilus 1.1x108 1.1 x 10 8 6.3x105 6.3 x 10 5 0.570.57 S. thermophilusS. thermophilus 5.5x107 5.5 x 10 7 1.5x107 1.5 x 10 7 27.2727.27 김치유산균Kimchi lactic acid bacteria 2.9x109 2.9 x 10 9 1.1x109 1.1 x 10 9 37.9337.93

실험예 2.2.2. 유산균 발효물를 동결건조한 후 생균수 측정Experimental Example 2.2.2. Measurement of viable cell count after lyophilization of lactic acid bacteria

제조예 2와 동일한 방법으로 YG(효모추출물 5%와 포도당 10%)배지, 탈지분유배지(탈지분유 10%와 포도당 10%) 그리고 고구마배지(효모 추출물을 5 g/L 첨가하고, pH는 7.0로 조절한 고구마 배지에 글루코오스 10g/L를 첨가)를 제조한 후에, 신규 유산균(BST.L-601)을 1Х106 내지 1Х107 CFU/ml 로 각각의 배지에 10% 접종하였다. 이를 37℃에서 3일간 발효 후 4℃에서 3일간 숙성과정을 거친 후 동결건조 후에 생균수를 측정하였다. 그 결과를 도 1에 나타내었다. 동결건조 후 유산균의 생존율은 고구마 배지는 약 79%의 생존율을 나타내어, 탈지분유 배지는 58% 그리고 YG 배지는 11%로 낮았다. 따라서 고구마배지를 사용하여 발효 후 동결건조시 고구마 배지가 동결건조 보존제의 역할을 할 수 있을 확인 할 수 있었다.In the same manner as Preparation Example 2 YG (5% yeast extract and 10% glucose) medium, skim milk powder (10% skim milk powder and 10% glucose) and sweet potato medium (5 g / L of yeast extract, pH 7.0 After the addition of 10 g / L of glucose to the sweet potato medium adjusted to, the new lactic acid bacteria (BST.L-601) was inoculated 10% in each medium at 1Х10 6 to 1Х10 7 CFU / ml. After fermentation at 37 ° C. for 3 days, the cells were aged at 4 ° C. for 3 days, and the number of viable cells was measured after lyophilization. The results are shown in FIG. After lyophilization, the survival rate of lactic acid bacteria was about 79% in sweet potato medium, 58% in skim milk powder medium and 11% in YG medium. Therefore, it was confirmed that the sweet potato medium may play a role of a lyophilized preservative during lyophilization after fermentation using sweet potato medium.

실험예Experimental Example 2.3. 유산균  2.3. Lactobacillus 발효물의Fermented product 특성  characteristic

실험예 2.3.1. 유산균 발효물의 유기산의 측정Experimental Example 2.3.1. Measurement of Organic Acid of Lactic Acid Bacteria Fermentation

고구마 배지의 제조 중 효모 추출물을 2.5 g/L 첨가한 것을 제외하고는 실험예 2.2.와 동일하게 4 종의 고구마 배지를 준비하였다.Four kinds of sweet potato medium were prepared in the same manner as in Experiment 2.2, except that 2.5 g / L of the yeast extract was added during the preparation of the sweet potato medium.

가스 크로마토그래피(Gas chromatography, GC)를 통해 발효액 내에 존재하는 유기산의 양을 측정하였다. 분석 시 CP-Sil 5 CB (25x0.53x0.7) 컬럼을 이용하였으며, Split ratio 10:1로 하였다. Flow rate은 carrier gas(N2) 3ml/min, H2 65ml/min, Air 450ml/min, Makeup Flow 30ml/min으로 조절하였다. 또한, Injector 225℃, column 40℃(rate 1min), 10℃/min, 180℃, FID Detector 250℃의 조건에서 락트산의 함량을 분석하였다.The amount of organic acid present in the fermentation broth was measured by gas chromatography (GC). CP-Sil 5 CB (25x0.53x0.7) column was used for the analysis, and the split ratio was 10: 1. Flow rate was adjusted to carrier gas (N 2 ) 3ml / min, H2 65ml / min, Air 450ml / min, Makeup Flow 30ml / min. In addition, the content of lactic acid was analyzed under the conditions of Injector 225 ℃, column 40 ℃ (rate 1 min), 10 ℃ / min, 180 ℃, FID Detector 250 ℃.

표 4에 나타난 바와 같이, 본 발명의 신규 균주인 BST.L_601에서 락트산의 농도가 월등하게 높게 생산되었다.As shown in Table 4, the concentration of lactic acid was produced significantly higher in the novel strain BST.L_601 of the present invention.

접종된 균주Inoculated strain Lactic acid (mg/ml)Lactic acid (mg / ml) L. acidophilusL. acidophilus 13.36113.361 BST.L-601BST.L-601 38.41738.417 S. S. thermophilusthermophilus 10.7410.74 KimchKimch 11.67511.675

실험예Experimental Example 2.3.2. 유산균  2.3.2. Lactobacillus 발효물의Fermented product α-아밀라아제 저해활성의 측정 Measurement of α-amylase Inhibitory Activity

발효물의 α-아밀라아제 저해활성은 0.02M 인산완충용액 (pH 6.9)에 13 Unit/ml로 희석한 표준 α-아밀라아제 효소액 250 ㎕과 시료 또는 대조군(1mM Acarbose), 공시험(증류수) 250 ㎕를 2ml tube에 넣었다. 이를 37℃에서 10분간 반응시켰다. 이후, 1% 전분용액 250 ㎕를 혼합하여 37℃에서 10분간 반응시켰다. 반응액에 500 ㎕의 DNS 시약을 넣어 100℃에서 5분간 끓였다. 식힌 후 520 nm에서 흡광도를 측정하여 다음과 같이 저해활성을 계산하였다. 그 결과를 표 5에 나타내었다.Α-amylase inhibitory activity of the fermentation was measured by 250 μl of standard α-amylase enzyme solution diluted to 13 Unit / ml in 0.02M phosphate buffer solution (pH 6.9) and 250 μl of sample or control (1mM Acarbose) and blank test (distilled water). Put in. This was reacted for 10 minutes at 37 ° C. Then, 250 μl of 1% starch solution was mixed and reacted at 37 ° C. for 10 minutes. 500 μl of DNS reagent was added to the reaction solution and the mixture was boiled at 100 ° C. for 5 minutes. After cooling, the absorbance was measured at 520 nm to calculate the inhibitory activity as follows. The results are shown in Table 5.

Figure pat00002
Figure pat00002

Ctrl: 대조군 (1mM Acarbose) 반응액의 흡광도 (520 nm)Ctrl: Absorbance (520 nm) of control (1 mM Acarbose) reaction solution

SPL: 시료 반응액의 흡광도 (520 nm)SPL: absorbance of sample reaction solution (520 nm)

그 결과, 표 5에 나타난 바와 같이, BST.L_601의 α-아밀라아제 저해활성이 가장 높았다.As a result, as shown in Table 5, the α-amylase inhibitory activity of BST.L_601 was the highest.

시료sample α-amylase 저해활성 (%)α-amylase inhibitory activity (%) 대조군Control 1mM acarbose1mM acarbose 71.77471.774 유산균 종Lactobacillus species L. acidophilusL. acidophilus 11.50711.507 BST.L-601BST.L-601 24.94024.940 S. S. thermophilusthermophilus 20.53420.534 KimchKimch 6.7396.739

실험예Experimental Example 2.3.3. 유산균  2.3.3. Lactobacillus 발효물의Fermented product α-글루코시다아제 저해활성의 측정 Measurement of α-glucosidase inhibitory activity

유산균 발효물의 α-글루코시다아제 저해활성을 측정하기 위해, 0.05 M 인산완충용액 (pH 6.8)에 1 Unit/ml로 희석한 표준 α-글루코시다아제 효소액 10 ㎕와 시료 또는 대조군(1mM Acarbose), 공시험(증류수) 20 ㎕와 완충용액 50 ㎕를 96well의 microplate에 넣었다. 이를 37℃에서 5분간 반응시켰다. 이후, 1 mM의 PNPG용액 20 ㎕를 혼합하여 37℃에서 30분간 효소반응 시켰다. 또한, 1 M의 탄산나트륨용액 50 ㎕를 가하여 반응을 종료시켰다. 이를 405 nm에서 흡광도를 측정하였고, 다음과 같이 저해활성을 계산하여 표 6에 나타내었다.To measure the α-glucosidase inhibitory activity of the lactic acid bacteria fermentation, 10 μl of standard α-glucosidase enzyme solution diluted to 1 Unit / ml in 0.05 M phosphate buffer solution (pH 6.8) and a sample or control (1 mM Acarbose), 20 μl of blank test (distilled water) and 50 μl of buffer were added to a 96well microplate. This was reacted for 5 minutes at 37 ° C. Then, 20 μl of 1 mM PNPG solution was mixed and enzymatically reacted at 37 ° C. for 30 minutes. Further, 50 µl of 1 M sodium carbonate solution was added to terminate the reaction. The absorbance was measured at 405 nm, and the inhibitory activity was calculated as shown in Table 6 below.

Figure pat00003
Figure pat00003

공시험: 공시험 반응액의 흡광도 (405 nm)Blank test: Absorbance of blank test solution (405 nm)

시료: 시료 반응액의 흡광도 (405 nm)Sample: Absorbance of Sample Reaction Liquid (405 nm)

시료sample α-glucosidase 저해활성 (%)α-glucosidase inhibitory activity (%) 대조군Control 1mM acarbose1mM acarbose 57.41757.417 유산균 종Lactobacillus species L. acidophilusL. acidophilus 8.5728.572 BST.L-601BST.L-601 26.44726.447 S. S. thermophilusthermophilus 16.93116.931 KimchKimch 6.8496.849

그 결과, 표 6에 나타난 바와 같이, BST.L_601의 α-글루코시다아제 저해활성이 가장 높았다.As a result, as shown in Table 6, the α-glucosidase inhibitory activity of BST.L_601 was the highest.

상기 실험예 2의 결과를 기초로, BST.L_601 유산균이 가장 우수한 발효물을 생산하는 균주임을 확인하였다.Based on the results of Experimental Example 2, it was confirmed that BST.L_601 lactic acid bacteria is the strain producing the best fermented product.

실험예 3. 유산균 발효물의 효능 증대를 위한 발효 조건 탐색Experimental Example 3. Exploration of Fermentation Conditions for Increasing Efficacy of Lactic Acid Bacteria Fermentation

실험예 3.1. 고구마 배지의 농도에 따른 유산균 발효물의 활성 확인Experimental Example 3.1. Confirmation of Lactic Acid Bacteria Fermentation According to the Concentration of Sweet Potato Medium

고구마 배지의 농도에 따른 유산균 발효물의 활성 변화를 확인하기 위해, 고구마 배지의 원액을 1.5배 내지 3배 희석하였다. 이후, 2.5g/L의 효모 추출물을 첨가하고 pH 7.0으로 조절하였다. 이 조성물을 멸균한 뒤 멸균한 포도당을 10g/L가 되도록 첨가하였다. 여기에, 선별한 유산균 BST.L-601을 접종하여 37℃에서 3일간 발효 후 3일간 4℃에서 숙성하여 유산균 발효물을 제조하였다. 이의 락트산의 함량과 α-아밀라아제, α-글루코시다아제의 저해활성을 실험예 2에 기재한 방법으로 측정하였다. 그 결과를 각각 표 7 내지 표 9에 나타내었다. 대조군으로는 1mM acarbose를 사용하였다.In order to confirm the change in activity of lactic acid bacteria fermentation according to the concentration of sweet potato medium, the stock solution of sweet potato medium was diluted 1.5 to 3 times. Then, 2.5 g / L yeast extract was added and adjusted to pH 7.0. After sterilizing this composition, sterilized glucose was added to 10 g / L. Herein, the selected lactic acid bacteria BST.L-601 was inoculated and fermented at 37 ° C. for 3 days, and then aged at 4 ° C. for 3 days to prepare a lactic acid bacteria fermented product. Its content of lactic acid and the inhibitory activity of α-amylase and α-glucosidase were measured by the method described in Experimental Example 2. The results are shown in Tables 7 to 9, respectively. 1 mM acarbose was used as a control.

고구마 배제
(희석 배수)
Sweet Potato Exclusion
(Dilution drainage)
Lactic acid (mg/ml)Lactic acid (mg / ml)
1One 20.86120.861 1.51.5 28.31928.319 22 18.10418.104 2.52.5 18.68418.684 33 17.29617.296

고구마 배지
(희석 배수)
Sweet potato badge
(Dilution drainage)
α-amylase 저해활성 (%)α-amylase inhibitory activity (%)
대조군: 1mM acarboseControl: 1 mM acarbose 71.77471.774 1One 9.7909.790 1.51.5 24.22124.221 22 25.42925.429 2.52.5 14.11314.113 33 17.14317.143

고구마 배지
(희석 배수)
Sweet potato badge
(Dilution drainage)
α-glucosidase 저해활성 (%)α-glucosidase inhibitory activity (%)
대조군: 1mM acarboseControl: 1 mM acarbose 57.41757.417 1One 16.78416.784 1.51.5 29.37329.373 22 24.69424.694 2.52.5 13.45813.458 33 9.8579.857

표 7에 나타난 바와 같이, 1.5배로 희석한 고구마 배지를 이용하였을 때 28mg/ml로 가장 많은 락트산이 생산된 것을 알 수 있다. 또한, 표 8, 표 9에서도 1.5배 희석한 고구마 배지를 이용하였을 때 α-amylase, α-glucosidase의 저해활성이 가장 높은 것을 확인할 수 있었다.As shown in Table 7, it can be seen that the most lactic acid was produced at 28 mg / ml when using a 1.5-fold diluted sweet potato medium. In addition, in Table 8 and Table 9, the highest inhibitory activity of α-amylase and α-glucosidase was confirmed using the 1.5-fold diluted sweet potato medium.

실험예 3.2. 발효(전발효) 기간에 따른 유산균 발효물의 활성 확인Experimental Example 3.2. Confirmation of Lactic Acid Bacteria Fermentation by Fermentation

고구마 배지의 원액을 1.5배 희석하였다. 이후, 2.5g/L의 효모 추출물을 첨가하고 pH7.0으로 조절하였다. 이 조성물을 멸균한 뒤 멸균한 포도당을 10g/L가 되도록 첨가하였다. 여기에, 선별한 유산균 BST.L-601을 접종하였다. 그리고 각각 37℃에서 1일, 2일, 3일 및 4일간 발효시켜 4개의 실험군을 설계하였다. 이후, 3일간 4℃에서 숙성하여 유산균 발효물을 제조하였다. 이의 락트산의 함량과 α-아밀라아제, α-글루코시다아제의 저해활성을 실험예 2에 기재한 방법으로 측정하였다. 그 결과를 각각 표 10 내지 표 12에 나타내었다. 이때, 대조군으로 1mM acarbose를 사용하였다.The stock solution of sweet potato medium was diluted 1.5-fold. Then, 2.5 g / L yeast extract was added and adjusted to pH 7.0. After sterilizing the composition, sterilized glucose was added to 10 g / L. Here, the selected lactic acid bacteria BST.L-601 was inoculated. Four experimental groups were designed by fermentation at 37 ° C. for 1 day, 2 days, 3 days and 4 days, respectively. Then, aged for 3 days at 4 ℃ to prepare a lactic acid bacteria fermented product. Its lactic acid content and the inhibitory activity of α-amylase and α-glucosidase were measured by the method described in Experimental Example 2. The results are shown in Tables 10 to 12, respectively. At this time, 1mM acarbose was used as a control.

발효기간 (day)Effective date (day) Lactic acid (mg/ml)Lactic acid (mg / ml) 1One 23.08123.081 22 21.66221.662 33 22.18522.185 44 22.10122.101

발효기간 (day)Effective date (day) α-amylase 저해활성 (%)α-amylase inhibitory activity (%) 대조군: 1mM acarboseControl: 1 mM acarbose 71.77471.774 1One 17.48417.484 22 18.29718.297 33 23.77423.774 44 24.00624.006

발효기간 (day)Effective date (day) α-glucosidase 저해활성 (%)α-glucosidase inhibitory activity (%) 대조군: 1mM acarboseControl: 1 mM acarbose 57.41757.417 1One 22.09622.096 22 22.48822.488 33 33.54433.544 44 25.86725.867

표 10에 나타난 바와 같이, 락트산 생산량은 큰 차이를 보이지 않았다. 그러나, 표 11을 참고하면 3일 이상 발효시킨 경우 α-amylase의 저해활성이 유의하게 높아지는 것을 알 수 있다. 또한, 표 12를 살펴보면, 3일간 발효하였을 경우 33.54%로 4일간 발효하였을 경우(25.84%) 보다 높은 α-glucosidase 저해활성을 나타내는 것을 확인하였다.As shown in Table 10, lactic acid production showed no significant difference. However, referring to Table 11, it can be seen that the fermentation for 3 days or more significantly increases the inhibitory activity of α-amylase. In addition, looking at Table 12, it was confirmed that the fermentation for three days showed a higher α-glucosidase inhibitory activity than when fermented for four days (33.54% (25.84%).

실험예 3.3. 숙성(후발효) 기간에 따른 유산균 발효물의 활성 확인Experimental Example 3.3. Confirmation of Lactic Acid Bacteria Fermentation by Aging

고구마 배지의 원액을 1.5배 희석하였다. 이후, 2.5g/L의 효모 추출물을 첨가하고 pH7.0으로 조절하였다. 이 조성물을 멸균한 뒤 멸균한 포도당을 10g/L가 되도록 첨가하였다. 여기에, 선별한 유산균 BST.L-601을 접종하였다. 그리고 37℃에서 3일간 발효시켰다. 이후, 각각 3일, 4일 및 5일간 4℃에서 숙성시켜 3개의 유산균 발효물을 제조하였다. 이의 락트산의 함량과 α-아밀라아제, α-글루코시다아제의 저해활성을 실험예 2에 기재한 방법으로 측정하였다. 그 결과를 각각 표 13 내지 표 15에 나타내었다. 이때, 대조군으로 1mM acarbose를 사용하였다.The stock solution of sweet potato medium was diluted 1.5-fold. Then, 2.5 g / L yeast extract was added and adjusted to pH 7.0. After sterilizing this composition, sterilized glucose was added to 10 g / L. Here, the selected lactic acid bacteria BST.L-601 was inoculated. And it fermented at 37 degreeC for 3 days. Thereafter, three lactic acid bacteria fermented products were prepared by aging at 4 ° C. for 3 days, 4 days, and 5 days, respectively. Its content of lactic acid and the inhibitory activity of α-amylase and α-glucosidase were measured by the method described in Experimental Example 2. The results are shown in Tables 13 to 15, respectively. At this time, 1mM acarbose was used as a control.

실험군Experimental group No.No. 숙성기간 (day)Ripening period (day) Lactic acid (mg/ml)Lactic acid (mg / ml) 숙성기간 (day)Ripening period (day) 1One 33 23.38623.386 22 44 28.46128.461 33 55 28.46128.461

숙성기간 (day)Ripening period (day) α-amylase 저해활성 (%)α-amylase inhibitory activity (%) 대조군: 1mM acarboseControl: 1 mM acarbose 71.77471.774 33 25.42925.429 44 37.04237.042 55 36.17336.173

숙성기간 (day)Ripening period (day) α-glucosidase 저해활성 (%)α-glucosidase inhibitory activity (%) 대조군: 1mM acarboseControl: 1 mM acarbose 57.41757.417 33 29.37329.373 44 34.71234.712 55 34.77034.770

표 13에 나타난 바와 같이, 락트산 생산량은 큰 차이를 보이지 않았다. 그러나, 표 14 및 표 15를 참고하면, 4일 이상 숙성시킬 경우에 α-amylase, α-glucosidase의 저해활성이 높은 것을 알 수 있다.As shown in Table 13, lactic acid production showed no significant difference. However, referring to Table 14 and Table 15, it can be seen that the high inhibitory activity of α-amylase and α-glucosidase when aged for 4 days or more.

실험예Experimental Example 3.4. 고구마 종에 따른 유산균  3.4. Lactobacillus by Sweet Potato Species 발효물의Fermented product 활성 확인 Check active

밤고구마, 호박고구마, 맛젤 고구마 및 이의 혼합물을 이용하여 4 종의 고구마 배지를 준비하였다. 이를 1.5배 희석하였다. 이후, 2.5g/L의 효모 추출물을 첨가하고 pH 7.0으로 조절하였다. 이 조성물을 멸균한 뒤 멸균한 포도당을 10g/L가 되도록 첨가하였다. 여기에, 선별한 유산균 BST.L-601을 접종하였다. 그리고 37℃에서 3일간 발효시킨 후, 4일간 4℃에서 숙성하여 유산균 발효물을 제조하였다. 이의 락트산의 함량과 α-아밀라아제, α-글루코시다아제의 저해활성을 실험예 2에 기재한 방법으로 측정하였다. 그 결과를 각각 표 16 내지 표 18에 나타내었다. Four kinds of sweet potato medium were prepared using chestnut sweet potato, pumpkin sweet potato, taste gel sweet potato, and mixtures thereof. It was diluted 1.5 fold. Then, 2.5 g / L yeast extract was added and adjusted to pH 7.0. After sterilizing this composition, sterilized glucose was added to 10 g / L. Here, the selected lactic acid bacteria BST.L-601 was inoculated. After fermentation for 3 days at 37 ℃, aged for 4 days at 4 ℃ to prepare a lactic acid bacteria fermented product. Its content of lactic acid and the inhibitory activity of α-amylase and α-glucosidase were measured by the method described in Experimental Example 2. The results are shown in Tables 16 to 18, respectively.

고구마 종류Sweet potato varieties Lactic acid (mg/ml)Lactic acid (mg / ml) 밤고구마Sweet potato 21.18921.189 호박고구마Pumpkin sweet potato 20.39920.399 맛젤고구마Flavored Sweet Potato 18.39418.394 혼합mix 21.71121.711

시료sample α-amylase 저해활성 (%)α-amylase inhibitory activity (%) 대조군: 1mM acarboseControl: 1 mM acarbose 71.77471.774 밤고구마Sweet potato 19.98619.986 호박고구마Pumpkin sweet potato 14.85814.858 맛젤고구마Flavored Sweet Potato 9.1409.140 혼합mix 14.01814.018

시료sample α-glucosidase 저해활성 (%)α-glucosidase inhibitory activity (%) 대조군: 1mM acarboseControl: 1 mM acarbose 57.41757.417 밤고구마Sweet potato 33.31233.312 호박고구마Pumpkin sweet potato 32.52932.529 맛젤고구마Flavored Sweet Potato 23.29423.294 혼합mix 26.58626.586

표 16을 살펴보면, 맛젤고구마만을 사용하였을 때가 18.39 mg/ml로 가장 적은 양의 lactic acid를 생산하였으며, 고구마를 혼합하여 사용하였을 때와 밤고구마를 사용하였을 때가 약 21 mg/ml로 가장 높은 양의 lactic acid를 생산하였다. Looking at Table 16, the most delicious amount of lactic acid was produced when using only sweet potato (18.39 mg / ml), and the highest amount of about 21 mg / ml when sweet potato was used and chestnut sweet potato was used. Produced lactic acid.

또한, 표 17에 나타난 바와 같이, α-amylase 저해활성은 밤고구마를 사용하였을 때가 19.98%로 가장 높았다. 아울러, 표 18에 나타난 바와 같이, α-glucosidase의 저해활성의 경우 밤고구마와 호박고구마를 사용하였을 때 각각 33.31%, 32.53%로 가장 높은 저해활성도를 나타냈다. In addition, as shown in Table 17, α-amylase inhibitory activity was the highest when the night sweet potato was used (19.98%). In addition, as shown in Table 18, the inhibition activity of α-glucosidase showed the highest inhibitory activity of 33.31% and 32.53%, respectively, when chestnut and pumpkin sweet potatoes were used.

실험예Experimental Example 3.5. 질소원 첨가량에 따른 유산균  3.5. Lactobacillus by Addition of Nitrogen Source 발효물의Fermented product 활성 확인 Check active

고구마 배지의 원액을 1.5배 희석하였다. 여기에, 각각 2.5 g/L, 5 g/L, 10 g/L, 20 g/L의 효모 추출물을 첨가하여 4종의 실험군을 설계하였다. 이후, 이의 pH를 7.0로 조절하였다. 이 조성물을 멸균한 뒤 멸균한 포도당을 10g/L가 되도록 첨가하였다. 여기에, 선별한 유산균 BST.L-601을 접종하였다. 여기에, 선별한 유산균 BST.L-601을 접종하여 37℃에서 3일간 발효 후 4일간 4℃에서 숙성하여 유산균 발효물을 제조하였다. 이의 락트산의 함량과 α-아밀라아제, α-글루코시다아제의 저해활성을 실험예 2에 기재한 방법으로 측정하였다. 그 결과를 각각 표 19 내지 표 21에 나타내었다. The stock solution of sweet potato medium was diluted 1.5-fold. To this, four experimental groups were designed by adding 2.5 g / L, 5 g / L, 10 g / L, and 20 g / L yeast extracts, respectively. Then, its pH was adjusted to 7.0. After sterilizing this composition, sterilized glucose was added to 10 g / L. Here, the selected lactic acid bacteria BST.L-601 was inoculated. Here, the selected lactic acid bacteria BST.L-601 was inoculated and fermented at 37 ° C. for 3 days and then fermented at 4 ° C. for 4 days to prepare a lactic acid bacteria fermented product. Its content of lactic acid and the inhibitory activity of α-amylase and α-glucosidase were measured by the method described in Experimental Example 2. The results are shown in Tables 19 to 21, respectively.

질소원Nitrogen source Lactic acid (mg/ml)Lactic acid (mg / ml) Non nitrogen sourceNon nitrogen source 20.81320.813 2.5 g/L Yeast2.5 g / L Yeast 19.37519.375 5 g/L Yeast5 g / L yeast 21.23321.233 10 g/L Yeast10 g / L yeast 23.75423.754 20 g/L Yeast20 g / L yeast 22.40722.407

질소원Nitrogen source α-amylase 저해활성 (%)α-amylase inhibitory activity (%) 대조군: 1mM acarboseControl: 1 mM acarbose 71.77471.774 Non nitrogen sourceNon nitrogen source 23.03723.037 2.5 g/L Yeast2.5 g / L Yeast 23.93823.938 5 g/L Yeast5 g / L yeast 23.46623.466 10 g/L Yeast10 g / L yeast 19.64819.648 20 g/L Yeast20 g / L yeast 20.07720.077

질소원Nitrogen source α-glucosidase 저해활성 (%)α-glucosidase inhibitory activity (%) 대조군: 1mM acarboseControl: 1 mM acarbose 57.41757.417 Non nitrogen sourceNon nitrogen source 34.48934.489 2.5 g/L Yeast2.5 g / L Yeast 34.48934.489 5 g/L Yeast5 g / L yeast 35.15235.152 10 g/L Yeast10 g / L yeast 39.90739.907 20 g/L Yeast20 g / L yeast 38.98138.981

표 19를 살펴보면, 10 g/L의 yeast extract를 첨가하였을 때 23.75 mg/ml로 가장 많은 양의 유기산을 생산한 것을 알 수 있다. 또한, 표 20에 나타난 바와 같이, 근소한 차이이기는 하나 5 g/L의 Yeast를 첨가하였을 때 약 23.5%의 가장 높은 α-amylase 저해활성을 나타내었다. 또한 표 21에서와 같이 α-glucosidase 저해활성을 측정한 결과 10 g/L의 yeast를 첨가하여 발효하였을 때 약 39%로 가장 높은 저해활성도를 나타냈다. Looking at Table 19, it can be seen that the highest amount of organic acid was produced at 23.75 mg / ml when 10 g / L yeast extract was added. In addition, as shown in Table 20, a slight difference, but the highest α-amylase inhibitory activity of about 23.5% when 5 g / L Yeast was added. In addition, as shown in Table 21, when the α-glucosidase inhibitory activity was measured, the highest inhibitory activity was found to be about 39% when fermented with 10 g / L yeast.

실험예Experimental Example 3.6.  3.6. 탄소원의Carbon source 종류 및 첨가량에 따른 유산균  Lactobacillus by Type and Amount 발효물의Fermented product 활성 확인 Check active

고구마 배지의 원액을 1.5배 희석하였다. 여기에 10 g/L의 효모 추출물을 첨가하고, pH를 7.0로 조절하였다. 이 조성물을 멸균한 뒤 멸균한 glucose 또는 sucrose를 각각 5 g/L, 10 g/L 및 20g/L로 6개의 실험군을 설계하였다. 여기에, 선별한 유산균 BST.L-601을 접종하여 37℃에서 3일간 발효 후 4일간 4℃에서 숙성하여 유산균 발효물을 제조하였다. 이의 락트산의 함량과 α-아밀라아제, α-글루코시다아제의 저해활성을 실험예 2에 기재한 방법으로 측정하였다. 그 결과를 각각 표 22 내지 표 24에 나타내었다The stock solution of sweet potato medium was diluted 1.5-fold. 10 g / L yeast extract was added thereto and the pH was adjusted to 7.0. After sterilizing the composition, six experimental groups were designed with 5 g / L, 10 g / L and 20 g / L of sterilized glucose or sucrose, respectively. Here, the selected lactic acid bacteria BST.L-601 was inoculated and fermented at 37 ° C. for 3 days and then fermented at 4 ° C. for 4 days to prepare a lactic acid bacteria fermented product. Its content of lactic acid and the inhibitory activity of α-amylase and α-glucosidase were measured by the method described in Experimental Example 2. The results are shown in Tables 22 to 24, respectively.

탄소원Carbon source Lactic acid (mg/ml)Lactic acid (mg / ml) Non carbon sourceNon carbon source 17.90117.901 5 g/L glucose5 g / L glucose 20.39820.398 10 g/L glucose10 g / L glucose 22.4222.42 20 g/L glucose20 g / L glucose 27.22227.222 5 g/L Sucrose5 g / L Sucrose 19.12619.126 10 g/L Sucrose10 g / L Sucrose 19.89819.898 20 g/L Sucrose20 g / L Sucrose 20.77120.771

탄소원Carbon source α-amylase 저해활성 (%)α-amylase inhibitory activity (%) 대조군: 1mM acarboseControl: 1 mM acarbose 71.77471.774 Non carbon sourceNon carbon source 20.97920.979 5 g/L glucose5 g / L glucose 21.26621.266 10 g/L glucose10 g / L glucose 20.31820.318 20 g/L glucose20 g / L glucose 16.43516.435 5 g/L Sucrose5 g / L Sucrose 23.14123.141 10 g/L Sucrose10 g / L Sucrose 23.18623.186 20 g/L Sucrose20 g / L Sucrose 23.71523.715

탄소원Carbon source α-glucosidase 저해활성 (%)α-glucosidase inhibitory activity (%) 대조군: 1mM acarboseControl: 1 mM acarbose 57.41757.417 Non carbon sourceNon carbon source 22.57322.573 5 g/L glucose5 g / L glucose 33.57633.576 10 g/L glucose10 g / L glucose 36.59036.590 20 g/L glucose20 g / L glucose 41.63541.635 5 g/L Sucrose5 g / L Sucrose 29.77529.775 10 g/L Sucrose10 g / L Sucrose 23.67923.679 20 g/L Sucrose20 g / L Sucrose 32.31932.319

표 22를 살펴보면, 20 g/L의 glucose를 첨가하였을 때 27 mg/ml의 가장 많은 유기산을 생산하였다. 또한, 표 23에 나타난 바와 같이, α-amylase 저해활성의 경우 탄소원을 넣은 발효물과 넣지 않은 발효물간의 차이가 크지 않았다. 그러나, 표 24에 나타난 바와 같이, 20 g/L의 glucose를 넣은 고구마배지의 유산균 발효물에서 41.6%로 가장 높은 저해활성을 나타낸 것을 확인할 수 있었다.Looking at Table 22, the addition of 20 g / L glucose produced the most organic acid of 27 mg / ml. In addition, as shown in Table 23, in the case of α-amylase inhibitory activity, the difference between the fermented product and the fermented product without a carbon source was not large. However, as shown in Table 24, it was confirmed that the highest inhibitory activity as 41.6% in lactic acid bacteria fermentation of sweet potato medium containing 20 g / L glucose.

실험예Experimental Example 3.7. 초기 pH에 따른 유산균  3.7. Lactobacillus by Initial pH 발효물의Fermented product 활성 확인 Check active

고구마 배지의 원액을 1.5배 희석하였다. 여기에 10 g/L의 효모 추출물을 첨가하였다. 이후, pH를 조절하지 않은 고구마 배지와 5N NaOH를 이용하여 pH를 6.5, 7.0, 7.5 및 8.0으로 조절한 고구마 배지를 준비하였다. 각각의 배지를 멸균한 뒤 멸균한 glucose 20g/L를 첨가하였다. 여기에, 선별한 유산균 BST.L-601을 접종하여 37℃에서 3일간 발효 후 4일간 4℃에서 숙성하여 유산균 발효물을 제조하였다. 이의 락트산의 함량과 α-아밀라아제, α-글루코시다아제의 저해활성을 실험예 2에 기재한 방법으로 측정하였다. 그 결과를 각각 표 25 내지 표 27에 나타내었다.The stock solution of sweet potato medium was diluted 1.5-fold. To this 10 g / L yeast extract was added. Thereafter, sweet potato medium having no pH adjusted and sweet potato medium having pH adjusted to 6.5, 7.0, 7.5, and 8.0 were prepared using 5N NaOH. After sterilizing each medium, 20g / L sterile glucose was added. Here, the selected lactic acid bacteria BST.L-601 was inoculated and fermented at 37 ° C. for 3 days and then fermented at 4 ° C. for 4 days to prepare a lactic acid bacteria fermented product. Its content of lactic acid and the inhibitory activity of α-amylase and α-glucosidase were measured by the method described in Experimental Example 2. The results are shown in Tables 25 to 27, respectively.

멸균 전 pHPH before sterilization Lactic acid (mg/ml)Lactic acid (mg / ml) Not control to pHNot control to pH 30.13430.134 pH 6.5pH 6.5 30.95230.952 pH 7.0pH 7.0 27.5627.56 pH 7.5pH 7.5 26.46126.461 pH 8.0pH 8.0 25.36325.363

멸균 전 pHPH before sterilization α-amylase 저해활성 (%)α-amylase inhibitory activity (%) 대조군: 1mM acarboseControl: 1 mM acarbose 71.77471.774 Not control to pHNot control to pH 21.9621.96 pH 6.5pH 6.5 25.3325.33 pH 7.0pH 7.0 26.4626.46 pH 7.5pH 7.5 19.1419.14 pH 8.0pH 8.0 8.878.87

멸균 전 pHPH before sterilization α-glucosidase 저해활성 (%)α-glucosidase inhibitory activity (%) 대조군: 1mM acarboseControl: 1 mM acarbose 57.41757.417 Not control to pHNot control to pH 55.1755.17 pH 6.5pH 6.5 53.6253.62 pH 7.0pH 7.0 50.8750.87 pH 7.5pH 7.5 50.6750.67 pH 8.0pH 8.0 49.3849.38

그 결과, 표 25와 같이 pH 6.5 이하에서 유기산의 함량이 30 mg/ml이상으로 가장 높았다. 또한, 표 26 및 표 27에서 α-amylase 및 α-glucosidase 저해활성도 pH 6.5에서 각각 약 25%, 53%로 가장 높은 것을 확인하였다.As a result, as shown in Table 25, the content of the organic acid was the highest as 30 mg / ml or more at pH 6.5 or less. In addition, in Table 26 and Table 27 it was confirmed that α-amylase and α-glucosidase inhibitory activity was the highest at pH 6.5, about 25% and 53%, respectively.

실험예 4. 건조 후 유산균 발효물의 특성 확인Experimental Example 4. Confirmation of the lactic acid bacteria fermentation product after drying

실험예Experimental Example 4.1. 유산균  4.1. Lactobacillus 발효물의Fermented product 동결건조 및 배양 단계에 따른 유산균  Lactobacillus by Lyophilization and Culture Stage 발효물의Fermented product 효능 확인 Efficacy Check

실험예Experimental Example 4.1.1. α-amylase 저해활성 확인 4.1.1. α-amylase inhibitory activity

고구마 배지를 넣지 않은 10g/L의 효모 추출물과 20g/L의 glucose만을 넣어 YG 배지를 제조하였다. 또한, YG 배지, 여기에 고구마 배지가 첨가된 경우, 및 이를 동결건조시킨 세가지 실험군을 설정하였다. 또한, 이를 모두 BST.L_601 접종 전, 접종 후 3일간 37℃의 전발효 후, 이후 4일간 4℃에서 후발효까지 진행한 후에 α-amylase 저해활성을 측정하였다. 유기산의 영향을 확인하기 위하여 40mg/ml의 lactic acid의 α-amylase 저해활성도 함께 측정하였다. 그 결과를 표 28에 나타내었다.YG medium was prepared by adding only 10g / L yeast extract and 20g / L glucose without adding sweet potato medium. In addition, three experimental groups in which YG medium, sweet potato medium was added thereto, and lyophilized were set. In addition, all of these were pre-fermented at 37 ° C. before BST.L_601 inoculation for 3 days, and then after 4 days at 4 ° C. for post-fermentation, α-amylase inhibitory activity was measured. In order to confirm the effect of the organic acid was also measured α-amylase inhibitory activity of lactic acid of 40mg / ml. The results are shown in Table 28.

시료sample α-amylase 저해활성 (%)α-amylase inhibitory activity (%) 대조군: 1mM AcarboseControl: 1 mM Acarbose 67.6967.69 YG - controlYG-control 0.940.94 YG - 전발효YG-Full Fermentation 4.884.88 YG - 후발효YG-post fermentation 1.781.78 유산균 발효물 - controlLactic Acid Bacteria Fermentation-control 6.526.52 유산균 발효물 - 전발효Lactic Acid Bacteria Fermentation-Pre Fermentation 11.5911.59 유산균 발효물 - 후발효Lactic Acid Bacteria Fermentation-Post Fermentation 16.5216.52 유산균 발효물의 동결건조물 - control Lyophilized products of lactic acid bacteria fermentation-control 2.212.21 유산균 발효물의 동결건조물 - 전발효Lyophilized Products of Lactic Acid Bacteria Fermentation-Prefermentation 5.195.19 유산균 발효물의 동결건조물 - 후발효Lyophilized Lactic Acid Bacteria Fermentation-Post Fermentation 23.8223.82 40mg/ml Lactic acid pH 7.040mg / ml Lactic acid pH 7.0 0.650.65

표 28에 나타난 바와 같이, YG에서는 후발효까지 진행되어도 α-amylase 저해활성이 나타나지 않았다. lactic acid 또한 마찬가지로 α-amylase 저해활성이 없었다. 그러나 유산균 발효물의 경우 BST.L_601 접종 전에 비해 접종하여 후발효까지 진행되었을 때 α-amylase 저해활성이 약 16.52%로 나타났으며, 동결건조 후에도 α-amylase 저해활성의 차이는 거의 없는 것을 확인하였다.As shown in Table 28, the α-amylase inhibitory activity was not observed even in YG even after the post-fermentation. Lactic acid also had no α-amylase inhibitory activity. However, in the case of lactic acid bacteria fermented products, α-amylase inhibitory activity was about 16.52% when inoculated before BST.L_601 inoculation and after fermentation, and there was almost no difference in α-amylase inhibitory activity even after lyophilization.

실험예Experimental Example 4.1.2. α- 4.1.2. α- glucosidaseglucosidase 저해활성 확인 Confirmation of inhibitory activity

고구마 배지를 넣지 않은 10 g/L의 효모 추출물과 20 g/L의 glucose만을 넣어 YG 배지를 제조하였다. 또한, YG 배지, 여기에 고구마 배지가 첨가된 경우, 및 이를 동결건조시킨 세가지 실험군을 설정하였다. 또한, 이를 모두 BST.L_601 접종 전, 접종 후 3일간 37℃의 전발효 후, 이후 4일간 4℃에서 후발효까지 진행한 후의 α-glucosidase 저해활성을 모두 측정하였다. 유기산의 영향을 확인하기 위하여 40 mg/ml의 lactic acid의 α-glucosidase 저해활성도 함께 측정하였다. 그 결과를 표 29에 나타내었다.YG medium was prepared by adding only 10 g / L yeast extract and 20 g / L glucose without adding sweet potato medium. In addition, three experimental groups in which YG medium, sweet potato medium was added thereto, and lyophilized were set. In addition, all of the α-glucosidase inhibitory activity was measured before the BST.L_601 inoculation, 3 days after inoculation at 37 ° C. and then 4 days at 4 ° C. after fermentation. In order to confirm the influence of organic acid, the α-glucosidase inhibitory activity of lactic acid of 40 mg / ml was also measured. The results are shown in Table 29.

시료sample α-Glucosidase 저해활성 (%)α-Glucosidase Inhibitory Activity (%) 대조군: 1mM AcarboseControl: 1 mM Acarbose 69.4469.44 YG - controlYG-control 2.752.75 YG - 전발효YG-Full Fermentation 0.350.35 YG - 후발효YG-post fermentation 8.158.15 유산균 발효물 controlLactobacillus fermentation control 26.1726.17 유산균 발효물 전발효Lactic Acid Bacteria Fermentation 30.7430.74 유산균 발효물 후발효After fermentation of lactic acid bacteria fermentation product 51.1851.18 유산균 발효물의 동결건조물 - control Lyophilized products of lactic acid bacteria fermentation-control 42.9842.98 유산균 발효물의 동결건조물 - 전발효Lyophilized Products of Lactic Acid Bacteria Fermentation-Prefermentation 41.1141.11 유산균 발효물의 동결건조물 - 후발효Lyophilized Lactic Acid Bacteria Fermentation-Post Fermentation 54.8154.81 40mg/ml Lactic acid pH 7.040mg / ml Lactic acid pH 7.0 5.545.54

표 29에 나타난 바와 같이, YG 배지에 BST.L_601을 접종하여 배양하였을 경우에는 α-Glucosidase 저해활성이 후발효를 하면서 약 8%로 증가되기는 하나 효과가 미미한 것을 알 수 있다. 또한, 유산균 발효물의 경우 BST.L-601을 접종하지 않은 고구마 배지의 경우에도 약 25%의 α-Glucosidase 저해활성을 가지지만, 후발효까지 진행되면 α-Glucosidase 저해활성이 약 51%로 20% 정도 증가하는 것을 확인하였다.As shown in Table 29, when inoculated with BST.L_601 in YG medium, α-Glucosidase inhibitory activity was increased to about 8% during post-fermentation, but the effect was minimal. In addition, about 25% of α-Glucosidase inhibitory activity in lactic acid bacteria fermented sweet potato medium without BST.L-601 inoculation, however, α-Glucosidase inhibitory activity is about 51% and 20% when it proceeds to post-fermentation. It was confirmed that the degree increased.

실험예Experimental Example 5. 유산균  5. Lactobacillus 발효물의Fermented product 총 폴리페놀 함량의 측정 Determination of Total Polyphenol Content

총 폴리페놀 함량의 측정은 다음과 같은 방법으로 수행되었다. 15 ml conical tube에 시료 0.1 ml씩 준비하고, 각 tube에 7% Na2CO3 용액 2 ml을 첨가하고 실온에서 3분간 반응시켰다. 이후, 1N의 Folin-Ciocalteu's phenol reagent를 0.1 ml 첨가하여 실온에서 30분 동안 반응시켰다. 750 nm에서 흡광도를 측정하여 표준물질로 작성한 검량선에 대입하여 총 폴리페놀의 함량을 측정하였다. 이때, 총 폴리페놀 함량의 표준물질로는 gallic acid를 사용하였다. BST.L-601을 YG 배지와 제조예 2와 동일한 조성물에 접종하여 전발효(37℃에서 3일간 발효)와 후발효(전발효를 한 후에 4℃에서 4일간 발효)시킨 후 총 폴리페놀 함량을 측정하였다. 그 결과를 도 2에 나타내었다.The determination of the total polyphenol content was carried out in the following manner. 0.1 ml of the sample was prepared in a 15 ml conical tube, and 2 ml of 7% Na 2 CO 3 solution was added to each tube and reacted for 3 minutes at room temperature. Thereafter, 0.1 ml of 1N Folin-Ciocalteu's phenol reagent was added and reacted at room temperature for 30 minutes. The absorbance was measured at 750 nm and the total polyphenol content was measured by substituting the calibration curve prepared as a standard. At this time, gallic acid was used as a standard of total polyphenol content. BST.L-601 was inoculated into YG medium and the same composition as Preparation Example 2, followed by pre-fermentation (fermentation at 37 ° C. for 3 days) and post-fermentation (fermentation at 4 ° C. for 4 days), followed by total polyphenol content. Was measured. The results are shown in FIG.

도 2를 참고하면, YG 배지의 경우 함량이 전반적으로 낮으나 후발효물에서 접종전(control)과 전발효에 비해 총 폴리페놀 함량이 약 2배 가량 증가하는 것을 보였다. 또한, 고구마 배지에 BST.L-601의 접종전(control)과 전발효, 후발효 후의 발효물의 총 폴리페놀 함량을 비교한 결과, 고구마 배지 자체에 약 1,000 ㎍/ml의 총폴리페놀을 함유하고 있으며 전발효까지는 총 폴리페놀 함량이 유사한 것을 확인하였다. 한편, 후발효까지 진행되면 총 폴리페놀 함량이 약 2,500 ㎍/ml로 약 2.5배 정도 증가되는 것을 확인하였다.Referring to FIG. 2, the content of YG medium was generally low, but the total polyphenol content was increased by about 2 times compared to the control and pre-fermentation in the post-fermentation. In addition, as a result of comparing the total polyphenol content of the fermented product after control and pre-fermentation and post-fermentation of BST.L-601 in the sweet potato medium, the sweet potato medium itself contained about 1,000 μg / ml of total polyphenols. And it was confirmed that the total polyphenol content was similar until the pre-fermentation. On the other hand, when proceeding to the post-fermentation it was confirmed that the total polyphenol content is increased by about 2.5 times to about 2,500 ㎍ / ml.

실험예 6. 유산균 발효물의 리파아제 저해활성 측정Experimental Example 6. Measurement of lipase inhibitory activity of lactic acid bacteria fermentation

유산균 발효물의 리파아제 저해활성은 다음과 같은 방법으로 측정할 수 있다. 먼저, 리파아제 원액을 0.1 mM 칼륨완충용액 (pH 6.0)에 1000배 희석하여 준비한 효소액 10 ㎕와 증류수에 100 ㎎/ml으로 용해한 시료와 대조군(100 ㎍/ml orlistat), 공시험(증류수) 50 ㎕와 0.1 mM 칼륨완충용액 (pH7.2, containing 0.1% tween 80) 30 ㎕를 96well microplate에 넣어 30℃에서 1시간 동안 반응시킨다. 다음으로, 10 mM p-NPC(para-nitrophenyl caprylate) 용액 10 ㎕를 혼합하여 30℃에서 5분간 효소 반응시킨다. 이후, 405 nm에서 흡광도를 측정하여 대조군과 비교하여 다음과 같이 저해활성을 계산하였다. 그 결과를 표 30에 나타내었다.Lipase inhibitory activity of the lactic acid bacteria fermentation can be measured by the following method. First, 10 μl of the enzyme solution prepared by diluting the lipase stock solution 1000 times in 0.1 mM potassium buffer solution (pH 6.0), 100 μg / ml in distilled water, and 50 μl of the control group (100 μg / ml orlistat) and blank test (distilled water) 30 μl of 0.1 mM potassium buffer solution (pH7.2, containing 0.1% tween 80) was added to a 96well microplate and reacted at 30 ° C. for 1 hour. Next, 10 μl of a 10 mM p-NPC (para-nitrophenyl caprylate) solution is mixed and enzymatically reacted at 30 ° C. for 5 minutes. Thereafter, the absorbance was measured at 405 nm and the inhibitory activity was calculated as follows in comparison with the control group. The results are shown in Table 30.

Figure pat00004
Figure pat00004

공시험: 공시험 반응액의 흡광도 (405 nm)Blank test: Absorbance of blank test solution (405 nm)

시료: 시료 반응액의 흡광도 (405 nm)Sample: Absorbance of Sample Reaction Liquid (405 nm)

시료sample Lipase 저해활성 (%)Lipase Inhibitory Activity (%) Orlistat (100㎍/ml)Orlistat (100µg / ml) 36.65736.657 YG (원액)YG (stock) 00 유산균 발효물 (100mg/ml)Lactic Acid Bacteria Fermentation (100mg / ml) 34.77834.778

유산균 고구마 발효물의 lipase 저해활성을 측정한 결과 대조군으로 사용한 100㎍/ml의 Orlistat은 약 36.65%의 lipase 저해활성을 나타냈으며, YG 배지에 후발효까지 진행한 경우 원액으로 측정하였음에도 불구하고 lipase 저해활성이 없었다. 그러나 100mg/ml의 유산균 발효물은 약 34.77%의 lipase 저해활성을 나타내는 것을 확인하였다. 즉, 대조군인 100㎍/ml의 Orlistat과 유사한 lipase저해활성을 가지는 바, 지방의 소화를 억제하여 비만의 발생을 억제하는 효과를 가지는 것을 알 수 있다.As a result of measuring the lipase inhibitory activity of lactic acid bacteria sweet potato fermentation, 100 ㎍ / ml Orlistat showed a lipase inhibitory activity of about 36.65%. There was no. However, it was confirmed that the lactic acid bacteria fermentation product of 100mg / ml showed lipase inhibitory activity of about 34.77%. In other words, it has a lipase inhibitory activity similar to that of Orlistat of 100 µg / ml as a control group.

실험예Experimental Example 7. 유산균  7. Lactobacillus 발효물Fermented products 상등액 건조물 및  Supernatant dry matter and 발효물의Fermented product 지방전구세포에On fat precursor cells 대한 세포 독성 확인 For cytotoxicity check

실험예Experimental Example 7.1. 유산균  7.1. Lactobacillus 발효물Fermented products 상등액 건조물의 분화 전  Before eruption of supernatant dry matter 지방전구세포에On fat precursor cells 대한 세포 독성 확인 For cytotoxicity check

3T3-L1 지방전구세포를 10% Fetal bovine serum (FBS)와 1% Penicillin-streptomycin(P/S)가 첨가된 DMEM (Dulbecco's modified Eagle's medium) 배지에 37℃, 5% CO2가 공급되는 조건의 incubator에서 배양하였다. 이후, 3T3-L1 지방전구세포를 96 well plate에 1

Figure pat00005
103 cell/well로 분주하였다. 제조예 3의 유산균 발효물 상등액 건조물을 상기의 동일한 배지에 100, 50, 25, 12.5, 6.25, 3.13, 1.56 mg/ml로 용해하여 0.22㎛ filter로 여과하였다. 24, 48, 72시간 동안 처리한 뒤, MTT assay를 통해 세포 독성을 확인하였다. 그 결과를 도 3에 나타내었다.3T3-L1 adipocytes were treated with DMEM (Dulbecco's modified Eagle's medium) medium containing 10% Fetal bovine serum (FBS) and 1% Penicillin-streptomycin (P / S) at 37 ° C and 5% CO 2 . The incubator was incubated. Then, 3T3-L1 adipocytes in a 96 well plate 1
Figure pat00005
Aliquots were performed at 10 3 cell / well. Lactic acid bacteria fermented product supernatant of Preparation Example 3 was dissolved in 100, 50, 25, 12.5, 6.25, 3.13, 1.56 mg / ml in the same medium and filtered with a 0.22㎛ filter. After 24, 48, and 72 hours of treatment, cytotoxicity was confirmed by MTT assay. The results are shown in FIG.

도 3서 볼 수 있 듯이, 분화되지 않은 3T3-L1 지방전구세포에서는 유산균 발효물 상등액 건조물을 처리 24시간 후 25 mg/ml부터 독성이 나타나기 시작하였으며, 48시간 이후로는 1.56 mg/ml에서도 약 20%의 세포 사멸을 보여 농도, 시간의존적으로 세포 독성을 나타내었다.As can be seen in Figure 3, in the non-differentiated 3T3-L1 adipocytes treated with lactic acid bacteria fermented product supernatant dry 24 hours after 25 mg / ml began to appear, after 48 hours even at 1.56 mg / ml Cell death of 20% was observed, showing cytotoxicity in a concentration- and time-dependent manner.

실험예Experimental Example 7.2. 유산균  7.2. Lactobacillus 발효물Fermented products 상등액 건조물의 분화 후  After eruption of supernatant dry matter 지방전구세포에On fat precursor cells 대한 세포 독성 확인 For cytotoxicity check

지방세포로 분화한 3T3-L1에서의 세포독성을 확인하기 위하여 3T3-L1 세포를 96 well plate에 각 1

Figure pat00006
103 cell/well로 분주하였다. 2일 후 배지를 교환하여 1-2일간 배양하여 세포가 완전히 융합되어 자랐을 때, 10% FBS와 MDI solution (0.5mM 3-iso butyl-1-methylxanthine, 1μM dexamethasone, 5 ㎍/㎖ insulin)을 포함하는 DMEM 배지로 배지를 교환하여 분화 유도를 시작하였다. 분화 유도 시작 2일 후 10% FBS와 insulin이 포함된 DMEM 배지를 2일 간격으로 배지를 교환하였다. 이후, 6일간 더 배양하여 지방세포로 분화를 유도하였다. 지방세포로 분화한 3T3-L1 세포에 유산균 발효물 상등액 건조물을 100, 50, 25, 12.5, 6.25, 3.13, 1.56 mg/ml로 24, 48, 72시간동안 처리하였다. MTT assay를 통해 세포 독성을 확인하고 그 결과를 도 4에 나타내었다.To determine the cytotoxicity of 3T3-L1 differentiated into adipocytes, 3T3-L1 cells were collected in 96 well plates.
Figure pat00006
Aliquots were performed at 10 3 cell / well. After 2 days, medium was exchanged and cultured for 1-2 days. When cells were fully fused and grown, they contained 10% FBS and MDI solution (0.5mM 3-iso butyl-1-methylxanthine, 1μM dexamethasone, 5 ㎍ / ml insulin). Induction of differentiation was initiated by changing the medium with DMEM medium. Two days after the differentiation induction, DMEM medium containing 10% FBS and insulin was exchanged every two days. After that, the cells were further cultured for 6 days to induce differentiation into adipocytes. 3T3-L1 cells differentiated into adipocytes were treated with lactic acid bacteria fermented product supernatant dried at 100, 50, 25, 12.5, 6.25, 3.13, 1.56 mg / ml for 24, 48 and 72 hours. The cytotoxicity was confirmed by MTT assay and the results are shown in FIG. 4.

도 4에서와 같이 분화되지 않은 3T3-L1세포와 유사하게 24시간 후 25mg/ml부터 독성이 나타나기 시작하였다. 농도 의존적으로 세포 독성이 나타나지만, 48시간 이후 세포 독성은 더 이상 증가되지 않고 72시간까지 처리하여도 25mg/ml의 농도에서 51.15%의 세포 생존율을 나타내는 것을 보였다. Similar to undifferentiated 3T3-L1 cells as in FIG. 4, toxicity began to appear from 25 mg / ml after 24 hours. Although cytotoxicity was shown to be concentration-dependent, the cytotoxicity was no longer increased after 48 hours, and cell viability of 51.15% was shown at a concentration of 25 mg / ml even after 72 hours of treatment.

실험예Experimental Example 7.3. 멸균된 유산균  7.3. Sterilized Lactobacillus 발효물의Fermented product 분화 전  Before eruption 지방전구세포에On fat precursor cells 대한 세포 독성 확인 For cytotoxicity check

제조예 4에서 제조한 멸균한 유산균 발효물을 DMEM 배지에 50, 10, 5, 1, 0.5, 0.25 mg/ml로 용해하였다. 이를 3T3-L1 지방전구세포에 24시간 처리하여 실험예 7.1과 동일한 방법으로 각 세포에 대한 독성을 확인하였다. 그 결과는 도 5에 도시하였다. The sterilized lactic acid bacteria fermentation product prepared in Preparation Example 4 was dissolved in DMEM medium at 50, 10, 5, 1, 0.5, 0.25 mg / ml. The 3T3-L1 adipocytes were treated for 24 hours to confirm the toxicity of each cell in the same manner as in Experimental Example 7.1. The results are shown in FIG.

발효하지 않은 고구마 배지의 경우 5 mg/ml이하로 처리하게 되면 세포 독성을 나타내지 않으며, 유산균 발효물의 경우 전발효물과 후발효물에서 1 mg/ml 이하 처리하였을 때 세포독성을 나타내지 않는 것을 확인하였다.In the case of non-fermented sweet potato medium, the treatment of 5 mg / ml or less did not show cytotoxicity, and the lactic acid bacteria fermentation did not show cytotoxicity when treated under 1 mg / ml in pre- and post-fermented products. .

실험예Experimental Example 7.4. 멸균된 유산균  7.4. Sterilized Lactobacillus 발효물의Fermented product 분화 후  After eruption 지방전구세포에On fat precursor cells 대한 세포 독성 확인 For cytotoxicity check

제조예 4에서 제조한 멸균한 유산균 발효물을 DMEM배지에 50, 10, 5, 1, 0.5, 0.25 mg/ml로 용해하였다. 이를 분화된 3T3-L1 지방전구세포에 24시간 처리하여 실험예 7-2와 동일한 방법으로 각 세포에 대한 독성을 확인하였다. 그 결과는 도 6에 도시하였다. The sterilized lactic acid bacteria fermented product prepared in Preparation Example 4 was dissolved in DMEM medium at 50, 10, 5, 1, 0.5, 0.25 mg / ml. This was treated with differentiated 3T3-L1 adipocytes for 24 hours to confirm the toxicity to each cell in the same manner as in Experimental Example 7-2. The result is shown in FIG.

도 6에 나타난 바와 같이, 발효하지 않은 고구마 배지와 전발효물과 후발효물을 처리하였을 때 10mg/ml 이하로 처리하여야 세포 독성을 나타내지 않는 것을 확인할 수 있었다. As shown in Figure 6, when treated with the non-fermented sweet potato medium and pre-fermentation and post-fermentation it was confirmed that the treatment does not exhibit cytotoxicity to 10mg / ml or less.

실험예Experimental Example 8. 유산균  8. Lactobacillus 발효물Fermented products 상등액 건조물( Supernatant dry matter ( 제조예Production Example 3) 및 멸균된 유산균  3) and sterile lactic acid bacteria 발효물(제조예 4)의Of fermented product (manufacturing example 4) 항비만 효과 확인 Anti-obesity effect confirmed

실험예 7의 결과를 바탕으로 유산균 발효물의 지방 형성의 효과 확인 시험을 수행하였다.Based on the results of Experimental Example 7, a test for confirming the effect of fat formation of lactic acid bacteria fermentation was performed.

실험예Experimental Example 8.1. Oil Red O staining을 통한 유산균  8.1. Lactobacillus through Oil Red O staining 발효물Fermented products 상등액 건조물의 지방세포 분화 억제능 확인(현미경)  Confirmation of Adipocyte Differentiation Inhibitory Activity of Dried Supernatant (Microscope)

제조예 3에서 동결건조한 유산균 발효물의 상등액 분말을 12.5 mg/ml로 DMEM배지에 녹여 세포의 분화 시 함께 처리하여 분화시켰다. 분화를 유도한 3T3-L1에서 배양액을 제거하고, PBS로 2회 세척하였다. 다음으로, 실온에서 4% 파라포름알하이드를 60분간 처리하여 세포를 고정시켰다. 세포의 고정이 끝난 후, 파라포름알하이드를 제거한 후 다시 PBS로 3회 세척하였다. 60% 이소프로판올에 0.5%로 용해한 Oil red O solution을 처리하였다. 이를 37℃에서 1시간 처리하여 세포를 염색한 후, 다시 PBS로 3회 세척한 뒤 현미경으로 관찰하였다. The supernatant powder of the lyophilized lactic acid bacteria fermentation in Preparation Example 3 was dissolved in DMEM medium at 12.5 mg / ml and treated together when the cells were differentiated to differentiate. Cultures were removed from 3T3-L1 that induced differentiation and washed twice with PBS. Next, 4% paraformaldehyde was treated for 60 minutes at room temperature to fix cells. After the fixation of the cells, paraformaldehyde was removed and washed again with PBS three times. Oil red O solution dissolved in 0.5% in 60% isopropanol was treated. After staining the cells by treatment for 1 hour at 37 ℃, washed again three times with PBS and observed under a microscope.

유산균 발효물을 처리하지 않은 세포와 처리한 세포를 현미경으로 100배 확대하여 관찰한 결과, 도 7에 나타난 바와 같이, 유산균 발효물 상등액 건조물을 처리하지 않은 세포는 대체적으로 분화가 많이 되었으나, 유산균 발효물 상등액 건조물을 처리한 세포의 경우 그에 비해 분화된 세포의 수가 상대적으로 적은 것을 확인 할 수 있었다.As a result of observing the cells not treated with the lactic acid bacteria fermented product and the treated cells under a microscope 100 times, as shown in FIG. 7, the cells not treated with the lactic acid bacteria fermented product supernatant were generally differentiated, but the lactic acid bacteria fermentation was large. In the case of cells treated with water supernatant dry matter, the number of differentiated cells was relatively low.

실험예Experimental Example 8.2. Oil Red O staining을 통한 유산균  8.2. Lactobacillus through Oil Red O staining 발효물Fermented products 상등액 건조물의 지방세포 분화  Adipocyte Differentiation of Supernatant Dried 억제능Inhibitory ability 확인(흡광도) Confirmation (absorbance)

또한, 실험예 8.1에서 현미경 관찰 후, 100% 이소프로판올을 처리하여 세포를 용해하였다. 이의 500 nm에서 흡광도를 비교하여, 지방세포 분화 억제능을 도 8에 나타내었다.In addition, after the microscopic observation in Experimental Example 8.1, 100% isopropanol was treated to lyse the cells. In comparison with the absorbance at 500 nm, the ability to inhibit adipocyte differentiation is shown in FIG.

그 결과, 유산균 발효물 상등액 건조물을 처리한 지방세포가 약 30% 정도 적게 분화된 것으로 보아, 유산균 발효물 상등액 건조물이 지방 세포의 형성을 억제하며 이는 항비만 효과를 가지는 것을 알 수 있다.As a result, it can be seen that the fat cells treated with the lactic acid bacteria fermented product supernatant dried by about 30% less, the lactic acid bacteria fermented product supernatant dried inhibits the formation of fat cells, which has an anti-obesity effect.

실험예Experimental Example 8.3. 유산균  8.3. Lactobacillus 발효물Fermented products 상등액 건조물의 지방 형성 인자 발현 억제 효과 확인 Determination of the Lipid Formation Factor Inhibitory Effect of the Supernatant Dried

실험예 8.1.에서 분화를 유도하여 배양한 지방세포를 PBS로 1회 세척하였다. 이후, 세포를 모두 회수하여 RIPA buffer에 세포를 현탁하였다. 30분간 용출시킨 뒤, 15,000rpm에서 30분간 원심분리하였다. 상등액을 Bradford assay를 통해 정량하여 30㎍씩 동량을 로딩하였다. SDS PAGE에서 전기영동 웨스턴 블랏을 통해 C/EBPα, C/EBP

Figure pat00007
, PPARγ, FABP4의 발현을 비교하였다.Adipocytes cultured by inducing differentiation in Experimental Example 8.1 were washed once with PBS. Then, all cells were recovered and suspended in RIPA buffer. After eluting for 30 minutes, the mixture was centrifuged at 15,000 rpm for 30 minutes. The supernatant was quantified by Bradford assay and the same amount was loaded by 30 ㎍. C / EBPa, C / EBP via electrophoretic western blots on SDS PAGE
Figure pat00007
, PPARγ, FABP4 expression was compared.

도 9에 나타난 바와 같이, 유산균 발효물 상등액을 처리하였을 때, 지방 세포 분화 인자인 C/EBPα, C/EBP

Figure pat00008
, PPAR
Figure pat00009
, FABP4 등의 발현 억제를 확인할 수 있었다. 이는 유산균 발효물 상등액이 지방세포의 분화를 억제함으로써 궁극적으로 항비만 효과를 나타낼 수 있는 것을 확인한 것이다.As shown in Figure 9, when treated with the lactic acid bacteria fermented supernatant, fat cell differentiation factors C / EBPa, C / EBP
Figure pat00008
, PPAR
Figure pat00009
, FABP4 and other expression inhibition was confirmed. This confirms that the lactic acid bacteria fermented supernatant can ultimately have an anti-obesity effect by inhibiting the differentiation of fat cells.

실험예Experimental Example 8.4. Oil Red O staining을 통한 멸균한 유산균  8.4. Lactobacillus sterilized by Oil Red O staining 발효물의Fermented product 지방세포 분화  Adipocyte differentiation 억제능Inhibitory ability 확인(현미경)  OK (microscope)

제조예 4에서 제조한 멸균한 유산균 발효물을 0.5 mg/ml 및 0.25 mg/ml로 DMEM배지에 녹인 것을 제외하고는 실험예 8.1과 동일한 방법으로 수행하였다. 유산균 발효물을 0.5 mg/ml으로 처리한 세포를 현미경으로 관찰하였다. The sterilized lactic acid bacteria fermented product prepared in Preparation Example 4 was performed in the same manner as in Experiment 8.1 except that 0.5 mg / ml and 0.25 mg / ml were dissolved in DMEM medium. Cells treated with lactic acid bacteria fermentation at 0.5 mg / ml were observed under a microscope.

도 10에 나타난 바와 같이, 멸균한 유산균 발효물을 처리하지 않은 세포는 대체적으로 분화가 많이 되었으나, 멸균한 유산균 발효물을 처리한 세포의 경우 그에 비해 분화된 세포의 수가 상대적으로 적은 것을 확인 할 수 있었다.As shown in FIG. 10, cells that did not process the sterilized lactic acid bacteria fermentation were generally differentiated, but in the case of cells treated with the sterilized lactic acid bacteria fermentation, the number of differentiated cells was relatively small. there was.

실험예Experimental Example 8.5. Oil Red O staining을 통한 멸균한 유산균  8.5. Lactobacillus sterilized by Oil Red O staining 발효물의Fermented product 지방세포 분화  Adipocyte differentiation 억제능Inhibitory ability 확인(흡광도) Confirmation (absorbance)

또한, 실험예 8.4에서 현미경 관찰 후, 100% 이소프로판올을 처리하여 세포를 용해하였다. 이의 500 nm에서 흡광도를 비교하여, 지방세포 분화 억제능을 도 11에 나타내었다.After observing the microscope in Experimental Example 8.4, cells were lysed by treatment with 100% isopropanol. In comparison with the absorbance at 500 nm, the ability to inhibit adipocyte differentiation is shown in FIG.

그 결과, 0.5 mg/ml의 멸균한 유산균 발효물을 처리하여 분화시킨 세포가 처리하지 않은 세포에 비해 약 29% 지방세포의 분화를 억제하는 것을 확인 할 수 있었다. 또한, 0.25 mg/ml의 멸균한 유산균 발효물을 처리하여 분화시킨 세포의 경우에도 약 15%의 지방세포 분화 억제능을 나타내는 것을 확인하였다.As a result, it was confirmed that the cells differentiated by treating the sterilized lactic acid bacteria fermentation at 0.5 mg / ml inhibited the differentiation of about 29% adipocytes compared to the cells which were not treated. In addition, it was confirmed that the cells differentiated by treating the sterilized lactic acid bacteria fermented product at 0.25 mg / ml exhibited about 15% adipocyte differentiation inhibitory ability.

실험예Experimental Example 8.6. 유산균  8.6. Lactobacillus 발효물의Fermented product 지방 형성 인자 발현 억제 효과 확인 Confirmation of inhibitory effect on the expression of fat forming factor

실험예 8.4에서 분화를 유도하여 배양한 지방세포에 대하여 실험예 8.3과 동일한 방법으로 웨스턴 블랏을 진행하였다.Western blot was performed in the same manner as Experimental Example 8.3 for adipocytes cultured by inducing differentiation in Experimental Example 8.4.

도 12에 나타난 바와 같이, 제조예 3의 유산균 발효물 상등액을 처리하였을 때, 지방 세포 분화 인자인 C/EBPα, C/EBPβ, PPARγ, FABP4 등의 발현 억제를 확인할 수 있었다. 이는 유산균 발효물 상등액과 마찬가지로, 제조예 4의 멸균한 유산균 발효물 즉, 유산균 발효물 전체를 처리한 경우에도 동일하게 지방세포의 분화를 억제하는 것을 알 수 있다.As shown in Figure 12, when the lactic acid bacteria fermented product supernatant of Preparation Example 3, it was confirmed that the suppression of the expression of fat cell differentiation factors C / EBPa, C / EBB, PPARγ, FABP4. This is similar to the lactic acid bacteria fermentation supernatant, it can be seen that even when the sterilized lactic acid bacteria fermentation product of Production Example 4, that is, the whole of the lactic acid bacteria fermentation, the differentiation of adipocytes is similarly suppressed.

실험예Experimental Example 9. 유산균  9. Lactobacillus 발효물Fermented products 상등액 건조물( Supernatant dry matter ( 제조예Production Example 3) 및 멸균된 유산균  3) and sterile lactic acid bacteria 발효물(제조예 4)의Of fermented product (manufacturing example 4) 항당뇨Antidiabetic 효과 확인 Check the effect

실험예 7의 결과를 바탕으로 유산균 발효물의 항당뇨 효과의 확인 시험을 수행하였다.On the basis of the results of Experimental Example 7 was confirmed the antidiabetic effect of the lactic acid bacteria fermentation.

실험예Experimental Example 9.1. Glucose uptake를 통한 유산균  9.1. Lactobacillus through Glucose uptake 발효물Fermented products 상등액 건조물의  Supernatant 항당뇨Antidiabetic 효과 확인 Check the effect

3T3-L1 지방전구세포를 10% Fetal bovine serum (FBS)와 1% Penicillin-streptomycin(P/S)가 첨가된 DMEM (Dulbecco's modified Eagle's medium) 배지에 37℃, 5% CO2가 공급되는 조건의 incubator에서 배양하였다. 3T3-L1 지방전구세포의 분화를 유도하기 위하여 세포를 96 well plate에 각 1

Figure pat00010
103 cell/well로 분주하였다. 2일 후 배지를 교환하여 1-2일간 배양하여 세포가 완전히 융합되어 자랐을 때, 10% FBS와 MDI solution (0.5mM 3-iso butyl-1-methylxanthine, 1μM dexamethasone, 5 ㎍/㎖ insulin)을 포함하는 DMEM 배지로 배지를 교환하여 분화 유도를 시작하였다. 분화 유도 시작 2일 후 10% FBS와 insulin이 포함된 DMEM 배지를 2일간격으로 배지를 교환하여 6일간 더 배양하여 지방세포로 분화를 유도하였다. Incubator of 3T3-L1 adipocytes with 37 ° C and 5% CO2 in DMEM (Dulbecco's modified Eagle's medium) medium with 10% Fetal bovine serum (FBS) and 1% Penicillin-streptomycin (P / S) Incubated at. To induce differentiation of 3T3-L1 adipocytes, the cells were placed on 96 well plates.
Figure pat00010
Aliquots were performed at 10 3 cell / well. After 2 days, medium was exchanged and cultured for 1-2 days. When cells were fully fused and grown, they contained 10% FBS and MDI solution (0.5mM 3-iso butyl-1-methylxanthine, 1μM dexamethasone, 5 ㎍ / ml insulin). Induction of differentiation was initiated by changing the medium with DMEM medium. Two days after the induction of differentiation, DMEM medium containing 10% FBS and insulin was exchanged for 2 days and cultured for another 6 days to induce differentiation into adipocytes.

분화된 지방세포에 glucose가 포함되어있지 않은 DMEM배지로 배지를 교체하여 4시간 배양하였다. 여기에, 유산균 발효물 상등액 건조물을 50 mg/ml, 25 mg/ml, 12.5 mg/ml로 각각 혼합하였다. glucose가 포함되어있지 않은 DMEM배지에 처리하여 14시간동안 처리하였다. 대조군으로 100 uM의 인슐린을 30분간 처리하였다. 각각의 세포를 PBS로 2회 세척 후 50 uM의 2-NBDG를 100 ㎕/well 넣었다. 이후, 37℃의 CO2 인큐베이터에서 30분간 배양 후, 차가운 PBS로 3회 세척해주었다. 1% triton X100을 포함하는 0.1M 인산칼륨 완충용액 (pH 10) 70 ㎕를 각 well에 넣어 10분간 반응시켰다. 다음으로, DMSO 30 ㎕를 가하여 파이펫팅을 통해 세포를 분해하였다.

Figure pat00011
ex=460 nm,
Figure pat00012
em=530 nm에서 형광도를 측정(2-NBDG)하여 glucose uptake를 도 12에 나타내었다.Differentiated adipocytes were cultured for 4 hours by replacing the medium with DMEM medium that did not contain glucose. Here, the lactic acid bacteria fermented product supernatant was mixed at 50 mg / ml, 25 mg / ml, and 12.5 mg / ml, respectively. Glucose-containing DMEM medium was treated for 14 hours. As a control, 100 uM of insulin was treated for 30 minutes. Each cell was washed twice with PBS followed by 100 μl / well of 50 uM 2-NBDG. Then, after incubation for 30 minutes in a CO 2 incubator at 37 ℃, washed three times with cold PBS. 70 μl of 0.1 M potassium phosphate buffer (pH 10) containing 1% triton X100 was added to each well for 10 minutes. Next, 30 μl of DMSO was added to digest the cells by pipetting.
Figure pat00011
ex = 460 nm,
Figure pat00012
The glucose uptake is shown in FIG. 12 by measuring the fluorescence at em = 530 nm (2-NBDG).

도 13에서 볼 수 있듯이, 25 mg/ml 유산균 발효물 상등액 건조물을 처리 후 14시간에 평균 약 210% 정도로 나타나는 것을 알 수 있다. 이는 대조군(인슐린)의 경우 약 198.6%의 glucose uptake되는 것과 유사한 효과를 나타낸 것이다. 24시간 후에 약 270% 정도 glucose uptake되어 상대적으로 높은 항당뇨 효과를 가지는 것을 확인 하였다. As can be seen in Figure 13,  25 mg / ml lactic acid bacteria fermented product supernatant It can be seen that the average appeared about 210% at 14 hours after treatment. This is similar to the glucose uptake of about 198.6% in the control group (insulin). After 24 hours, about 270% glucose uptake was confirmed to have a relatively high antidiabetic effect.

실험예Experimental Example 9.2.  9.2. Glut4Glut4 발현의 차이를 통한 유산균  Lactobacillus through the difference in expression 발효물Fermented products 상등액 건조물의  Supernatant 항당뇨Antidiabetic 효과 확인 Check the effect

분화를 유도하여 배양한 지방세포에 25 mg/ml의 유산균 발효물 상등액 건조물을 24시간 세포에 처리하였다. PBS로 1회 세척 후, 세포를 모두 회수하여 RIPA buffer에 세포를 현탁하였다. 30분간 용출시킨 뒤, 15,000 rpm에서 30분간 원심분리하였다. 상등액을 브래드포드 에세이를 통해 정량하였다. 30 ㎍씩 동량을 SDS PAGE에서 전기영동 웨스턴 블랏을 통해 GLUT4의 발현을 비교하였다.Adipocytes cultured by differentiation were treated with a supernatant of 25 mg / ml lactic acid bacteria fermented product for 24 hours. After washing once with PBS, all the cells were recovered and suspended in RIPA buffer. After eluting for 30 minutes, it was centrifuged for 30 minutes at 15,000 rpm. Supernatants were quantified via a Bradford assay. Equivalent amounts of 30 μg were compared by expression of GLUT4 via electrophoretic western blot on SDS PAGE.

도 14에 나타난 바와 같이, 일반 분화된 세포에 비해 Glut4가 높게 발현되었다. 이는 대조군으로 처리한 인슐린에 비해서도 많은 양의 Glut4가 발현된 것으로, 유산균 발효물 상등액 건조물의 항당뇨 효과를 재확인하였다.As shown in FIG. 14, Glut4 was expressed higher than general differentiated cells. This resulted in the expression of a large amount of Glut4 compared to the insulin treated as a control, and reconfirmed the antidiabetic effect of the dried supernatant of lactic acid bacteria.

실험예Experimental Example 9.3. Glucose uptake를 통한 멸균한 유산균  9.3. Lactobacillus sterilized by Glucose uptake 발효물의Fermented product 항당뇨Antidiabetic 효과 확인 Check the effect

제조예 4에서 제조한 멸균한 유산균 발효물을 DMEM 배지에 10, 5, 1 mg/ml로 각각 혼합하여 분화를 유도한 3T3-L1 지방세포인 것을 제외하고는 실험예 9.1과 동일한 방법으로 실험을 수행하였다. Experiments were carried out in the same manner as in Experiment 9.1 except that the sterilized lactic acid bacteria fermented product prepared in Preparation Example 4 were 3T3-L1 adipocytes induced by differentiation by mixing 10, 5, and 1 mg / ml in DMEM medium, respectively. Was performed.

그 결과, 도 15에 나타난 바와 같이, 10 mg/ml의 멸균된 유산균 발효물을 처리하였을 때 14시간 후 평균 약 230% glucose uptake 되었으며, 24시간후 250%까지 glucose uptake되되는 것을 확인할 수 있었다. 5 mg/ml, 1 mg/ml로 처리하였을 경우 14시간까지는 glucose uptake가 크게 보이지 않으나, 24시간 후 약 170-200%까지 glucose uptake 되는 것을 볼 수 있었다. 이는 대조군으로 사용한 100 nM insulin을 30분 처리하였을 때 약 250% uptake 되는것과 유사한 효과인 것으로, 상대적으로 높은 항당뇨 효과를 가지는 것을 확인하였다.As a result, as shown in Figure 15, when treated with 10 mg / ml sterilized lactic acid bacteria fermentation was an average of about 230% glucose uptake after 14 hours, it was confirmed that up to 250% glucose after 24 hours. When treated with 5 mg / ml and 1 mg / ml, glucose uptake was not significantly increased until 14 hours, but glucose uptake was observed up to about 170-200% after 24 hours. This is a similar effect to about 250% uptake when treated with 100 nM insulin as a control for 30 minutes, and it was confirmed that it has a relatively high antidiabetic effect.

실험예Experimental Example 9.4.  9.4. Glut4Glut4 발현의 차이를 통한 멸균된 유산균  Sterilized Lactobacillus with Different Expressions 발효물의Fermented product 항당뇨Antidiabetic 효과 확인 Check the effect

10mg/ml의 멸균한 유산균 발효물을 24시간 처리한 것을 제외하고는 실험예 9.4와 동일한 방법으로 실험을 진행하였다.The experiment was conducted in the same manner as Experimental Example 9.4, except that the sterilized lactic acid bacteria fermented product of 10mg / ml was treated for 24 hours.

도 16에 나타난 바와 같이, 포도당 수송 인자인 Glut4의 발현을 비교한 결과, 일반 분화된 세포에 비해 Glut4가 높게 발현되었다. 즉, 대조군으로 처리한 인슐린과 유사한 양의 Glut4가 발현되는 것을 확인함으로써 멸균한 유산균 발효물의 항당뇨 효과를 재확인하였다.As shown in FIG. 16, as a result of comparing the expression of Glut4, a glucose transporter, Glut4 was expressed higher than that of normal differentiated cells. That is, the antidiabetic effect of the sterilized lactic acid bacteria fermentation was reconfirmed by confirming that Glut4 was expressed in an amount similar to that of the control treated with insulin.

한국생명공학연구원Korea Research Institute of Bioscience and Biotechnology KCTC13517BPKCTC13517BP 2018042720180427

Claims (17)

기탁번호 KCTC 13517BP로 기탁된 락토바실러스 람노서스(Lactobacillus rhamnosus) 균주.
Lactobacillus rhamnosus strain deposited with accession number KCTC 13517BP.
제1항의 균주로 발효된 유산균 발효물.
Lactic acid bacteria fermented product fermented with the strain of claim 1.
제2항에 있어서,
상기 유산균 발효물은 고구마를 발효시킨 것인, 유산균 발효물.
The method of claim 2,
The lactic acid bacteria fermented product is a fermented sweet potato, lactic acid bacteria fermented product.
제3항에 있어서,
상기 고구마는 동결건조시 유산균의 보존성을 향상시키는 것인, 유산균 발효물.
The method of claim 3,
The sweet potato is to improve the preservation of lactic acid bacteria when lyophilized, lactic acid bacteria fermented product.
제3항에 있어서,
상기 유산균 발효물의 폴리페놀 함량은 발효 전 고구마의 폴리페놀 함량의 1.5 배 내지 4 배인, 유산균 발효물.
The method of claim 3,
The polyphenol content of the lactic acid bacteria fermentation is lactic acid bacteria fermentation 1.5 times to 4 times the polyphenol content of sweet potato before fermentation.
제2항에 있어서,
상기 유산균 발효물은 α-아밀라아제, α-글루코시다아제 및 리파아제 중 적어도 하나의 활성을 저해하는 것인, 유산균 발효물.
The method of claim 2,
The lactic acid bacteria fermented product will inhibit the activity of at least one of α-amylase, α-glucosidase and lipase, lactic acid bacteria fermented product.
제2항에 있어서,
상기 유산균 발효물은 C/EBPα(CCAAT-enhancer-binding protein α), C/EBPβ(CCAAT-enhancer-binding protein β), PPARγ(peroxisome proliferator activated receptorγ), 아디포넥틴(Adiponectin) 및 FABP4(fatty acid binding protein 4) 중 적어도 하나의 발현을 억제하는 것인, 유산균 발효물.
The method of claim 2,
The lactic acid bacteria fermentation product is C / EBPα (CCAAT-enhancer-binding protein α), C / EBPβ (CCAAT-enhancer-binding protein β), PPARγ (peroxisome proliferator activated receptorγ), adiponectin (FAdi4) and FABP4 (fatty acid binding protein) To inhibit the expression of at least one of 4), lactic acid bacteria fermentation.
제2항에 있어서,
상기 유산균 발효물은 GLUT4(Glucose transporter type 4)의 발현을 증가시키는 것인, 유산균 발효물.
The method of claim 2,
The lactic acid bacteria fermentation is to increase the expression of GLUT4 (Glucose transporter type 4), lactic acid bacteria fermentation.
제2항에 있어서,
상기 유산균 발효물은 동결건조된 것인, 유산균 발효물.
The method of claim 2,
The lactic acid bacteria fermented product is lyophilized, lactic acid bacteria fermented product.
제2항에 있어서,
상기 유산균 발효물은 멸균된 것인, 유산균 발효물.
The method of claim 2,
The lactic acid bacteria fermentation is sterile, lactic acid bacteria fermentation.
제2항 내지 제10항 중 어느 한 항에 따른 유산균 발효물을 유효성분으로 포함하는 당뇨 또는 비만의 예방 또는 치료용 약학적 조성물.
A pharmaceutical composition for preventing or treating diabetes or obesity comprising the lactic acid bacteria fermentation product according to any one of claims 2 to 10 as an active ingredient.
제2항 내지 제10항 중 어느 한 항에 따른 유산균 발효물을 유효성분으로 포함하는 당뇨 또는 비만의 예방 또는 개선용 건강기능식품.
A health functional food for preventing or improving diabetes or obesity, comprising the fermented lactic acid bacterium according to claim 2 as an active ingredient.
고구마를 포함하는 조성물에 기탁번호 KCTC 13517BP로 기탁된 락토바실러스 람노서스 균주를 접종하는 단계; 및
상기 조성물을 발효시키는 단계를 포함하는, 유산균 발효물의 제조방법.
Inoculating a composition comprising sweet potatoes with the Lactobacillus rhamnosus strain deposited with accession number KCTC 13517BP; And
Comprising the step of fermenting the composition, method for producing lactic acid bacteria fermentation.
제13에 있어서,
접종 전에 멸균하는 단계를 더 포함하는, 유산균 발효물의 제조방법.
The method according to claim 13,
Further comprising the step of sterilization before inoculation, the production method of the lactic acid bacteria fermentation.
제14항에 있어서,
상기 조성물의 멸균 전 pH 값은 5 내지 8인, 유산균 발효물의 제조방법.
The method of claim 14,
PH value before sterilization of the composition is 5 to 8, the production method of the lactic acid bacteria fermentation.
제13항에 있어서,
상기 발효시키는 단계는, 20℃ 내지 40℃의 온도에서 발효시키는 전발효 단계를 포함하는, 유산균 발효물의 제조방법.
The method of claim 13,
The fermentation step, the fermentation step of the fermentation at a temperature of 20 ℃ to 40 ℃, the production method of the lactic acid bacteria fermentation.
제13항에 있어서,
상기 발효시키는 단계는, 1℃ 내지 10℃의 온도에서 발효시키는 후발효 단계를 더 포함하는, 유산균 발효물의 제조방법.
The method of claim 13,
The fermentation step further comprises a post-fermentation step of fermentation at a temperature of 1 ℃ to 10 ℃, method of producing a lactic acid bacteria fermentation.
KR1020180087270A 2018-07-26 2018-07-26 Novel lactic acid bacteria and method of preparing fermented product having effect of anti-obesity and anti-diabets using the same KR102097509B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180087270A KR102097509B1 (en) 2018-07-26 2018-07-26 Novel lactic acid bacteria and method of preparing fermented product having effect of anti-obesity and anti-diabets using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180087270A KR102097509B1 (en) 2018-07-26 2018-07-26 Novel lactic acid bacteria and method of preparing fermented product having effect of anti-obesity and anti-diabets using the same

Publications (2)

Publication Number Publication Date
KR20200012236A true KR20200012236A (en) 2020-02-05
KR102097509B1 KR102097509B1 (en) 2020-04-06

Family

ID=69514860

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180087270A KR102097509B1 (en) 2018-07-26 2018-07-26 Novel lactic acid bacteria and method of preparing fermented product having effect of anti-obesity and anti-diabets using the same

Country Status (1)

Country Link
KR (1) KR102097509B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113293118A (en) * 2021-07-14 2021-08-24 山东凤凰生物有限公司 Lactobacillus rhamnosus LR3001 and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230174987A (en) 2022-06-22 2023-12-29 국립안동대학교 산학협력단 Pharmaceutical composition comprising the culture metabolites of leuconostoc mesenteroides subsp. cremoris as an effective component for prevention and treatment of diabetes and health functional food comprising the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048371A (en) 1999-11-26 2001-06-15 심대평 Preparation Processing of Lactic Acid Fermentation Food Using Purple Sweet Potato
KR101193338B1 (en) * 2010-04-19 2012-10-19 한국식품연구원 Food composition comprising lactic acid bacteria fermented sweet potato and preparation method thereof
KR20130021119A (en) 2011-08-22 2013-03-05 가천대학교 산학협력단 A premix added colloured sweet potato powder and method bakery products using the same
KR20140067533A (en) 2012-11-26 2014-06-05 주식회사 해이래 Composition for anti-diabetes using of citrus fermented by lactice acid bacteria
KR101545551B1 (en) * 2013-12-12 2015-08-19 주식회사한국야쿠르트 The composition containing combination of 7 probiotics which have efficacy preventing from insulin resistance which cause type 2 diabetes mellitus as a effector component
KR20150139153A (en) 2014-06-02 2015-12-11 달성군 Butchu fermentated extract using Lactic acid bacteria sp. and anti-diabetic composition comprising the same
KR101694739B1 (en) * 2015-05-27 2017-01-11 경운대학교 산학협력단 Pharmaceutical composition comprising fermented Opuntia humifusa for preventing and treating obesity or complications thereof and method for preparing the same
KR101864347B1 (en) * 2017-09-06 2018-06-05 주식회사 지놈앤컴퍼니 Lactobacillus rhamnosus LM1019 and composition for preventing and treating obesity or diabetes mellitus comprising the same
KR101873239B1 (en) * 2017-10-13 2018-07-04 주식회사 지놈앤컴퍼니 Lactobacillus paracasei LM1010 and composition for preventing and treating obesity or diabetes mellitus comprising the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048371A (en) 1999-11-26 2001-06-15 심대평 Preparation Processing of Lactic Acid Fermentation Food Using Purple Sweet Potato
KR101193338B1 (en) * 2010-04-19 2012-10-19 한국식품연구원 Food composition comprising lactic acid bacteria fermented sweet potato and preparation method thereof
KR20130021119A (en) 2011-08-22 2013-03-05 가천대학교 산학협력단 A premix added colloured sweet potato powder and method bakery products using the same
KR20140067533A (en) 2012-11-26 2014-06-05 주식회사 해이래 Composition for anti-diabetes using of citrus fermented by lactice acid bacteria
KR101462160B1 (en) * 2012-11-26 2014-11-14 주식회사 해이래 Composition for Anti-Diabetes Using of Citrus Fermented by Lactice Acid Bacteria
KR101545551B1 (en) * 2013-12-12 2015-08-19 주식회사한국야쿠르트 The composition containing combination of 7 probiotics which have efficacy preventing from insulin resistance which cause type 2 diabetes mellitus as a effector component
KR20150139153A (en) 2014-06-02 2015-12-11 달성군 Butchu fermentated extract using Lactic acid bacteria sp. and anti-diabetic composition comprising the same
KR101694739B1 (en) * 2015-05-27 2017-01-11 경운대학교 산학협력단 Pharmaceutical composition comprising fermented Opuntia humifusa for preventing and treating obesity or complications thereof and method for preparing the same
KR101864347B1 (en) * 2017-09-06 2018-06-05 주식회사 지놈앤컴퍼니 Lactobacillus rhamnosus LM1019 and composition for preventing and treating obesity or diabetes mellitus comprising the same
KR101873239B1 (en) * 2017-10-13 2018-07-04 주식회사 지놈앤컴퍼니 Lactobacillus paracasei LM1010 and composition for preventing and treating obesity or diabetes mellitus comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113293118A (en) * 2021-07-14 2021-08-24 山东凤凰生物有限公司 Lactobacillus rhamnosus LR3001 and application thereof

Also Published As

Publication number Publication date
KR102097509B1 (en) 2020-04-06

Similar Documents

Publication Publication Date Title
KR101494279B1 (en) Lactobacillus plantarum KY1032 having inhibitory activity against adipocyte-specific gene expression and adipocyte differentiation, and product containing thereof as an effective factor
KR101825836B1 (en) Novel Lactobacillus plantarum Lb41 strain and compositions for the prevention and treatment of diabetes or insulin resistance syndrome containing the same
KR101388918B1 (en) Lactobacillus rhamnosus HK-9 derived from human body, and fermented material and cosmetic composition using it
US11273189B2 (en) Lactobacillus plantarum TCI378 and its uses in losing fat and improving gastrointestinal functions
KR101956867B1 (en) Lactobacillus rhamnosus CKDB009 having anti-obesity and cholesterol lowering effect and uses thereof
CN113604395B (en) Lactobacillus plantarum capable of fermenting dendrobium nobile and improving skin quality by fermentation liquor thereof
KR20190090409A (en) Lactobacillus plantarum KC3 having anti-obesity effect and uses thereof
CN112586744A (en) Probiotic tablet capable of controlling body weight and preparation method thereof
KR20130033591A (en) Fermented soybean
KR101825837B1 (en) Novel Lactobacillus plantarum Ln4 strain and compositions for the prevention and treatment of diabetes or insulin resistance syndrome containing the same
KR102097509B1 (en) Novel lactic acid bacteria and method of preparing fermented product having effect of anti-obesity and anti-diabets using the same
KR101091833B1 (en) Methods for preparing high quantity of S-allyl-L-cysteine to fermented products of garlic using lactic acid bacteria
KR20130107940A (en) Method of producing fermented red ginseng
KR102536627B1 (en) Composition for preventing or improving alcoholic liver injury comprising fermented kiwi
KR20180094208A (en) Preparing method of fermentative metabolites from stachys sieboldii having imrpoving cognitive fuctions
KR102499838B1 (en) Lactobacillus paracasei strain or Lactobacillus plantarum strain derived from human having body fat reducing activity and mixture composition comprising the same
KR101892615B1 (en) Lactobacillus sakei 2-6-4 and its use
KR101368634B1 (en) Health functional food comprising Ginseng cultivates fermentation and method for manufacturing thereof
KR102218224B1 (en) Cosmetic composition for preventing or improving skin inflammation or skin aging comprising fermented product of Ligularia stenocephala leaf as an active ingredient
KR20180040894A (en) Novel Lactobacillus plantarum Lb41 strain and compositions for the prevention and treatment of obesity containing the same
KR20180040899A (en) Novel Lactobacillus plantarum Ln4 strain and compositions for the prevention and treatment of obesity containing the same
KR20220081452A (en) Composition for improving preventing or treating muscular disease including Lactobacillus plantarum Q1(LPQ1)
KR102007569B1 (en) Fermentation product of seomae mugwort with high palatability and functionality, and method for preparing the same
KR20210086178A (en) Method for producing fermented peanut sprout using novel Pediococcus pentosaceus strain and composition for improving constipation containing peanut sprout fermentation produced by the same method
KR20050119336A (en) Fermented guava composition safty-established by microbial fermentation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant