KR20200006298A - Preparation method of polymer composite having quantum dots which emitting near-infrared - Google Patents

Preparation method of polymer composite having quantum dots which emitting near-infrared Download PDF

Info

Publication number
KR20200006298A
KR20200006298A KR1020180079869A KR20180079869A KR20200006298A KR 20200006298 A KR20200006298 A KR 20200006298A KR 1020180079869 A KR1020180079869 A KR 1020180079869A KR 20180079869 A KR20180079869 A KR 20180079869A KR 20200006298 A KR20200006298 A KR 20200006298A
Authority
KR
South Korea
Prior art keywords
polymer
quantum dot
quantum dots
near infrared
light source
Prior art date
Application number
KR1020180079869A
Other languages
Korean (ko)
Inventor
김진구
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020180079869A priority Critical patent/KR20200006298A/en
Publication of KR20200006298A publication Critical patent/KR20200006298A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The present invention relates to a method for manufacturing a polymer composite having dispersed quantum dots emitting near infrared rays in a wavelength range of 650 to 1,300 nm when irradiating light sources (sunlight, LEDs, general lamps, etc.), and fibers emitting near infrared rays by using the polymer composite manufactured by the manufacturing method. The manufacturing method of the present invention can simply manufacture a polymer composite having quantum dots emitting near infrared rays by using an extrusion molding method, and can simply manufacture fibers emitting near infrared rays by using the same.

Description

근적외선을 방출하는 양자점이 분산된 고분자 복합체의 제조방법 {Preparation method of polymer composite having quantum dots which emitting near-infrared}Preparation method of polymer composite having quantum dots which emitting near-infrared}

본 발명은 광원(태양광, LED, 일반 램프 등) 조사시에 650-1300nm 파장대의 근적외선을 방출하는 양자점이 분산된 고분자 복합체의 제조방법, 그리고 상기 제조방법으로 제조된 고분자 복합체를 이용한 근적외선을 방출하는 섬유에 관한 것이다.The present invention is a method for producing a polymer composite in which the quantum dots dispersed near 650-1300 nm wavelength when irradiating a light source (sunlight, LED, general lamps, etc.), and emits near infrared rays using the polymer composite prepared by the manufacturing method It is about fiber.

반도체의 크기가 일정한 크기 이하로 작아지면, 입자의 크기에 따라 발광 파장이 달라지는 양자 크기 효과(quantum size effect)를 관찰할 수 있다. 일반적으로, 고온에서 트리-n-옥틸포스핀 옥사이드(tri-n-octylphosphine oxide, 이하 'TOPO')와 같은 용매에 II족 금속 전구체와 VI족 칼코게나이드(chalcogenide) 전구체를 넣어주면 II-VI족 금속 칼코게나이드(CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe) 반도체 양자점을 얻을 수 있다. 이러한 고온 열분해방법(high temperature pyrolysis; C.B.Murrary, D.J.Norris, and M.G.Bawendi, J.Am.Chem.Soc. 1993, 115, 8706-8715)을 이용하여 카드뮴 칼코게나이드 양자점을 얻은 이후에 많은 그룹에서 동일하거나 약간 변형된 방법을 이용하여 카드뮴 칼코게나이드 양자점을 합성하고 이의 광학적 성질을 연구하였다.When the size of the semiconductor is smaller than a certain size, it is possible to observe a quantum size effect in which the emission wavelength varies depending on the size of the particle. In general, a group II metal precursor and a group VI chalcogenide precursor are added to a solvent such as tri-n-octylphosphine oxide (TOPO) at a high temperature, thereby providing II-VI. Group metal chalcogenide (CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe) semiconductor quantum dots can be obtained. In many groups after cadmium chalcogenide quantum dots were obtained using this high temperature pyrolysis (CBMurrary, DJ Norris, and MGBawendi, J. Am. Chem. Soc. 1993, 115, 8706-8715) Using the same or slightly modified method, cadmium chalcogenide quantum dots were synthesized and their optical properties were studied.

이러한 양자점은 표면에 긴 알킬 체인(유기 리간드)을 가지고 있는데, 이는 해당 양자점을 합성하는 조건에서 사용된 용매 또는 첨가제가 양자점의 표면에 들러붙어 양자점을 안정화시킨 결과이다. 이렇게 표면에 존재하는 긴 알킬 체인으로 인하여 유기용매 내 분산성이 향상되고, 다양한 분야로의 응용이 가능하다. 실제로 빛을 내는 물질이 필요한 분야 중 유기 용매를 기반으로 하는 분야 즉, 발광소자, 태양전지, 레이저 등에는 이 물질을 이용한 연구가 활발하게 진행되고 있다.These quantum dots have a long alkyl chain (organic ligand) on the surface, which is a result of the solvent or additive used in the conditions for synthesizing the quantum dots stick to the surface of the quantum dots to stabilize the quantum dots. Due to the long alkyl chains present on the surface, the dispersibility in the organic solvent is improved, and various applications are possible. In fact, researches using this material have been actively conducted in the field of organic solvent-based fields, that is, light emitting devices, solar cells, and lasers.

한편, 근적외선의 강력한 열 효과는, 근적외선의 주파수가 물질을 구성하고 있는 분자의 고유진동수와 거의 같은 정도의 범위에 있기 때문에, 물질에 근적외선이 부딪치면 전자기적 공진현상을 일으켜 적외광파의 에너지가 효과적으로 물질에 흡수되는 것에 기인한다. 이러한 열 작용은 각종 질병의 원인이 되는 세균을 없애는데 도움이되고, 모세혈관을 확장시켜 혈액순환과 세포조직 생성에 도움을 준다. 또 세포를 구성하는 수분과 단백질 분자에 닿으면 세포를 1분에 2,000번씩 미세하게 흔들어줌으로써 세포조직을 활성화하여 노화방지, 신진대사 촉진, 만성피로 등 각종 성인병 예방에 효과가 있다.On the other hand, the near-infrared thermal effect is that the frequency of near-infrared light is about the same as the natural frequency of the molecules constituting the material, so when near-infrared light hits the material, it causes electromagnetic resonance and effectively the energy of infrared light waves. Due to absorption into the material. This heat action helps to eliminate bacteria that cause various diseases, and expands capillaries to help blood circulation and tissue formation. In addition, by touching the water and protein molecules that make up the cells, the cells are shaken finely 2,000 times per minute to activate cell tissue, which is effective in preventing various adult diseases such as aging, promoting metabolism, and chronic fatigue.

또한, 근적외선의 높은 침투력은, 근적외선의 파장이 길기 때문에 자외선이나 가시광선에 비하여 미립자에 의한 산란효과가 작아서 인체에 침투효과(40mm)가 높다. 피사체의 표면과 내부를 동시에 균일가열하며 근적외선의 온열 효과를 이용한 의료적 치료에서 피부 속 깊이 근적외선이 전달되어 효과가 훨씬 크며 열손실이 적어진다. 이제까지 과학적으로 입증된 근적외선이 인체에 미치는 효능은 피부 피하 층의 온도상승, 미세혈관의 확장, 혈액순환의 촉진, 혈액과 인체와 기타 조직과의 신진대사 강화, 혈액장애의 일소, 조직의 재생능력이나 항경련 능력의 증가 등으로 나타나며 동시에 지각 신경의 이상 흥분억제, 자율신경의 기능 조정효과도 있는 것으로 밝혀졌다.In addition, since the near-infrared ray has a high wavelength of near-infrared rays, the scattering effect of the fine particles is smaller than that of ultraviolet rays or visible rays, and the penetration effect (40 mm) is high in the human body. In the medical treatment using the heat effect of near-infrared light and uniform heating of the subject's surface and inside at the same time, near-infrared rays are deeply transmitted in the skin, so the effect is much greater and heat loss is reduced. The effects of scientifically proven near-infrared rays on the human body include: temperature increase in the subcutaneous layer of skin, expansion of microvessels, promotion of blood circulation, enhancement of metabolism between blood and human body and other tissues, elimination of blood disorders, and tissue regeneration ability In addition, it has been shown to increase anti-convulsive ability, and at the same time, it has been shown to suppress abnormal excitability of sensory nerves and to modulate autonomic function.

이에, 본 발명자들은 압출성형법을 이용하여 근적외선을 방출하는 양자점 고분자 복합체를 간단히 제조할 수 있고, 이를 이용하여 근적외선을 방출하는 섬유를 간단히 제조할 수 있음을 알아내고 본 발명을 완성하였다.Accordingly, the present inventors have found that the quantum dot polymer composite that emits near infrared rays can be easily prepared by using an extrusion molding method, and the present invention has been completed by finding out that the fibers that emit near infrared rays can be produced simply.

공개특허공보 10-2006-0066623호Patent Publication No. 10-2006-0066623

본 발명의 목적은 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 양자점이 분산된 고분자 복합체의 제조방법을 제공하는 것이다.An object of the present invention is to provide a method for producing a polymer composite in which quantum dots dispersed near 650-1300 nm wavelength when the light source is irradiated.

본 발명의 다른 목적은 상기 제조방법으로 제조된 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 양자점이 분산된 고분자 복합체를 제공하는 것이다.Another object of the present invention is to provide a polymer composite in which quantum dots are dispersed in the near-infrared wavelength range of 650-1300 nm when irradiated with a light source manufactured by the above method.

본 발명의 또 다른 목적은 상기 고분자 복합체를 사용하여 제조한 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 섬유를 제공하는 것이다.Still another object of the present invention is to provide a fiber that emits near infrared rays in the wavelength range of 650-1300 nm when irradiated with a light source manufactured using the polymer composite.

본 발명의 다른 목적은 상기 근적외선을 방출하는 섬유 및 일반 고분자 섬유를 함께 방적(spinning)하여 얻은 복합섬유를 제공하는 것이다.Another object of the present invention is to provide a composite fiber obtained by spinning together the fibers that emit the near infrared rays and general polymer fibers.

상기 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 고분자로 표면처리된 양자점 및 열가소성 고분자를 압출성형기에 투입하는 단계(단계 1); 및The present invention comprises the steps of injecting a quantum dot and a thermoplastic polymer surface-treated with a polymer that emits near infrared light at a wavelength of 650-1300nm when irradiated with a light source (step 1); And

불활성 가스를 주입하면서, 100-400℃를 유지하며, 진공 펌프를 가동하면서 압출성형 하는 단계(단계 2);While injecting an inert gas, maintaining 100-400 ° C. and extruding while operating a vacuum pump (step 2);

를 포함하는 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 양자점이 분산된 고분자 복합체의 제조방법을 제공한다.It provides a method for producing a polymer composite in which the quantum dot is dispersed in the near-infrared wavelength of 650-1300nm when irradiated with a light source.

또한, 본 발명은 상기 제조방법으로 제조된 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 양자점이 분산된 고분자 복합체를 제공한다.In addition, the present invention provides a polymer composite in which quantum dots that emit near infrared rays in the wavelength range of 650-1300 nm are irradiated when the light source is manufactured by the manufacturing method.

나아가, 본 발명은 상기 고분자 복합체를 사용하여 제조한 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 섬유를 제공한다.Furthermore, the present invention provides a fiber that emits near infrared rays in the wavelength range of 650-1300 nm when irradiated with a light source prepared using the polymer composite.

또한, 본 발명은 상기 근적외선을 방출하는 섬유 및 일반 고분자 섬유를 함께 방적(spinning)하여 얻은 복합섬유를 제공한다.In addition, the present invention provides a composite fiber obtained by spinning together the fibers and the general polymer fibers that emit the near infrared rays.

본 발명에 따른 제조방법은 압출성형법을 이용하여 근적외선을 방출하는 양자점 고분자 복합체를 간단히 제조할 수 있고, 이를 이용하여 근적외선을 방출하는 섬유를 간단히 제조할 수 있는 효과가 있다.The production method according to the present invention can easily prepare a quantum dot polymer composite that emits near infrared rays by using an extrusion molding method, there is an effect that can easily prepare a fiber that emits near infrared rays using this.

도 1은 실시예 1에서 사용한 압출성형 방법의 개략도이다.
도 2는 실시예 5에서 제조한 펠렛에 광원(형광등) 조사시에 근적외선(약 750 nm 파장대) 발광(emission)을 확인한 사진이다.
도 3은 양자점에 고분자 쉘을 형성하는 방법의 개략도와 고분자 쉘이 형성된 양자점에 형광등 및 UV를 각각 조사한 경우 샘플의 사진이다.
1 is a schematic view of the extrusion method used in Example 1. FIG.
FIG. 2 is a photograph confirming emission of near-infrared light (wavelength of about 750 nm) when the pellet prepared in Example 5 is irradiated with a light source (fluorescent lamp).
Figure 3 is a schematic diagram of a method of forming a polymer shell on the quantum dot is a photograph of the sample when the fluorescent lamp and UV irradiation to the quantum dot formed polymer shell, respectively.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

광원 조사시에 650-1300nm 650-1300nm at light source irradiation 파장대의Waveband 근적외선을Near-infrared 방출하는  Emitting 양자점이Quantum dots 분산된 고분자 복합체의 제조방법 Manufacturing method of dispersed polymer composite

본 발명은 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 고분자로 표면처리된 양자점 및 열가소성 고분자를 압출성형기에 투입하는 단계(단계 1); 및The present invention comprises the steps of injecting a quantum dot and a thermoplastic polymer surface-treated with a polymer that emits near infrared light at a wavelength of 650-1300nm when irradiated with a light source (step 1); And

불활성 가스를 주입하면서, 100-400℃를 유지하며, 진공 펌프를 가동하면서 압출성형 하는 단계(단계 2);While injecting an inert gas, maintaining 100-400 ° C. and extruding while operating a vacuum pump (step 2);

를 포함하는 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 양자점이 분산된 고분자 복합체의 제조방법을 제공한다.It provides a method for producing a polymer composite in which the quantum dot is dispersed in the near-infrared wavelength of 650-1300nm when irradiated with a light source.

본 발명에 따른 제조방법에 있어서, 상기 단계 1은 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 고분자로 표면처리된 양자점 및 열가소성 고분자를 압출성형기에 투입하는 단계이다. 상기 단계 1에서는 광안정제, 분산제, 광산란제, 광산란증폭제 등의 첨가제를 단독으로 또는 혼합하여 더 투입할 수 있다.In the manufacturing method according to the present invention, step 1 is a step of injecting a quantum dot and a thermoplastic polymer surface-treated with a polymer that emits near infrared light at a wavelength of 650-1300 nm when irradiated with a light source. In step 1, an additive such as a light stabilizer, a dispersant, a light scattering agent, a light scattering amplifier, or the like may be further added alone or mixed.

상기 단계 1의 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 고분자로 표면처리된 양자점에서, 상기 양자점은,In the quantum dots surface-treated with a polymer that emits near infrared light at the wavelength of 650-1300nm when the light source of the step 1 is irradiated, the quantum dots,

CuInS2, CuInSe2, Ag2S, Ag2Se, CdSe, CdTe, HgSe 및 HgTe으로 이루어진 군으로부터 선택되는 1종 이상의 코어 양자점;At least one core quantum dot selected from the group consisting of CuInS 2 , CuInSe 2 , Ag 2 S, Ag 2 Se, CdSe, CdTe, HgSe and HgTe;

CuInS2, CuInSe2, Ag2S, Ag2Se, CdSe, CdTe, HgSe 및 HgTe으로 이루어진 군으로부터 2종 이상이 합금된 합금 코어 양자점;Alloy core quantum dots alloyed with at least two alloys from the group consisting of CuInS 2 , CuInSe 2 , Ag 2 S, Ag 2 Se, CdSe, CdTe, HgSe and HgTe;

상기 코어 양자점에 CdS, ZnSe 또는 ZnS 쉘이 형성된 코어-쉘 양자점; 및A core-shell quantum dot having a CdS, ZnSe or ZnS shell formed on the core quantum dot; And

상기 합금 코어 양자점에 CdS, ZnSe 또는 ZnS 쉘이 형성된 합금 코어-쉘 양자점;으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.CdS, ZnSe or ZnS shell formed on the alloy core quantum dot; may be one or more selected from the group consisting of;

상기 양자점은 표면에 C1-50의 직쇄 또는 측쇄 알킬 체인이 치환된 것이고, 상기 알킬 체인에 표면처리를 위한 고분자가 결합하는 것이다. 구체적으로, 양자점은 표면에 긴 알킬 체인(유기 리간드)을 가지고 있는데, 이는 해당 양자점을 합성하는 조건에서 사용된 용매 또는 첨가제가 양자점의 표면에 들러붙어 양자점을 안정화시킨 결과이다. 이렇게 표면에 존재하는 긴 알킬 체인으로 인하여 유기용매 내 분산성이 향상되고, 다양한 분야로의 응용이 가능하다.The quantum dot is a C 1-50 linear or branched alkyl chain substituted on the surface, the polymer for surface treatment is bonded to the alkyl chain. Specifically, the quantum dot has a long alkyl chain (organic ligand) on the surface, which is a result of the solvent or additive used under the conditions for synthesizing the quantum dot adheres to the surface of the quantum dot to stabilize the quantum dot. Due to the long alkyl chains present on the surface, the dispersibility in the organic solvent is improved, and various applications are possible.

상기 단계 1의 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 고분자로 표면처리된 양자점에서, 상기 고분자는,In the quantum dot surface-treated with a polymer that emits near infrared light at a wavelength of 650-1300 nm when irradiating the light source of step 1, the polymer,

C-C 결합, C-Si 결합, Si-O-Si 결합 또는 Si-N-Si 결합을 반복단위로 하여 기본 백본(backbone)을 형성하면서,While forming a basic backbone using repeating units of C-C bonds, C-Si bonds, Si-O-Si bonds, or Si-N-Si bonds,

상기 백본 또는 말단(terminal)에 -COOH, -COOR1, -SH, -SR1, -NH2, -NHR1, -NR1R2, -P(OH)O2 및 -P(OH)2O로 이루어진 군으로부터 선택되는 1종 이상의 치환기를 갖는 것을 특징으로 하며, 여기서 상기 R1 및 R2는 독립적으로 C1-10의 직쇄 또는 측쇄 알킬, 또는 C6-10의 아릴이다.-COOH, -COOR 1 , -SH, -SR 1 , -NH 2 , -NHR 1 , -NR 1 R 2 , -P (OH) O 2 and -P (OH) 2 at the backbone or terminal It is characterized by having at least one substituent selected from the group consisting of O, wherein R 1 and R 2 are independently C 1-10 straight or branched chain alkyl, or C 6-10 aryl.

상기 고분자는 100-100,000,000 분자량, 바람직하게는 5,000-1,000,000 분자량을 갖는 것을 사용할 수 있다.The polymer may be used having a molecular weight of 100-100,000,000, preferably 5,000-1,000,000.

상기 고분자의 구체적인 일례로 본 발명의 실시예에서는 PMMA-co-PAA (poly(methyl methacrylate)-co-poly(acrylic acid))를 사용하였다.As an example of the polymer, in the embodiment of the present invention, PMMA-co-PAA (poly (methyl methacrylate) -co-poly (acrylic acid)) was used.

상기 열가소성 고분자는 PMMA (Poly(methyl methacrylate), PC (Polycarbonate), TPU (thermoplastic poly urethane), 나일론, EVA (ethylene vinyl acetate), PE (Polyethylene), PP (Polypropylene), PET (poly ethylene terephthalate), PLA (poly lactic acid), COP (Cyclic olefin polymer), COC (cyclic olefin coppolymer) 등의 열가소성 고분자라면 아무런 제약 없이 모두 사용할 수 있다.The thermoplastic polymer is PMMA (Poly (methyl methacrylate), PC (Polycarbonate), TPU (thermoplastic poly urethane), nylon, EVA (ethylene vinyl acetate), PE (Polyethylene), PP (Polypropylene), PET (polyethylene terephthalate), Thermoplastic polymers such as PLA (poly lactic acid), COP (cyclic olefin polymer), and COC (cyclic olefin coppolymer) can be used without any restrictions.

본 단계 1에서 압출성형기에 투입되는 모든 원료의 투입속도는 0.001-1000kg/min, 바람직하게는 10-100kg/min, 더욱 바람직하게는 30-50kg/min일 수 있다. 만약, 원료 투입속도가 0.001kg/min 미만일 경우 고분자가 산화되는 문제가 있을 수 있고, 1000kg/min 초과일 경우 열가소성 고분자 내에 양자점의 분산성이 저하되는 문제가 있을 수 있다.The feed rate of all the raw materials introduced into the extruder in this step 1 may be 0.001-1000kg / min, preferably 10-100kg / min, more preferably 30-50kg / min. If the raw material input rate is less than 0.001kg / min there may be a problem that the polymer is oxidized, if more than 1000kg / min there may be a problem that the dispersibility of the quantum dots in the thermoplastic polymer is lowered.

본 단계 1에서 열가소성 고분자 100 중량부 대비 고분자로 표면처리된 양자점 0.0001-80 중량부 범위로 투여할 수 있다.In the step 1 it may be administered in the range of 0.0001-80 parts by weight of the quantum dot surface-treated with a polymer relative to 100 parts by weight of the thermoplastic polymer.

본 발명에 따른 제조방법에 있어서, 상기 단계 2는 불활성 가스를 주입하면서, 100-400℃를 유지하며, 진공 펌프를 가동하면서 압출성형 하는 단계이다.In the manufacturing method according to the present invention, step 2 is a step of extruding while injecting an inert gas, maintaining a 100-400 ℃, while operating a vacuum pump.

여기서, 불활성 가스로는 아르곤, 질소, 네온, 탄산 등을 사용할 수 있다. 본 발명에서 불활성 가스는 양자점 원료의 산화를 방지하는 역할을 한다.Here, argon, nitrogen, neon, carbonic acid or the like can be used as the inert gas. Inert gas in the present invention serves to prevent the oxidation of the quantum dot raw material.

상기 작동온도 100-400℃는 고분자가 용융되는 온도의 범위로, 사용하는 고분자의 융점 이상이라면 제약 없이 사용할 수 있다.The operating temperature 100-400 ℃ is a range of the temperature at which the polymer is melted, can be used without limitation as long as it is above the melting point of the polymer used.

상기 진공 펌프는 제조되는 복합체에 기포가 발생하는 것을 방지하는 역할을 한다.The vacuum pump serves to prevent the generation of bubbles in the composite to be produced.

근적외선을Near-infrared 방출하는  Emitting 양자점이Quantum dots 분산된 고분자 복합체 Dispersed polymer composite

본 발명은 상기 제조방법으로 제조된 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 양자점이 분산된 고분자 복합체를 제공한다.The present invention provides a polymer composite in which quantum dots are dispersed to emit near infrared rays at a wavelength of 650-1300 nm when irradiated with a light source manufactured by the above-described manufacturing method.

본 발명에 따른 양자점이 분산된 고분자 복합체는 광원(태양광, LED, 일반 램프 등) 조사시에 650-1300nm 파장대의 근적외선을 방출하는 것을 특징으로 한다.The polymer composite in which the quantum dots are dispersed according to the present invention is characterized in that it emits near infrared rays in the wavelength range of 650-1300 nm when irradiating a light source (sunlight, LED, general lamp, etc.).

근적외선을Near-infrared 방출하는 섬유 Fiber releasing

본 발명은 고분자 복합체를 사용하여 제조한 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 섬유를 제공한다.The present invention provides a fiber that emits near infrared light at a wavelength of 650-1300 nm when irradiated with a light source produced using a polymer composite.

복합섬유Composite fiber

본 발명은 상기 근적외선을 방출하는 섬유 및 일반 고분자 섬유를 함께 방적(spinning)하여 얻은 복합섬유를 제공한다.The present invention provides a composite fiber obtained by spinning together the fibers that emit the near infrared rays and general polymer fibers.

예를 들어, 근적외선 발광 양자점을 포함하는 섬유 2 가닥 이상을 꼬아서 방적하여 근적외선 발광 섬유를 제조할 수 있고,For example, by twisting two or more strands of fibers containing near-infrared light-emitting quantum dots to produce a near-infrared light-emitting fiber,

코어-쉘 타입 섬유로서 코어에는 본 발명에 따른 근적외선을 방출하는 섬유, 그리고 쉘에는 일반 고분자 섬유 타입으로도 제조할 수 있다.As a core-shell type fiber, the core may be produced as a fiber that emits near infrared rays according to the present invention, and the shell may be of a general polymer fiber type.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are merely to illustrate the present invention, the contents of the present invention is not limited by the following examples.

<< 실시예Example 1> PMMA-co- 1> PMMA-co- PAA로With PAA 표면처리된Surface treatment CuInSCuInS 22 양자점이Quantum dots 분산된 PMMA 고분자 복합체의 제조 Preparation of Dispersed PMMA Polymer Composite

공지의 고온열분해법을 이용하여 제조한 CuInS2 양자점 및 PMMA-co-PAA (poly(methyl methacrylate)-co-poly(acrylic acid))를 톨루엔 용매에 첨가하고 교반한 후, 상온에서 서서히 건조시켜, PMMA-co-PAA로 표면처리된 CuInS2 양자점을 얻었다(도 3 참조).CuInS 2 quantum dots and PMMA-co-PAA (poly (methyl methacrylate) -co-poly (acrylic acid)) prepared using a known high-temperature pyrolysis method were added to a toluene solvent, stirred, and then slowly dried at room temperature, CuInS 2 quantum dots surface-treated with PMMA-co-PAA were obtained (see FIG. 3).

상기에서 얻은 PMMA-co-PAA로 표면처리된 CuInS2 양자점 10g을 PMMA(poly(methyl methacrylate)) 100g과 함께 압출성형기 (도 1 참조)에 투입하였다. 여기서, 혼합 원료를 투입할 시에 양자점의 산화를 보호할 목적으로 불활성 가스로서 아르곤 가스를 함께 주입하였다. 혼합 원료의 투입속도는 10g/min으로 하였고, 압출성형기의 온도는 300℃를 유지하였으며, 진공을 유지하였다. 상기 혼합 원료를 압출성형기를 통해 PMMA-co-PAA로 표면처리된 CuInS2 양자점이 분산된 PMMA 고분자 복합체를 펠렛 형태로 얻었다.10 g of CuInS 2 quantum dots surface-treated with PMMA-co-PAA obtained above were added to an extruder (see FIG. 1) together with 100 g of poly (methyl methacrylate) (PMMA). Here, argon gas was injected together as an inert gas for the purpose of protecting the oxidation of the quantum dots when the mixed raw materials were added. The feed rate of the mixed raw material was 10g / min, the temperature of the extruder was maintained at 300 ℃, and the vacuum was maintained. The mixed raw material was obtained by pelletizing a PMMA polymer composite containing CuInS 2 quantum dots surface-treated with PMMA-co-PAA through an extruder.

<< 실시예Example 2> PMMA-co- 2> PMMA-co- PAA로With PAA 표면처리된Surface treatment CuInSeCuInSe 22 양자점이Quantum dots 분산된 PMMA 고분자 복합체의 제조 Preparation of Dispersed PMMA Polymer Composite

공지의 고온열분해법을 이용하여 제조한 CuInSe2 양자점 및 PMMA-co-PAA (poly(methyl methacrylate)-co-poly(acrylic acid))를 톨루엔 용매에 첨가하고 교반한 후, 상온에서 서서히 건조시켜, PMMA-co-PAA로 표면처리된 CuInSe2 양자점을 얻었다(도 3 참조).CuInSe 2 quantum dots and PMMA-co-PAA (poly (methyl methacrylate) -co-poly (acrylic acid)) prepared using a known high-temperature pyrolysis method were added to a toluene solvent, stirred, and then slowly dried at room temperature, CuInSe 2 quantum dots surface-treated with PMMA-co-PAA were obtained (see FIG. 3).

상기에서 얻은 PMMA-co-PAA로 표면처리된 CuInSe2 양자점 10g을 PMMA(poly(methyl methacrylate)) 100g과 함께 압출성형기 (도 1 참조)에 투입하였다. 여기서, 혼합 원료를 투입할 시에 양자점의 산화를 보호할 목적으로 불활성 가스로서 아르곤 가스를 함께 주입하였다. 혼합 원료의 투입속도는 10g/min으로 하였고, 압출성형기의 온도는 300℃를 유지하였으며, 진공을 유지하였다. 상기 혼합 원료를 압출성형기를 통해 PMMA-co-PAA로 표면처리된 CuInSe2 양자점이 분산된 PMMA 고분자 복합체를 펠렛 형태로 얻었다.10 g of CuInSe 2 quantum dots surface-treated with PMMA-co-PAA obtained above were charged to an extruder (see FIG. 1) together with 100 g of poly (methyl methacrylate) (PMMA). Here, argon gas was injected together as an inert gas for the purpose of protecting the oxidation of the quantum dots when the mixed raw materials were added. The feed rate of the mixed raw material was 10g / min, the temperature of the extruder was maintained at 300 ℃, and the vacuum was maintained. The mixed raw material was obtained by pelletizing a PMMA polymer composite having CuInSe 2 quantum dots surface-treated with PMMA-co-PAA through an extruder.

<< 실시예Example 3> PMMA-co- 3> PMMA-co- PAA로With PAA 표면처리된Surface treatment AgAg 22 SS 양자점이Quantum dots 분산된 PMMA 고분자 복합체의 제조 Preparation of Dispersed PMMA Polymer Composite

공지의 고온열분해법을 이용하여 제조한 Ag2S 양자점 및 PMMA-co-PAA (poly(methyl methacrylate)-co-poly(acrylic acid))를 톨루엔 용매에 첨가하고 교반한 후, 상온에서 서서히 건조시켜, PMMA-co-PAA로 표면처리된 Ag2S 양자점을 얻었다(도 3 참조).Ag 2 S quantum dots and PMMA-co-PAA (poly (methyl methacrylate) -co-poly (acrylic acid)) prepared using a known high-temperature pyrolysis method were added to a toluene solvent, stirred, and then slowly dried at room temperature. , Ag 2 S quantum dots surface-treated with PMMA-co-PAA was obtained (see Fig. 3).

상기에서 얻은 PMMA-co-PAA로 표면처리된 Ag2S 양자점 10g을 PMMA(poly(methyl methacrylate)) 100g과 함께 압출성형기 (도 1 참조)에 투입하였다. 여기서, 혼합 원료를 투입할 시에 양자점의 산화를 보호할 목적으로 불활성 가스로서 아르곤 가스를 함께 주입하였다. 혼합 원료의 투입속도는 10g/min으로 하였고, 압출성형기의 온도는 300℃를 유지하였으며, 진공을 유지하였다. 상기 혼합 원료를 압출성형기를 통해 PMMA-co-PAA로 표면처리된 Ag2S 양자점이 분산된 PMMA 고분자 복합체를 펠렛 형태로 얻었다.10 g of Ag 2 S quantum dots surface-treated with PMMA-co-PAA obtained above were added to an extruder (see FIG. 1) together with 100 g of poly (methyl methacrylate) (PMMA). Here, argon gas was injected together as an inert gas for the purpose of protecting the oxidation of the quantum dots when the mixed raw materials were added. The feed rate of the mixed raw material was 10g / min, the temperature of the extruder was maintained at 300 ℃, and the vacuum was maintained. The mixed raw material was obtained by pelletizing a PMMA polymer composite having Ag 2 S quantum dots surface-treated with PMMA-co-PAA through an extruder.

<< 실시예Example 4> PMMA-co- 4> PMMA-co- PAA로With PAA 표면처리된Surface treatment AgAg 22 SeSe 양자점이Quantum dots 분산된 PMMA 고분자 복합체의 제조 Preparation of Dispersed PMMA Polymer Composite

공지의 고온열분해법을 이용하여 제조한 Ag2Se 양자점 및 PMMA-co-PAA (poly(methyl methacrylate)-co-poly(acrylic acid))를 톨루엔 용매에 첨가하고 교반한 후, 상온에서 서서히 건조시켜, PMMA-co-PAA로 표면처리된 Ag2Se 양자점을 얻었다(도 3 참조).Ag 2 Se quantum dots and PMMA-co-PAA (poly (methyl methacrylate) -co-poly (acrylic acid)) prepared by using a known high-temperature pyrolysis method were added to a toluene solvent, stirred, and then slowly dried at room temperature. , Ag 2 Se quantum dots surface-treated with PMMA-co-PAA (see FIG. 3).

상기에서 얻은 PMMA-co-PAA로 표면처리된 Ag2Se 양자점 10g을 PMMA(poly(methyl methacrylate)) 100g과 함께 압출성형기 (도 1 참조)에 투입하였다. 여기서, 혼합 원료를 투입할 시에 양자점의 산화를 보호할 목적으로 불활성 가스로서 아르곤 가스를 함께 주입하였다. 혼합 원료의 투입속도는 10g/min으로 하였고, 압출성형기의 온도는 300℃를 유지하였으며, 진공을 유지하였다. 상기 혼합 원료를 압출성형기를 통해 PMMA-co-PAA로 표면처리된 Ag2Se 양자점이 분산된 PMMA 고분자 복합체를 펠렛 형태로 얻었다.10 g of Ag 2 Se quantum dots surface-treated with PMMA-co-PAA obtained above were added to an extruder (see FIG. 1) together with 100 g of poly (methyl methacrylate) (PMMA). Here, argon gas was injected together as an inert gas for the purpose of protecting the oxidation of the quantum dots when the mixed raw materials were added. The feed rate of the mixed raw material was 10g / min, the temperature of the extruder was maintained at 300 ℃, and the vacuum was maintained. The mixed raw material was obtained by pelletizing a PMMA polymer composite having Ag 2 Se quantum dots surface-treated with PMMA-co-PAA through an extruder.

<< 실시예Example 5> PMMA-co- 5> PMMA-co- PAA로With PAA 표면처리된Surface treatment CuInSCuInS 22 /Of ZnSZnS 코어-쉘  Core-shell 양자점이Quantum dots 분산된 PMMA 고분자 복합체의 제조 Preparation of Dispersed PMMA Polymer Composite

공지의 방법을 이용하여 제조한 CuInS2/ZnS 코어-쉘 양자점 및 PMMA-co-PAA (poly(methyl methacrylate)-co-poly(acrylic acid))를 톨루엔 용매에 첨가하고 교반한 후, 상온에서 서서히 건조시켜, PMMA-co-PAA로 표면처리된 CuInS2/ZnS 코어-쉘 양자점을 얻었다(도 3 참조).CuInS 2 / ZnS core-shell quantum dots and PMMA-co-PAA (poly (methyl methacrylate) -co-poly (acrylic acid)) prepared using a known method were added to the toluene solvent and stirred, and then slowly stirred at room temperature. Drying gave CuInS 2 / ZnS core-shell quantum dots surface-treated with PMMA-co-PAA (see FIG. 3).

상기에서 얻은 PMMA-co-PAA로 표면처리된 CuInS2/ZnS 코어-쉘 양자점 10g을 PMMA(poly(methyl methacrylate)) 100g과 함께 압출성형기 (도 1 참조)에 투입하였다. 여기서, 혼합 원료를 투입할 시에 양자점의 산화를 보호할 목적으로 불활성 가스로서 아르곤 가스를 함께 주입하였다. 혼합 원료의 투입속도는 10g/min으로 하였고, 압출성형기의 온도는 300℃를 유지하였으며, 진공을 유지하였다. 상기 혼합 원료를 압출성형기를 통해 PMMA-co-PAA로 표면처리된 CuInS2/ZnS 코어-쉘 양자점이 분산된 PMMA 고분자 복합체를 펠렛 형태로 얻었다.10 g of CuInS 2 / ZnS core-shell quantum dots surface-treated with PMMA-co-PAA obtained above were charged to an extruder (see FIG. 1) together with 100 g of poly (methyl methacrylate) (PMMA). Here, argon gas was injected together as an inert gas for the purpose of protecting the oxidation of the quantum dots when the mixed raw materials were added. The feed rate of the mixed raw material was 10g / min, the temperature of the extruder was maintained at 300 ℃, and the vacuum was maintained. The mixed raw material was obtained by pelletizing a PMMA polymer composite having CuInS 2 / ZnS core-shell quantum dots surface-treated with PMMA-co-PAA through an extruder.

<< 실험예Experimental Example 1>  1> 근적외선Near infrared 발광 평가 Luminous evaluation

실시예에서 제조한 양자점 고분자 복합체 펠렛 및 이를 이용하여 방적한 섬유에서, 광원(형광등) 조사시에 근적외선 발광이 일어나는지 알아보았다.In the quantum dot polymer composite pellet prepared in Example and the fiber spun using the same, it was examined whether near-infrared light emission occurred when the light source (fluorescent lamp) was irradiated.

도 2는 실시예 5에서 제조한 펠렛에 광원(형광등) 조사시에 근적외선(약 750 nm 파장대) 발광(emission)을 확인한 사진이다.FIG. 2 is a photograph confirming emission of near-infrared light (wavelength of about 750 nm) when the pellet prepared in Example 5 is irradiated with a light source (fluorescent lamp).

도 2에 나타난 바와 같이, 실시예에서 제조한 펠렛은 광원(LED, 태양광, 일반램프 등)을 조사할 경우 근적외선 발광이 일어나는 것을 확인하였다. 또한, 실시예에서 제조한 펠렛을 이용하여 방적한 섬유 역시 광원을 조사할 경우 근적외선 발광이 일어나는 것을 확인하였다.As shown in Figure 2, the pellet prepared in Example was confirmed that near-infrared light emission occurs when the light source (LED, sunlight, general lamp, etc.) is irradiated. In addition, it was confirmed that near infrared light emission occurs when the fiber spun using the pellet prepared in Example also irradiated with a light source.

Claims (12)

광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 고분자로 표면처리된 양자점 및 열가소성 고분자를 압출성형기에 투입하는 단계(단계 1); 및
불활성 가스를 주입하면서, 100-400℃를 유지하며, 진공 펌프를 가동하면서 압출성형 하는 단계(단계 2);
를 포함하는 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 양자점이 분산된 고분자 복합체의 제조방법.
Injecting a quantum dot and a thermoplastic polymer surface-treated with a polymer that emits near infrared light at a wavelength of 650-1300 nm when irradiated with a light source (step 1); And
While injecting an inert gas, maintaining 100-400 ° C. and extruding while operating a vacuum pump (step 2);
Method of manufacturing a polymer composite in which the quantum dot dispersed near 650-1300nm wavelength band when irradiated with a light source comprising a.
제1항에 있어서,
상기 단계 1의 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 고분자로 표면처리된 양자점에서, 상기 양자점은,
CuInS2, CuInSe2, Ag2S, Ag2Se, CdSe, CdTe, HgSe 및 HgTe으로 이루어진 군으로부터 선택되는 1종 이상의 코어 양자점;
CuInS2, CuInSe2, Ag2S, Ag2Se, CdSe, CdTe, HgSe 및 HgTe으로 이루어진 군으로부터 2종 이상이 합금된 합금 코어 양자점;
상기 코어 양자점에 CdS, ZnSe 또는 ZnS 쉘이 형성된 코어-쉘 양자점; 및
상기 합금 코어 양자점에 CdS, ZnSe 또는 ZnS 쉘이 형성된 합금 코어-쉘 양자점;으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법.
The method of claim 1,
In the quantum dots surface-treated with a polymer that emits near infrared light at the wavelength of 650-1300nm when the light source of the step 1 is irradiated, the quantum dots,
At least one core quantum dot selected from the group consisting of CuInS 2 , CuInSe 2 , Ag 2 S, Ag 2 Se, CdSe, CdTe, HgSe and HgTe;
Alloy core quantum dots alloyed with at least two alloys from the group consisting of CuInS 2 , CuInSe 2 , Ag 2 S, Ag 2 Se, CdSe, CdTe, HgSe and HgTe;
A core-shell quantum dot having a CdS, ZnSe or ZnS shell formed on the core quantum dot; And
CdS, ZnSe or ZnS shell formed on the alloy core quantum dot; an alloy core-shell quantum dot; manufacturing method characterized in that at least one selected from the group consisting of.
제2항에 있어서,
상기 양자점은 표면에 C1-50의 직쇄 또는 측쇄 알킬 체인이 치환된 것을 특징으로 하는 제조방법.
The method of claim 2,
The quantum dot is a manufacturing method, characterized in that the C 1-50 linear or branched alkyl chain substituted on the surface.
제1항에 있어서,
상기 단계 1의 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 고분자로 표면처리된 양자점에서, 상기 고분자는,
C-C 결합, C-Si 결합, Si-O-Si 결합 또는 Si-N-Si 결합을 반복단위로 하여 기본 백본(backbone)을 형성하면서,
상기 백본 또는 말단(terminal)에 -COOH, -COOR1, -SH, -SR1, -NH2, -NHR1, -NR1R2, -P(OH)O2 및 -P(OH)2O로 이루어진 군으로부터 선택되는 1종 이상의 치환기를 갖는 것을 특징으로 하고,
여기서 상기 R1 및 R2는 독립적으로 C1-10의 직쇄 또는 측쇄 알킬, 또는 C6-10의 아릴인 것을 특징으로 하는 제조방법.
The method of claim 1,
In the quantum dot surface-treated with a polymer that emits near infrared light at a wavelength of 650-1300 nm when irradiating the light source of step 1, the polymer,
While forming a basic backbone by using a CC bond, C-Si bond, Si-O-Si bond, or Si-N-Si bond as a repeating unit,
-COOH, -COOR 1 , -SH, -SR 1 , -NH 2 , -NHR 1 , -NR 1 R 2 , -P (OH) O 2 and -P (OH) 2 at the backbone or terminal It is characterized by having at least one substituent selected from the group consisting of O,
Wherein R 1 and R 2 are independently C 1-10 straight or branched alkyl, or C 6-10 aryl.
제4항에 있어서,
상기 고분자는 100-100,000,000 분자량을 갖는 것을 특징으로 하는 제조방법.
The method of claim 4,
The polymer is a manufacturing method, characterized in that having a 100-100,000,000 molecular weight.
제1항에 있어서,
상기 열가소성 고분자는 PMMA (Poly(methyl methacrylate), PC (Polycarbonate), TPU (thermoplastic poly urethane), 나일론, EVA (ethylene vinyl acetate), PE (Polyethylene), PP (Polypropylene), PET (poly ethylene terephthalate), PLA (poly lactic acid), COP (Cyclic olefin polymer), COC (cyclic olefin copolymer), PS (Polystyrene) 및 ABS (acrylonitrile butadiene styrene copolymer)로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법.
The method of claim 1,
The thermoplastic polymer is PMMA (Poly (methyl methacrylate), PC (Polycarbonate), TPU (thermoplastic poly urethane), nylon, EVA (ethylene vinyl acetate), PE (Polyethylene), PP (Polypropylene), PET (polyethylene terephthalate), PLA (poly lactic acid), COP (Cyclic olefin polymer), COC (cyclic olefin copolymer), PS (Polystyrene) and ABS (acrylonitrile butadiene styrene copolymer) is a production method characterized in that at least one selected from the group consisting of.
제1항에 있어서,
상기 단계 1에서 압출성형기에 투입되는 모든 원료의 투입속도는 0.001-1,000kg/min인 것을 특징으로 하는 제조방법.
The method of claim 1,
Method of producing a raw material is added to the extrusion molding machine in step 1, characterized in that the 0.001-1,000kg / min.
제1항에 있어서,
열가소성 고분자 100 중량부 대비 고분자로 표면처리된 양자점 0.0001-80 중량부 범위로 투여하는 것을 특징으로 하는 제조방법.
The method of claim 1,
Quantum dots surface-treated with a polymer relative to 100 parts by weight of the thermoplastic polymer, characterized in that the administration method in the range of 0.0001-80 parts by weight.
제1항에 있어서,
상기 단계 1에는 광안정제, 분산제, 광산란제 및 광산란증폭제로 이루어진 군으로부터 선택되는 1종 이상의 첨가제를 더 투입하는 것을 특징으로 하는 제조방법.
The method of claim 1,
In the step 1, the production method, characterized in that further comprising one or more additives selected from the group consisting of a light stabilizer, a dispersant, a light scattering agent and a light scattering amplifier.
제1항의 제조방법으로 제조된 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 양자점이 분산된 고분자 복합체.
A polymer composite in which a quantum dot is dispersed to emit near infrared rays at a wavelength of 650-1300 nm when irradiated with a light source manufactured by the method of claim 1.
제10항의 고분자 복합체를 사용하여 제조한 광원 조사시에 650-1300nm 파장대의 근적외선을 방출하는 섬유.
A fiber that emits near infrared rays in the wavelength range of 650-1300 nm when irradiated with a light source produced using the polymer composite of claim 10.
제11항의 근적외선을 방출하는 섬유 및 일반 고분자 섬유를 함께 방적(spinning)하여 얻은 복합섬유.A composite fiber obtained by spinning together the fiber that emits near infrared rays of claim 11 and a general polymer fiber.
KR1020180079869A 2018-07-10 2018-07-10 Preparation method of polymer composite having quantum dots which emitting near-infrared KR20200006298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180079869A KR20200006298A (en) 2018-07-10 2018-07-10 Preparation method of polymer composite having quantum dots which emitting near-infrared

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180079869A KR20200006298A (en) 2018-07-10 2018-07-10 Preparation method of polymer composite having quantum dots which emitting near-infrared

Publications (1)

Publication Number Publication Date
KR20200006298A true KR20200006298A (en) 2020-01-20

Family

ID=69367928

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180079869A KR20200006298A (en) 2018-07-10 2018-07-10 Preparation method of polymer composite having quantum dots which emitting near-infrared

Country Status (1)

Country Link
KR (1) KR20200006298A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114635288A (en) * 2022-04-18 2022-06-17 青岛大学 Hydrophilic finishing agent and application thereof in hydrophilic finishing of fabric
CN115161026A (en) * 2022-07-29 2022-10-11 厦门大学 Core-shell quantum dot luminescent material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060066623A (en) 2004-12-13 2006-06-16 재단법인서울대학교산학협력재단 Large scale one-pot synthesis of semiconductor quantum dots

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060066623A (en) 2004-12-13 2006-06-16 재단법인서울대학교산학협력재단 Large scale one-pot synthesis of semiconductor quantum dots

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114635288A (en) * 2022-04-18 2022-06-17 青岛大学 Hydrophilic finishing agent and application thereof in hydrophilic finishing of fabric
CN115161026A (en) * 2022-07-29 2022-10-11 厦门大学 Core-shell quantum dot luminescent material and preparation method thereof

Similar Documents

Publication Publication Date Title
Yang et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window
US20220134131A1 (en) Energy augmentation structures for measuring and therapeutic uses
KR20200006298A (en) Preparation method of polymer composite having quantum dots which emitting near-infrared
EP3102648B1 (en) Quantum dots with inorganic ligands in an inorganic matrix
JP5172853B2 (en) Light emitting device
EP3212826B1 (en) Photoactivatable fibers and fabric media
JP6849979B2 (en) Method of manufacturing quantum rod / polymer fiber film by electrospinning technology
Wang et al. Precise cell behaviors manipulation through light-responsive nano-regulators: recent advance and perspective
US20140246689A1 (en) LED Lamp with Quantum Dots Layer
CN105556349B (en) The electronic device of light diffusion sheet including the light diffusion sheet and the method for preparing the light diffusion sheet
CN106098905B (en) The method of the emission spectrum of the continuous flow synthetic method and correction light emitting device of the quantum dot-doped polymer pad of core-shell structure copolymer
KR101905668B1 (en) Fabrication method of light guide panel having quantum dots layer
CN108129811A (en) For the quantum dot light emitting compound of 3D printing
Borkovska et al. Enhancement of the photoluminescence in CdSe quantum dot–polyvinyl alcohol composite by light irradiation
CN109526238A (en) Laminated glass shines condenser
CN112079955A (en) Quantum dot @ polymer composite material and preparation method thereof
CN111674135A (en) Preparation method of blue light blocking packaging layer
DE102009040329A1 (en) Lamp based on nanoscale structures
KR102200585B1 (en) Highly emissive short wave infrared nanoparticles and method for preparing the same
US7878203B2 (en) Phototherapeutic treatment method using a passive host medium containing nanoparticles
KR20180130753A (en) Preparation method of thin films having quantum dots
CN1050984A (en) Laser irradiation device
TW201422277A (en) Phototherapy device and phototherapy system
KR101981769B1 (en) Number and korean symbol sticker for vehicle license plate having quantum dots and preparation method thereof
KR20180130750A (en) Preparation method of polymer fibers having quantum dots

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application