KR20200005776A - Recombinant yeasts of simultaneously producing ethanol and C4-organic acids - Google Patents

Recombinant yeasts of simultaneously producing ethanol and C4-organic acids Download PDF

Info

Publication number
KR20200005776A
KR20200005776A KR1020180079153A KR20180079153A KR20200005776A KR 20200005776 A KR20200005776 A KR 20200005776A KR 1020180079153 A KR1020180079153 A KR 1020180079153A KR 20180079153 A KR20180079153 A KR 20180079153A KR 20200005776 A KR20200005776 A KR 20200005776A
Authority
KR
South Korea
Prior art keywords
gene
strain
vector
recombinant yeast
yeast
Prior art date
Application number
KR1020180079153A
Other languages
Korean (ko)
Other versions
KR102255175B1 (en
Inventor
박용철
박해성
Original Assignee
국민대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국민대학교산학협력단 filed Critical 국민대학교산학협력단
Priority to KR1020180079153A priority Critical patent/KR102255175B1/en
Publication of KR20200005776A publication Critical patent/KR20200005776A/en
Application granted granted Critical
Publication of KR102255175B1 publication Critical patent/KR102255175B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01008Glycerol-3-phosphate dehydrogenase (NAD+) (1.1.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01037Malate dehydrogenase (1.1.1.37)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/05Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
    • C12Y101/05003Glycerol-3-phosphate dehydrogenase (1.1.5.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/03009Malate synthase (2.3.3.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01001Pyruvate carboxylase (6.4.1.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention provides a recombinant yeast strain which selectively increases production of ethanol or organic acid without inhibiting growth of yeast by lowering a gene expression degree of an acetaldehyde dehydrogenase synthesizing ethanol and a glycerol dehydrogenase and overexpressing an organic acid synthesizing gene. The recombinant yeast strain limits an output of a fermentation byproduct such as glycerol, thereby being realistically used for industrial processes such as production of bio compounds and bio synthetic resins using the glycose.

Description

에탄올 및 C4-유기산 생성용 재조합 효모{Recombinant yeasts of simultaneously producing ethanol and C4-organic acids}Recombinant yeasts of simultaneously producing ethanol and C4-organic acids

본 발명은 에탄올 및 C4 유기산 생성용 재조합 효모 및 이를 통해 에탄올과 C4 유기산을 생산하는 방법에 관한 것이다.The present invention relates to a recombinant yeast for producing ethanol and C4 organic acid and a method for producing ethanol and C4 organic acid through it.

탄소수 4개의 유기산은 식품 및 화장품 분야 등에 널리 이용되고 있다. 최근에는 바이오 합성수지의 전구체로써의 유용성도 입증되어, 이용범위가 점차 넓어지고 있는 실정이다. C4-유기산은 대부분 화학적 분해/합성법을 통해 생산이 이루어지고 있고, 이를 친환경적으로 생산하기 위한 다양한 연구가 이루어지고 있다.Organic acids having four carbon atoms are widely used in food and cosmetic fields. Recently, the usefulness as a precursor of bio-synthetic resin has also been proved, and the use range is gradually being widened. Most of C4-organic acid is produced through chemical decomposition / synthesis method, and various studies have been made to produce it in an environmentally friendly manner.

현재, 박테리아와 곰팡이에서 높은 농도의 유기산을 생산해내는 것이 확인되었으나, 안전성과 내산성이 낮아, 산업적으로 활용하는데 많은 문제가 있는 것으로 알려져 있다. At present, it has been confirmed to produce high concentrations of organic acids from bacteria and fungi, but it is known that there are many problems in industrial applications because of low safety and acid resistance.

효모와 같은 미생물은 내산성이 뛰어난 것으로 안정성이 입증되었으나, 유기산의 생산농도가 현저히 낮다는 문제가 있다. 이를 해결하기 위하여 S. cerevisiae에서 피루브산 탈탄산효소 복합체(pyruvate decarboxylase)의 불활성화를 통해 에탄올 생산을 차단하고, 효모고유의 유전자 및 Schizosaccharmyces pombe, Aspergillus flavus, Aspergillus niger 유래의 외래 유전자를 효모에 도입하여 유기산을 생산한 연구가 보고된 바 있으나, 미생물 배양 시간이 길어지고, 알콜생산경로가 완전히 차단되어 성장이 현저하게 느려지며, 유기산의 농도가 충분히 증가되지 못하는 문제가 있는 것으로 알려져 있다.Microorganisms such as yeast have been proven to be excellent in acid resistance, but there is a problem that the production concentration of organic acids is significantly low. To solve this problem, ethanol production was blocked by inactivation of pyruvate decarboxylase in S. cerevisiae, and yeast-specific genes and foreign genes derived from Schizosaccharmyces pombe, Aspergillus flavus, Aspergillus niger were introduced into yeast. Although studies have been reported to produce organic acids, it is known that there is a problem that the microbial culture time is long, the alcohol production pathway is completely blocked, the growth is significantly slowed, and the concentration of the organic acid is not sufficiently increased.

이에, 효모의 발효 부산물인 에탄올과 글리세롤의 생산량은 줄이면서, 목효 산물인 유기산의 생산성을 높일 수 있는, 산업적으로 유용한 신규한 미생물의 개발이 요구되고 있다.Accordingly, while the production of ethanol and glycerol, which are fermentation by-products of yeast, is reduced, the development of new industrially useful microorganisms that can increase the productivity of organic acids, which are wood yeast products, is required.

특허문헌 1. 대한민국 등록특허 제10-0315161호Patent Document 1. Republic of Korea Patent No. 10-0315161

본 발명은 효모의 성장은 저해시키지 않으면서 에탄올 생성과 C4 유기산 생성은 선택적으로 향상시킬 수 있는 산업용 효모 균주의 제공과 더불어 이를 이용하여 고수율로 에탄올과 C4 유기산을 제조하는 방법을 제공하는 것을 목적으로 한다.The present invention provides an industrial yeast strain that can selectively improve the production of ethanol and C4 organic acids without inhibiting the growth of yeast, and to provide a method for producing ethanol and C4 organic acids in high yield using the same. It is done.

상기 목적을 달성하기 위하여, 본 발명은 pyc2 유전자와 mdh3 유전자는 도입되어 있고, adh1, adh2, adh3, adh4, adh5, adh6 및 adh7 중에서 선택되는 어느 하나 이상의 유전자는 비활성화된, C4 유기산의 생성이 증가된 재조합 효모를 제공한다.In order to achieve the above object, the present invention is a pyc2 gene and mdh3 gene is introduced, any one or more genes selected from adh1, adh2, adh3, adh4, adh5, adh6 and adh7 is inactivated, the production of C4 organic acid is increased Provides recombinant yeast.

상기 재조합 효모는 gpd1 유전자와 gpd2 유전자가 추가적으로 비활성화된 것일 수 있다.The recombinant yeast may be an additional inactivation of the gpd1 gene and gpd2 gene.

상기 재조합 효모는 mls1 유전자와 icl1 유전자가 추가로 도입되어 있는 것일 수 있다.The recombinant yeast may be one that mlml1 gene and icl1 gene is additionally introduced.

상기 재조합 효모는 C4 유기산 이송체 단백질을 코딩하는 spmae1 유전자가 추가로 도입되어 있는 것일 수 있다.The recombinant yeast may be that the spmae1 gene encoding the C4 organic acid transporter protein is further introduced.

상기 pyc2 유전자는 서열번호 44로 표시되고, 상기 mdh3 유전자는 서열번호 45로 표시되는 것일 수 있다.The pyc2 gene may be represented by SEQ ID NO: 44, and the mdh3 gene may be represented by SEQ ID NO: 45.

상기 adh1 유전자의 5' 로부터 downstream쪽으로 247~249 bp 위치에 존재하는 서열이 TAA 종결코돈으로 치환되어 기능이 흠결된 것일 수 있다.The sequence present at the position 247 ~ 249 bp from 5 ′ of the adh1 gene to the downstream may be replaced with TAA stop codon, thereby failing to function.

상기 gpd1 유전자는 서열번호 43으로 이루어진 발현 카세트의 유전체 도입에 의하여 gpd1과 gpd2 유전자가 불활성화된 것일 수 있다.The gpd1 gene may be one in which the gpd1 and gpd2 genes are inactivated by the introduction of a genomic expression cassette consisting of SEQ ID NO: 43.

상기 mls1 유전자는 서열번호 47로 표시되고, 상기 icl1 유전자는 서열번호 48로 표시되는 것일 수 있다.The mls1 gene may be represented by SEQ ID NO: 47, and the icl1 gene may be represented by SEQ ID NO: 48.

상기 spmae1 유전자는 서열번호 45으로 표시되는 것일 수 있다.The spmae1 gene may be represented by SEQ ID NO: 45.

상기 효모는 숙주 세포로 사카로마이세스 세레비시애(Saccharomyces cerevisiae) 균주일 수 있다.The yeast may be a Saccharomyces cerevisiae strain as a host cell.

상기 균주는 D452-2 균주일 수 있다.The strain may be a D452-2 strain.

또한, 본 발명은 1) 상기 재조합 효모를 제조하는 단계; 및In addition, the present invention 1) preparing the recombinant yeast; And

2) 상기 재조합 효모를 배지에서 배양하는 단계를 포함하는 C4 유기산의 생성 방법을 제공한다.2) provides a method for producing a C4 organic acid comprising culturing the recombinant yeast in a medium.

본 발명의 에탄올을 합성하는 아세트알데히드 탈수소효소와 글리세롤 탈수소효소의 유전자 발현도를 낮추고, 유기산 합성 유전자를 과발현시킴으로써, 효모의 생육은 저해하지 않으면서 에탄올 또는 유기산의 생성만을 선택적으로 증가시키도록 하는 재조합 효모 균주를 제공하였다.Recombinant yeast to lower the gene expression of acetaldehyde dehydrogenase and glycerol dehydrogenase for synthesizing ethanol of the present invention and to overexpress the organic acid synthesis gene to selectively increase the production of ethanol or organic acid without inhibiting the growth of yeast Strains were provided.

상기 재조합 효모 균주는 글리세롤과 같은 발효 부산물의 생산량이 제한되므로, 글루코스를 이용한 바이오 화합물 및 바이오 합성수지 생산 등 산업적인 공정에 실질적 활용이 가능하다.Since the recombinant yeast strain is limited in the amount of production of fermentation by-products such as glycerol, it can be practically used in industrial processes such as the production of bio compounds and bio-synthetic resin using glucose.

도 1은 실시예 7의 재조합 효모 균주(DMG-A1G12)의 유기산 생산 대사경로를 나타낸 도면이다. 청색으로 표기한 것은 도입한 유전자의 명칭이고, 적색으로 표기한 것은 비활성화된 유전자의 명칭이다.
도 2는 클로닝 벡터를 나타낸 것으로, 도 2a는 pRS423GPD_pyc2 벡터의 개열지도이다. 이때, pRS423GPD는 외래 유전자를 플라스미드 형태로 과발현하기 위한 벡터로, GPD 프로모터를 포함하고 있다.
도 2b는 pRS423GPD mdh3ΔSKL 벡터의 개열지도이다. 이때, pRS423GPD는 외래 유전자를 플라스미드 형태로 과발현하기 위한 벡터로, GPD 프로모터를 포함하고 있다.
도 2c는 pRS423GPD_pyc2_mdh3ΔSKL 벡터의 개열지도이다. 이때, pRS423GPD는 외래 유전자를 플라스미드 형태로 과발현하기 위한 벡터로, GPD 프로모터를 포함하고 있다.
도 2d는 pRS425PD_spmae1 벡터의 개열지도이다. 이때, pRS425PD는 외래 유전자를 플라스미드 형태로 과발현하기 위한 벡터로, GPD 프로모터를 포함하고 있다.
도 2e는 pRS426GPD_icl1 벡터의 개열지도이다. 이때, pRS426GPD는 외래 유전자를 플라스미드 형태로 과발현하기 위한 벡터로, GPD 프로모터를 포함하고 있다.
도 2f는 pRS426GPD_mls1ΔSKL 벡터의 개열지도이다. 이때, pRS426GPD는 외래 유전자를 플라스미드 형태로 과발현하기 위한 벡터로, GPD 프로모터를 포함하고 있다.
도 2g는 pRS426GPD_mls1ΔSKL_icl1 벡터의 개열지도이다. 이때, pRS426GPD는 외래 유전자를 플라스미드 형태로 과발현하기 위한 벡터로, GPD 프로모터를 포함하고 있다.
도 3은 야생형 효모 D 균주(S. cerevisiae D452-2)와 비교예 1의 재조합 균주와 실시예 1의 재조합 균주를 회분식으로 배양하여, 시간에 따른 글루코스 소비, 글리세롤, 에탄올, 아세테이트, 말레이트, 석시네이트의 생성양을 측정하여 나타낸 그래프이다. 도 3A는 야생형 D 균주를 YPD20 배지에 배양한 결과이고, 도 3B와 도 3C는 각각 비교예 1의 재조합 DC2 균주와 실시예 1의 재조합 DM 균주를 YPD50+5% CaCO3 배지에서 배양한 결과이다.
도 4는 실시예 2의 D-A1 균주와 실시예 3의 DM-A1 균주 및 비교예 3의 DC2-A1 균주를 회분식으로 배양하여, 시간에 따른 글루코스 소비, 글리세롤, 에탄올, 아세테이트, 말레이트, 석시네이트의 생성량을 측정하여 나타낸 그래프이다. 도 4A는 실시예 2의 D-A1 균주를 YPD20 배지에 배양한 결과이고, 도 4B와 도 4C는 각각 실시예 3의 DM-A1 균주 및 비교예 3의 DC2-A1 균주를 YPD50+5% CaCO3 배지에서 배양한 결과이다.
도 5는 실시예 5의 D-A1G12 균주와 실시예 6의 DM-A1G12 균주를 회분식으로 배양하여, 시간에 따른 글루코스 소비, 글리세롤, 에탄올, 아세테이트, 말레이트, 석시네이트의 생성량을 측정하여 나타낸 그래프이다. 도 5A는 D-A1G12 균주를 YPD20 배지에 배양한 결과이고, 도 5B는 DM-A1G12 균주를 YPD50 + 5% CaCO3 배지에 배양한 결과이다.
도 6은 실시예 7의 DMG-A1G12 균주를 회분식으로 배양하여, 시간에 따른 글루코스 소비, 글리세롤, 에탄올, 아세테이트, 말레이트, 석시네이트의 생성양을 측정하여 나타낸 그래프이다. 배지는 YPD50 + 5% CaCO3을 사용하였다.
도 7은 실시예 1의 DM 균주, 실시예 6의 DM-A1G12 균주 및 실시예 7의 DMG-A1G12 균주를 30 시간 배양하고, 이로부터 측정된 말레이트 농도를 나타낸 그래프이다.
도 8은 실시예 8의 D-A13G12 균주와 실시예 9의 DM-A13G12 균주를 회분식으로 배양하여, 시간에 따른 글루코스 소비, 글리세롤, 에탄올, 아세테이트, 말레이트, 석시네이트의 생성량을 측정하여 나타낸 그래프이다.
1 is a diagram showing the metabolic pathway of organic acid production of the recombinant yeast strain (DMG-A1G12) of Example 7. Marked in blue is the name of the introduced gene, and marked in red is the name of the inactivated gene.
2 shows a cloning vector, and FIG. 2A is a cleavage map of the pRS423GPD_pyc2 vector. At this time, pRS423GPD is a vector for overexpressing a foreign gene in the form of a plasmid, and includes a GPD promoter.
2B is a cleavage map of the pRS423GPD mdh3ΔSKL vector. At this time, pRS423GPD is a vector for overexpressing a foreign gene in the form of a plasmid, and includes a GPD promoter.
2C is a cleavage map of the pRS423GPD_pyc2_mdh3ΔSKL vector. At this time, pRS423GPD is a vector for overexpressing a foreign gene in the form of a plasmid, and includes a GPD promoter.
2D is a cleavage map of the pRS425PD_spmae1 vector. At this time, pRS425PD is a vector for overexpressing a foreign gene in the form of a plasmid, and includes a GPD promoter.
2E is a cleavage map of the pRS426GPD_icl1 vector. At this time, pRS426GPD is a vector for overexpressing a foreign gene in the form of a plasmid, and includes a GPD promoter.
2F is a cleavage map of the pRS426GPD_mls1ΔSKL vector. At this time, pRS426GPD is a vector for overexpressing a foreign gene in the form of a plasmid, and includes a GPD promoter.
2G is a cleavage map of the pRS426GPD_mls1ΔSKL_icl1 vector. At this time, pRS426GPD is a vector for overexpressing a foreign gene in the form of a plasmid, and includes a GPD promoter.
3 is a batch culture of the wild type yeast D strain (S. cerevisiae D452-2) and the recombinant strain of Comparative Example 1 and the recombinant strain of Example 1, glucose consumption, glycerol, ethanol, acetate, malate, A graph showing the amount of succinate produced. 3A shows the result of culturing the wild type D strain in YPD20 medium, and FIGS. 3B and 3C show the result of culturing the recombinant DC2 strain of Comparative Example 1 and the recombinant DM strain of Example 1 in YPD50 + 5% CaCO3 medium, respectively.
4 is a batch culture of the D-A1 strain of Example 2, DM-A1 strain of Example 3 and DC2-A1 strain of Comparative Example 3, glucose consumption, glycerol, ethanol, acetate, malate, It is a graph which measured and produced | generated the succinate production amount. 4A shows the results of culturing the D-A1 strain of Example 2 in YPD20 medium, and FIGS. 4B and 4C show YPD50 + 5% CaCO3 of the DM-A1 strain of Example 3 and the DC2-A1 strain of Comparative Example 3, respectively. It is the result of culture in the medium.
5 is a graph showing the production of glucose consumption, glycerol, ethanol, acetate, malate, and succinate over time by culturing the D-A1G12 strain of Example 5 and the DM-A1G12 strain of Example 6 in a batch manner; to be. 5A shows the result of culturing D-A1G12 strain in YPD20 medium, and FIG. 5B shows the result of culturing DM-A1G12 strain in YPD50 + 5% CaCO 3 medium.
FIG. 6 is a graph showing the growth of glucose consumption, glycerol, ethanol, acetate, malate, and succinate over time by culturing the DMG-A1G12 strain of Example 7 in a batch manner. The medium used was YPD50 + 5% CaCO 3 .
7 is a graph showing the maleate concentration measured from the DM strain of Example 1, DM-A1G12 strain of Example 6, and DMG-A1G12 strain of Example 7 for 30 hours and measured therefrom.
8 is a graph showing the production of glucose consumption, glycerol, ethanol, acetate, malate, and succinate over time by culturing the D-A13G12 strain of Example 8 and the DM-A13G12 strain of Example 9 in a batch manner. to be.

이하, 보다 상세히 설명하기로 한다.
It will be described below in more detail.

본 발명의 일 측면은 pyc2 유전자와 mdh3 유전자는 도입되어 있고, adh1, adh2, adh3, adh4, adh5, adh6 및 adh7 중에서 선택되는 어느 하나 이상의 유전자는 비활성화된, C4 유기산의 생성이 증가된 재조합 효모에 관한 것이다.In one aspect of the present invention, a pyc2 gene and an mdh3 gene are introduced, and at least one gene selected from adh1, adh2, adh3, adh4, adh5, adh6, and adh7 is inactivated. It is about.

본 발명에서 "불활성 또는 활성이 소실된" 이란, 유전자의 일부 또는 전체에 결실, 삽입, 치환, 역위 또는 중복 등의 변이가 일어나 미생물이 천연의 상태로 가지고 있는 활성이 없어지거나 감소된 상태를 의미한다. 본 발명의 목적상, adh 유전자의 불활성화는 adh1, adh2, adh3, adh4, adh5, adh6 및 adh7 유전자 중에서 일부 또는 전체에 변이가 일어난 상태를 의미한다.In the present invention, "inactive or lost activity" refers to a state in which a part or all of a gene is deleted, inserted, substituted, inverted, or duplicated, resulting in a loss or reduced activity of a microorganism in its natural state. do. For the purposes of the present invention, inactivation of the adh gene refers to a state in which a mutation occurs in part or all of the adh1, adh2, adh3, adh4, adh5, adh6 and adh7 genes.

상기 pyc2 유전자와 mdh3 유전자는 각각 서열번호 44, 서열번호 45로 이루어지는 염기서열을 가지는 것일 수 있다. The pyc2 gene and mdh3 gene may have a nucleotide sequence consisting of SEQ ID NO: 44, SEQ ID NO: 45, respectively.

종래에는 유기산을 생성하는 균주로 박테리아와 곰팡이가 이용되었으나, 안정성과 내산성이 낮아 산업적으로 활용이 어렵다는 문제점이 있다. 한편, S. cerevisiae에서 피루브산 탈탄산효소 복합체(pyruvate decarboxylase)의 불활성화를 통해 에탄올 생산을 차단한 효모 균주가 보고된 바 있으나, 상기 효모에는 상기 유전자들로 인해, 배양시간이 길어지고, 알콜 생산경로가 완전히 차단되어 성장이 느리며, 유기산이 충분히 생산되지 못한다는 문제가 있다.Conventionally, bacteria and fungi were used as strains for producing organic acids, but there is a problem that it is difficult to utilize industrially due to low stability and acid resistance. Meanwhile, yeast strains that block ethanol production through inactivation of pyruvate decarboxylase in S. cerevisiae have been reported, but due to the genes in the yeast, the incubation time is long, alcohol production There is a problem that growth is slow because the pathway is completely blocked, the organic acid is not produced sufficiently.

이에 본 발명은 에탄올과 글리세롤 생산능이 저해된 미생물을 배양하여 포도당으로부터 C4-유기산을 과량 생산할 수 있는 효모를 제조하기 위하여, 야생형 효모에 pyc2 유전자와 mdh3 유전자는 도입되어 있고, adh1, adh2, adh3, adh4, adh5, adh6 및 adh7 중에서 선택되는 어느 하나 이상의 유전자가 비활성화된, C4 유기산의 생성이 증가된 재조합 효모를 제공하고자 하였다.In the present invention, in order to produce a yeast capable of overproducing C4-organic acid from glucose by culturing ethanol and glycerol-producing microorganisms, pyc2 gene and mdh3 gene are introduced into wild-type yeast, and adh1, adh2, adh3, An attempt was made to provide a recombinant yeast having increased production of C4 organic acids in which at least one gene selected from adh4, adh5, adh6 and adh7 is inactivated.

상기 pyc2 유전자는 S. cerevisiae 유래의 피루브산 탄산화효소(pyruvate carboxylase)를 발현하고, mdh3 유전자는 malate 탈수소효소 (malate dehydrogenase)를 발현하는 것으로 알려져 있다.The pyc2 gene expresses pyruvate carboxylase derived from S. cerevisiae, and the mdh3 gene is known to express malate dehydrogenase.

또한, 상기 adh1, adh2, adh3, adh4, adh5, adh6 및 adh7는 순서대로 alcohol dehydrogenase I, Ⅱ, Ⅲ, Ⅳ, Ⅴ, Ⅵ, Ⅶ을 암호화하는 유전자로, CRISPR/Cas9 시스템을 이용하여 상기 효모의 유전체 내의 해당 유전자에 종결코돈을 삽입함으로써 alcohol dehydrogenase을 암호화하는 adh1, adh2, adh3, adh4, adh5, adh6 및 adh7 중에서 선택되는 어느 하나 이상의 유전자 활성이 소실 또는 비활성화된 것일 수 있다.In addition, the adh1, adh2, adh3, adh4, adh5, adh6 and adh7 are the genes encoding alcohol dehydrogenase I, II, III, IV, V, VI, VII in order, using the CRISPR / Cas9 system of the yeast By inserting a stop codon into the gene in the genome, one or more gene activities selected from adh1, adh2, adh3, adh4, adh5, adh6 and adh7 encoding alcohol dehydrogenase may be lost or inactivated.

예를 들어, 상기 adh1 유전자는 상기 adh1 유전자의 5' 로부터 downstream쪽으로 247~249 bp 위치에 존재하는 서열이 TAA 종결코돈으로 치환되어 기능이 흠결된 것일 수 있고, 특별히 이에 한정되지 않는다.For example, the adh1 gene may be one in which a sequence existing at a position of 247-249 bp from 5 ′ to downstream of the adh1 gene is replaced with a TAA stop codon, and the function is defective, but is not particularly limited thereto.

상기 재조합 효모는 상기 gpd1 유전자와 gpd2 유전자가 추가적으로 결손되거나 치환되어 활성이 소실된 것일 수 있다. 상기 gpd1 유전자와 gpd2 유전자는 glycerol-3-phosphate dehydrogenase를 암호화하는 유전자로 알려져 있다.The recombinant yeast may be one in which the gpd1 gene and the gpd2 gene are additionally deleted or replaced to lose activity. The gpd1 gene and gpd2 gene are known as genes encoding glycerol-3-phosphate dehydrogenase.

구체적으로 gpd1을 불활성화하기 위해 시작코돈으로부터 downstream으로 71번째에 위치한 tryptophan을 coding하는 TGG서열을 PAM sequence로 지정하였으며 ATG를 포함하여 유전자의 5'부터 620 bp를 파쇄하면서, GPD1p_mdh3ΔSKL_CYC1t 발현카세트(서열번호 43)를 유전체 내로 도입한 것일 수 있다. 상기 gpd2를 불활성화하기 위해서는 시작코돈으로부터 downstream으로 309번째에 위치한 tryptophan을 coding하는 TGG서열을 PAM sequence로 지정하였으며 ATG를 포함하여 유전자의 5'부터 980 bp를 제거하는 것일 수 있다.Specifically, in order to inactivate gpd1, the TGG sequence coding for tryptophan located at the 71st downstream from the start codon was designated as the PAM sequence, and the GPD1p_mdh3ΔSKL_CYC1t expression cassette (SEQ ID NO: 1) was disrupted from 5 'to 620 bp of the gene including ATG. 43) may be introduced into the dielectric. In order to inactivate the gpd2, TGG sequence coding tryptophan located at the 309th downstream from the start codon was designated as the PAM sequence, and 980 bp of the gene including ATG may be removed.

또한 상기 재조합 효모는 mls1 유전자와 icl1 유전자가 추가로 도입되어 있는 것일 수 있다. mls1 유전자와 icl1 유전자는 글리옥실산 회로(glyoxylate cycle)를 형성하는 효소 중 이소시트르산을 글리옥실레이트(glyoxylate)와 석시네이트(succinate)로 전환하는 이소시트르산분해효소(isocitrate lyase)와 말산합성 효소(malate 상기 mls1 유전자는 서열번호 47로 표시되고, 상기 icl1 유전자는 서열번호 48로 표시되는 것일 수 있다.In addition, the recombinant yeast may be that the mls1 gene and icl1 gene is additionally introduced. The mls1 and icl1 genes are isocitrate lyases and mathematic enzymes that convert isocitric acid into glyoxylate and succinate, among the enzymes that form the glyoxylate cycle. malate The mls1 gene may be represented by SEQ ID NO: 47, and the icl1 gene may be represented by SEQ ID NO: 48.

또한, 상기 재조합 효모는 C4 유기산 이송체 단백질을 코딩하는 spmae1 유전자가 추가로 도입되어 있는 것일 수 있다. 상기 spmae1 유전자는 S. pombe 유래의 malate, succinate 특이적 이송체(malate/succinate exporter)를 암호화하는 유전자이다. 상기 유전자를 도입하면, 생산이 증가된 말레이트와 석시네이트를 특이적으로 세포외부로 분비할 수 있도록 한다. 상기 spmae1 유전자는 서열번호 46으로 표시되는 것일 수 있다.In addition, the recombinant yeast may be that the spmae1 gene encoding the C4 organic acid transporter protein is additionally introduced. The spmae1 gene is a gene encoding a malate derived from S. pombe, a succinate specific transporter (malate / succinate exporter). Introducing the gene allows for the extracellular secretion of malate and succinate, which have increased production. The spmae1 gene may be represented by SEQ ID NO: 46.

상기 재조합 효모는 앞서 설명한 바와 같이, 형질전환에 의해 대사 조작된 숙주세포를 의미하며, 상기 숙주 세포는 발현 벡터에 의한 형질 전환이 용이한 세포를 지칭하는 것으로 유전 공학적 방법에 의해 형질전환되어 특정 유전자를 효율적으로 발현할 수 있으면 그 종류는 특별히 제한되지 않는다. 상기 적합한 숙주세포로는 자연적으로 발생하거나 또는 야생형 숙주 세포일 수 있고 또는 변화된 숙주세포일 수 있다. 상기 야생형 숙주세포는 재조합 방법에 의해 유전적으로 변화되지 않은 숙주세포일 수 있다.As described above, the recombinant yeast refers to a host cell metabolized and manipulated by transformation, and the host cell refers to a cell that is easily transformed by an expression vector. The type is not particularly limited as long as it can efficiently express. The suitable host cell may be a naturally occurring or wild type host cell or may be a modified host cell. The wild type host cell may be a host cell that is not genetically changed by a recombinant method.

본 발명에서 용어, 대사 조작된(metabolically engineered)이란 미생물에서 원하는 대사산물의 생산을 위하여, 생합성 유전자, 이들 핵산 서열의 제어 요소의 합리적 경로 디자인과 어셈블리를 수반하는 것을 의미한다.As used herein, the term "metabolically engineered" refers to the involvement of rational pathway design and assembly of biosynthetic genes, control elements of these nucleic acid sequences, for the production of desired metabolites in microorganisms.

상기 재조합 효모의 숙주 세포는 효모일 수 있고, 구체적으로 사카로마이세스 세레비시애(Saccharomyces cerevisiae) 균주일 수 있다. 보다 바람직하게는 상기 숙주 세포는 사카로마이세스 세레비시애(Saccharomyces cerevisiae) D452-2(MATa, his3, leu2, ura3, can1) 균주일 수 있다. 상기 S. cerevisiae D452-2 균주는 일반적인 효모와 같이 혐기성 배양조건에서는 에탄올과 글리세롤 아세트산을 주로 생산하는 균주로 알려져 있다. 상기 균주는 섭씨 25~38 ℃ 조건하에서 생육이 가능하며, 최적 배양온도는 섭씨 30 ℃이다. pH 3.0에서 7.0 정도까지에서 생육을 보이며 최적 생장 pH는 5.50이다.
The host cell of the recombinant yeast may be a yeast, specifically, Saccharomyces cerevisiae strain. More preferably, the host cell may be Saccharomyces cerevisiae D452-2 (MATa, his3, leu2, ura3, can1) strain. The S. cerevisiae D452-2 strain is known as a strain that mainly produces ethanol and glycerol acetic acid under anaerobic culture conditions, such as general yeast. The strain can be grown under the conditions of 25 ~ 38 ℃, the optimum culture temperature is 30 ℃. It grows from pH 3.0 to 7.0 and the optimum growth pH is 5.50.

본 발명은 pyc2 유전자와 mdh3 유전자는 도입되어 있고, adh1, adh2, adh3, adh4, adh5, adh6 및 adh7 중에서 선택되는 어느 하나 이상의 유전자는 비활성화된 재조합 효모를 제조하는 방법에 관한 것을 제공할 수 있다.The present invention may provide a method for producing a recombinant yeast in which the pyc2 gene and the mdh3 gene are introduced and one or more genes selected from adh1, adh2, adh3, adh4, adh5, adh6 and adh7 are inactivated.

본 발명에서 언급하는 유전자는, 숙주 균주 또는 숙주 균주가 속한 종이 아닌 외래종 또는 숙주 균주가 아닌 다른 균주로부터 기원되는 유전자, 또는 본래의 형태로부터 실질적으로 변형된 형태의 유전자들로, 본 발명의 목적상, 바람직하게 사카로마이세스 세레비시애(Saccharomyces cerevisiae) 균주의 에탄올 또는 C4 유기산의 생산능을 보다 향상시킬 수 있도록 글루코스로부터 말레이트 생산과 관련된 유용한 유전자들일 수 있으며, 그 예로는 S. cerevisiae 유래의 피루브산 탄산화효소(pyruvate carboxylase)를 코딩하는 유전자, malate 탈수소효소 (malate dehydrogenase) 유전자 및 alcohol dehydrogenase를 암호화하는 유전자를 들 수 있다. 본 발명의 구체적인 실시예에서는 glycerol-3-phosphate dehydrogenase를 암호화하는 유전자를 불활성화시키거나 글리옥실산 회로(glyoxylate cycle)를 형성하는 효소 중 이소시트르산을 글리옥실레이트(glyoxylate)와 석시네이트(succinate)로 전환하는 이소시트르산분해효소(isocitrate lyase)와 말산합성 효소(malate synthase)를 각각 암호화하는 유전자를 도입하였으나, 이 외에도 다양한 외래 유전자들을 도입하거나 결손시킬 수 있다.The gene referred to in the present invention is a gene derived from a host strain or an alien species other than the species to which the host strain belongs, or a strain other than the host strain, or a gene substantially modified from the original form, and for the purposes of the present invention, , Preferably may be useful genes related to malate production from glucose to further improve the production capacity of ethanol or C4 organic acid of Saccharomyces cerevisiae strain, for example from S. cerevisiae Genes encoding pyruvate carboxylase, malate dehydrogenase genes and genes encoding alcohol dehydrogenase. In a specific embodiment of the present invention isocitric acid glyoxylate and succinate among enzymes that inactivate the gene encoding glycerol-3-phosphate dehydrogenase or form a glyoxylate cycle. Genes encoding isocitrate lyase and malate synthase, respectively, were introduced. However, various foreign genes can be introduced or deleted.

본 발명에서 pyc2 유전자와 mdh3 유전자의 도입되고, adh1, adh2, adh3, adh4, adh5, adh6 및 adh7 중에서 선택되는 어느 하나 이상의 유전자는 비활성화된 것은 D452-2 균주의 유기산 생성을 높이기 위한 것이다. 바람직하게, pyc2 유전자와 mdh3 유전자 및 외래 유전자가 도입되고, adh 유전자의 활성이 소실되기 전에는 상기 D452-2 균주를 글루코스 첨가 배지에 배양하더라도 유기산이 거의 생성되지 못하였다. 이후 pyc2 유전자와 mdh3 유전자를 도입하고 adh 유전자의 활성이 소실된 후에는 상기 균주을 배지에 배양할 경우, 유기산이 현저히 높은 농도로 생성되는 것을 확인하였다.In the present invention, the pyc2 gene and the mdh3 gene are introduced, and any one or more genes selected from adh1, adh2, adh3, adh4, adh5, adh6 and adh7 are inactivated to increase organic acid production of the D452-2 strain. Preferably, until the pyc2 gene, the mdh3 gene and the foreign gene are introduced, and the activity of the adh gene is lost, the organic acid is hardly produced even if the D452-2 strain is cultured in a glucose addition medium. After the pyc2 gene and mdh3 gene were introduced and the activity of the adh gene was lost, it was confirmed that when the strain was cultured in the medium, organic acids were produced at a significantly high concentration.

우선, 상기 adh1, adh2, adh3, adh4, adh5, adh6 및 adh7 중에서 선택되는 어느 하나 이상의 adh 유전자는 CRISPR/Cas9 시스템을 이용하여 유전체 내의 해당 유전자에 종결코돈을 삽입하여 제조된 것일 수 있다. 일예로 adh1의 5' 로부터 downstream쪽으로 247~249 bp 위치에 존재하는 서열이 TAA 종결코돈으로 치환하여 adh1 유전자를 비활성화한 균주를 제조하였다.First, any one or more adh genes selected from adh1, adh2, adh3, adh4, adh5, adh6 and adh7 may be prepared by inserting a stop codon into a corresponding gene in the genome using a CRISPR / Cas9 system. For example, a strain in which the adh1 gene was inactivated was prepared by substituting the TAA stop codon for a sequence existing at a position of 247-249 bp from 5 ′ to downstream of adh1.

pyc2 유전자와 mdh3 유전자는 벡터에 삽입된 채로 D452-2 균주 또는 adh1 유전자가 비활성화된 균주에 도입될 수 있으며, 상기 벡터로는 플라스미드, 바이러스, 코즈미드 등 다양한 형태의 벡터를 사용할 수 있다. 재조합 벡터는 클로닝 벡터 및 발현 벡터를 포함한다. 재조합 벡터는 숙주 세포 내에서 pyc2 유전자와 mdh3 유전자가 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하며, 예를 들어 프로모터, 개시코돈, 목적하는 단백질을 암호화하는 유전자, 종결코돈 및 터미네이터를 포함하고 있는 것이 바람직하다. 그 외에 시그널 펩타이드를 코딩하는 DNA, 인핸서 서열, 목적하는 유전자의 5' 말단 및 3' 말단의 비해독영역, 선별 마커 영역, 또는 복제가능단위 등을 적절하게 포함할 수 있다.The pyc2 gene and the mdh3 gene may be introduced into a D452-2 strain or a strain in which the adh1 gene is inactivated while being inserted into a vector. As the vector, various types of vectors such as plasmid, virus, and cosmid may be used. Recombinant vectors include cloning vectors and expression vectors. Recombinant vectors contain essential regulatory elements operably linked to express the pyc2 and mdh3 genes in host cells, including, for example, promoters, initiation codons, genes encoding desired proteins, termination codons and terminators. It is preferable. In addition, the DNA encoding the signal peptide, enhancer sequences, non-translated regions, selectable marker regions, or replicable units at the 5 'and 3' ends of the gene of interest may be appropriately included.

pyc2 유전자와 mdh3 유전자의 도입 방법으로는 인산칼슘법 또는 염화캄슘/염화루비듐법, 리튬아세테이트법, 일렉트로포레이션법(electroporation), 전기주입법(electroinjection), PEG 등의 화학적 처리 방법, 유전자총(gene gun) 등 당 업계에서 널리 사용되는 방법들을 적용할 수 있다.
Introduction of pyc2 gene and mdh3 gene include calcium phosphate method or calcium chloride / rubidium chloride method, lithium acetate method, electroporation method, electroinjection method, chemical treatment method such as PEG, gene gun guns) and other methods widely used in the art can be applied.

바람직한 양태로, 본 발명은 상기와 같이 숙주 균주에 pyc2 유전자와 mdh3 유전자와 함께 C4 유기산 이송체 단백질을 코딩하는 spmae1 유전자가 추가적으로 도입된 것일 수 있다.In a preferred embodiment, the present invention may be an introduction of the spmae1 gene encoding the C4 organic acid transporter protein together with the pyc2 gene and mdh3 gene in the host strain as described above.

상기 spmae1 유전자는 벡터에 삽입된 채로 pyc2 유전자와 mdh3 유전자가 도입되고 adh1, adh2, adh3, adh4, adh5, adh6 및 adh7 중에서 선택되는 어느 하나 이상의 유전자는 비활성화된 균주에 도입될 수 있으며, 상기 벡터로는 플라스미드, 바이러스, 코즈미드 등 다양한 형태의 벡터를 사용할 수 있다. 재조합 벡터는 클로닝 벡터 및 발현 벡터를 포함한다. 재조합 벡터는 숙주 세포 내에서 spmae1 유전자가 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하며, 예를 들어 프로모터, 개시코돈, 목적하는 단백질을 암호화하는 유전자, 종결코돈 및 터미네이터를 포함하고 있는 것이 바람직하다. 그 외에 시그널 펩타이드를 코딩하는 DNA, 인핸서 서열, 목적하는 유전자의 5' 말단 및 3' 말단의 비해독영역, 선별 마커 영역, 또는 복제가능단위 등을 적절하게 포함할 수 있다.
The spmae1 gene may be inserted into a vector while the pyc2 gene and the mdh3 gene are introduced, and any one or more genes selected from adh1, adh2, adh3, adh4, adh5, adh6 and adh7 may be introduced into an inactivated strain. Various types of vectors, such as plasmid, virus, and cosmid, can be used. Recombinant vectors include cloning vectors and expression vectors. Recombinant vectors contain the necessary regulatory elements operably linked to express the spmae1 gene in the host cell, preferably including a promoter, an initiation codon, a gene encoding a protein of interest, a termination codon and a terminator. . In addition, the DNA encoding the signal peptide, enhancer sequences, non-translated regions, selectable marker regions, or replicable units at the 5 'and 3' ends of the gene of interest may be appropriately included.

바람직한 양태로, pyc2 유전자와 mdh3 유전자는 도입되어 있고, adh1, adh2, adh3, adh4, adh5, adh6 및 adh7 중에서 선택되는 어느 하나 이상의 유전자와 함께, gpd1 유전자 및 gpd2 유전자가 비활성화된 C4 유기산의 생성이 증가된 재조합 효모를 제공할 수 있다.In a preferred embodiment, the pyc2 gene and the mdh3 gene are introduced, and together with any one or more genes selected from adh1, adh2, adh3, adh4, adh5, adh6 and adh7, the production of C4 organic acids in which the gpd1 gene and gpd2 gene are inactivated May provide increased recombinant yeast.

gpd1 유전자를 불활성화하기 위하여 시작코돈으로부터 downstream으로 71번째에 위치한 tryptophan을 coding하는 TGG서열을 PAM sequence로 지정하고, ATG를 포함하여 유전자의 5'부터 620 bp를 파쇄하면서, GPD1p_mdh3ΔSKL_CYC1t 발현카세트를 유전체 내로 도입하되, 동시에 guide RNA를 발현하는 pRS42H_gRNA_gpd1 벡터를 도입하는 것일 수 있다.In order to inactivate the gpd1 gene, the TGG sequence coding for the tryptophan located at the 71st downstream from the start codon is designated as the PAM sequence, and the GPD1p_mdh3ΔSKL_CYC1t expression cassette is broken into the genome while disrupting 5 to 620 bp of the gene including ATG. While introducing, it may be to introduce a pRS42H_gRNA_gpd1 vector expressing the guide RNA at the same time.

gpd2를 불활성화하기 위해 시작코돈으로부터 downstream으로 309번째에 위치한 tryptophan을 coding하는 TGG서열을 PAM sequence로 지정하였으며 ATG를 포함하여 유전자의 5'부터 980bp를 제거하면서, 동시에 guide RNA를 발현하는 pRS42H_gRNA_gpd2벡터를 도입하는 것일 수 있다.In order to inactivate gpd2, TGG sequence coding tryptophan located at 309th downstream from start codon was designated as PAM sequence, and pRS42H_gRNA_gpd2 vector expressing guide RNA while simultaneously removing 980bp of gene including ATG was removed. It may be to introduce.

본 발명에서의 Cas 단백질 또는 유전자 정보는 NCBI (National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터 베이스에서 얻을 수 있다. 구체적으로, 상기 Cas 단백질은 Cas9 단백질일 수 있다. 또한, 상기 Cas 단백질은 캄필로박터 속 (Campylobacter) 속, 보다 구체적으로 캄필로박터 제주니 (Campylobacter jejuni) 유래의 Cas 단백질, 보다 구체적으로 Cas9 단백질일 수 있다.Cas protein or gene information in the present invention can be obtained from a known database such as GenBank of the National Center for Biotechnology Information (NCBI). Specifically, the Cas protein may be a Cas9 protein. In addition, the Cas protein may be a genus Campylobacter, more specifically, a Cas protein derived from Campylobacter jejuni, and more specifically, a Cas9 protein.

또한, 상기 Cas 단백질은 천연형 단백질 외에도 가이드 RNA와 협동하여 활성화된 엔도뉴클레아제 또는 nickase 로 작용할 수 있는 변이체를 모두 포함하는 개념으로 본 발명에서 사용된다. 활성화된 엔도뉴클레아제 또는 니카아제인 경우, 표적 DNA 절단을 가져올 수 있고, 이를 이용하여 유전체 교정을 가지고 올 수 있다. 또한, 불활성화된 변이체인 경우, 이를 이용하여 전사 조절 혹은 목적하는 DNA의 분리를 가져올 수 있다.In addition, the Cas protein is used in the present invention as a concept including all the variants that can act as an endonuclease or nickase activated in cooperation with the guide RNA in addition to the native protein. In the case of activated endonucleases or nickases, target DNA cleavage can be achieved, which can be used to bring genome correction. In addition, in the case of inactivated variants, it can be used to bring about transcriptional regulation or isolation of the desired DNA.

상기 Cas9 단백질의 변이체는 촉매적 아스파라긴산 잔기(catalytic aspartate residue) 또는 히스티딘 잔기가 임의의 다른 아미노산으로 변경된 Cas9의 돌연변이 형태일 수 있다. 구체적으로, 다른 아미노산은 알라닌(alanine)일 수 있지만, 이에 제한되지 않는다.The variant of Cas9 protein may be a mutant form of Cas9 in which a catalytic aspartate residue or histidine residue is changed to any other amino acid. Specifically, the other amino acid may be alanine, but is not limited thereto.

상기 Cas 단백질 또는 이를 암호화하는 핵산은 Cas 단백질을 핵 내에 위치시키기 위한 핵 위치 신호(nuclear localization signal, NLS)를 더 포함할 수 있다. 또한, 상기 Cas 단백질을 코딩하는 핵산은 추가적으로 핵 위치 신호(nuclear localization signal, NLS) 서열을 포함할 수 있다. 따라서, 상기 Cas 단백질을 코딩하는 핵산을 포함하는 발현 카세트는 상기 Cas 단백질을 발현시키기 위한 프로모터 서열 등 조절 서열 외에도 NLS 서열을 포함할 수 있다. 그러나, 이에 제한되지 않는다.The Cas protein or nucleic acid encoding the Cas protein may further include a nuclear localization signal (NLS) for locating the Cas protein in the nucleus. In addition, the nucleic acid encoding the Cas protein may additionally include a nuclear localization signal (NLS) sequence. Therefore, the expression cassette including the nucleic acid encoding the Cas protein may include an NLS sequence in addition to a regulatory sequence such as a promoter sequence for expressing the Cas protein. However, this is not limitative.

상기 Cas 단백질은 표적 DNA 특이적 가이드 RNA와 함께 RGEN (RNA-Guided Engineered Nuclease)으로 명명될 수 있다. 본 발명에서 용어, "RGEN"은 표적 DNA 특이적 가이드 RNA 및 Cas 단백질을 구성요소로 포함하는 뉴클레아제를 의미한다. 본 발명에서 상기 RGEN은 표적 DNA 특이적 가이드 RNA 또는 상기 가이드 RNA를 코딩하는 DNA; 및 분리된 Cas 단백질 또는 상기 Cas 단백질을 코딩하는 핵산의 형태로 세포에 적용될 수 있으나, 이에 제한되지 않는다. 이때 상기 가이드 RNA 또는 이를 코딩하는 DNA와 Cas 단백질 또는 이를 코딩하는 핵산은 동시에 또는 순차적으로 세포에 적용될 수 있다.The Cas protein may be named RGEN (RNA-Guided Engineered Nuclease) along with target DNA specific guide RNA. As used herein, the term "RGEN" refers to a nuclease comprising a target DNA specific guide RNA and Cas protein as a component. In the present invention, the RGEN is a target DNA specific guide RNA or DNA encoding the guide RNA; And it can be applied to the cell in the form of an isolated Cas protein or a nucleic acid encoding the Cas protein, but is not limited thereto. In this case, the guide RNA or DNA encoding the same and the Cas protein or nucleic acid encoding the same may be applied to the cells simultaneously or sequentially.

또한, 상기 가이드 RNA를 코딩하는 DNA 및 Cas 단백질을 코딩하는 핵산은 분리된 핵산 자체로 이용될 수도 있지만, 상기 가이드 RNA, 또는/및 Cas 단백질을 발현하기 위한 발현 카세트를 포함하는 벡터 형태로 존재할 수 있으나, 이에 제한되지 않는다.In addition, the DNA encoding the guide RNA and the nucleic acid encoding the Cas protein may be used as the separated nucleic acid itself, but may be present in the form of a vector containing the expression cassette for expressing the guide RNA, and / or Cas protein. However, the present invention is not limited thereto.

상기 벡터는 바이러스 벡터, 플라스미드 벡터, 또는 아그로박테리움 벡터일 수 있으며, 상기 바이러스 벡터의 종류로는 AAV(Adeno-associated virus)를 들 수 있으나, 이에 제한되지 않는다.The vector may be a viral vector, a plasmid vector, or an Agrobacterium vector. Examples of the viral vector may include Adeno-associated virus (AAV), but are not limited thereto.

상기 가이드 RNA를 암호화하는 DNA 및 Cas 단백질을 암호화하는 핵산은 개별적인 벡터에 각각 존재하거나, 하나의 벡터에 존재할 수 있으나, 이에 제한되지 않는다.The DNA encoding the guide RNA and the nucleic acid encoding the Cas protein may be present in individual vectors or in one vector, but are not limited thereto.

본 발명에서 용어, "가이드 RNA(guide RNA)"는 표적 DNA 특이적인 RNA를 의미하며, Cas 단백질과 결합하여 Cas 단백질을 표적 DNA로 인도할 수 있다. 또한. 본 발명에서, 가이드 RNA는 절단하고자 하는 어떠한 표적에 특이적이 되도록 제조될 수 있다.As used herein, the term "guide RNA" means a target DNA specific RNA, and may bind to a Cas protein to guide the Cas protein to the target DNA. Also. In the present invention, guide RNAs can be made to be specific to any target to be cleaved.

구체적으로, 상기 세포 내 도입은 전기천공법(electroporation), 리포좀, 바이러스벡터, 나노파티클 (nanoparticles) 뿐만 아니라 PTD (Protein translocation domain) 융합 단백질 방법 등 당업계에 공지된 다양한 방법들을 사용할 수 있으며, 상기 예에 제한되는 것은 아니다.
Specifically, the introduction into the cell may use a variety of methods known in the art, such as electroporation, liposomes, viral vectors, nanoparticles, as well as PTD (Protein translocation domain) fusion protein method, It is not limited to the example.

또한, 본 발명은 pyc2 유전자와 mdh3 유전자, spmae1 유전자, mls1 유전자 및 icl1 유전자는 도입되어 있고, adh 유전자, gpd1 유전자 및 gpd2 유전자가 비활성화된, C4 유기산의 생성이 증가된 재조합 효모를 제공할 수 있다.In addition, the present invention can provide a recombinant yeast having increased production of C4 organic acid in which the pyc2 gene, the mdh3 gene, the spmae1 gene, the mls1 gene, and the icl1 gene are introduced and the adh gene, the gpd1 gene, and the gpd2 gene are inactivated. .

상기 adh 유전자는 adh1, adh2, adh3, adh4, adh5, adh6 및 adh7 중에서 선택되는 어느 하나 이상의 유전자일 수 있다.The adh gene may be any one or more genes selected from adh1, adh2, adh3, adh4, adh5, adh6 and adh7.

본 발명은 상기와 같이 재조합 균주에 mls1 유전자 및 icl1 유전자가 추가적으로 도입된 것일 수 있다. 상기 재조합 균주는 에탄올 생산능 및 세포의 성장 촉진능이 추가된 것일 수 있다. As described above, the mls1 gene and the icl1 gene may be additionally introduced into the recombinant strain. The recombinant strain may be added to the ability to promote ethanol production and growth of cells.

상기 mls1 유전자 및 icl1 유전자는 벡터에 삽입된 채로 균주에 도입될 수 있으며, 상기 벡터로는 플라스미드, 바이러스, 코즈미드 등 다양한 형태의 벡터를 사용할 수 있다. 재조합 벡터는 클로닝 벡터 및 발현 벡터를 포함한다. 재조합 벡터는 숙주 세포 내에서 mls1 유전자 및 icl1 유전자가 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하며, 예를 들어 프로모터, 개시코돈, 목적하는 단백질을 암호화하는 유전자, 종결코돈 및 터미네이터를 포함하고 있는 것이 바람직하다. 그 외에 시그널 펩타이드를 코딩하는 DNA, 인핸서 서열, 목적하는 유전자의 5' 말단 및 3' 말단의 비해독영역, 선별 마커 영역, 또는 복제가능단위 등을 적절하게 포함할 수 있다.
The mls1 gene and icl1 gene may be introduced into a strain while being inserted into a vector, and various types of vectors such as plasmid, virus, and cosmid may be used as the vector. Recombinant vectors include cloning vectors and expression vectors. Recombinant vectors contain essential regulatory elements operably linked to express the mls1 gene and icl1 gene in the host cell, including, for example, promoters, initiation codons, genes encoding desired proteins, termination codons and terminators. It is preferable. In addition, the DNA encoding the signal peptide, enhancer sequences, non-translated regions, selectable marker regions, or replicable units at the 5 'and 3' ends of the gene of interest may be appropriately included.

또한 본 발명의 다른 측면은 1) 상기 재조합 효모를 제조하는 단계; 및In addition, another aspect of the invention 1) preparing the recombinant yeast; And

2) 상기 재조합 효모를 배지에서 배양하는 단계를 포함하는 C4 유기산의 생성 방법에 관한 것이다.2) to a method for producing a C4 organic acid comprising culturing the recombinant yeast in a medium.

상기 배지는 세포 배양용으로 통상적으로 사용되는 임으의 배지가 제한없이 사용될 수 있다. 상기 배지는 질소원, 무기염류 등을 포함할 수 있고, 필요에 따라 생리활성물질을 추가로 포함할 수 있다. 상기 질소원으로는 펩톤 등의 단백질, 아미노산, 요소 등의 유기 질소원과 질산염, 암모늄염 등의 무기 질소원이 사용될 수 있고, 상기 무기염류에는 Na+, K+, Ca2+, Mg2+, Cl- 등이 사용될 수 있으며, 상기 생리활성물질에는 비타민 등이 사용될 수 있으나 이에 한정되는 것은 아니다. 또한, 상기 배지에는 효모 추출물, 맥아(malt) 추출물 등이 포함될 수 있고, 세포 배양용으로 시판되는 RPMI(Rosewell Park Memorial Institute), DMEM(Dulbecco's Modified Eagle's Medium), MEM(Minimum Essential Medium) 등의 배양 배지들도 사용할 수 있으나 이에 한정되는 것은 아니다. 본 발명의 한 구현예에 따르면, 상기 탄소원으로는 아세트산, 전분, 포도당, 설탕 등이 사용될 수 있으나, 바람직하게는 포도당이 사용되는 것일 수 있다.The medium may be any medium that is conventionally used for cell culture without limitation. The medium may include a nitrogen source, inorganic salts, and the like, and may further include a bioactive material as necessary. As the nitrogen source, organic nitrogen sources such as proteins, amino acids, urea, and the like, and inorganic nitrogen sources such as nitrates and ammonium salts may be used. The inorganic salts may be Na +, K +, Ca2 +, Mg2 +, Cl-, and the like. Vitamin and the like may be used for the bioactive material, but is not limited thereto. In addition, the medium may include yeast extract, malt extract, etc., culture such as Rosewell Park Memorial Institute (RPMI), Dulbecco's Modified Eagle's Medium (DMEM), Minimum Essential Medium (MEM), etc., which are commercially available for cell culture. Badges may also be used, but are not limited thereto. According to one embodiment of the invention, acetic acid, starch, glucose, sugar and the like may be used as the carbon source, but preferably glucose may be used.

상기 배양은 소정의 온도 및 pH 조건하에 행해질 수 있다. 상기 온도는 20 내지 50 ℃, 바람직하게는 25 내지 40 ℃, 보다 바람직하게는 28 내지 35 ℃일 수 있으나 이에 한정되는 것은 아니다.The culturing can be performed under predetermined temperature and pH conditions. The temperature may be 20 to 50 ° C, preferably 25 to 40 ° C, more preferably 28 to 35 ° C, but is not limited thereto.

또한, 본 발명의 다른 구현예에 따르면, 상기 pH는 4 내지 9의 범위, 바람직하게는 5 내지 8의 범위일 수 있으나 이에 한정되는 것은 아니다.In addition, according to another embodiment of the present invention, the pH may be in the range of 4 to 9, preferably in the range of 5 to 8, but is not limited thereto.

본 발명은 탄소원으로 글루코스가 제공되는 경우에 있어서의 글루코스의 효율적인 이용이 가능한 미생물, 바람직하게는 효모 균주를 제공한다. 이를 위하여, 본 발명의 한 구현예에서는 글루코스 대사 촉진을 위한 유전자 조작 실험을 수행하여 글루코스로부터 에탄올 또는 C4 유기산 대사 능력이 향상된 효모를 설계 형질전환 및 특성을 확인하고, 글루코스 대사 능력이 향상된 미생물, 바람직하게는 효모를 활용한 유용 화합물 생산성을 확인하였다.The present invention provides a microorganism, preferably a yeast strain, capable of efficient use of glucose when glucose is provided as a carbon source. To this end, in one embodiment of the present invention by performing genetic engineering experiments for promoting glucose metabolism, yeasts with improved ability to metabolize ethanol or C4 organic acid from glucose to confirm the transformation and properties, microorganisms with improved glucose metabolism, preferably Preferably, the useful compound productivity using yeast was confirmed.

본 발명의 한 구현예에서는 효모 균주에서 pyc2 유전자와 mdh3 유전자를 추가로 도입한 효모 균주(DM 균주)를 구축한 결과, 이전에는 거의 생산되지 않던 말레이트가 약 2.7 g/L 농도로 생산되고 있음을 확인하였다(도 3 참조).In one embodiment of the present invention, as a result of constructing the yeast strain (DM strain) in which the pyc2 gene and the mdh3 gene were additionally introduced from the yeast strain, malate, which was rarely produced before, is produced at a concentration of about 2.7 g / L It was confirmed (see FIG. 3).

alcohol dehydrogenase I을 암호화하는 유전자 adh1 유전자를 불활성화한 재조합 D-A1 균주를, CRISPR/Cas9 시스템을 이용하여 유전체 내의 해당 유전자에 종결코돈을 삽입하는 방식을 이용하여 제조하고, 여기에 pyc2 유전자와 mdh3 유전자를 추가로 도입하여, 효모 균주를 구축한 결과, 7.6 g/L농도로 말레이트가 DM 균주에 비해 3배 이상 현저히 증가하였음을 확인하였다(도 4 참조).The recombinant D-A1 strain in which the gene adh1 gene encoding alcohol dehydrogenase I was inactivated was prepared by inserting a stop codon into the corresponding gene in the genome using the CRISPR / Cas9 system, and the pyc2 gene and mdh3 Gene was further introduced, and as a result of constructing the yeast strain, it was confirmed that the maleate was significantly increased more than three times compared to the DM strain at a concentration of 7.6 g / L (see FIG. 4).

glycerol-3-phosphate dehydrogenase를 coding하는 gpd1과 gpd2 유전자를 효모의 유전체에서 제거하고, 동시에 pyc2 유전자와 mdh3 유전자를 도입하여 발효과정의 부산물인 glycerol 생성을 제한하고 유전체에 말레이트 생산관련 유전자들을 삽입함으로써 장시간의 배양에서도 효소활성의 지속성을 유지하도록 DM-A1G12 균주를 구축한 결과, 글리세롤의 생산이 이루어지지 않고, 최종 말레이트 농도는 7.58 g/L였으며, 에탄올 농도는 14.7 g/L로 DM-A1보다 현저히 높은 것으로 확인되었다(도 5 참조).By removing the gpd1 and gpd2 genes encoding glycerol-3-phosphate dehydrogenase from the yeast genome, and simultaneously introducing the pyc2 and mdh3 genes to limit the production of glycerol, a byproduct of fermentation, and inserting malate production-related genes into the genome. As a result of constructing DM-A1G12 strain to maintain the persistence of enzymatic activity even in long-term culture, the production of glycerol was not achieved, the final malate concentration was 7.58 g / L, and the ethanol concentration was 14.7 g / L. It was confirmed to be significantly higher (see FIG. 5).

추가적으로 글리옥실산 회로(glyoxylate cycle)를 형성하는 효소 중 이소시트르산을 글리옥실레이트(glyoxylate)와 석시네이트(succinate)로 전환하는 이소시트르산분해효소(isocitrate lyase)와 말산합성 효소(malate synthase)를 각각 암호화하는 icl1유전자와 mls1 유전자를 DM-A1G12 균주로 도입하여, DMG-A1G12 균주를 구축한 결과, DM-A1G12 균주 대비 약 1.5배 더 높은 말레이트를 생산하였으며, 소모한 포도당 대비 말레이트 전환율 또한 0.28로, 1.6배 더 우수한 것으로 확인되었다(도 6, 도 7 참조).
Additionally, among the enzymes that form the glyoxylate cycle, isocitrate lyase and malate synthase, which convert isocitric acid into glyoxylate and succinate, respectively By introducing the icl1 gene and the mls1 gene encoding the DM-A1G12 strain, the DMG-A1G12 strain was constructed, which produced about 1.5 times higher malate than the DM-A1G12 strain. , 1.6 times better (see FIGS. 6 and 7).

이하 본 발명을 실시예, 실험예 및 제조예에 의해 상세히 설명한다. 단, 하기 실시예, 실험예 및 제조예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예, 실험예 및 제조예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by Examples, Experimental Examples and Preparation Examples. However, the following Examples, Experimental Examples and Preparation Examples are merely illustrative of the present invention, and the content of the present invention is not limited to the following Examples, Experimental Examples, and Preparation Examples.

제조예 1: pRS423GPD_pyc2 벡터 구축 및 확인Preparation Example 1: Construction and Identification of pRS423GPD_pyc2 Vector

pyc2 유전자와 mdh3ΔSKL 유전자를 동시에 발현하는 벡터를 구축하기 위해 우선 각각의 유전자를 하나씩 포함하는 벡터를 구축하였다. 3543 bp의 길이를 가지는 pyc2 유전자를 pyc2_F(서열 1), pyc2_R(서열 2) 프라이머, S. cerevisiae D452-2의 게놈 DNA와 함께 PCR 증폭을 실시하였다. 증폭된 PCR 산물은 XhoI, XmaI 제한효소 처리 하였고 pRS423GPD 벡터에도 동일한 제한효소를 처리한 후 두 유전자를 ligation 하였다. 도 2a는 pRS423GPD_pyc2 벡터의 개열지도이다. 이때, pRS423GPD는 외래 유전자를 플라스미드 형태로 과발현하기 위한 벡터로, GPD 프로모터를 포함하고 있다.To construct a vector expressing the pyc2 gene and the mdh3ΔSKL gene at the same time, a vector including each gene was constructed. The pyc2 gene having a length of 3543 bp was subjected to PCR amplification with the genomic DNA of pyc2_F (SEQ ID NO: 1), pyc2_R (SEQ ID NO: 2) primers, and S. cerevisiae D452-2. The amplified PCR product was treated with XhoI and XmaI restriction enzymes, and the two genes were ligation after the same restriction enzyme treatment with pRS423GPD vector. 2A is a cleavage map of the pRS423GPD_pyc2 vector. At this time, pRS423GPD is a vector for overexpressing a foreign gene in the form of a plasmid, and includes a GPD promoter.

재조합 벡터는 E. coli TOP10(Invitrogen, Carlsbad, CA, USA)에 형질전환하여 클로닝하였으며 최종적으로 pyc2_SQC1(서열 3), pyc2_SQC2(서열 4), pyc2_SQC3(서열 5), GPD_SQC_F(서열 6), CYC_SQC_R(서열 7) 프라이머로 유전자를 시퀀싱하여 pRS423GPD_pyc2 벡터의 구축을 확인하였다. pRS423GPD_pyc2 벡터는 S. cerevisiae 유래의 pyc2 유전자를 함유한 재조합 벡터이다.The recombinant vector was transformed and cloned into E. coli TOP10 (Invitrogen, Carlsbad, CA, USA), and finally pyc2_SQC1 (SEQ ID NO: 3), pyc2_SQC2 (SEQ ID NO: 4), pyc2_SQC3 (SEQ ID NO: 5), GPD_SQC_F (SEQ ID NO: 6), and CYC_SQC_R SEQ ID NO: 7) Gene was sequenced with a primer to confirm construction of the pRS423GPD_pyc2 vector. The pRS423GPD_pyc2 vector is a recombinant vector containing a pyc2 gene from S. cerevisiae.

서열번호SEQ ID NO: 프라이머primer 시퀀스(5' to 3')Sequence (5 'to 3') 1One pyc2_Fpyc2_F tccccccgggatgagcagtagcaagaaatttccccccgggatgagcagtagcaagaaatt 22 pyc2_Rpyc2_R ccgctcgagttactttttttgggatggggccgctcgagttactttttttgggatgggg 33 pyc2_SQC1pyc2_SQC1 tttgccccgtgaagttcgtgatttgccccgtgaagttcgtga 44 pyc2_SQC2pyc2_SQC2 ccggatggagacaagtgctaccggatggagacaagtgcta 55 pyc2_SQC3pyc2_SQC3 caaccatcaattaatgcactcaaccatcaattaatgcact 66 GPD_SQC_FGPD_SQC_F gtaggtattgattgtaattctgtaaatgtaggtattgattgtaattctgtaaat 77 CYC_SQC_RCYC_SQC_R tctcaagcaaggttttcagtataattctcaagcaaggttttcagtataat

제조예 2: pRS423GPD_mdh3ΔSKL 벡터 구축 및 확인Preparation Example 2 Construction and Verification of pRS423GPD_mdh3ΔSKL Vector

1023bp의 길이를 가진 mdh3ΔSKL 유전자는 pfu polymerase, MDH3_F, MDH3_R primers 와 S. cerevisiae D452-2의 게놈 DNA가 PCR반응에 사용되었다. 증폭된 PCR산물과 pRS423GPD 벡터는 BamHI/EcoRI(mdh3ΔSKL)으로 처리한 후 ligartion 반응을 수행하였다. 재조합벡터는 E.coli TOP10에 형질전환 하였다. GPD_SQC_F(서열 6), CYC_SQC_R(서열 7) 프라이머로 유전자를 시퀀싱하여 pRS423GPD_mdh3ΔSKL 벡터의 구축을 확인하였다. 도 2b는 pRS423GPD mdh3ΔSKL 벡터의 개열지도이다. 이때, pRS423GPD는 외래 유전자를 플라스미드 형태로 과발현하기 위한 벡터로, GPD 프로모터를 포함하고 있다. The mdh3ΔSKL gene, which has a length of 1023 bp, was used for the PCR reaction with genomic DNA of pfu polymerase, MDH3_F, MDH3_R primers and S. cerevisiae D452-2. The amplified PCR product and the pRS423GPD vector were treated with BamHI / EcoRI (mdh3ΔSKL) followed by ligartion reaction. The recombinant vector was transformed into E. coli TOP10. Genes were sequenced with GPD_SQC_F (SEQ ID NO: 6) and CYC_SQC_R (SEQ ID NO: 7) primers to confirm the construction of the pRS423GPD_mdh3ΔSKL vector. 2B is a cleavage map of the pRS423GPD mdh3ΔSKL vector. At this time, pRS423GPD is a vector for overexpressing a foreign gene in the form of a plasmid, and includes a GPD promoter.

pRS423GPD_mdh3ΔSKL 벡터는 S. cerevisiae 유래의 mdh3 유전자를 함유한 재조합 벡터이다. The pRS423GPD_mdh3ΔSKL vector is a recombinant vector containing the mdh3 gene from S. cerevisiae.

서열번호SEQ ID NO: 프라이머primer 서열 (5' to 3')Sequence (5 'to 3') 1010 mdh3_Fmdh3_F cgggatccatggtcaaagtcgcaattctcgggatccatggtcaaagtcgcaattct 1111 mdh3_Rmdh3_R cggaattctcaagagtctaggatgaaaccggaattctcaagagtctaggatgaaac

제조예 3 : pRS423GPD_pyc2_mdh3ΔSKL 벡터의 구축 및 확인Preparation Example 3 Construction and Confirmation of pRS423GPD_pyc2_mdh3ΔSKL Vector

S. cerevisiae 효모에서 malate를 생산하기 위하여 피루브산 탄산효소 I (pyruvate carboxylase)과 malate 탈수소효소(malate dehydrogenase) 유전자 및 C4-유기산 이송체를 과발현함으로써 malate을 포함한 다양한 유기산을 생산하고자 하였다. 이를 위해 우선, malate 생산관련하여, pyc2와 mdh3ΔSKL 유전자를 포함하는 제1 재조합 벡터(pRS423GPD_pyc2_mdh3ΔSKL 벡터)를 구축하였다. In order to produce malate in S. cerevisiae yeast, various organic acids including malate were produced by overexpressing the pyruvate carboxylase and malate dehydrogenase genes and the C4-organic acid transporter. To this end, first, in relation to malate production, a first recombinant vector (pRS423GPD_pyc2_mdh3ΔSKL vector) including pyc2 and mdh3ΔSKL genes was constructed.

pyc2와 mdh3ΔSKL 유전자를 동시에 발현하는 벡터를 구축하기 위해 앞서 상기 제조예 2로부터 구축된 pRS423GPD-mdh3ΔSKL 벡터에서 GPD1 promoter, mdh3ΔSKL ORF, CYC1 terminator(2000bp) 카세트를 PCR로 증폭시킨 후 SacI 처리를 실시하였다. 동시에, 상기 제조예 1로부터 구축된 pRS423GPD_pyc2 벡터에도 SacI 및 CIAP 처리 후에 ligation을 실시하였다. 이후 E. coli TOP10에 형질전환을 실시하였다. In order to construct a vector expressing pyc2 and mdh3ΔSKL gene at the same time, GPD1 promoter, mdh3ΔSKL ORF, and CYC1 terminator (2000bp) cassette were amplified by PCR in pRS423GPD-mdh3ΔSKL vector constructed from Preparation Example 2 above, followed by SacI treatment. At the same time, the pRS423GPD_pyc2 vector constructed from Preparation Example 1 was subjected to ligation after SacI and CIAP treatment. Thereafter, E. coli was transformed into TOP10.

도 2c는 pRS423GPD_pyc2_mdh3ΔSKL 벡터의 개열지도이다. 이때, pRS423GPD는 외래 유전자를 플라스미드 형태로 과발현하기 위한 벡터로, GPD 프로모터를 포함하고 있다. pRS423GPD_pyc2_mdh3ΔSKL 벡터는 S. cerevisiae 유래의 pyc2 유전자와 mdh3 유전자를 동시에 함유한 pRS423GPD의 재조합 벡터이다.
2C is a cleavage map of the pRS423GPD_pyc2_mdh3ΔSKL vector. At this time, pRS423GPD is a vector for overexpressing a foreign gene in the form of a plasmid, and includes a GPD promoter. The pRS423GPD_pyc2_mdh3ΔSKL vector is a recombinant vector of pRS423GPD containing both pyc2 and mdh3 genes from S. cerevisiae.

제조예 4 : pRS425GPD_spmae1 벡터의 구축 및 확인Preparation Example 4 Construction and Verification of pRS425GPD_spmae1 Vector

Schizosaccharomyce pombe 균주 유래의 C4 유기산 이송체 단백질을 클로닝하기 위해 우선 S. pombe의 게놈 DNA를 추출하였다. 이후 spmae1_F(서열 10), spmae1_R(서열 11) 프라이머를 통해 PCR로 해당 유전자를 증폭하였다. 증폭된 spmae1 유전자는 pstI, speI 제한효소 처리 하였고 pRS425GPD 벡터에도 동일한 제한효소를 처리한 후 두 유전자를 ligation 하였다. 재조합벡터는 E.coli TOP10에 형질전환하여 클로닝하였으며 최종적으로 GPD_SQC_F(서열 6), CYC_SQC_R(서열 7) 프라이머로 유전자를 시퀀싱하여 pRS425PD_spmae1 벡터의 구축을 확인하였다. To clone the C4 organic acid transporter protein from the Schizosaccharomyce pombe strain, the genomic DNA of S. pombe was first extracted. Then, the genes were amplified by PCR through the spmae1_F (SEQ ID NO: 10) and spmae1_R (SEQ ID NO: 11) primers. The amplified spmae1 gene was treated with pstI and speI restriction enzymes, and the same restriction enzymes were also treated with the pRS425GPD vector to ligation the two genes. The recombinant vector was cloned by transforming E. coli TOP10 and finally constructing the pRS425PD_spmae1 vector by sequencing the gene with GPD_SQC_F (SEQ ID NO: 6) and CYC_SQC_R (SEQ ID NO: 7) primers.

도 2d는 pRS425PD_spmae1 벡터의 개열지도이다. 이때, pRS425PD는 외래 유전자를 플라스미드 형태로 과발현하기 위한 벡터로, GPD 프로모터를 포함하고 있다. 2D is a cleavage map of the pRS425PD_spmae1 vector. At this time, pRS425PD is a vector for overexpressing a foreign gene in the form of a plasmid, and includes a GPD promoter.

pRS425PD_spmae1 벡터는 S. pombe 유래의 mae1 유전자를 함유한 pRS425GPD의 재조합 벡터이다.The pRS425PD_spmae1 vector is a recombinant vector of pRS425GPD containing the mae1 gene from S. pombe .

서열번호SEQ ID NO: 프라이머primer 서열 (5' to 3')Sequence (5 'to 3') 1010 spmae1_Fspmae1_F aactgcagttaaacgctttcaactgcagttaaacgctttc 1111 spmae1_Rspmae1_R gactagtatgggtgaactcaaggaaatctgactagtatgggtgaactcaaggaaatct

제조예 5 내지 8: CRISPR/Cas9 이용한 가이드 벡터(pRS42H_gRNA_adh1, p42H_gRNA_gpd1, p42H_gRNA_gpd2, p42H_gRNA_adh3 벡터 구축) 구축 Preparation Examples 5 to 8: Construction of guide vectors (pRS42H_gRNA_adh1, p42H_gRNA_gpd1, p42H_gRNA_gpd2, p42H_gRNA_adh3 vectors construction) using CRISPR / Cas9

adh1을 불활성화하기 위해, 시작코돈으로부터 downstream으로 83번째에 위치한 트립토판(tryptophan)을 코딩(coding)하는 TGG서열을 PAM 시퀀스(sequence)로 지정하여 종결코돈(stop codon)인 TAA로 치환하도록 하였다.In order to inactivate adh1, the TGG sequence encoding tryptophan located 83rd from the start codon to downstream was designated as the PAM sequence and replaced with TAA, the stop codon.

우선, Aureobasidine A를 표지하는 pRS414TEF-Cas9 벡터를 효모 균체 내로 형질전환하였다. 이때, pRS414TEF-Cas9 벡터는 Cas9 endonuclease 효소를 발현하는 벡터(Plasmid #43802, Addgene사)이다.First, the pRS414TEF-Cas9 vector labeled with Aureobasidine A was transformed into yeast cells. At this time, the pRS414TEF-Cas9 vector is a vector (Plasmid # 43802, Addgene) expressing the Cas9 endonuclease enzyme.

다음, 가이드(guide) RNA를 발현하는 pRS42H_gRNA_adh1 벡터를 구축하였다. 기존의 gRNA 발현 카세트(expression cassette)는 trp1 유전자를 타겟팅(targeting)하도록 설계가 되어 있었으므로, 이를 이용하여, adh1 유전자를 타겟팅하도록 변경하여 사용하였다(표 4). 이때 pRS42H_gRNA는 효모 내 가이드 RNA를 발현하는 벡터(Plasmid #64331, Addgene사)이다.Next, a pRS42H_gRNA_adh1 vector expressing guide RNA was constructed. Conventional gRNA expression cassette (expression cassette) was designed to target the trp1 gene (target), using this, was changed to target the adh1 gene was used (Table 4). At this time, pRS42H_gRNA is a vector expressing guide RNA in yeast (Plasmid # 64331, Addgene).

서열번호SEQ ID NO: 유전자명Gene name CRISPR target 서열CRISPR target sequence 4949 adh1adh1 tgggtgaaaacgttaagggctggtgggtgaaaacgttaagggctgg 5050 gpd1gpd1 tcgctccaatagtacaaatgtggtcgctccaatagtacaaatgtgg 5151 gpd2gpd2 gtttcgtagaaggtatgggatgggtttcgtagaaggtatgggatgg 5252 adh3adh3 tacatgcttggcacggcgattacatgcttggcacggcgat

상술한 바와 같이 adh1 유전자가 불활성화된 플라스미드는 p42H_gRNA_adh1(제조예 5), p42H_gRNA_gpd1(제조예 6), p42H_gRNA_gpd2(제조예 7), p42H_gRNA_adh3(제조예 8) 이며, p42H_gRNA_adh1은 효모 유전체 내 adh1 유전자를 타겟하는 가이드 RNA(guide RNA)를 발현하는 벡터이고, p42H_gRNA_gpd1는 효모 유전체 내 gpd1 유전자를 타겟하는 가이드 RNA(guide RNA)를 발현하는 벡터이며, p42H_gRNA_gpd2는 효모 유전체 내 gpd2 유전자를 타겟하는 가이드 RNA(guide RNA)를 발현하는 벡터이고, p42H_gRNA_adh3는 효모 유전체 내 adh3 유전자 타겟하는 guide RNA를 발현하는 벡터이다.
As described above, the plasmids in which the adh1 gene is inactivated are p42H_gRNA_adh1 (Preparation 5), p42H_gRNA_gpd1 (Preparation 6), p42H_gRNA_gpd2 (Preparation 7), and p42H_gRNA_adh3 (Preparation 8), and the p42H_gRNA_adh1 targets the dh1 gene in the genome. P42H_gRNA_gpd1 is a vector expressing a guide RNA targeting the gpd1 gene in the yeast genome, and p42H_gRNA_gpd2 is a guide RNA targeting the gpd2 gene in the yeast genome. P42H_gRNA_adh3 is a vector expressing adh3 gene-targeting guide RNA in the yeast genome.

비교예 1 : 유기산 생산용 재조합 효모 균주(DC2) 구축Comparative Example 1: Construction of Recombinant Yeast Strain (DC2) for Organic Acid Production

야생형 효모인 S. cerevisiae D452-2 균주를 본 발명에서 'D'라고 명명하기로 한다.S. cerevisiae D452-2 strain, a wild type yeast, will be referred to as 'D' in the present invention.

다음으로, 유전자를 도입하지 않은 pRS423GPD와 pRS425GPD 공벡터들로 S. cerevisiae D452-2을 형질전환하여, 'DC2'로 명명한 재조합 균주를 구축하였다.
Next, S. cerevisiae D452-2 was transformed with pRS423GPD and pRS425GPD empty vectors without introducing a gene to construct a recombinant strain named 'DC2'.

비교예 2 : CRISPR/Cas9 이용한 재조합 효모 균주(D-Cas9) 구축Comparative Example 2 Construction of Recombinant Yeast Strain (D-Cas9) Using CRISPR / Cas9

야생형 효모인 S. cerevisiae D452-2 균주(D 균주)에 pRS414TEF-Cas9을 형질전환한, 'D-Cas9'로 명명한 재조합 균주를 구축하였다.
A recombinant strain named 'D-Cas9' was constructed in which wild-type yeast S. cerevisiae D452-2 strain (D strain) was transformed with pRS414TEF-Cas9.

비교예 3 : 알코올 생산경로가 억제되고, 공벡터가 형질도입된 재조합 효모 균주(DC2-A1) 구축Comparative Example 3 Construction of Recombinant Yeast Strain (DC2-A1) in which Alcohol Production Pathway is Suppressed and Empty Vector Transduced

실시예 2로부터 구축된 D-A1 균주에 유전자를 도입하지 않은 pRS423GPD와 pRS425GPD 공벡터들로 형질전환하여 DC2-A1 균주를 구축하였다.
The DC2-A1 strain was constructed by transforming the D-A1 strain constructed from Example 2 with pRS423GPD and pRS425GPD empty vectors without introducing a gene.

비교예 4 : 공벡터가 형질도입된 재조합 효모 균주(DC3-A1G12) 구축Comparative Example 4 Construction of Recombinant Yeast Strain (DC3-A1G12) Transduced with an Empty Vector

실시예 5로부터 구축된 D-A1G12 균주에 유전자를 도입하지 않은 pRS423GPD와 pRS425GPD 및 pRS426GPD 공벡터들로 형질전환하여 DC2-A1G12 균주를 구축하였다.
The DC2-A1G12 strain was constructed by transforming the D-A1G12 strain constructed from Example 5 with pRS423GPD and pRS425GPD and pRS426GPD co-vectors without genes.

실시예 1 : 유기산 생산용 재조합 효모 균주(DM) 구축Example 1 Construction of Recombinant Yeast Strain (DM) for Organic Acid Production

야생형 효모인 S. cerevisiae D452-2 균주를 준비하고, 제조예 3으로부터 구축된 pRS423GPD_pyc2_mdh3ΔSKL 벡터와 제조예 4로부터 구축된 pRS425GPD_spmae1 벡터를 S. cerevisiae D452-2 균주에 형질전환하여, 'DM'으로 명명한 재조합 균주를 구축하였다.
S. cerevisiae D452-2 strain, a wild-type yeast was prepared, and the pRS423GPD_pyc2_mdh3ΔSKL vector constructed from Preparation Example 3 and the pRS425GPD_spmae1 vector constructed from Preparation Example 4 were transformed into S. cerevisiae D452-2 strain, and named 'DM'. Recombinant strains were constructed.

실시예 2 : 알코올 생산경로가 억제된 재조합 효모 균주(D-A1) 구축Example 2 Construction of Recombinant Yeast Strain (D-A1) with Inhibited Alcohol Production Pathway

alcohol dehydrogenase I을 암호화하는 유전자 adh1 유전자를 불활성화한 재조합 D-A1 균주를 구축하였다. 재조합 D-A1 균주는 CRISPR/Cas9 시스템을 이용하여 유전체 내의 해당 유전자에 종결코돈을 삽입하는 방식을 이용하였다. 즉, 실시예 2의 균주는 adh1 유전자가 파쇄된 재조합 효모 균주(S. cerevisiae D452-2 Δadh1)이다.A recombinant D-A1 strain was constructed that inactivated the gene adh1 gene encoding alcohol dehydrogenase I. Recombinant D-A1 strain was used to insert a stop codon to the gene in the genome using the CRISPR / Cas9 system. In other words, the strain of Example 2 is a recombinant yeast strain (S. cerevisiae D452-2 Δadh1) in which the adh1 gene is disrupted.

구체적으로, 오버랩(Overlap) PCR을 사용하여, 기존의 서열을 제거한 다음, adh1의 PAM 시퀀스 앞 20 bp 부분으로 치환하였다. 완성된 gRNA 발현 카세트를 SacI과 KpnI 제한효소를 이용하여 pRS42H 벡터에 도입하였다. 마지막으로 구축된 pRS42H_gRNA_adh1 벡터(제조예 5)를 합성한 donor DNA와 함께 Cas9 발현균주로 co-transformation을 실시하였다. 형질전환한 균주는 0.5 μg/ml의 aureobasidine A와 200 μg/mL의 hygromycin이 함께 첨가된 YPD20 고체배지에서 72시간 정치배양하였다. 이렇게 얻어진 콜로니 중 4개를 선별하여 direct PCR을 수행하였다. PCR 단편(fragment)은 gDNA상에서 adh1 유전자의 앞뒤로 100 bp씩을 더하여 증폭되도록 프라이머(primer)로 제작되었다. 총 길이 1207 bp의 PCR 절편을 얻을 수 있도록 설계되었다. 이를 T 벡터(vector)로 클로닝한 후 DNA 시퀀싱 분석을 의뢰하였다. DNA 분석결과, adh1의 5' 로부터 downstream쪽으로 247~249 bp 위치에 존재하는 서열이 TAA 종결코돈으로 치환되었음을 확인할 수 있었다. 최종적으로 adh1 유전자가 녹아웃(knockout)된 것을 확인하였다.
Specifically, using overlap PCR, the existing sequence was removed and then replaced with a 20 bp portion before the PAM sequence of adh1. The complete expression cassette was introduced into a gRNA pRS42H vector using Sac I and Kpn I restriction enzymes. Finally, co-transformation was performed with the Cas9 expression strain together with the donor DNA synthesized with the constructed pRS42H_gRNA_adh1 vector (Production Example 5). The transformed strains were incubated for 72 hours in YPD20 solid medium containing 0.5 μg / ml of aureobasidine A and 200 μg / mL of hygromycin. Four of the colonies thus obtained were selected for direct PCR. PCR fragments were prepared as primers to be amplified by adding 100 bp back and forth of the adh1 gene on gDNA. It was designed to obtain a PCR fragment of 1207 bp in total length. This was cloned into a T vector and commissioned for DNA sequencing analysis. As a result of DNA analysis, it was confirmed that the sequence present at 247 ~ 249 bp from 5 ′ of downstream of adh1 was substituted with TAA stop codon. Finally, it was confirmed that the adh1 gene was knocked out.

실시예 3: 알코올 생성은 억제되고, 유기산 생산은 증진된 재조합 효모 균주(DM-A1) 구축Example 3: Construction of a Recombinant Yeast Strain (DM-A1) with Alcohol Production Inhibited and Organic Acid Production Enhanced

실시예 2로부터 구축된 D-A1 균주에 제조예 3으로부터 구축된 pRS423GPD_pyc2_mdh3ΔSKL 벡터와 제조예 4로부터 구축된 pRS425GPD_spmae1 벡터를 형질전환하여, 'DM-A1'로 명명하였다.
The D-A1 strain constructed from Example 2 was transformed with the pRS423GPD_pyc2_mdh3ΔSKL vector constructed from Preparation Example 3 and the pRS425GPD_spmae1 vector constructed from Preparation Example 4, and named 'DM-A1'.

실시예 4 : gpd1 유전자가 제거된 D-A1G1(Δadh1, Δgpd1::mdh3ΔSKL) 재조합 효모 균주의 구축Example 4 Construction of D-A1G1 (Δadh1, Δgpd1 :: mdh3ΔSKL) Recombinant Yeast Strains from which the gpd1 Gene was Removed

gpd1을 불활성화하기 위해 시작코돈으로부터 downstream으로 71번째에 위치한 tryptophan을 coding하는 TGG서열을 PAM sequence로 지정하였으며 ATG를 포함하여 유전자의 5'부터 620 bp를 파쇄하면서, GPD1p_mdh3ΔSKL_CYC1t 발현카세트를 유전체 내로 도입하도록 실험설계를 하였다. 동시에 guide RNA를 발현하는 pRS42H_gRNA_gpd1벡터를 구축하였다. 우선 기존의 gRNA expression cassette가 adh1 유전자를 targeting하도록 설계가 되어 있었으므로 이를 gpd1을 target하도록 target sequence를 변경해주었다. Overlap PCR을 통하여 기존의 서열을 제거하고 gpd1의 PAM sequence 앞 20 bp부분으로 치환해주었다. 완성된 gRNA expression cassette를 sacI과 kpnI을 이용하여 pRS42H에 도입하였다. Donor DNA는 pRS423GPD 벡터의 GPD1 서열의 5'부터 CYC1 terminator의 3' 서열을 증폭하면서 말단부위에 효모 유전체 내 gpd1 유전자의 5' 으로부터 620 bp 부분의 앞뒤 50 bp를 각각 포함하는 프라이머를 이용하여 PCR 증폭 후 정제 하여 donor DNA를 클로닝하였다. 마지막으로 제조예 6으로부터 구축된 pRS42H_gRNA_gpd1 벡터를 정제한 donor DNA와 함께 Cas9 벡터를 함유한 D-A1-Cas9 균주로 co-transformation을 실시하였다. 형질전환한 균주는 0.5 μg/ml의 aureobasidine A와 200 μg/mL의 hygromycin이 함께 첨가된 YPD20 고체배지에서 72시간 정치배양하였다. 이렇게 얻어진 콜로니 중 4개를 선별하여 direct PCR을 진행하였다. PCR fragment는 gDNA상에서 gpd1 유전자의 5' 10 bp 앞에서부터 3' 방향으로 20 bp, gpd1 유전자 ORF의 3' 말단으로부터 20 bp의 한 쌍의 프라이머를 제작하였다. 이 프라이머를 이용하여 PCR하였을 때 실험이 제대로 되었을 경우 즉, gpd1 유전자를 파쇄하고 GPD1p_mdh3ΔSKL_CYC1t 발현 카세트가 유전체에 삽입이 되었을 경우 2586 bp 길이의 유전자가 증폭이 되고 발현카세트가 삽입이 되지 않았을 경우에는 1206 bp의 PCR fragment를 얻을 수 있도록 설계하였다. PCR 확인결과 앞서 구축된 D-A1(adh1 결손 균주)으로부터 D-A1G1(Δadh1, Δgpd1::mdh3SKL) 균주를 성공적으로 구축하였다.
In order to inactivate gpd1, the TGG sequence coding for tryptophan located at the 71st downstream from the start codon was designated as the PAM sequence, and the GPD1p_mdh3ΔSKL_CYC1t expression cassette was introduced into the genome while disrupting 5 to 620 bp of the gene including ATG. An experimental design was made. At the same time, a pRS42H_gRNA_gpd1 vector expressing guide RNA was constructed. First, since the existing gRNA expression cassette was designed to target the adh1 gene, the target sequence was changed to target gpd1. Overlap PCR eliminated the existing sequence and replaced it with the 20 bp fragment in front of the PAM sequence of gpd1. The completed gRNA expression cassette was introduced into pRS42H using sacI and kpnI. Donor DNA amplifies the 5 'to 3' sequences of the CYC1 terminator of the GPD1 sequence of the pRS423GPD vector and PCR amplifies using primers each containing 50 bp before and after the 620 bp portion of the gpd1 gene in the yeast genome at the terminal. The donor DNA was cloned by purification. Finally, co-transformation was performed with the D-A1-Cas9 strain containing the Cas9 vector together with the donor DNA purified from the pRS42H_gRNA_gpd1 vector constructed in Preparation Example 6. The transformed strains were incubated for 72 hours in YPD20 solid medium containing 0.5 μg / ml of aureobasidine A and 200 μg / mL of hygromycin. Four of the colonies thus obtained were selected and subjected to direct PCR. PCR fragments were prepared from a pair of primers of 20 bp in the 3 'direction from the 5' 10 bp of the gpd1 gene on the gDNA, and 20 bp from the 3 'end of the gpd1 gene ORF. When PCR is performed using this primer, 1206 bp when the experiment is successful, ie, when the gpd1 gene is crushed and the GPD1p_mdh3ΔSKL_CYC1t expression cassette is inserted into the genome, the 2586 bp long gene is amplified and the expression cassette is not inserted. It was designed to obtain a PCR fragment. As a result of PCR, the strain D-A1G1 (Δadh1, Δgpd1 :: mdh3SKL) was successfully constructed from the previously constructed D-A1 (adh1 deficient strain).

실시예 5 : gpd2 유전자가 제거된 D-A1G12(Δadh1, Δgpd1::mdh3ΔSKL, Δgpd2) 균주 구축Example 5 Construction of D-A1G12 (Δadh1, Δgpd1 :: mdh3ΔSKL, Δgpd2) Strains from which the gpd2 Gene was Removed

gpd2를 불활성화하기 위해 시작코돈으로부터 downstream으로 309번째에 위치한 tryptophan을 coding하는 TGG서열을 PAM sequence로 지정하였으며 ATG를 포함하여 유전자의 5'부터 980bp를 제거하도록 실험설계를 하였다. 동시에 guide RNA를 발현하는 pRS42H_gRNA_gpd2벡터를 구축하였다. 우선 기존의 gRNA expression cassette가 adh1유전자를 targeting하도록 설계가 되어 있었으므로 이를 gpd2를 target하도록 target sequence를 변경해주었다. Overlap PCR을 통하여 기존의 서열을 제거하고 gpd2의 PAM sequence 앞 20 bp부분으로 치환해주었다. 완성된 gRNA expression cassette를 sacI과 kpnI을 이용하여 pRS42H에 도입하였다. donor DNA는 pRS423GPD 벡터의 GPD1 서열의 5'부터 CYC1 terminator의 3' 서열을 증폭하면서 말단부위에 효모 유전체 내 gpd2 유전자의 5' 으로부터 620bp 부분의 앞뒤 50 bp를 각각 포함하는 프라이머를 이용하여 PCR 증폭 후 정제 하여 donor DNA를 클로닝하였다. 마지막으로 구축된 pRS42H_gRNA_gpd2 벡터를 정제한 donor DNA와 함께 Cas9 벡터를 함유한 D-A1-Cas9 균주(pRS414TEF-Cas9을 함유하는 D-A1 균주)로 co-transformation을 실시하였다. 형질전환한 균주는 0.5 μg/ml의 aureobasidine A와 200 μg/mL의 hygromycin이 함께 첨가된 YPD20 고체배지에서 96시간 정치배양하였다. 이렇게 얻어진 콜로니 중 10개를 선별하여 direct PCR을 진행하였다. PCR fragment는 gDNA상에서 gpd2 유전자의 5' 230 bp 앞에서부터 3' 방향으로 20bp, gpd2 유전자 ORF의 3' 말단으로부터 20 bp의 한 쌍의 프라이머를 제작하였다. 이 프라이머를 이용하여 PCR하였을 때 실험이 제대로 되었을 경우 즉, gpd2 유전자가 파쇄되었을 경우 593 bp 길이의 유전자가 증폭이 되고 발현카세트가 삽입이 되지 않았을 경우에는 1573 bp의 PCR fragment를 얻을 수 있도록 설계하였다. PCR 확인결과 앞서 구축된 D-A1G1(adh1, gpd1 결손 균주) 균주로부터 D-A1G12(Δadh1, Δgpd1::mdh3ΔSKL, Δgpd2)를 성공적으로 구축하였음을 알 수 있었다.
To inactivate gpd2, the TGG sequence coding for tryptophan located at 309th downstream from the start codon was designated as the PAM sequence, and the experimental design was designed to remove 980bp of the gene from 5 'including ATG. At the same time, pRS42H_gRNA_gpd2 vector expressing guide RNA was constructed. First, since the existing gRNA expression cassette was designed to target the adh1 gene, the target sequence was changed to target gpd2. Overlap PCR eliminated the existing sequence and replaced it with the 20 bp fragment in front of the PAM sequence of gpd2. The completed gRNA expression cassette was introduced into pRS42H using sacI and kpnI. Donor DNA was purified after PCR amplification using primers each containing 50 bp before and after 620 bp from 5 'of the gpd2 gene in the yeast genome at the end while amplifying 5' to 3 'sequence of CYC1 terminator of GPD1 sequence of pRS423GPD vector. The donor DNA was cloned. Finally, the constructed pRS42H_gRNA_gpd2 vector was co-transformed with a D-A1-Cas9 strain containing a Cas9 vector (D-A1 strain containing pRS414TEF-Cas9) together with donor DNA. The transformed strains were incubated for 96 hours in YPD20 solid medium containing 0.5 μg / ml of aureobasidine A and 200 μg / mL of hygromycin. Ten of the colonies thus obtained were selected and subjected to direct PCR. PCR fragments were prepared from a pair of primers of 20bp in the 3 'direction from the 5' 230 bp of the gpd2 gene on the gDNA, and 20 bp from the 3 'end of the gpd2 gene ORF. When PCR was carried out using this primer, it was designed to obtain 1573 bp PCR fragment when the experiment was successful, that is, when the gpd2 gene was disrupted, the 593 bp gene was amplified and the expression cassette was not inserted. . As a result of PCR, D-A1G12 (Δadh1, Δgpd1 :: mdh3ΔSKL, Δgpd2) was successfully constructed from the previously constructed D-A1G1 (adh1, gpd1-deficient strain) strain.

실시예 6 : DM-A1G12 재조합 효모 균주의 구축Example 6: Construction of DM-A1G12 Recombinant Yeast Strain

실시예 5로부터 구축된 D-A1G12(Δadh1, Δgpd1::mdh3ΔSKL, Δgpd2) 균주에 제조예 3으로부터 구축된 pRS423GPD_pyc2_mdh3ΔSKL 벡터와 제조예 4로부터 구축된 pRS425GPD_spmae1 벡터를 형질전환하여, 'DM-A1G12'로 명명하였다.
The D-A1G12 (Δadh1, Δgpd1 :: mdh3ΔSKL, Δgpd2) strain constructed from Example 5 was transformed with the pRS423GPD_pyc2_mdh3ΔSKL vector constructed from Preparation Example 3 and the pRS425GPD_spmae1 vector constructed from Preparation Example 4, and designated as 'DM-A1G12'. It was.

실시예 7 : DMG-A1G12 재조합 효모 균주의 구축Example 7 Construction of DMG-A1G12 Recombinant Yeast Strain

효모 내 말레이트를 생합성할 수 있는 다른 경로로는 글리옥실산 회로(glyoxylate cycle)가 있다. 글리옥실산 회로는 TCA회로 내 이소시트르산(isocitrate)과 이소시트르산분해효소(isocitrate lyase)에 의해 글리옥실레이트(glyoxylate)와 석시네이트(succinate)로 전환되며, 글리옥실레이트(glyoxylate)는 말산합성효소(malate synthase)에 의해 다시 말레이트(malate)로 전환이 이루어진다.Another pathway that can biosynthesize malate in yeast is the glyoxylate cycle. The glyoxylic acid cycle is converted to glyoxylate and succinate by isocitrate and isocitrate lyase in the TCA cycle, and glyoxylate is a malate synthase. (malate synthase) is converted back to malate (malate).

이러한 글리옥실산 회로를 세포질 내에서 구현하기 위하여 퍼옥시솜(peroxysome) 내의 발현효소인 mls1의 유전자 서열 끝 9 bp를 잘라(truncate) 디자인된 mls1ΔSKL 유전자를 pRS426GPD 에피솜 벡터로 도입하였다. In order to implement this glyoxylic acid cycle in the cytoplasm, the designed mls1ΔSKL gene was introduced into the pRS426GPD episomal vector by truncating the end 9 bp of the gene sequence of mls1, an expression enzyme in peroxysome.

icl1 유전자와 mls1ΔSKL 유전자를 동시에 발현하는 벡터를 구축하기 위해 우선 각각의 유전자를 하나씩 포함하는 벡터를 구축하였다. 1665 bp의 길이를 가지는 mls1ΔSKL 유전자를 mls1_F, mls1_R 프라이머, S. cerevisiae D452-2의 게놈 DNA와 함께 PCR 증폭을 실시하였다.To construct a vector expressing the icl1 gene and the mls1ΔSKL gene simultaneously, a vector including each gene was constructed. PCR amplification of the mls1ΔSKL gene having a length of 1665 bp with the genomic DNA of mls1_F, mls1_R primer, and S. cerevisiae D452-2 was performed.

증폭된 PCR 산물은 XhoI, EcoRI 제한효소 처리 하였고, pRS426GPD 벡터에도 동일한 제한효소를 처리한 후, 두 유전자를 ligation 하였다. 재조합벡터는 E. coli TOP10에 형질전환하여 클로닝하였으며 최종적으로 GPD_SQC_F, CYC_SQC_R 프라이머로 유전자를 시퀀싱하여 pRS426GPD_mls1ΔSKL 벡터 구축을 확인하였다. 1674 bp의 길이를 가진 icl1 유전자는 pfu polymerase, icl1_F, icl1_R primers 와 S. cerevisiae D452-2의 게놈 DNA가 PCR반응에 사용되었다. 증폭된 PCR산물과 pRS423GPD 벡터는 XhoI/EcoRI(icl1)으로 처리한 후 ligation 반응을 수행하였다. 재조합벡터는 E. coli TOP10에 형질전환하였다. mls1ΔSKL과 icl1 유전자를 동시에 발현하는 벡터를 구축하기 위하여, 앞서 구축된 pRS426GPD-mls1ΔSKL 벡터에서 GPD1 promoter, mls1ΔSKL ORF, CYC1 terminator(2614bp) 카세트를 PCR로 증폭시킨 후 SacI 처리를 실시하였다. 동시에 pRS426GPD_icl1 벡터에도 SacI 및 CIAP 처리 후에 ligation을 실시하였다. 이후 E. coli TOP10에 형질전환을 실시하였다. 실험에 사용된 벡터는 'pRS426GPD', 'pRS426GPD_mls1ΔSKL', 'pRS426GPD_icl1', 'pRS426GPD_mls1ΔSKL_icl1'가 있다. pRS426GPD는 외래 유전자를 플라스미드 형태로 과발현하기 위한 벡터로 GPD promoter를 포함하는 공벡터이다. pRS426GPD_mls1ΔSKL는 S. cerevisiae 유래의 mls1 유전자 를 함유한 pRS426GPD 벡터(도 2f 참조)이다. pRS426GPD_icl1는 S. cerevisiae 유래의 icl1 유전자를 함유한 pRS426GPD 벡터로, 이의 개열지도가 도 2e에 도시되어 있다. pRS426GPD_mls1ΔSKL_icl1는 S. cerevisiae 유래의 mls1 유전자 및 icl1 유전자를 함유한 pRS426GPD 벡터(도 2g 참조)이다.The amplified PCR product was treated with XhoI and EcoRI restriction enzymes, and the same gene was treated with the pRS426GPD vector, followed by ligation of both genes. The recombinant vector was transformed into E. coli TOP10 and cloned. Finally, genes were sequenced with GPD_SQC_F and CYC_SQC_R primers to confirm pRS426GPD_mls1ΔSKL vector construction. The icl1 gene, which has a length of 1674 bp, uses genomic DNA of pfu polymerase, icl1_F, icl1_R primers and S. cerevisiae D452-2 for PCR. The amplified PCR product and pRS423GPD vector were treated with XhoI / EcoRI (icl1) and then subjected to ligation reaction. The recombinant vector was transformed into E. coli TOP10. In order to construct a vector expressing the mls1ΔSKL and icl1 genes at the same time, the GPD1 promoter, mls1ΔSKL ORF, and CYC1 terminator (2614bp) cassettes were amplified by PCR in the previously constructed pRS426GPD-mls1ΔSKL vector and subjected to SacI treatment. At the same time, the pRS426GPD_icl1 vector was ligation after SacI and CIAP treatment. Thereafter, E. coli was transformed into TOP10. The vectors used in the experiment are 'pRS426GPD', 'pRS426GPD_mls1ΔSKL', 'pRS426GPD_icl1', and 'pRS426GPD_mls1ΔSKL_icl1'. pRS426GPD is a vector for overexpressing a foreign gene in the form of a plasmid and is an empty vector containing a GPD promoter. pRS426GPD_mls1ΔSKL is a pRS426GPD vector containing the mls1 gene from S. cerevisiae (see FIG. 2F). pRS426GPD_icl1 is a pRS426GPD vector containing an icl1 gene derived from S. cerevisiae, and a cleavage map thereof is shown in FIG. 2E. pRS426GPD_mls1ΔSKL_icl1 is a pRS426GPD vector (see FIG. 2G) containing mls1 gene and icl1 gene from S. cerevisiae.

앞서 구축된 벡터인 pRS426GPD_mls1ΔSKL_icl1를 D-A1G12 균주에 말레이트 대사 관련 클로닝 셋트와 동시 도입하여 균주를 구축하였고, 'DMG-A1G12'로 명명하였다.
The previously constructed vector pRS426GPD_mls1ΔSKL_icl1 was simultaneously introduced into the D-A1G12 strain with a maleate metabolism-related cloning set to construct the strain and named 'DMG-A1G12'.

실시예 8 : adh3 유전자가 제거된 D-A13G12 (Δadh1, Δadh3, Δgpd1::mdh3ΔSKL, Δgpd2) 균주 구축Example 8 Construction of D-A13G12 (Δadh1, Δadh3, Δgpd1 :: mdh3ΔSKL, Δgpd2) Strains from which the adh3 Gene was Removed

adh3를 불활성화하기 위해 시작코돈으로부터 downstream으로 82번째에 위치한 tryptophan을 coding하는 TGG서열을 PAM sequence로 지정하였으며 ATG를 포함하여 유전자의 5'부터 275bp를 제거하도록 실험설계를 하였다. 동시에 guide RNA를 발현하는 pRS42H_gRNA_adh3벡터를 구축하였다. 우선 기존의 gRNA expression cassette가 gpd2 유전자를 targeting하도록 설계가 되어 있었으므로, 이를 adh3를 target하도록 target sequence를 변경해주었다. Overlap PCR을 통하여 기존의 서열을 제거하고 adh3의 PAM sequence 앞 20 bp부분으로 치환해주었다. 완성된 gRNA expression cassette를 SacI과 KpnI을 이용하여 pRS42H에 도입하였다. donor DNA는 adh3 knockout용으로 제조된 60bp의 프라이머 한 쌍을 오버랩 PCR을 통해 90bp의 DNA를 증폭한 후 정제하여 실험에 이용하였다. 마지막으로 구축된 pRS42H_gRNA_adh3 벡터를 정제한 donor DNA와 함께 Cas9 벡터를 함유한 D-A1G12-Cas9 균주(pRS414TEF-Cas9을 함유하는 D-A1G12 균주)로 co-transformation을 실시하였다. 형질전환한 균주는 0.5 μg/ml의 aureobasidine A와 200 μg/mL의 hygromycin이 함께 첨가된 YPD20 고체배지에서 120시간 정치배양하였다. 이렇게 얻어진 콜로니 중 12개를 선별하여 direct PCR을 진행하였다. PCR fragment는 gDNA상에서 adh3 유전자의 시작코돈으로부터 5' 방향으로 180 bp 앞에서부터 3' 방향으로 1000bp의 한 쌍의 프라이머를 제작하였다. 이 프라이머를 이용하여 PCR하였을 때 실험이 제대로 되었을 경우 즉, adh3 유전자가 파쇄되었을 경우 906 bp 길이의 유전자가 증폭이 되고 파쇄되지 않았을때는 1180 bp의 PCR fragment를 얻을 수 있도록 설계하였다. PCR 확인결과 앞서 구축된 D-A1G1(adh1, gpd1 결손 균주) 균주로부터 D-A13G12 (Δadh1, Δadh3, Δgpd1::mdh3SKL, Δgpd2)를 성공적으로 구축하였음을 알 수 있었다.
In order to inactivate adh3 , the TGG sequence coding for tryptophan, located at the 82nd downstream from the start codon, was designated as the PAM sequence, and the experimental design was designed to remove 275bp of the gene from 5 'including ATG. At the same time, pRS42H_gRNA_adh3 vector expressing guide RNA was constructed. First, since the existing gRNA expression cassette was designed to target the gpd2 gene, the target sequence was changed to target adh3 . The existing sequence was removed by overlap PCR and replaced with the 20 bp fragment in front of the PAM sequence of adh3. The complete expression cassette was introduced into a gRNA pRS42H using the Sac I and Kpn I. Donor DNA was purified by amplifying 90bp DNA using a pair of 60bp primers prepared for adh3 knockout using overlap PCR. Finally, co-transformation was performed with the D-A1G12-Cas9 strain containing the Cas9 vector (D-A1G12 strain containing pRS414TEF-Cas9) together with the donor DNA of the constructed pRS42H_gRNA_adh3 vector. The transformed strains were incubated for 120 hours in YPD20 solid medium containing 0.5 μg / ml of aureobasidine A and 200 μg / mL of hygromycin. Twelve of the colonies thus obtained were selected and subjected to direct PCR. PCR fragments were prepared from a pair of primers of 1000 bp in the 3 'direction from 180 bp in the 5' direction from the start codon of the adh3 gene on the gDNA. When PCR was performed using this primer, the experiment was successful, that is, when the adh3 gene was disrupted, the 906 bp long gene was amplified and was not designed to obtain 1180 bp PCR fragment. As a result of PCR, D-A13G12 (Δadh1, Δadh3, Δgpd1 :: mdh3SKL, Δgpd2) was successfully constructed from the previously constructed D-A1G1 (adh1, gpd1 deficient strain) strain.

실시예 9 : DM-A13G12 재조합 효모 균주의 구축Example 9 Construction of DM-A13G12 Recombinant Yeast Strain

실시예 8로부터 구축된 D-A13G12(Δadh1, Δadh3, Δgpd1::mdh3ΔSKL, Δgpd2) 균주에 제조예 3으로부터 구축된 pRS423GPD_pyc2_mdh3ΔSKL 벡터와 제조예 4로부터 구축된 pRS425GPD_spmae1 벡터를 형질전환하여, 'DM-A13G12'로 명명하였다.
The D-A13G12 (Δadh1, Δadh3, Δgpd1 :: mdh3ΔSKL, Δgpd2) strains constructed from Example 8 were transformed with the pRS423GPD_pyc2_mdh3ΔSKL vector constructed from Preparation Example 3 and the pRS425GPD_spmae1 vector constructed from Preparation Example 4 to obtain 'DM-A13G12'. It was named.

상기 제조예, 실시예 및 비교예에서 사용된 프라이머, gRNA, 도너 DNA 및 해당 유전자의 염기서열은 하기와 같다.Primers, gRNAs, donor DNAs and base sequences of the genes used in Preparation Examples, Examples and Comparative Examples are as follows.

서열번호SEQ ID NO: 프라이머primer 서열 (5 to 3)Sequence (5 to 3) 1One pyc2_Fpyc2_F tccccccgggatgagcagtagcaagaaatttccccccgggatgagcagtagcaagaaatt 22 pyc2_Rpyc2_R ccgctcgagttactttttttgggatggggccgctcgagttactttttttgggatgggg 33 pyc2_SQC1pyc2_SQC1 tttgccccgtgaagttcgtgatttgccccgtgaagttcgtga 44 pyc2_SQC2pyc2_SQC2 ccggatggagacaagtgctaccggatggagacaagtgcta 55 pyc2_SQC3pyc2_SQC3 caaccatcaattaatgcactcaaccatcaattaatgcact 66 GPD_SQC_FGPD_SQC_F gtaggtattgattgtaattctgtaaatgtaggtattgattgtaattctgtaaat 77 CYC_SQC_RCYC_SQC_R tctcaagcaaggttttcagtataattctcaagcaaggttttcagtataat 88 GPD_sacIGPD_sacI cgagctcagtttatcattatcaatactccgagctcagtttatcattatcaatactc 99 CYC_sacICYC_sacI cgcgagctccaaattaaagccttcgagcgcgagctccaaattaaagccttcgag 1010 mdh3_Fmdh3_F cgggatccatggtcaaagtcgcaattctcgggatccatggtcaaagtcgcaattct 1111 mdh3_Rmdh3_R cggaattctcaagagtctaggatgaaaccggaattctcaagagtctaggatgaaac 1212 spmae1_Fspmae1_F aactgcagttaaacgctttcaactgcagttaaacgctttc 1313 spmae1_Rspmae1_R gactagtatgggtgaactcaaggaaatctgactagtatgggtgaactcaaggaaatct 1414 icl1_Ficl1_F ggaattcatgcctatccccgttggaaaggaattcatgcctatccccgttggaaa 1515 icl1_Ricl1_R ccgctcgagctatttctttacgccattttccgctcgagctatttctttacgccatttt 1616 mls1_Fmls1_F ggaattcatggttaaggtcagtttggaggaattcatggttaaggtcagtttgga 1717 mls1_Rmls1_R ccgctcgagtcacaaatcagtgggcgtcgcctccgctcgagtcacaaatcagtgggcgtcgcct 1818 SacI primerSacI primer cgagctctctttgaaaagataatgtat cgagctctctttgaaaagataatgtat 1919 KpnI primerKpnI primer ggggtaccagacataaaaaacaaaaaaa ggggtaccagacataaaaaacaaaaaaa 2020 adh1_gRNA_Fadh1_gRNA_F tgggtgaaaacgttaagggcgttttagagctagaaatagcaagtgggtgaaaacgttaagggcgttttagagctagaaatagcaag 2121 adh1_gRNA_Radh1_gRNA_R gcccttaacgttttcacccacgatcatttatctttcactgcggagcccttaacgttttcacccacgatcatttatctttcactgcgga 2222 adh1_donor_Fadh1_donor_F tccgatgctgacttgctgggtattatatgtgtgtaaaatagaaagagaacaattgacccgtccgatgctgacttgctgggtattatatgtgtgtaaaatagaaagagaacaattgacccg 2323 adh1_donor_Radh1_donor_R tacaagacttgaaattttccttgcaataaccgggtcaattgttctctttctattttacactacaagacttgaaattttccttgcaataaccgggtcaattgttctctttctattttacac 2424 adh1_sqc_Fadh1_sqc_F atgtctatcccagaaactcaatgtctatcccagaaactca 2525 adh1_sqc_Radh1_sqc_R ttatttagaagtgtcaacaacttatttagaagtgtcaacaac 2626 gpd1_gRNA_Fgpd1_gRNA_F tcgctccaatagtacaaatggttttagagctagaaatagcaagtcgctccaatagtacaaatggttttagagctagaaatagcaag 2727 gpd1_gRNA_Rgpd1_gRNA_R catttgtactattggagcgacgatcatttatctttcactgcggacatttgtactattggagcgacgatcatttatctttcactgcgga 2828 gpd1_donor_Fgpd1_donor_F tatattgtacaccccccccctccacaaacacaaatattgataatataaagtaaagggaacaaaagctggagtatattgtacaccccccccctccacaaacacaaatattgataatataaagtaaagggaacaaaagctggag 2929 gpd1_donor_Rgpd1_donor_R tgtggaacaaggcctttagaaccttatggtcgacgtccttgccctcgccttagggcgaattgggtccggtgtggaacaaggcctttagaaccttatggtcgacgtccttgccctcgccttagggcgaattgggtccgg 3030 gpd1_sqc_Fgpd1_sqc_F tccacaaacacaaatattgatccacaaacacaaatattga 3131 gpd1_sqc_Rgpd1_sqc_R ctaatcttcatgtagatctactaatcttcatgtagatcta 3232 gpd2_gRNA_Fgpd2_gRNA_F gtttcgtagaaggtatgggagttttagagctagaaatagcaaggtttcgtagaaggtatgggagttttagagctagaaatagcaag 3333 gpd2_gRNA_Rgpd2_gRNA_R tcccataccttctacgaaaccgatcatttatctttcactgcggatcccataccttctacgaaaccgatcatttatctttcactgcgga 3434 gpd2_donor_Fgpd2_donor_F agattcaattctctttccctttccttttccttcgctccccttccttatca taaagggaacaaaagctggagagattcaattctctttccctttccttttccttcgctccccttccttatca taaagggaacaaaagctggag 3535 gpd2_donor_Rgpd2_donor_R cttgatagtaggtctcgactttggattctgggaaaaacattctaccgaac tagggcgaattgggtaccggcttgatagtaggtctcgactttggattctgggaaaaacattctaccgaac tagggcgaattgggtaccgg 3636 gpd2_sqc_Fgpd2_sqc_F ttctctaccctgtcattctattctctaccctgtcattcta 3737 gpd2_sqc_Rgpd2_sqc_R ctattcgtcatcgatgtctagctcctattcgtcatcgatgtctagctc 3838 adh3_gRNAadh3_gRNA `ctccgcagtgaaagataaatgatcgtacatgcttggcacggcgatgttttagagctagaaatagcaagtt`ctccgcagtgaaagataaatgatcgtacatgcttggcacggcgatgttttagagctagaaatagcaagtt 3939 adh3_donor_Fadh3_donor_F tatcttctgttcacagttaaaactaggaatagtatagtcataagtcattagtaggtggtctatcttctgttcacagttaaaactaggaatagtatagtcataagtcattagtaggtggtc 4040 adh3_donor_Radh3_donor_R ctagtttgacaactacaccagcaccttcatgaccacctactaatgacttatgactatactctagtttgacaactacaccagcaccttcatgaccacctactaatgacttatgactatact 4141 adh3_sqc_Fadh3_sqc_F tcgccagctcctaaacgctggaagtcgccagctcctaaacgctggaag 4242 adh3_sqc_Radh3_sqc_R ctaaggcttctctcgtatcagctctctaaggcttctctcgtatcagctct 4343 GPDp_mdh3SKL_CYCt expression cassetteGPDp_mdh3SKL_CYCt expression cassette accctgtaaacagtttggtccctattgctgtggaaactttgaagaaaatgggtaagttcaaacctggaaacgttatgggtgtgacgaaccttgacctggtacgtgcagaaacctttttggtagattatttgatgctaaaaaaccccaaaattggacaagaacaagacaaaactacaatgcacagaaaggtcactgttattgggggtcattcaggggaaaccattatcccaataatcaccgacaaatcgctggtatttcaacttgataagcagtacgagcacttcattcatagggtccagttcggaggtgatgaaattgtcaaagctaaacagggcgccggttccgccacgttgtccatggcgttcgcgggggccaagtttgctgaagaagttttgaggagcttccataatgagaaaccagaaacggagtcactttccgcattcgtttatttaccaggcttaaaaaacggtaagaaagcgcagcaattagttggcgacaactctattgagtatttttccttgccaattgttttgagaaatggtagcgtagtatccatcgataccagtgttctggaaaaactgtctccgagagaggaacaactcgttaatactgcggtcaaagagctacgcaagaatattgaaaaaggcaagagtttcatcctagactcttgagaattcgatatcaagcttatcgataccgtcgacctcgagtcatgtaattagttatgtcacgcttacattcacgccctccccccacatccgctctaaccgaaaaggaaggagttagacaacctgaagtctaggtccctatttatttttttatagttatgttagtattaagaacgttatttatatttcaaatttttcttttttttctgtacagacgcgtgtacgcatgtaacattatactgaaaaccttgcttgagaaggttttgggacgctcgaaggctttaatttgaccctgtaaacagtttggtccctattgctgtggaaactttgaagaaaatgggtaagttcaaacctggaaacgttatgggtgtgacgaaccttgacctggtacgtgcagaaacctttttggtagattatttgatgctaaaaaaccccaaaattggacaagaacaagacaaaactacaatgcacagaaaggtcactgttattgggggtcattcaggggaaaccattatcccaataatcaccgacaaatcgctggtatttcaacttgataagcagtacgagcacttcattcatagggtccagttcggaggtgatgaaattgtcaaagctaaacagggcgccggttccgccacgttgtccatggcgttcgcgggggccaagtttgctgaagaagttttgaggagcttccataatgagaaaccagaaacggagtcactttccgcattcgtttatttaccaggcttaaaaaacggtaagaaagcgcagcaattagttggcgacaactctattgagtatttttccttgccaattgttttgagaaatggtagcgtagtatccatcgataccagtgttctggaaaaactgtctccgagagaggaacaactcgttaatactgcggtcaaagagctacgcaagaatattgaaaaaggcaagagtttcatcctagactcttgagaattcgatatcaagcttatcgataccgtcgacctcgagtcatgtaattagttatgtcacgcttacattcacgccctccccccacatccgctctaaccgaaaaggaaggagttagacaacctgaagtctaggtccctatttatttttttatagttatgttagtattaagaacgttatttatatttcaaatttttcttttttttctgtacagacgcgtgtacgcatgtaacattatactgaaaaccttgcttgagaaggttttgggacgctcgaaggctttaatttg 4444 pyc2pyc2 accaaaaatttcctagcaccagcagaacctgatgaagaaatcgaagtcaccatcgaacaaggtaagactttgattatcaaattgcaagctgttggtgacttaaataagaaaactgggcaaagagaagtgtattttgaattgaacggtgaattaagaaagatcagagttgcagacaagtcacaaaacatacaatctgttgctaaaccaaaggctgatgtccacgatactcaccaaatcggtgcaccaatggctggtgttatcatagaagttaaagtacataaagggtctttggtgaaaaagggcgaatcgattgctgttttgagtgccatgaaaatggaaatggttgtctcttcaccagcagatggtcaagttaaagacgttttcattaaggatggtgaaagtgttgacgcatcagatttgttggttgtcctagaagaagaaaccctacccccatcccaaaaaaagtaaaccaaaaatttcctagcaccagcagaacctgatgaagaaatcgaagtcaccatcgaacaaggtaagactttgattatcaaattgcaagctgttggtgacttaaataagaaaactgggcaaagagaagtgtattttgaattgaacggtgaattaagaaagatcagagttgcagacaagtcacaaaacatacaatctgttgctaaaccaaaggctgatgtccacgatactcaccaaatcggtgcaccaatggctggtgttatcatagaagttaaagtacataaagggtctttggtgaaaaagggcgaatcgattgctgttttgagtgccatgaaaatggaaatggttgtctcttcaccagcagatggtcaagttaaagacgttttcattaaggatggtgaaagtgttgacgcatcagatttgttggttgtcctagaagaagaaaccctacccccatcccaaaaaaagtaa 4545 mdh3SKLmdh3SKL 4646 spmae1spmae1 taaaatgatagattccaaagctttccaaatgtttggacatatcattggggtcattctttgtattcagtggatcctcctaatgtatttaatggtccgtgcgtttctcgtcaatgatctttgctatcctggcaaagacgaagatgcccatcctccaccaaaaccaaatacaggtgtccttaaccctaccttcccacctgaaaaagcacctgcatctttggaaaaagtcgatacacatgtcacatctactggtggtgaatcggatcctcctagtagtgaacatgaaagcgtttaataaaatgatagattccaaagctttccaaatgtttggacatatcattggggtcattctttgtattcagtggatcctcctaatgtatttaatggtccgtgcgtttctcgtcaatgatctttgctatcctggcaaagacgaagatgcccatcctccaccaaaaccaaatacaggtgtccttacacttcaccggtgaaaaa 4747 mls1SKLmls1SKL tgcgcaaatccctatcaaagacgacccggcagccaatgaaaaggccatgactaaagtccgtaatgataagattagagagctgacaaatggacatgatgggtcatgggttgcacacccagcactggcccctatttgtaatgaagttttcattaatatgggaacaccaaaccaaatctatttcattcctgaaaacgttgtaacggctgctaatctgctggaaaccaaaattccaaatggtgagattactaccgagggaattgtacaaaacttggatatcgggttgcagtacatggaagcttggctcagaggctctggatgtgtgcccatcaacaacttgatggaagacgccgccactgctgaagtgtctcgttgtcaattgtatcaatgggtgaaacacggtgttactctaaaggacacgggagaaaaggtcaccccagaattaaccgaaaagattctaaaagaacaagtggaaagactgtctaaggcaagtccattgggtgacaagaacaaattcgcgctggccgctaagtatttcttgccagaaatcagaggcgagaaattcagtgaatttttgactacattgttgtacgacgaaattgtgtccactaaggcgacgcccactgatttgtgatgcgcaaatccctatcaaagacgacccggcagccaatgaaaaggccatgactaaagtccgtaatgataagattagagagctgacaaatggacatgatgggtcatgggttgcacacccagcactggcccctatttgtaatgaagttttcattaatatgggaacaccaaaccaaatctatttcattcctgaaaacgttgtaacggctgctaatctgctggaaaccaaaattccaaatggtgagattactaccgagggaattgtacaaaacttggatatcgggttgcagtacatggaagcttggctcagaggctctggatgtgtgcccatcaacaacttgatggaagacgccgccactgctgaagtgtctcgttgtcaattgtatcaatgggtgaaacacggtgttactctaaaggacacgggagaaaaggtcaccccagaattaaccgaaaagattctaaaagaacaagtggaaagactgtctaaggcaagtccattgggtgacaagaacaaattcgcgctggccgctaagtatttcttgccagaaatcagaggcgagaaattcagtgaatttttgactacattgttgtacgacgaaattgtgtccactaaggcgacgcccactgatttgtga 4848 icl1icl1 cacctctaaagtgggtccattgactgaaacatcccacagagaagccaagaagctcgctaaagaaattcttggccacgaaattttcttcgactgggagctaccacgcgtaagggaagggttgtaccgttacagaggtgggacgcaatgttctatcatgagggcccgtgcatttgctccatatgctgatttggtatggatggaatctaactacccagacttccaacaggccaaggagtttgcagaaggtgttaaagagaaattccctgaccaatggctagcttacaacttgtctccatcctttaactggccaaaagccatgtccgttgatgaacaacacaccttcatccaaaggctgggtgatctaggttacatctggcaatttatcacattggccggtttacacactaacgctttagctgtccataacttctctcgtgactttgccaaggatgggatgaaagcttatgcccagaatgttcagcagagggaaatggacgatggtgttgatgtgttgaaacatcaaaaatggtctggtgcggagtacatcgatgggttattgaagttagctcaaggtggtgttagcgcaacagctgctatgggaaccggtgtcacagaagatcaattcaaagaaaatggcgtaaagaaatagcacctctaaagtgggtccattgactgaaacatcccacagagaagccaagaagctcgctaaagaaattcttggccacgaaattttcttcgactgggagctaccacgcgtaagggaagggttgtaccgttacagaggtgggacgcaatgttctatcatgagggcccgtgcatttgctccatatgctgatttggtatggatggaatctaactacccagacttccaacaggccaaggagtttgcagaaggtgttaaagagaaattccctgaccaatggctagcttacaacttgtctccatcctttaactggccaaaagccatgtccgttgatgaacaacacaccttcatccaaaggctgggtgatctaggttacatctggcaatttatcacattggccggtttacacactaacgctttagctgtccataacttctctcgtgactttgccaaggatgggatgaaagcttatgcccagaatgttcagcagagggaaatggacgatggtgttgatgtgttgaaacatcaaaaatggtctggtgcggagtacatcgatgggttattgaagttagctcaaggtggtgttagcgcaacagctgctatgggaaccggtgtcacagaagatcaattcaaagaaaatggcgtaaagaaatag 4949 adh1adh1 tgggtgaaaacgttaagggctggtgggtgaaaacgttaagggctgg 5050 gpd1gpd1 tcgctccaatagtacaaatgtggtcgctccaatagtacaaatgtgg 5151 gpd2gpd2 gtttcgtagaaggtatgggatgggtttcgtagaaggtatgggatgg 5252 adh3adh3 tacatgcttggcacggcgattacatgcttggcacggcgat

실험예 1: pyc2 유전자와 mdh3 유전자에 따른 특성 분석Experimental Example 1: Characterization according to pyc2 and mdh3 genes

1) 생육 특성1) Growth Characteristics

우선, 야생형 효모인 D 균주에 대한 배양테스트를 진행하였다. 전배양은 시험관에 담긴 10 ㎖ YPD20 배지에서 16 시간동안 배양하였다. 본배양은 20 g/L 포도당을 탄소원으로 공급한 50 ㎖ YP 배지(1 %(w/v) Yeast extract, 2 %(w/v) Peptone)에서 100 rpm, 30 ˚C 조건으로 수행하였다. 접종 DCW는 0.2 g/L 농도로 접종하였다. First, a culture test was conducted for the D strain, a wild type yeast. Precultures were incubated for 16 h in 10 ml YPD20 medium in test tubes. The culture was performed at 50 rpm YP medium (1% (w / v) Yeast extract, 2% (w / v) Peptone) supplied with 20 g / L glucose as a carbon source at 100 rpm and 30 ° C. Inoculation DCW was inoculated at a concentration of 0.2 g / L.

유기산 생산효모인 실시예 1의 재조합 DM 균주와 대조군인 비교예 1의 DC2 균주는 다음과 같이 배양하였다. 시험관에 담긴 YNBD His/Leu(-) 배지에 두 균주를 각각 36시간 동안 seed 배양한 다음, 100 ㎖의 동일한 조성의 배지에 전배양(pre-culture)을 36 시간동안 수행하였다. 이후, 10 ㎖ YPD20 배지에서 30시간동안 배양하였다. 본배양은 50 g/L 포도당을 탄소원으로 공급한 50 ㎖ YP 배지(1 %(w/v) Yeast extract, 2 %(w/v) Peptone)에서 100 rpm, 30 ˚C 조건으로 수행하였다. 접종 DCW는 0.2 g/L 농도로 접종하였다. 다만, 본 배양시, 멸균한 5%의 CaCO3 첨가하였다.The recombinant DM strain of Example 1, which is an organic acid-producing yeast, and the DC2 strain of Comparative Example 1, a control, were cultured as follows. Two strains were seeded in YNBD His / Leu (-) medium in a test tube for 36 hours, and then pre-cultured in 100 ml of the same composition for 36 hours. Then, incubated for 30 hours in 10 ml YPD20 medium. The main culture was performed at 50 rpm YP medium (1% (w / v) Yeast extract, 2% (w / v) Peptone) supplied with 50 g / L glucose as a carbon source at 100 rpm and 30 ° C. Inoculation DCW was inoculated at a concentration of 0.2 g / L. However, in this culture, sterilized 5% CaCO 3 was added.

도 3은 야생형 효모 D 균주(S. cerevisiae D452-2)와 비교예 1의 재조합 균주와 실시예 1의 재조합 균주를 회분식으로 배양하여, 시간에 따른 글루코스 소비, 글리세롤, 에탄올, 아세테이트, 말레이트, 석시네이트의 생성양을 측정하여 나타낸 그래프이다. 도 3A는 야생형 D 균주를 YPD20 배지에 배양한 결과이고, 도 3B와 도 3C는 각각 비교예 1의 재조합 DC2 균주와 실시예 1의 재조합 DM 균주를 YPD50+5% CaCO3 배지에서 배양한 결과이다. 3 is a batch culture of wild type yeast D strain (S. cerevisiae D452-2) and the recombinant strain of Comparative Example 1 and the recombinant strain of Example 1, glucose consumption, glycerol, ethanol, acetate, malate, A graph showing the amount of succinate produced. 3A shows the result of culturing the wild type D strain in YPD20 medium, and FIGS. 3B and 3C show the result of culturing the recombinant DC2 strain of Comparative Example 1 and the recombinant DM strain of Example 1 in YPD50 + 5% CaCO3 medium, respectively.

도 3에 나타난 바와 같이, 야생형 D 균주는 배양 12 시간째에 글루코스를 전부 소비하였고, 약 8.7 g/L 농도의 에탄올을 생산하였음을 확인하였다.As shown in FIG. 3, the wild type D strain consumed all glucose at 12 hours of culture, and produced ethanol at a concentration of about 8.7 g / L.

한편, 비교예 1의 재조합 DC2 균주(대조군)와 실시예 1의 재조합 DM 균주는 배양결과 유사한 경향을 나타내고 있음을 확인하였다. 다만 비교예 1의 재조합 DC2 균주(대조군)는 유기산인 malate를 전혀 생성하지 못하였으나, 실시예 1의 재조합 DM 균주는 약 2.7 g/L 농도의 malate 생산하고 있음을 확인하였다. 이를 통해 pyc2, mdh3 유전자가 유기산 생성에 영향을 미치고 있음을 알 수 있다.
On the other hand, it was confirmed that the recombinant DC2 strain (control) of Comparative Example 1 and the recombinant DM strain of Example 1 showed similar trends as a result of the culture. However, the recombinant DC2 strain (control) of Comparative Example 1 did not produce malate, which is an organic acid at all, but the recombinant DM strain of Example 1 was confirmed to produce malate at a concentration of about 2.7 g / L. This suggests that the pyc2 and mdh3 genes influence the production of organic acids.

실험예 2: adh1 파쇄 효모를 이용한 특성 분석Experimental Example 2: Characterization using adh1 crushed yeast

앞선 실험예 1을 통해 분석한 결과, pyc2 유전자와 mdh3 유전자를 포함하는 재조합 벡터로 형질전환된 재조합 효모 균주(실시예 1, DM 균주)에서, 말레이트의 생산이 증가되었음을 확인하였다.As a result of the analysis through Experimental Example 1, it was confirmed that the production of malate was increased in the recombinant yeast strain (Example 1, DM strain) transformed with a recombinant vector including the pyc2 gene and the mdh3 gene.

그러나, 더 높은 농도의 malate 생산을 유도하기 위하여, 에탄올 대사 경로를 억제하고자 하였다. 에탄올 대사 경로에서, adh1 유전자는 adh1p를 암호화하는 것으로, adh1p는 효모의 알코올탈수소효소 복합체 중 가장 주요한 역할을 하는 것으로 알려져 있다. 유기산 생산을 위해서는, 유기산 생산에 전구체로 사용되는 피루브산과 아세틸 CoA의 세포 내 축적이 이루어지는 것이 주요하며, 이를 검증하기 위해 alcohol dehydrogenase I을 암호화하는 유전자 adh1 유전자를 불활성화한 재조합 D-A1 균주를 구축하였다. 재조합 D-A1 균주는 CRISPR/Cas9 시스템을 이용하여 유전체 내의 해당 유전자에 종결코돈을 삽입하는 방식을 이용하였다.However, to induce higher malate production, ethanol metabolism pathways were tried to be suppressed. In the ethanol metabolic pathway, the adh1 gene encodes adh1p, and adh1p is known to play the most important role in the alcohol dehydrogenase complex of yeast. For the production of organic acids, the accumulation of pyruvic acid and acetyl CoA, which are used as precursors for the production of organic acids, is important.In order to verify this, a recombinant D-A1 strain in which the adh1 gene encoding alcohol dehydrogenase I is inactivated is constructed. It was. Recombinant D-A1 strain was used to insert a stop codon to the gene in the genome using the CRISPR / Cas9 system.

1) 생육 특성1) Growth Characteristics

실시예 2의 D-A1 균주는 다음과 같이 배양하였다. 우선, 전 배양은 시험관에 담긴 10 ㎖ YPD20 배지에서 16 시간 동안 배양하였다. 본 배양은 20 g/L 포도당을 탄소원으로 공급한 50 ㎖ YP 배지(1 %(w/v) Yeast extract, 2 %(w/v) Peptone)에서 100 rpm, 30 ℃ 조건으로 수행하였다. 접종 DCW는 0.2 g/L 농도로 하였다.The D-A1 strain of Example 2 was cultured as follows. First, preculture was incubated for 16 hours in 10 ml YPD20 medium in test tubes. The culture was performed at 50 rpm YP medium (1% (w / v) Yeast extract, 2% (w / v) Peptone) supplied with 20 g / L glucose as a carbon source at 100 rpm and 30 ° C. Inoculation DCW was 0.2 g / L concentration.

실시예 3의 DM-A1 균주 및 비교예 3의 DC2-A1 균주는 다음과 배양하였다. 우선, 시험관에 담긴 YNBD His/Leu (-) 배지에 두 균주를 각각 36시간 seed 배양한 후 100 ㎖의 동일한 조성의 배지에 36 시간 동안 전 배양하였다. 10 ㎖ YPD20 배지에서 30 시간 동안 본 배양을 수행하였다. 본 배양은 50 g/L 포도당을 탄소원으로 공급한 50 mL YP 배지(1 %(w/v) Yeast extract, 2 %(w/v) Peptone)에서 100 rpm, 30 ˚C 조건에서 진행되었고, 접종 DCW는 0.2 g/L 농도로 접종하였다. 상기 본배양 배지에는 멸균한 5%의 CaCO3를 추가하였다. DM-A1 strain of Example 3 and DC2-A1 strain of Comparative Example 3 were cultured as follows. First, two strains were seeded in YNBD His / Leu (-) medium in a test tube for 36 hours, respectively, and then precultured in 100 ml of the same composition for 36 hours. This culture was performed for 30 hours in 10 ml YPD20 medium. The culture was carried out at 50 rpm YP medium (1% (w / v) Yeast extract, 2% (w / v) Peptone) with 50 g / L glucose as a carbon source at 100 rpm and 30 ° C. DCW was inoculated at a concentration of 0.2 g / L. Sterilized 5% CaCO 3 was added to the main culture medium.

2) 결론2) Conclusion

도 4는 실시예 2의 D-A1 균주와 실시예 3의 DM-A1 균주 및 비교예 3의 DC2-A1 균주를 회분식으로 배양하여, 시간에 따른 글루코스 소비, 글리세롤, 에탄올, 아세테이트, 말레이트, 석시네이트의 생성양을 측정하여 나타낸 그래프이다. 도 4A는 실시예 2의 D-A1 균주를 YPD20 배지에 배양한 결과이고, 도 4B와 도 4C는 각각 실시예 3의 DM-A1 균주 및 비교예 3의 DC2-A1 균주를 YPD50+5% CaCO3 배지에서 배양한 결과이다. 4 is a batch culture of the D-A1 strain of Example 2, DM-A1 strain of Example 3 and DC2-A1 strain of Comparative Example 3, glucose consumption, glycerol, ethanol, acetate, malate, A graph showing the amount of succinate produced. 4A shows the results of culturing the D-A1 strain of Example 2 in YPD20 medium, and FIGS. 4B and 4C show YPD50 + 5% CaCO3 of the DM-A1 strain of Example 3 and the DC2-A1 strain of Comparative Example 3, respectively. It is the result of culture in the medium.

도 4를 보면 D 균주(도 3 참조)에서의 글루코스 소비량에 비해 실시예 2의 D-A1 균주는 글루코스 소비량이 느려졌음을 확인하였다. 나아가, D 균주에 비해 실시예 2 D-A1 균주의 에탄올 생산량이 50% 이하로 감소하였고, 동시에 글리세롤의 생산이 증가한 것을 확인하였다. 즉, adh1를 억제함에 따라 에탄올 생산을 억제하고, 글리세롤 생산을 증진시킬 수 있음을 확인하였다. 다만, adh1 유전자 제거에 의해 세포성장이 더뎌지고, 글리세롤 생산이 늘어났다.4, it was confirmed that the glucose consumption of the D-A1 strain of Example 2 was slower than the glucose consumption of the D strain (see FIG. 3). Further, it was confirmed that the ethanol production of the Example 2 D-A1 strain was reduced to 50% or less compared to the D strain, and at the same time, the production of glycerol was increased. That is, it was confirmed that by inhibiting adh1, ethanol production can be suppressed and glycerol production can be enhanced. However, adh1 gene removal slowed cell growth and increased glycerol production.

또한, 비교예 3의 DC2-A1 균주는 높은 글리세롤을 생산하고, 말레이트는 전혀 생산하지 못하고 있음을 확인하였다. 이에 반해 실시예 3의 DM-A1 균주는 약 7.6 g/L 농도의 말레이트를 생산하고 있음을 확인하였다. 즉, pyc2, mdh3의 유전자를 과발현시키고, adh1 유전자를 억제한 재조합 효모 균주를 구축한 결과, 거의 생산되지 않던 말레이트의 생산이 7.6 g/L로 현저히 증가되었음을 확인하였다.
In addition, it was confirmed that the DC2-A1 strain of Comparative Example 3 produced high glycerol and did not produce malate at all. On the contrary, it was confirmed that the DM-A1 strain of Example 3 produced malate at a concentration of about 7.6 g / L. That is, as a result of constructing a recombinant yeast strain that overexpressed the pyc2 and mdh3 genes and suppressed the adh1 gene, it was confirmed that the production of maleate, which was rarely produced, was markedly increased to 7.6 g / L.

실험예 3 :글리세롤 대사경로의 억제에 따른 분석Experimental Example 3 Analysis by Inhibition of Glycerol Metabolism Pathway

실험예 2를 통해 발견한, adh1 유전자의 제거에 따른 세포 성장과 글리세롤의 생성문제를 해결하기 위하여, glycerol-3-phosphate dehydrogenase를 coding하는 gpd1과 gpd2 유전자를 효모의 유전체에서 제거하고, 동시에 mdh3 유전자 발현 cassette로 치환함으로써 발효과정의 부산물인 glycerol 생성을 제한하고 유전체에 malate 생산관련 유전자들을 삽입함으로써 장시간의 배양에서도 효소활성의 지속성을 유지하는 전략을 계획하였다.In order to solve the problems of cell growth and glycerol production caused by the removal of the adh1 gene found in Experiment 2, the gpd1 and gpd2 genes encoding glycerol-3-phosphate dehydrogenase were removed from the yeast genome and simultaneously the mdh3 gene By replacing expression cassette with glycerol, which is a byproduct of fermentation process, and inserting genes related to malate production into genome, we planned a strategy to maintain enzymatic activity even in long-term culture.

gpd1, gpd2 유전자는 효모의 글리세롤-3-인산 탈수소효소를 암호화하는 유전자로, 두 유전자 불활성화 효모는 CRISPR/Cas9 시스템을 이용하여 유전체 내의 해당 유전자에 유전자 발현 카세트 삽입하거나 유전자의 일부 시퀀스를 제거하는 방식으로 구축되었다.The gpd1 and gpd2 genes encode yeast glycerol-3-phosphate dehydrogenase, and the two gene inactivated yeasts use the CRISPR / Cas9 system to insert a gene expression cassette or remove some sequences of the genes in the genome. Was built in a way.

1) 생육 특성1) Growth Characteristics

실시예 4의 D-A1G1 균주로부터 gpd2를 결손시킨 실시예 5의 D-A1G12 균주를 다음과 같이 배양하였다. 구체적으로 전배양은 시험관에 담긴 10 ㎖ YPD20 배지에서 32 시간 동안 수행하였다. 본 배양은 20 g/L 포도당을 탄소원으로 공급한 50 ㎖ YP 배지(1 %(w/v) Yeast extract, 2 %(w/v) Peptone)에서 100 rpm, 30 ℃로 30 시간 동안 수행하였다. 접종 DCW는 0.2 g/L 농도로 하였다. HPLC를 통해 글루코스 소모와 발효부산물을 측정하였다. The D-A1G12 strain of Example 5, which lacked gpd2 from the D-A1G1 strain of Example 4, was cultured as follows. Specifically, preculture was performed for 32 hours in 10 ml YPD20 medium in a test tube. The culture was performed at 50 rpm YP medium (1% (w / v) Yeast extract, 2% (w / v) Peptone) supplied with 20 g / L glucose as a carbon source for 30 hours at 100 rpm and 30 ° C. Inoculation DCW was 0.2 g / L concentration. Glucose consumption and fermentation byproducts were measured by HPLC.

실시예 6의 DM-A1G12균주는 2개의 10 ㎖ YNBD his-, leu- 배지에서 48h 배양 후 이를 100 ㎖의 같은 조성의 배지가 든 500 ㎖ 베플 삼각 플라스크 2개에 각각 그대로 부어 스케일 업하였다. 48 시간 후 각각의 배양액을 하나로 합쳐 OD를 측정하였고, YPD50 배지에 초기 OD가 각각 2.0과 5.0이 되도록 접종하였다. 본 배양은 50 g/L 포도당을 탄소원으로 공급한 50 ㎖ YP 배지(1 %(w/v) Yeast extract, 2 %(w/v) Peptone)에서 100 rpm, 30 ℃ 조건으로 수행하였다. 접종 DCW는 0.2 g/L 농도로 접종하였다. 이 때 멸균한 5%의 CaCO3를 추가하였다. 발효는 200 rpm, 30 ℃로 설정된 배양기를 사용하였고, 8시간 간격으로 샘플링하였다.The DM-A1G12 strain of Example 6 was scaled up after 48h incubation in two 10 ml YNBD his- and leu- media, as it was poured into two 500 ml bezel Erlenmeyer flasks containing 100 ml of the same composition. After 48 hours, the respective cultures were combined to measure the OD, and the YPD50 medium was inoculated with an initial OD of 2.0 and 5.0, respectively. The culture was performed at 50 rpm YP medium (1% (w / v) Yeast extract, 2% (w / v) Peptone) supplied with 50 g / L glucose as a carbon source at 100 rpm and 30 ° C. Inoculation DCW was inoculated at a concentration of 0.2 g / L. At this time, sterilized 5% CaCO 3 was added. Fermentation was performed using an incubator set at 200 rpm and 30 ° C. and sampled at 8 hour intervals.

2) 결론2) Conclusion

도 5는 실시예 5의 D-A1G12 균주와 실시예 6의 DM-A1G12 균주를 회분식으로 배양하여, 시간에 따른 글루코스 소비, 글리세롤, 에탄올, 아세테이트, 말레이트, 석시네이트의 생성양을 측정하여 나타낸 그래프이다. 도 5A는 D-A1G12 균주를 YPD20 배지에 배양한 결과이고, 도 5B는 DM-A1G12 균주를 YPD50 + 5% CaCO3 배지에 배양한 결과이다.5 is a batch culture of the D-A1G12 strain of Example 5 and the DM-A1G12 strain of Example 6 to measure the glucose consumption, glycerol, ethanol, acetate, malate, succinate production over time It is a graph. 5A shows the result of culturing D-A1G12 strain in YPD20 medium, and FIG. 5B shows the result of culturing DM-A1G12 strain in YPD50 + 5% CaCO 3 medium.

도 5에 나타난 바와 같이, 실시예 5의 D-A1G12 균주의 최종 균체 농도는 D-A1 균주에 비해 약 2.6 배 상승하였다. 또한 실시예 5의 D-A1G12 균주는 글리세롤의 생산은 이루어지지 않은 반면, 에탄올 생산이 D-A1 균주에 비해 약 2배 증가하였다.As shown in FIG. 5, the final cell concentration of the D-A1G12 strain of Example 5 was increased by about 2.6 times compared to the D-A1 strain. In addition, the D-A1G12 strain of Example 5 was not produced glycerol, while ethanol production was about two times increased compared to the D-A1 strain.

또한, 실시예 6의 DM-A1G12 균주는 50 g/L의 높은 글루코스를 투여하였으나, 실시예 5의 D-A1G12 균주와 같이 30 시간 전에 모두 소모되었음을 확인하였다. 최종 말레이트 농도는 7.58 g/L로 분석되었다. 글리세롤은 전혀 관찰되지 않았으며, 최종 에탄올 농도는 14.7 g/L로, DM-A1보다 현저히 높은 것으로 확인되었다.
In addition, the DM-A1G12 strain of Example 6 was administered 50 g / L of high glucose, it was confirmed that the same as the D-A1G12 strain of Example 5 was consumed 30 hours ago. The final malate concentration was analyzed at 7.58 g / L. Glycerol was not observed at all, and the final ethanol concentration was 14.7 g / L, which was found to be significantly higher than DM-A1.

실험예 4 : glyoxylate 관련 유전자의 도입에 따른 분석Experimental Example 4 Analysis by Introduction of Glyoxylate-Related Genes

글리옥실산 회로(glyoxylate cycle)를 형성하는 효소 중 이소시트르산을 글리옥실레이트(glyoxylate)와 석시네이트(succinate)로 전환하는 이소시트르산분해효소(isocitrate lyase)와 말산합성 효소(malate synthase)를 각각 암호화하는 icl1유전자와 mls1 유전자를 DM-A1G12 균주로 도입하여 유기산 생산을 생산에 나타난 영향을 분석하고자 하였다.Among the enzymes that form the glyoxylate cycle, the isocitrate lyase and malate synthase, which convert isocitric acid into glyoxylate and succinate, respectively The icl1 gene and mls1 gene were introduced into DM-A1G12 strain to analyze the effects of organic acid production on production.

1) 생육 특성(말레이트와 글리옥실레이트 대사경로 도입)1) Growth Characteristics (Introduction of Maleate and Glyoxylate Metabolic Pathways)

실시예 7의 DMG-A1G12 균주를 2개의 10 ㎖ YNBD his-, leu-, ura- 배지에서 48 h 배양하고, 100 ㎖의 동일한 배지가 들어있는 500 ㎖ 베플 삼각 플라스크 2개에 각각 넣어, 스케일업하였다. 본 배양은 50 g/L 포도당을 탄소원으로 공급한 50 ㎖ YP 배지(1 %(w/v) Yeast extract, 2 %(w/v) Peptone)로, 100 rpm, 30 ℃에서 배양하였다. 이때, 접종 DCW는 2 g/L 농도였다. 상기 본 배양 배지에는 멸균한 5%의 CaCO3가 첨가된 것을 사용하였다.The DMG-A1G12 strain of Example 7 was incubated for 48 h in two 10 ml YNBD his-, leu- and ura- media, each placed in two 500 ml baffle Erlenmeyer flasks containing 100 ml of the same medium and scaled up. It was. This culture was incubated at 50 rpm YP medium (1% (w / v) Yeast extract, 2% (w / v) Peptone) supplied with 50 g / L glucose as a carbon source, at 100 rpm, 30 ℃. At this time, the inoculation DCW was 2 g / L concentration. Sterilized 5% CaCO 3 was added to the present culture medium.

2) 결론2) Conclusion

도 6은 실시예 7의 DMG-A1G12 균주를 회분식으로 배양하여, 시간에 따른 글루코스 소비, 글리세롤, 에탄올, 아세테이트, 말레이트, 석시네이트의 생성량을 측정하여 나타낸 그래프이다. 배지는 YPD50 + 5% CaCO3을 사용하였다.FIG. 6 is a graph showing the growth of glucose consumption, glycerol, ethanol, acetate, malate, and succinate over time by culturing the DMG-A1G12 strain of Example 7. The medium used was YPD50 + 5% CaCO 3 .

도 7은 실시예 1의 DM 균주, 실시예 6의 DM-A1G12 균주 및 실시예 7의 DMG-A1G12 균주를 30 시간 배양하고, 이로부터 측정된 말레이트 농도를 나타낸 그래프이다.7 is a graph showing the maleate concentration measured from the DM strain of Example 1, DM-A1G12 strain of Example 6, and DMG-A1G12 strain of Example 7 for 30 hours and measured therefrom.

도 6 및 도 7에 나타난 바와 같이, 실시예 7의 DMG-A1G12 균주는 DM-A1G12 균주 대비 약 1.5배 더 높은 말레이트를 생산하였으며, 소모한 포도당 대비 말레이트 전환율 또한 0.28로, 1.6배 더 우수한 것으로 확인되었다. 6 and 7, the DMG-A1G12 strain of Example 7 produced about 1.5 times higher malate than the DM-A1G12 strain, and the malate conversion rate was 0.28, 1.6 times better than the consumed glucose. It was confirmed.

또한, 말레이트는 실시예 7의 DMG-A1G12 균주에서 가장 높은 것을 확인 되었다.
In addition, maleate was confirmed to be the highest in the DMG-A1G12 strain of Example 7.

실험예 5 :ADH3 파쇄효모를 이용한 특성분석Experimental Example 5: Characterization using ADH3 crushed yeast

실험예 4를 통해 글리옥실산 회로(glyoxylate cycle)를 형성하는 유전자를 효모에 도입할 경우 에탄올 저감에 효과적이라는 것을 알 수 있었으나, 여전히 약 10 g/L의 에탄올이 생성되는 것을 알 수 있었다. 에탄올의 생성을 더욱 낮추기 위하여, alcohol dehydrogenase III를 암호화하는 adh3 유전자를 효모의 유전체에서 제거한 균주를 구축하였다.Experimental Example 4 shows that the introduction of a gene that forms the glyoxylate cycle (glyoxylate cycle) into the yeast is effective in reducing ethanol, but it was found that still about 10 g / L of ethanol is produced. In order to further reduce the production of ethanol, a strain was constructed in which the adh3 gene encoding alcohol dehydrogenase III was removed from the yeast genome.

adh3 유전자는 효모의 alcohol dehydrogenase III을 암호화하는 유전자로, 유전자 불활성화 효모는 CRISPR/Cas9 시스템을 이용하여 유전체 내의 해당 유전자의 일부 시퀀스를 제거하는 방식으로 구축되었다.The adh3 gene encodes the yeast alcohol dehydrogenase III, and the gene inactivated yeast was constructed by removing some sequences of the gene in the genome using the CRISPR / Cas9 system.

1) 생육 특성1) Growth Characteristics

실시예 5의 D-A1G12 균주로부터 adh3를 결손시킨 실시예 8의 D-A13G12 균주를 다음과 같이 배양하였다. 구체적으로 전배양은 시험관에 담긴 10 ㎖ YPD20 배지에서 30 시간 동안 수행하였다. 본 배양은 20 g/L 포도당을 탄소원으로 공급한 50 ㎖ YP 배지(1 %(w/v) Yeast extract, 2 %(w/v) Peptone)에서 100 rpm, 30 ℃로 32 시간 동안 수행하였다. 접종 DCW는 0.2 g/L 농도로 하였다. HPLC를 통해 글루코스 소모와 발효부산물을 측정하였다. The D-A13G12 strain of Example 8, which lacked adh3 from the D-A1G12 strain of Example 5, was cultured as follows. Specifically, preculture was performed for 30 hours in 10 ml YPD20 medium in a test tube. The culture was performed at 50 rpm YP medium (1% (w / v) Yeast extract, 2% (w / v) Peptone) supplied with 20 g / L glucose as a carbon source at 100 rpm and 30 ° C. for 32 hours. Inoculation DCW was 0.2 g / L concentration. Glucose consumption and fermentation byproducts were measured by HPLC.

실시예 9의 DM-A13G12균주는 10 ㎖ YNBD his-, leu- 배지에서 48h 배양 후 이를 100 ㎖의 같은 조성의 배지가 든 500 ㎖ 베플 삼각 플라스크 2개에 각각 그대로 부어 스케일업하였다. 48 시간 후 각각의 배양액을 하나로 합쳐 OD를 측정하였고, YPD50 배지에 초기 OD가 각각 2.0과 5.0이 되도록 접종하였다. 본 배양은 50 g/L 포도당을 탄소원으로 공급한 50 ㎖ YP 배지(1 %(w/v) Yeast extract, 2 %(w/v) Peptone)에서 100 rpm, 30 ℃ 조건으로 수행하였다. 접종 DCW는 2 g/L 농도로 접종하였다. 이 때 멸균한 5%의 CaCO3를 추가하였다. 발효는 100 rpm, 30 ℃로 설정된 배양기를 사용하였고, 8시간 간격으로 샘플링하였다.The DM-A13G12 strain of Example 9 was scaled up after 48h incubation in 10 ml YNBD his- and leu- media, as it was poured into two 500 ml baffle Erlenmeyer flasks containing 100 ml of the same composition. After 48 hours, the respective cultures were combined to measure the OD, and the YPD50 medium was inoculated with an initial OD of 2.0 and 5.0, respectively. The culture was performed at 50 rpm YP medium (1% (w / v) Yeast extract, 2% (w / v) Peptone) supplied with 50 g / L glucose as a carbon source at 100 rpm and 30 ° C. Inoculation DCW was inoculated at a concentration of 2 g / L. At this time, sterilized 5% CaCO 3 was added. Fermentation was performed using an incubator set at 100 rpm, 30 ° C. and sampled at 8 hour intervals.

2) 결론2) Conclusion

도 8은 실시예 8의 D-A13G12 균주와 실시예 9의 DM-A13G12 균주를 회분식으로 배양하여, 시간에 따른 글루코스 소비, 글리세롤, 에탄올, 아세테이트, 말레이트, 석시네이트의 생성양을 측정하여 나타낸 그래프이다. 도 8A는 D-A13G12 균주를 YPD20 배지에 배양한 결과이고, 도 8B는 DM-A13G12 균주를 YPD50 + 5% CaCO3 배지에 배양한 결과이다.8 is a batch culture of the D-A13G12 strain of Example 8 and the DM-A13G12 strain of Example 9 to measure glucose consumption, glycerol, ethanol, acetate, malate, and succinate over time. It is a graph. FIG. 8A shows the result of culturing D-A13G12 strain in YPD20 medium, and FIG. 8B shows the result of culturing DM-A13G12 strain in YPD50 + 5% CaCO 3 medium.

도 8에 나타난 바와 같이, 실시예 8의 D-A13G12 균주는 32시간 동안 12.8 g/L의 글루코스를 소비하는 것으로 확인되었다. 이는 실시예 5의 D-A1G12 균주에 비해 약 40% 낮은 글루코스 소비속도이다. As shown in FIG. 8, the D-A13G12 strain of Example 8 was found to consume 12.8 g / L of glucose for 32 hours. This is about 40% lower glucose consumption rate compared to the D-A1G12 strain of Example 5.

실시예 5의 D-A1G12 균주와 실시예 8의 D-A13G12 균주에서, 글루코스의 에탄올 전환량(생성된 에탄올 중량(g)/소비된 글루코스 중량(g))을 계산하여 비교한 결과, 실시예 5의 D-A1G12 균주는 0.26(g/g)이고, 실시예 8의 D-A13G12 균주는 0.17(g/g)으로 나타났다. 즉 실시예 8의 D-A13G12 균주가 실시예 5의 D-A1G12 균주에 비해 글루코스의 에탄올 전환량이 더 낮음을 확인하였다.In the D-A1G12 strain of Example 5 and the D-A13G12 strain of Example 8, the ethanol conversion amount of glucose (generated ethanol weight (g) / consumed glucose weight (g)) was calculated and compared. The D-A1G12 strain of 5 was 0.26 (g / g), and the D-A13G12 strain of Example 8 was 0.17 (g / g). That is, it was confirmed that the D-A13G12 strain of Example 8 had a lower ethanol conversion amount of glucose than the D-A1G12 strain of Example 5.

한편 실시예 9의 DM-A13G12 균주는 50 g/L의 높은 글루코스를 투여하여 배양을 진행하였다. 배양시작 전에 투여한 50 g/L의 글루코스가 48시간 배양을 통해 완전히 소모되었음을 확인하였다. 이는 실시예 7의 DMG-A1G12 균주에 비해 글루코스 소비능력이 저하되었음을 나타낸다. 그러나, 글루코스 소비속도는 저하되었으나. 최종 생성되는 말레이트 농도는 9.51 g/L로 실시예 7의 DMG-A1G12 균주와 유사한 수준으로 유지되고 있음을 확인하였다. Meanwhile, DM-A13G12 strain of Example 9 was cultured by administering a high glucose of 50 g / L. It was confirmed that 50 g / L of glucose administered before the start of culture was completely consumed through 48 hours of incubation. This indicates that glucose consumption was lowered compared to the DMG-A1G12 strain of Example 7. However, glucose consumption rate was lowered. The final produced malate concentration was 9.51 g / L was confirmed to be maintained at a similar level to the DMG-A1G12 strain of Example 7.

게다가 실시예 9의 DM-A13G12 균주는 최종 생성한 에탄올 농도가 11.9 g/L로 측정되었고, 이는 실시예 7의 DMG-A1G12보다 약 1.93 g/L 많은 양임을 알 수 있다. 그러나 실시예 9의 DM-A13G12 균주는 실시예 7의 DMG-A1G12 균주와 달리, glyoxylate 대사경로를 도입하지 않았음에도, 실시예 7의 DMG-A1G12 균주와 동등하거나 유사한 수준의 말레이트를 생산하고 있다는 점에서 현저히 유의한 의미 및 효과가 있음을 시사한다.Furthermore, the DM-A13G12 strain of Example 9 had a final ethanol concentration of 11.9 g / L, which is about 1.93 g / L higher than that of Example 7 DMG-A1G12. However, unlike the DMG-A1G12 strain of Example 9, the DM-A13G12 strain of Example 9 produced the same or similar levels of maleate as the DMG-A1G12 strain of Example 7, even though no glyoxylate metabolic pathway was introduced. This suggests that there is a remarkably significant meaning and effect.

<110> Kookmin University Industry Academy Cooperation Foundation <120> Recombinant yeasts of simultaneously producing ethanol and C4-organic acids <130> HPC8031 <160> 52 <170> KoPatentIn 3.0 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pyc2_F <400> 1 tccccccggg atgagcagta gcaagaaatt 30 <210> 2 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> pyc2_R <400> 2 ccgctcgagt tacttttttt gggatgggg 29 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> pyc2_SQC1 <400> 3 tttgccccgt gaagttcgtg a 21 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pyc2_SQC2 <400> 4 ccggatggag acaagtgcta 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pyc2_SQC3 <400> 5 caaccatcaa ttaatgcact 20 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> GPD_SQC_F <400> 6 gtaggtattg attgtaattc tgtaaat 27 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CYC_SQC_R <400> 7 tctcaagcaa ggttttcagt ataat 25 <210> 8 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> GPD_sacI <400> 8 cgagctcagt ttatcattat caatactc 28 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CYC_sacI <400> 9 cgcgagctcc aaattaaagc cttcgag 27 <210> 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> mdh3_F <400> 10 cgggatccat ggtcaaagtc gcaattct 28 <210> 11 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> mdh3_R <400> 11 cggaattctc aagagtctag gatgaaac 28 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> spmae1_F <400> 12 aactgcagtt aaacgctttc 20 <210> 13 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> spmae1_R <400> 13 gactagtatg ggtgaactca aggaaatct 29 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> icl1_F <400> 14 ggaattcatg cctatccccg ttggaaa 27 <210> 15 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> icl1_R <400> 15 ccgctcgagc tatttcttta cgccatttt 29 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> mls1_F <400> 16 ggaattcatg gttaaggtca gtttgga 27 <210> 17 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> mls1_R <400> 17 ccgctcgagt cacaaatcag tgggcgtcgc ct 32 <210> 18 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> SacI primer <400> 18 cgagctctct ttgaaaagat aatgtat 27 <210> 19 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> KpnI primer <400> 19 ggggtaccag acataaaaaa caaaaaaa 28 <210> 20 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> adh1_gRNA_F <400> 20 tgggtgaaaa cgttaagggc gttttagagc tagaaatagc aag 43 <210> 21 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> adh1_gRNA_R <400> 21 gcccttaacg ttttcaccca cgatcattta tctttcactg cgga 44 <210> 22 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> adh1_donor_F <400> 22 tccgatgctg acttgctggg tattatatgt gtgtaaaata gaaagagaac aattgacccg 60 60 <210> 23 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> adh1_donor_R <400> 23 tacaagactt gaaattttcc ttgcaataac cgggtcaatt gttctctttc tattttacac 60 60 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> adh1_sqc_F <400> 24 atgtctatcc cagaaactca 20 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> adh1_sqc_R <400> 25 ttatttagaa gtgtcaacaa c 21 <210> 26 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> gpd1_gRNA_F <400> 26 tcgctccaat agtacaaatg gttttagagc tagaaatagc aag 43 <210> 27 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> gpd1_gRNA_R <400> 27 catttgtact attggagcga cgatcattta tctttcactg cgga 44 <210> 28 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> gpd1_donor_F <400> 28 tatattgtac accccccccc tccacaaaca caaatattga taatataaag taaagggaac 60 aaaagctgga g 71 <210> 29 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> gpd1_donor_R <400> 29 tgtggaacaa ggcctttaga accttatggt cgacgtcctt gccctcgcct tagggcgaat 60 tgggtccgg 69 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gpd1_sqc_F <400> 30 tccacaaaca caaatattga 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gpd1_sqc_R <400> 31 ctaatcttca tgtagatcta 20 <210> 32 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> gpd2_gRNA_F <400> 32 gtttcgtaga aggtatggga gttttagagc tagaaatagc aag 43 <210> 33 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> gpd2_gRNA_R <400> 33 tcccatacct tctacgaaac cgatcattta tctttcactg cgga 44 <210> 34 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> gpd2_donor_F <400> 34 agattcaatt ctctttccct ttccttttcc ttcgctcccc ttccttatca taaagggaac 60 aaaagctgga g 71 <210> 35 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> gpd2_donor_R <400> 35 cttgatagta ggtctcgact ttggattctg ggaaaaacat tctaccgaac tagggcgaat 60 tgggtaccgg 70 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gpd2_sqc_F <400> 36 ttctctaccc tgtcattcta 20 <210> 37 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> gpd2_sqc_R <400> 37 ctattcgtca tcgatgtcta gctc 24 <210> 38 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> adh3_gRNA <400> 38 ctccgcagtg aaagataaat gatcgtacat gcttggcacg gcgatgtttt agagctagaa 60 atagcaagtt 70 <210> 39 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> adh3_donor_F <400> 39 tatcttctgt tcacagttaa aactaggaat agtatagtca taagtcatta gtaggtggtc 60 60 <210> 40 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> adh3_donor_R <400> 40 ctagtttgac aactacacca gcaccttcat gaccacctac taatgactta tgactatact 60 60 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> adh3_sqc_F <400> 41 tcgccagctc ctaaacgctg gaag 24 <210> 42 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> adh3_sqc_R <400> 42 ctaaggcttc tctcgtatca gctct 25 <210> 43 <211> 1982 <212> DNA <213> Artificial Sequence <220> <223> GPDp_mdh3 Delta SKL_CYCt expression cassette <400> 43 agtttatcat tatcaatact cgccatttca aagaatacgt aaataattaa tagtagtgat 60 tttcctaact ttatttagtc aaaaaattag ccttttaatt ctgctgtaac ccgtacatgc 120 ccaaaatagg gggcgggtta cacagaatat ataacatcgt aggtgtctgg gtgaacagtt 180 tattcctggc atccactaaa tataatggag cccgcttttt aagctggcat ccagaaaaaa 240 aaagaatccc agcaccaaaa tattgttttc ttcaccaacc atcagttcat aggtccattc 300 tcttagcgca actacagaga acaggggcac aaacaggcaa aaaacgggca caacctcaat 360 ggagtgatgc aacctgcctg gagtaaatga tgacacaagg caattgaccc acgcatgtat 420 ctatctcatt ttcttacacc ttctattacc ttctgctctc tctgatttgg aaaaagctga 480 aaaaaaaggt tgaaaccagt tccctgaaat tattccccta cttgactaat aagtatataa 540 agacggtagg tattgattgt aattctgtaa atctatttct taaacttctt aaattctact 600 tttatagtta gtcttttttt tagttttaaa acaccagaac ttagtttcga cggattctag 660 aactagtgga tccatggtca aagtcgcaat tcttggcgct tctggtggcg tgggacaacc 720 gctatcatta ctgctaaaat taagccctta cgtttccgag ctggcgttgt acgatatccg 780 agctgcggaa ggcattggta aggatttatc tcacatcaac accaactcaa gttgtgtcgg 840 ttatgataag gatagtattg agaacacctt gtcaaatgct caggtggtgc taataccggc 900 tggtgttccc agaaagcccg gtttaactag agatgatttg ttcaagatga acgccggtat 960 tgtcaaaagc ctggtaaccg ctgttggaaa gttcgcacca aatgcgagga ttttagtcat 1020 ttcaaaccct gtaaacagtt tggtccctat tgctgtggaa actttgaaga aaatgggtaa 1080 gttcaaacct ggaaacgtta tgggtgtgac gaaccttgac ctggtacgtg cagaaacctt 1140 tttggtagat tatttgatgc taaaaaaccc caaaattgga caagaacaag acaaaactac 1200 aatgcacaga aaggtcactg ttattggggg tcattcaggg gaaaccatta tcccaataat 1260 caccgacaaa tcgctggtat ttcaacttga taagcagtac gagcacttca ttcatagggt 1320 ccagttcgga ggtgatgaaa ttgtcaaagc taaacagggc gccggttccg ccacgttgtc 1380 catggcgttc gcgggggcca agtttgctga agaagttttg aggagcttcc ataatgagaa 1440 accagaaacg gagtcacttt ccgcattcgt ttatttacca ggcttaaaaa acggtaagaa 1500 agcgcagcaa ttagttggcg acaactctat tgagtatttt tccttgccaa ttgttttgag 1560 aaatggtagc gtagtatcca tcgataccag tgttctggaa aaactgtctc cgagagagga 1620 acaactcgtt aatactgcgg tcaaagagct acgcaagaat attgaaaaag gcaagagttt 1680 catcctagac tcttgagaat tcgatatcaa gcttatcgat accgtcgacc tcgagtcatg 1740 taattagtta tgtcacgctt acattcacgc cctcccccca catccgctct aaccgaaaag 1800 gaaggagtta gacaacctga agtctaggtc cctatttatt tttttatagt tatgttagta 1860 ttaagaacgt tatttatatt tcaaattttt cttttttttc tgtacagacg cgtgtacgca 1920 tgtaacatta tactgaaaac cttgcttgag aaggttttgg gacgctcgaa ggctttaatt 1980 tg 1982 <210> 44 <211> 3543 <212> DNA <213> Artificial Sequence <220> <223> pyc2 <400> 44 atgagcagta gcaagaaatt ggccggtctt agggacaatt tcagtttgct cggcgaaaag 60 aataagatct tggtcgccaa tagaggtgaa attccgatta gaatttttag atctgctcat 120 gagctgtcta tgagaaccat cgccatatac tcccatgagg accgtctttc aatgcacagg 180 ttgaaggcgg acgaagcgta tgttatcggg gaggagggcc agtatacacc tgtgggtgct 240 tacttggcaa tggacgagat catcgaaatt gcaaagaagc ataaggtgga tttcatccat 300 ccaggttatg ggttcttgtc tgaaaattcg gaatttgccg acaaagtagt gaaggccggt 360 atcacttgga tcggccctcc agctgaagtt attgactctg tgggtgacaa agtctctgcc 420 agacacttgg cagcaagagc taacgttcct accgttcccg gtactccagg acctatcgaa 480 actgtgcaag aggcacttga cttcgttaat gaatacggct acccggtgat cattaaggcc 540 gcctttggtg gtggtggtag aggtatgaga gtcgttagag aaggtgacga cgtggcagat 600 gcctttcaac gtgctacctc cgaagcccgt actgccttcg gtaatggtac ctgctttgtg 660 gaaagattct tggacaagcc aaagcatatt gaagttcaat tgttggctga taaccacgga 720 aacgtggttc atcttttcga aagagactgt tctgtgcaaa gaagacacca aaaagttgtc 780 gaagtcgctc cagcaaagac tttgccccgt gaagttcgtg acgctatttt gacagatgct 840 gttaaattag ctaaggtatg tggttacaga aacgcaggta ccgccgaatt cttggttgac 900 aaccaaaaca gacactattt cattgaaatt aatccaagaa ttcaagtgga gcataccatc 960 actgaagaaa tcaccggtat tgacattgtt tctgcccaaa tccagattgc cgcaggtgcc 1020 actttgactc aactaggtct attacaggat aaaatcacca cccgtgggtt ttccatccaa 1080 tgtcgtatta ccactgaaga tccctctaag aatttccaac cggataccgg tcgcctggag 1140 gtctatcgtt ctgccggtgg taatggtgtg agattggacg gtggtaacgc ttatgcaggt 1200 gctactatct cgcctcacta cgactcaatg ctggtcaaat gttcatgctc tggttctact 1260 tatgaaatcg tccgtaggaa gatgattcgt gccctgatcg aattcagaat cagaggtgtt 1320 aagaccaaca ttcccttcct attgactctt ttgaccaatc cagtttttat tgagggtaca 1380 tactggacga cttttattga cgacacccca caactgttcc aaatggtatc gtcacaaaac 1440 agagcgcaaa aactgttaca ctatttggca gacttggcag ttaacggttc ttctattaag 1500 ggtcaaattg gcttgccaaa actaaaatca aatccaagtg tcccccattt gcacgatgct 1560 cagggcaatg tcatcaacgt tacaaagtct gcaccaccat ccggatggag acaagtgcta 1620 ctggaaaagg gaccatctga atttgccaag caagtcagac agttcaatgg tactctactg 1680 atggacacca cctggagaga cgctcatcaa tctctacttg caacaagagt cagaacccac 1740 gatttggcta caatcgctcc aacaaccgca catgcccttg caggtgcttt cgctttagaa 1800 tgttggggtg gtgctacatt cgacgttgca atgagattct tgcatgagga tccatgggaa 1860 cgtctgagaa aattaagatc tctggtgcct aatattccat tccaaatgtt attacgtggt 1920 gccaacggtg tggcttactc ttcattacct gacaatgcta ttgaccattt tgtcaagcaa 1980 gccaaggata atggtgttga tatatttaga gtttttgatg ccttgaatga tttagaacaa 2040 ttaaaagttg gtgtgaatgc tgtcaagaag gccggtggtg ttgtcgaagc tactgtttgt 2100 tactctggtg acatgcttca gccaggtaag aaatacaact tagactacta cctagaagtt 2160 gttgaaaaaa tagttcaaat gggtacacat atcttgggta ttaaggatat ggcaggtact 2220 atgaaaccgg ccgctgccaa attattaatt ggctccctaa gaaccagata tccggattta 2280 ccaattcatg ttcacagtca tgactccgca ggtactgctg ttgcgtctat gactgcatgt 2340 gccctagcag gtgctgatgt tgtcgatgta gctatcaatt caatgtcggg cttaacttcc 2400 caaccatcaa ttaatgcact gttggcttca ttagaaggta acattgatac tgggattaac 2460 gttgagcatg ttcgtgaatt agatgcatac tgggccgaaa tgagactgtt gtattcttgt 2520 ttcgaggccg acttgaaggg accagatcca gaagtttacc aacatgaaat cccaggtggt 2580 caattgacta acttgttatt ccaagctcaa caactgggtc ttggtgaaca atgggctgaa 2640 actaaaagag cttacagaga agccaattac ctactgggag atattgttaa agttacccca 2700 acttctaagg ttgtcggtga tttagctcaa ttcatggttt ctaacaaact gacttccgac 2760 gatattagac gtttagctaa ttctttggac tttcctgact ctgttatgga cttttttgaa 2820 ggtttaattg gtcaaccata cggtgggttc ccagaaccat taagatctga tgtattgaga 2880 aacaagagaa gaaagttgac gtgccgtcca ggtttagaat tagaaccatt tgatctcgaa 2940 aaaattagag aagacttgca gaacagattc ggtgatattg atgaatgcga tgttgcttct 3000 tacaatatgt atccaagggt ctatgaagat ttccaaaaga tcagagaaac atacggtgat 3060 ttatcagttc taccaaccaa aaatttccta gcaccagcag aacctgatga agaaatcgaa 3120 gtcaccatcg aacaaggtaa gactttgatt atcaaattgc aagctgttgg tgacttaaat 3180 aagaaaactg ggcaaagaga agtgtatttt gaattgaacg gtgaattaag aaagatcaga 3240 gttgcagaca agtcacaaaa catacaatct gttgctaaac caaaggctga tgtccacgat 3300 actcaccaaa tcggtgcacc aatggctggt gttatcatag aagttaaagt acataaaggg 3360 tctttggtga aaaagggcga atcgattgct gttttgagtg ccatgaaaat ggaaatggtt 3420 gtctcttcac cagcagatgg tcaagttaaa gacgttttca ttaaggatgg tgaaagtgtt 3480 gacgcatcag atttgttggt tgtcctagaa gaagaaaccc tacccccatc ccaaaaaaag 3540 taa 3543 <210> 45 <211> 1023 <212> DNA <213> Artificial Sequence <220> <223> mdh3 Delta SKL <400> 45 atggtcaaag tcgcaattct tggcgcttct ggtggcgtgg gacaaccgct atcattactg 60 ctaaaattaa gcccttacgt ttccgagctg gcgttgtacg atatccgagc tgcggaaggc 120 attggtaagg atttatctca catcaacacc aactcaagtt gtgtcggtta tgataaggat 180 agtattgaga acaccttgtc aaatgctcag gtggtgctaa taccggctgg tgttcccaga 240 aagcccggtt taactagaga tgatttgttc aagatgaacg ccggtattgt caaaagcctg 300 gtaaccgctg ttggaaagtt cgcaccaaat gcgaggattt tagtcatttc aaaccctgta 360 aacagtttgg tccctattgc tgtggaaact ttgaagaaaa tgggtaagtt caaacctgga 420 aacgttatgg gtgtgacgaa ccttgacctg gtacgtgcag aaaccttttt ggtagattat 480 ttgatgctaa aaaaccccaa aattggacaa gaacaagaca aaactacaat gcacagaaag 540 gtcactgtta ttgggggtca ttcaggggaa accattatcc caataatcac cgacaaatcg 600 ctggtatttc aacttgataa gcagtacgag cacttcattc atagggtcca gttcggaggt 660 gatgaaattg tcaaagctaa acagggcgcc ggttccgcca cgttgtccat ggcgttcgcg 720 ggggccaagt ttgctgaaga agttttgagg agcttccata atgagaaacc agaaacggag 780 tcactttccg cattcgttta tttaccaggc ttaaaaaacg gtaagaaagc gcagcaatta 840 gttggcgaca actctattga gtatttttcc ttgccaattg ttttgagaaa tggtagcgta 900 gtatccatcg ataccagtgt tctggaaaaa ctgtctccga gagaggaaca actcgttaat 960 actgcggtca aagagctacg caagaatatt gaaaaaggca agagtttcat cctagactct 1020 tga 1023 <210> 46 <211> 1317 <212> DNA <213> Artificial Sequence <220> <223> spmae1 <400> 46 atgggtgaac tcaaggaaat cttgaaacag aggtatcatg agttgcttga ctggaatgtc 60 aaagcccctc atgtccctct cagtcaacga ctgaagcatt ttacatggtc ttggtttgca 120 tgtactatgg caactggtgg tgttggtttg attattggtt ctttcccctt tcgattttat 180 ggtcttaata caattggcaa aattgtttat attcttcaaa tctttttgtt ttctctcttt 240 ggatcatgca tgctttttcg ctttattaaa tatccttcaa ctatcaagga ttcctggaac 300 catcatttgg aaaagctttt cattgctact tgtcttcttt caatatccac gttcatcgac 360 atgcttgcca tatacgccta tcctgatacc ggcgagtgga tggtgtgggt cattcgaatc 420 ctttattaca tttacgttgc agtatccttt atatactgcg taatggcttt ttttacaatt 480 ttcaacaacc atgtatatac cattgaaacc gcatctcctg cttggattct tcctattttc 540 cctcctatga tttgtggtgt cattgctggc gccgtcaatt ctacacaacc cgctcatcaa 600 ttaaaaaata tggttatctt tggtatcctc tttcaaggac ttggtttttg ggtttatctt 660 ttactgtttg ccgtcaatgt cttacggttt tttactgtag gcctggcaaa accccaagat 720 cgacctggta tgtttatgtt tgtcggtcca ccagctttct caggtttggc cttaattaat 780 attgcgcgtg gtgctatggg cagtcgccct tatatttttg ttggcgccaa ctcatccgag 840 tatcttggtt ttgtttctac ctttatggct atttttattt ggggtcttgc tgcttggtgt 900 tactgtctcg ccatggttag ctttttagcg ggctttttca ctcgagcccc tctcaagttt 960 gcttgtggat ggtttgcatt cattttcccc aacgtgggtt ttgttaattg taccattgag 1020 ataggtaaaa tgatagattc caaagctttc caaatgtttg gacatatcat tggggtcatt 1080 ctttgtattc agtggatcct cctaatgtat ttaatggtcc gtgcgtttct cgtcaatgat 1140 ctttgctatc ctggcaaaga cgaagatgcc catcctccac caaaaccaaa tacaggtgtc 1200 cttaacccta ccttcccacc tgaaaaagca cctgcatctt tggaaaaagt cgatacacat 1260 gtcacatcta ctggtggtga atcggatcct cctagtagtg aacatgaaag cgtttaa 1317 <210> 47 <211> 1656 <212> DNA <213> Artificial Sequence <220> <223> mls1 Delta SKL <400> 47 atggttaagg tcagtttgga taacgtcaaa ttactggtgg atgttgataa ggagcctttc 60 tttaaaccat ctagtactac agtgggagat attcttacca aggatgctct agagttcatt 120 gttcttttac acagaacttt caacaacaag agaaaacaat tattggaaaa cagacaagtt 180 gttcagaaga aattagactc gggctcctat catctggatt tcctgcctga aactgcaaat 240 attagaaatg atcccacttg gcaaggtcca attttggcac cggggttaat taataggtca 300 acggaaatca cagggcctcc attgagaaat atgctgatca acgctttgaa tgctcctgtg 360 aacacctata tgactgattt tgaagattca gcttcaccta cttggaacaa catggtttac 420 ggtcaagtta atctctacga cgcgatcaga aatcaaatcg attttgacac accaagaaaa 480 tcgtacaaat tgaatggaaa tgtggccaac ttgcccacta ttatcgtgag accccgtggt 540 tggcacatgg tggaaaagca cctttatgta gatgatgaac caatcagcgc ttccatcttt 600 gattttggtt tatatttcta ccataatgcc aaagaattaa tcaaattggg caaaggtcct 660 tacttctatt tgccaaagat ggagcaccac ttggaagcta aactatggaa cgacgtcttc 720 tgtgtagctc aagattacat tgggatccca aggggtacaa tcagagctac tgtgttgatt 780 gaaactttgc ctgctgcttt ccaaatggaa gagatcatct atcaattaag acaacattct 840 agtgggttga attgcggacg ttgggactat attttctcta caatcaagag attaagaaat 900 gatcctaatc acattttgcc caatagaaat caagtgacta tgacttcccc attcatggat 960 gcatacgtga aaagattaat caatacctgt catcggaggg gtgttcatgc catgggtggt 1020 atggctgcgc aaatccctat caaagacgac ccggcagcca atgaaaaggc catgactaaa 1080 gtccgtaatg ataagattag agagctgaca aatggacatg atgggtcatg ggttgcacac 1140 ccagcactgg cccctatttg taatgaagtt ttcattaata tgggaacacc aaaccaaatc 1200 tatttcattc ctgaaaacgt tgtaacggct gctaatctgc tggaaaccaa aattccaaat 1260 ggtgagatta ctaccgaggg aattgtacaa aacttggata tcgggttgca gtacatggaa 1320 gcttggctca gaggctctgg atgtgtgccc atcaacaact tgatggaaga cgccgccact 1380 gctgaagtgt ctcgttgtca attgtatcaa tgggtgaaac acggtgttac tctaaaggac 1440 acgggagaaa aggtcacccc agaattaacc gaaaagattc taaaagaaca agtggaaaga 1500 ctgtctaagg caagtccatt gggtgacaag aacaaattcg cgctggccgc taagtatttc 1560 ttgccagaaa tcagaggcga gaaattcagt gaatttttga ctacattgtt gtacgacgaa 1620 attgtgtcca ctaaggcgac gcccactgat ttgtga 1656 <210> 48 <211> 1674 <212> DNA <213> Artificial Sequence <220> <223> icl1 <400> 48 atgcctatcc ccgttggaaa tacgaagaac gattttgcag ctttacaagc aaaactagat 60 gcagatgctg ccgaaattga gaaatggtgg tctgactcac gttggagtaa gactaagaga 120 aattattcag ccagagatat tgctgttaga cgcgggacat tcccaccaat cgaataccca 180 tcttcggtca tggccagaaa attattcaag gtattagaga agcatcacaa tgagggtaca 240 gtctctaaaa ctttcggtgc cctagatcct gtccagattt ctcaaatggc aaaatactta 300 gacacaatct atatttctgg ttggcagtgt tcatcaactg cttccacctc aaatgaacct 360 ggtccagact tagctgatta tccaatggac accgttccaa acaaagtgga acatttgttc 420 aaggcccaat tgtttcacga cagaaaacaa ctagaggcac ggtcaaaggc taaatctcag 480 gaagaactcg atgagatggg tgccccaatt gactacctaa caccaattgt cgctgatgca 540 gacgcaggcc acggcggttt aaccgcagtc ttcaaattga ccaagatgtt cattgagcgt 600 ggtgctgctg ggatccacat ggaagaccag acatctacaa ataagaaatg tgggcatatg 660 gcaggaagat gtgttatacc cgttcaggaa catgttaaca gattggtgac tattagaatg 720 tgtgctgata tcatgcattc tgacttaatt gtcgttgcta ggactgattc agaagcagcc 780 actttgatta gctcaaccat cgataccaga gatcattatt tcattgtcgg tgccaccaat 840 ccaaatatcg agccatttgc cgaagtttta aatgatgcca tcatgagtgg tgcatcagga 900 caagaactag ctgacattga acaaaaatgg tgtagagacg ctggactcaa gttattccat 960 gaagccgtca ttgatgaaat tgaaagatca gccctgtcaa ataagcaaga attgattaag 1020 aaattcacct ctaaagtggg tccattgact gaaacatccc acagagaagc caagaagctc 1080 gctaaagaaa ttcttggcca cgaaattttc ttcgactggg agctaccacg cgtaagggaa 1140 gggttgtacc gttacagagg tgggacgcaa tgttctatca tgagggcccg tgcatttgct 1200 ccatatgctg atttggtatg gatggaatct aactacccag acttccaaca ggccaaggag 1260 tttgcagaag gtgttaaaga gaaattccct gaccaatggc tagcttacaa cttgtctcca 1320 tcctttaact ggccaaaagc catgtccgtt gatgaacaac acaccttcat ccaaaggctg 1380 ggtgatctag gttacatctg gcaatttatc acattggccg gtttacacac taacgcttta 1440 gctgtccata acttctctcg tgactttgcc aaggatggga tgaaagctta tgcccagaat 1500 gttcagcaga gggaaatgga cgatggtgtt gatgtgttga aacatcaaaa atggtctggt 1560 gcggagtaca tcgatgggtt attgaagtta gctcaaggtg gtgttagcgc aacagctgct 1620 atgggaaccg gtgtcacaga agatcaattc aaagaaaatg gcgtaaagaa atag 1674 <210> 49 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> adh1 <400> 49 tgggtgaaaa cgttaagggc tgg 23 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> gpd1 <400> 50 tcgctccaat agtacaaatg tgg 23 <210> 51 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> gpd2 <400> 51 gtttcgtaga aggtatggga tgg 23 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> adh3 <400> 52 tacatgcttg gcacggcgat 20 <110> Kookmin University Industry Academy Cooperation Foundation <120> Recombinant yeasts of simultaneously producing ethanol and          C4-organic acids <130> HPC8031 <160> 52 <170> KoPatentIn 3.0 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pyc2_F <400> 1 tccccccggg atgagcagta gcaagaaatt 30 <210> 2 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> pyc2_R <400> 2 ccgctcgagt tacttttttt gggatgggg 29 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> pyc2_SQC1 <400> 3 tttgccccgt gaagttcgtg a 21 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pyc2_SQC2 <400> 4 ccggatggag acaagtgcta 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pyc2_SQC3 <400> 5 caaccatcaa ttaatgcact 20 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> GPD_SQC_F <400> 6 gtaggtattg attgtaattc tgtaaat 27 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CYC_SQC_R <400> 7 tctcaagcaa ggttttcagt ataat 25 <210> 8 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> GPD_sacI <400> 8 cgagctcagt ttatcattat caatactc 28 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CYC_sacI <400> 9 cgcgagctcc aaattaaagc cttcgag 27 <210> 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> mdh3_F <400> 10 cgggatccat ggtcaaagtc gcaattct 28 <210> 11 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> mdh3_R <400> 11 cggaattctc aagagtctag gatgaaac 28 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> spmae1_F <400> 12 aactgcagtt aaacgctttc 20 <210> 13 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> spmae1_R <400> 13 gactagtatg ggtgaactca aggaaatct 29 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> icl1_F <400> 14 ggaattcatg cctatccccg ttggaaa 27 <210> 15 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> icl1_R <400> 15 ccgctcgagc tatttcttta cgccatttt 29 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> mls1_F <400> 16 ggaattcatg gttaaggtca gtttgga 27 <210> 17 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> mls1_R <400> 17 ccgctcgagt cacaaatcag tgggcgtcgc ct 32 <210> 18 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> SacI primer <400> 18 cgagctctct ttgaaaagat aatgtat 27 <210> 19 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> KpnI primer <400> 19 ggggtaccag acataaaaaa caaaaaaa 28 <210> 20 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> adh1_gRNA_F <400> 20 tgggtgaaaa cgttaagggc gttttagagc tagaaatagc aag 43 <210> 21 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> adh1_gRNA_R <400> 21 gcccttaacg ttttcaccca cgatcattta tctttcactg cgga 44 <210> 22 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> adh1_donor_F <400> 22 tccgatgctg acttgctggg tattatatgt gtgtaaaata gaaagagaac aattgacccg 60                                                                           60 <210> 23 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> adh1_donor_R <400> 23 tacaagactt gaaattttcc ttgcaataac cgggtcaatt gttctctttc tattttacac 60                                                                           60 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> adh1_sqc_F <400> 24 atgtctatcc cagaaactca 20 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> adh1_sqc_R <400> 25 ttatttagaa gtgtcaacaa c 21 <210> 26 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> gpd1_gRNA_F <400> 26 tcgctccaat agtacaaatg gttttagagc tagaaatagc aag 43 <210> 27 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> gpd1_gRNA_R <400> 27 catttgtact attggagcga cgatcattta tctttcactg cgga 44 <210> 28 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> gpd1_donor_F <400> 28 tatattgtac accccccccc tccacaaaca caaatattga taatataaag taaagggaac 60 aaaagctgga g 71 <210> 29 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> gpd1_donor_R <400> 29 tgtggaacaa ggcctttaga accttatggt cgacgtcctt gccctcgcct tagggcgaat 60 tgggtccgg 69 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gpd1_sqc_F <400> 30 tccacaaaca caaatattga 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gpd1_sqc_R <400> 31 ctaatcttca tgtagatcta 20 <210> 32 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> gpd2_gRNA_F <400> 32 gtttcgtaga aggtatggga gttttagagc tagaaatagc aag 43 <210> 33 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> gpd2_gRNA_R <400> 33 tcccatacct tctacgaaac cgatcattta tctttcactg cgga 44 <210> 34 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> gpd2_donor_F <400> 34 agattcaatt ctctttccct ttccttttcc ttcgctcccc ttccttatca taaagggaac 60 aaaagctgga g 71 <210> 35 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> gpd2_donor_R <400> 35 cttgatagta ggtctcgact ttggattctg ggaaaaacat tctaccgaac tagggcgaat 60 tgggtaccgg 70 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gpd2_sqc_F <400> 36 ttctctaccc tgtcattcta 20 <210> 37 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> gpd2_sqc_R <400> 37 ctattcgtca tcgatgtcta gctc 24 <210> 38 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> adh3_gRNA <400> 38 ctccgcagtg aaagataaat gatcgtacat gcttggcacg gcgatgtttt agagctagaa 60 atagcaagtt 70 <210> 39 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> adh3_donor_F <400> 39 tatcttctgt tcacagttaa aactaggaat agtatagtca taagtcatta gtaggtggtc 60                                                                           60 <210> 40 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> adh3_donor_R <400> 40 ctagtttgac aactacacca gcaccttcat gaccacctac taatgactta tgactatact 60                                                                           60 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> adh3_sqc_F <400> 41 tcgccagctc ctaaacgctg gaag 24 <210> 42 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> adh3_sqc_R <400> 42 ctaaggcttc tctcgtatca gctct 25 <210> 43 <211> 1982 <212> DNA <213> Artificial Sequence <220> GPDp_mdh3 Delta SKL_CYCt expression cassette <400> 43 agtttatcat tatcaatact cgccatttca aagaatacgt aaataattaa tagtagtgat 60 tttcctaact ttatttagtc aaaaaattag ccttttaatt ctgctgtaac ccgtacatgc 120 ccaaaatagg gggcgggtta cacagaatat ataacatcgt aggtgtctgg gtgaacagtt 180 tattcctggc atccactaaa tataatggag cccgcttttt aagctggcat ccagaaaaaa 240 aaagaatccc agcaccaaaa tattgttttc ttcaccaacc atcagttcat aggtccattc 300 tcttagcgca actacagaga acaggggcac aaacaggcaa aaaacgggca caacctcaat 360 ggagtgatgc aacctgcctg gagtaaatga tgacacaagg caattgaccc acgcatgtat 420 ctatctcatt ttcttacacc ttctattacc ttctgctctc tctgatttgg aaaaagctga 480 aaaaaaaggt tgaaaccagt tccctgaaat tattccccta cttgactaat aagtatataa 540 agacggtagg tattgattgt aattctgtaa atctatttct taaacttctt aaattctact 600 tttatagtta gtcttttttt tagttttaaa acaccagaac ttagtttcga cggattctag 660 aactagtgga tccatggtca aagtcgcaat tcttggcgct tctggtggcg tgggacaacc 720 gctatcatta ctgctaaaat taagccctta cgtttccgag ctggcgttgt acgatatccg 780 agctgcggaa ggcattggta aggatttatc tcacatcaac accaactcaa gttgtgtcgg 840 ttatgataag gatagtattg agaacacctt gtcaaatgct caggtggtgc taataccggc 900 tggtgttccc agaaagcccg gtttaactag agatgatttg ttcaagatga acgccggtat 960 tgtcaaaagc ctggtaaccg ctgttggaaa gttcgcacca aatgcgagga ttttagtcat 1020 ttcaaaccct gtaaacagtt tggtccctat tgctgtggaa actttgaaga aaatgggtaa 1080 gttcaaacct ggaaacgtta tgggtgtgac gaaccttgac ctggtacgtg cagaaacctt 1140 tttggtagat tatttgatgc taaaaaaccc caaaattgga caagaacaag acaaaactac 1200 aatgcacaga aaggtcactg ttattggggg tcattcaggg gaaaccatta tcccaataat 1260 caccgacaaa tcgctggtat ttcaacttga taagcagtac gagcacttca ttcatagggt 1320 ccagttcgga ggtgatgaaa ttgtcaaagc taaacagggc gccggttccg ccacgttgtc 1380 catggcgttc gcgggggcca agtttgctga agaagttttg aggagcttcc ataatgagaa 1440 accagaaacg gagtcacttt ccgcattcgt ttatttacca ggcttaaaaa acggtaagaa 1500 agcgcagcaa ttagttggcg acaactctat tgagtatttt tccttgccaa ttgttttgag 1560 aaatggtagc gtagtatcca tcgataccag tgttctggaa aaactgtctc cgagagagga 1620 acaactcgtt aatactgcgg tcaaagagct acgcaagaat attgaaaaag gcaagagttt 1680 catcctagac tcttgagaat tcgatatcaa gcttatcgat accgtcgacc tcgagtcatg 1740 taattagtta tgtcacgctt acattcacgc cctcccccca catccgctct aaccgaaaag 1800 gaaggagtta gacaacctga agtctaggtc cctatttatt tttttatagt tatgttagta 1860 ttaagaacgt tatttatatt tcaaattttt cttttttttc tgtacagacg cgtgtacgca 1920 tgtaacatta tactgaaaac cttgcttgag aaggttttgg gacgctcgaa ggctttaatt 1980 tg 1982 <210> 44 <211> 3543 <212> DNA <213> Artificial Sequence <220> <223> pyc2 <400> 44 atgagcagta gcaagaaatt ggccggtctt agggacaatt tcagtttgct cggcgaaaag 60 aataagatct tggtcgccaa tagaggtgaa attccgatta gaatttttag atctgctcat 120 gagctgtcta tgagaaccat cgccatatac tcccatgagg accgtctttc aatgcacagg 180 ttgaaggcgg acgaagcgta tgttatcggg gaggagggcc agtatacacc tgtgggtgct 240 tacttggcaa tggacgagat catcgaaatt gcaaagaagc ataaggtgga tttcatccat 300 ccaggttatg ggttcttgtc tgaaaattcg gaatttgccg acaaagtagt gaaggccggt 360 atcacttgga tcggccctcc agctgaagtt attgactctg tgggtgacaa agtctctgcc 420 agacacttgg cagcaagagc taacgttcct accgttcccg gtactccagg acctatcgaa 480 actgtgcaag aggcacttga cttcgttaat gaatacggct acccggtgat cattaaggcc 540 gcctttggtg gtggtggtag aggtatgaga gtcgttagag aaggtgacga cgtggcagat 600 gcctttcaac gtgctacctc cgaagcccgt actgccttcg gtaatggtac ctgctttgtg 660 gaaagattct tggacaagcc aaagcatatt gaagttcaat tgttggctga taaccacgga 720 aacgtggttc atcttttcga aagagactgt tctgtgcaaa gaagacacca aaaagttgtc 780 gaagtcgctc cagcaaagac tttgccccgt gaagttcgtg acgctatttt gacagatgct 840 gttaaattag ctaaggtatg tggttacaga aacgcaggta ccgccgaatt cttggttgac 900 aaccaaaaca gacactattt cattgaaatt aatccaagaa ttcaagtgga gcataccatc 960 actgaagaaa tcaccggtat tgacattgtt tctgcccaaa tccagattgc cgcaggtgcc 1020 actttgactc aactaggtct attacaggat aaaatcacca cccgtgggtt ttccatccaa 1080 tgtcgtatta ccactgaaga tccctctaag aatttccaac cggataccgg tcgcctggag 1140 gtctatcgtt ctgccggtgg taatggtgtg agattggacg gtggtaacgc ttatgcaggt 1200 gctactatct cgcctcacta cgactcaatg ctggtcaaat gttcatgctc tggttctact 1260 tatgaaatcg tccgtaggaa gatgattcgt gccctgatcg aattcagaat cagaggtgtt 1320 aagaccaaca ttcccttcct attgactctt ttgaccaatc cagtttttat tgagggtaca 1380 tactggacga cttttattga cgacacccca caactgttcc aaatggtatc gtcacaaaac 1440 agagcgcaaa aactgttaca ctatttggca gacttggcag ttaacggttc ttctattaag 1500 ggtcaaattg gcttgccaaa actaaaatca aatccaagtg tcccccattt gcacgatgct 1560 cagggcaatg tcatcaacgt tacaaagtct gcaccaccat ccggatggag acaagtgcta 1620 ctggaaaagg gaccatctga atttgccaag caagtcagac agttcaatgg tactctactg 1680 atggacacca cctggagaga cgctcatcaa tctctacttg caacaagagt cagaacccac 1740 gatttggcta caatcgctcc aacaaccgca catgcccttg caggtgcttt cgctttagaa 1800 tgttggggtg gtgctacatt cgacgttgca atgagattct tgcatgagga tccatgggaa 1860 cgtctgagaa aattaagatc tctggtgcct aatattccat tccaaatgtt attacgtggt 1920 gccaacggtg tggcttactc ttcattacct gacaatgcta ttgaccattt tgtcaagcaa 1980 gccaaggata atggtgttga tatatttaga gtttttgatg ccttgaatga tttagaacaa 2040 ttaaaagttg gtgtgaatgc tgtcaagaag gccggtggtg ttgtcgaagc tactgtttgt 2100 tactctggtg acatgcttca gccaggtaag aaatacaact tagactacta cctagaagtt 2160 gttgaaaaaa tagttcaaat gggtacacat atcttgggta ttaaggatat ggcaggtact 2220 atgaaaccgg ccgctgccaa attattaatt ggctccctaa gaaccagata tccggattta 2280 ccaattcatg ttcacagtca tgactccgca ggtactgctg ttgcgtctat gactgcatgt 2340 gccctagcag gtgctgatgt tgtcgatgta gctatcaatt caatgtcggg cttaacttcc 2400 caaccatcaa ttaatgcact gttggcttca ttagaaggta acattgatac tgggattaac 2460 gttgagcatg ttcgtgaatt agatgcatac tgggccgaaa tgagactgtt gtattcttgt 2520 ttcgaggccg acttgaaggg accagatcca gaagtttacc aacatgaaat cccaggtggt 2580 caattgacta acttgttatt ccaagctcaa caactgggtc ttggtgaaca atgggctgaa 2640 actaaaagag cttacagaga agccaattac ctactgggag atattgttaa agttacccca 2700 acttctaagg ttgtcggtga tttagctcaa ttcatggttt ctaacaaact gacttccgac 2760 gatattagac gtttagctaa ttctttggac tttcctgact ctgttatgga cttttttgaa 2820 ggtttaattg gtcaaccata cggtgggttc ccagaaccat taagatctga tgtattgaga 2880 aacaagagaa gaaagttgac gtgccgtcca ggtttagaat tagaaccatt tgatctcgaa 2940 aaaattagag aagacttgca gaacagattc ggtgatattg atgaatgcga tgttgcttct 3000 tacaatatgt atccaagggt ctatgaagat ttccaaaaga tcagagaaac atacggtgat 3060 ttatcagttc taccaaccaa aaatttccta gcaccagcag aacctgatga agaaatcgaa 3120 gtcaccatcg aacaaggtaa gactttgatt atcaaattgc aagctgttgg tgacttaaat 3180 aagaaaactg ggcaaagaga agtgtatttt gaattgaacg gtgaattaag aaagatcaga 3240 gttgcagaca agtcacaaaa catacaatct gttgctaaac caaaggctga tgtccacgat 3300 actcaccaaa tcggtgcacc aatggctggt gttatcatag aagttaaagt acataaaggg 3360 tctttggtga aaaagggcga atcgattgct gttttgagtg ccatgaaaat ggaaatggtt 3420 gtctcttcac cagcagatgg tcaagttaaa gacgttttca ttaaggatgg tgaaagtgtt 3480 gacgcatcag atttgttggt tgtcctagaa gaagaaaccc tacccccatc ccaaaaaaag 3540 taa 3543 <210> 45 <211> 1023 <212> DNA <213> Artificial Sequence <220> <223> mdh3 Delta SKL <400> 45 atggtcaaag tcgcaattct tggcgcttct ggtggcgtgg gacaaccgct atcattactg 60 ctaaaattaa gcccttacgt ttccgagctg gcgttgtacg atatccgagc tgcggaaggc 120 attggtaagg atttatctca catcaacacc aactcaagtt gtgtcggtta tgataaggat 180 agtattgaga acaccttgtc aaatgctcag gtggtgctaa taccggctgg tgttcccaga 240 aagcccggtt taactagaga tgatttgttc aagatgaacg ccggtattgt caaaagcctg 300 gtaaccgctg ttggaaagtt cgcaccaaat gcgaggattt tagtcatttc aaaccctgta 360 aacagtttgg tccctattgc tgtggaaact ttgaagaaaa tgggtaagtt caaacctgga 420 aacgttatgg gtgtgacgaa ccttgacctg gtacgtgcag aaaccttttt ggtagattat 480 ttgatgctaa aaaaccccaa aattggacaa gaacaagaca aaactacaat gcacagaaag 540 gtcactgtta ttgggggtca ttcaggggaa accattatcc caataatcac cgacaaatcg 600 ctggtatttc aacttgataa gcagtacgag cacttcattc atagggtcca gttcggaggt 660 gatgaaattg tcaaagctaa acagggcgcc ggttccgcca cgttgtccat ggcgttcgcg 720 ggggccaagt ttgctgaaga agttttgagg agcttccata atgagaaacc agaaacggag 780 tcactttccg cattcgttta tttaccaggc ttaaaaaacg gtaagaaagc gcagcaatta 840 gttggcgaca actctattga gtatttttcc ttgccaattg ttttgagaaa tggtagcgta 900 gtatccatcg ataccagtgt tctggaaaaa ctgtctccga gagaggaaca actcgttaat 960 actgcggtca aagagctacg caagaatatt gaaaaaggca agagtttcat cctagactct 1020 tga 1023 <210> 46 <211> 1317 <212> DNA <213> Artificial Sequence <220> <223> spmae1 <400> 46 atgggtgaac tcaaggaaat cttgaaacag aggtatcatg agttgcttga ctggaatgtc 60 aaagcccctc atgtccctct cagtcaacga ctgaagcatt ttacatggtc ttggtttgca 120 tgtactatgg caactggtgg tgttggtttg attattggtt ctttcccctt tcgattttat 180 ggtcttaata caattggcaa aattgtttat attcttcaaa tctttttgtt ttctctcttt 240 ggatcatgca tgctttttcg ctttattaaa tatccttcaa ctatcaagga ttcctggaac 300 catcatttgg aaaagctttt cattgctact tgtcttcttt caatatccac gttcatcgac 360 atgcttgcca tatacgccta tcctgatacc ggcgagtgga tggtgtgggt cattcgaatc 420 ctttattaca tttacgttgc agtatccttt atatactgcg taatggcttt ttttacaatt 480 ttcaacaacc atgtatatac cattgaaacc gcatctcctg cttggattct tcctattttc 540 cctcctatga tttgtggtgt cattgctggc gccgtcaatt ctacacaacc cgctcatcaa 600 ttaaaaaata tggttatctt tggtatcctc tttcaaggac ttggtttttg ggtttatctt 660 ttactgtttg ccgtcaatgt cttacggttt tttactgtag gcctggcaaa accccaagat 720 cgacctggta tgtttatgtt tgtcggtcca ccagctttct caggtttggc cttaattaat 780 attgcgcgtg gtgctatggg cagtcgccct tatatttttg ttggcgccaa ctcatccgag 840 tatcttggtt ttgtttctac ctttatggct atttttattt ggggtcttgc tgcttggtgt 900 tactgtctcg ccatggttag ctttttagcg ggctttttca ctcgagcccc tctcaagttt 960 gcttgtggat ggtttgcatt cattttcccc aacgtgggtt ttgttaattg taccattgag 1020 ataggtaaaa tgatagattc caaagctttc caaatgtttg gacatatcat tggggtcatt 1080 ctttgtattc agtggatcct cctaatgtat ttaatggtcc gtgcgtttct cgtcaatgat 1140 ctttgctatc ctggcaaaga cgaagatgcc catcctccac caaaaccaaa tacaggtgtc 1200 cttaacccta ccttcccacc tgaaaaagca cctgcatctt tggaaaaagt cgatacacat 1260 gtcacatcta ctggtggtga atcggatcct cctagtagtg aacatgaaag cgtttaa 1317 <210> 47 <211> 1656 <212> DNA <213> Artificial Sequence <220> <223> mls1 Delta SKL <400> 47 atggttaagg tcagtttgga taacgtcaaa ttactggtgg atgttgataa ggagcctttc 60 tttaaaccat ctagtactac agtgggagat attcttacca aggatgctct agagttcatt 120 gttcttttac acagaacttt caacaacaag agaaaacaat tattggaaaa cagacaagtt 180 gttcagaaga aattagactc gggctcctat catctggatt tcctgcctga aactgcaaat 240 attagaaatg atcccacttg gcaaggtcca attttggcac cggggttaat taataggtca 300 acggaaatca cagggcctcc attgagaaat atgctgatca acgctttgaa tgctcctgtg 360 aacacctata tgactgattt tgaagattca gcttcaccta cttggaacaa catggtttac 420 ggtcaagtta atctctacga cgcgatcaga aatcaaatcg attttgacac accaagaaaa 480 tcgtacaaat tgaatggaaa tgtggccaac ttgcccacta ttatcgtgag accccgtggt 540 tggcacatgg tggaaaagca cctttatgta gatgatgaac caatcagcgc ttccatcttt 600 gattttggtt tatatttcta ccataatgcc aaagaattaa tcaaattggg caaaggtcct 660 tacttctatt tgccaaagat ggagcaccac ttggaagcta aactatggaa cgacgtcttc 720 tgtgtagctc aagattacat tgggatccca aggggtacaa tcagagctac tgtgttgatt 780 gaaactttgc ctgctgcttt ccaaatggaa gagatcatct atcaattaag acaacattct 840 agtgggttga attgcggacg ttgggactat attttctcta caatcaagag attaagaaat 900 gatcctaatc acattttgcc caatagaaat caagtgacta tgacttcccc attcatggat 960 gcatacgtga aaagattaat caatacctgt catcggaggg gtgttcatgc catgggtggt 1020 atggctgcgc aaatccctat caaagacgac ccggcagcca atgaaaaggc catgactaaa 1080 gtccgtaatg ataagattag agagctgaca aatggacatg atgggtcatg ggttgcacac 1140 ccagcactgg cccctatttg taatgaagtt ttcattaata tgggaacacc aaaccaaatc 1200 tatttcattc ctgaaaacgt tgtaacggct gctaatctgc tggaaaccaa aattccaaat 1260 ggtgagatta ctaccgaggg aattgtacaa aacttggata tcgggttgca gtacatggaa 1320 gcttggctca gaggctctgg atgtgtgccc atcaacaact tgatggaaga cgccgccact 1380 gctgaagtgt ctcgttgtca attgtatcaa tgggtgaaac acggtgttac tctaaaggac 1440 acgggagaaa aggtcacccc agaattaacc gaaaagattc taaaagaaca agtggaaaga 1500 ctgtctaagg caagtccatt gggtgacaag aacaaattcg cgctggccgc taagtatttc 1560 ttgccagaaa tcagaggcga gaaattcagt gaatttttga ctacattgtt gtacgacgaa 1620 attgtgtcca ctaaggcgac gcccactgat ttgtga 1656 <210> 48 <211> 1674 <212> DNA <213> Artificial Sequence <220> <223> icl1 <400> 48 atgcctatcc ccgttggaaa tacgaagaac gattttgcag ctttacaagc aaaactagat 60 gcagatgctg ccgaaattga gaaatggtgg tctgactcac gttggagtaa gactaagaga 120 aattattcag ccagagatat tgctgttaga cgcgggacat tcccaccaat cgaataccca 180 tcttcggtca tggccagaaa attattcaag gtattagaga agcatcacaa tgagggtaca 240 gtctctaaaa ctttcggtgc cctagatcct gtccagattt ctcaaatggc aaaatactta 300 gacacaatct atatttctgg ttggcagtgt tcatcaactg cttccacctc aaatgaacct 360 ggtccagact tagctgatta tccaatggac accgttccaa acaaagtgga acatttgttc 420 aaggcccaat tgtttcacga cagaaaacaa ctagaggcac ggtcaaaggc taaatctcag 480 gaagaactcg atgagatggg tgccccaatt gactacctaa caccaattgt cgctgatgca 540 gacgcaggcc acggcggttt aaccgcagtc ttcaaattga ccaagatgtt cattgagcgt 600 ggtgctgctg ggatccacat ggaagaccag acatctacaa ataagaaatg tgggcatatg 660 gcaggaagat gtgttatacc cgttcaggaa catgttaaca gattggtgac tattagaatg 720 tgtgctgata tcatgcattc tgacttaatt gtcgttgcta ggactgattc agaagcagcc 780 actttgatta gctcaaccat cgataccaga gatcattatt tcattgtcgg tgccaccaat 840 ccaaatatcg agccatttgc cgaagtttta aatgatgcca tcatgagtgg tgcatcagga 900 caagaactag ctgacattga acaaaaatgg tgtagagacg ctggactcaa gttattccat 960 gaagccgtca ttgatgaaat tgaaagatca gccctgtcaa ataagcaaga attgattaag 1020 aaattcacct ctaaagtggg tccattgact gaaacatccc acagagaagc caagaagctc 1080 gctaaagaaa ttcttggcca cgaaattttc ttcgactggg agctaccacg cgtaagggaa 1140 gggttgtacc gttacagagg tgggacgcaa tgttctatca tgagggcccg tgcatttgct 1200 ccatatgctg atttggtatg gatggaatct aactacccag acttccaaca ggccaaggag 1260 tttgcagaag gtgttaaaga gaaattccct gaccaatggc tagcttacaa cttgtctcca 1320 tcctttaact ggccaaaagc catgtccgtt gatgaacaac acaccttcat ccaaaggctg 1380 ggtgatctag gttacatctg gcaatttatc acattggccg gtttacacac taacgcttta 1440 gctgtccata acttctctcg tgactttgcc aaggatggga tgaaagctta tgcccagaat 1500 gttcagcaga gggaaatgga cgatggtgtt gatgtgttga aacatcaaaa atggtctggt 1560 gcggagtaca tcgatgggtt attgaagtta gctcaaggtg gtgttagcgc aacagctgct 1620 atgggaaccg gtgtcacaga agatcaattc aaagaaaatg gcgtaaagaa atag 1674 <210> 49 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> adh1 <400> 49 tgggtgaaaa cgttaagggc tgg 23 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> gpd1 <400> 50 tcgctccaat agtacaaatg tgg 23 <210> 51 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> gpd2 <400> 51 gtttcgtaga aggtatggga tgg 23 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> adh3 <400> 52 tacatgcttg gcacggcgat 20

Claims (12)

pyc2 유전자와 mdh3 유전자는 도입되어 있고,
adh1, adh2, adh3, adh4, adh5, adh6 및 adh7 중에서 선택되는 어느 하나 이상의 유전자는 비활성화된, C4 유기산의 생성이 증가된 재조합 효모.
pyc2 gene and mdh3 gene are introduced,
Recombinant yeast with increased production of C4 organic acid, wherein any one or more genes selected from adh1, adh2, adh3, adh4, adh5, adh6 and adh7 are inactivated.
제 1 항에 있어서,
상기 재조합 효모는 gpd1 유전자와 gpd2 유전자가 추가적으로 비활성화된 것을 특징으로 하는 재조합 효모.
The method of claim 1,
The recombinant yeast is recombinant yeast, characterized in that the gpd1 gene and gpd2 gene is further inactivated.
제 1 항에 있어서,
상기 재조합 효모는 mls1 유전자와 icl1 유전자가 추가로 도입되어 있는 것을 특징으로 하는 재조합 효모.
The method of claim 1,
The recombinant yeast is a recombinant yeast, characterized in that the mls1 gene and icl1 gene is further introduced.
제 1 항에 있어서,
상기 재조합 효모는 C4 유기산 이송체 단백질을 코딩하는 spmae1 유전자가 추가로 도입되어 있는 것을 특징으로 하는 재조합 효모.
The method of claim 1,
The recombinant yeast is recombinant yeast, characterized in that the spmae1 gene encoding the C4 organic acid transporter protein is further introduced.
제 1 항에 있어서,
상기 pyc2 유전자는 서열번호 44로 표시되고, 상기 mdh3 유전자는 서열번호 45로 표시되는 것을 특징으로 하는 재조합 효모.
The method of claim 1,
The pyc2 gene is represented by SEQ ID NO: 44, and the mdh3 gene is recombinant yeast, characterized in that represented by SEQ ID NO: 45.
제 1 항에 있어서,
상기 adh1 유전자의 5' 로부터 downstream쪽으로 247~249 bp 위치에 존재하는 서열이 TAA 종결코돈으로 치환되어 기능이 흠결된 것을 특징으로 하는 재조합 효모.
The method of claim 1,
Recombinant yeast, characterized in that the sequence present in the position 247 ~ 249 bp from the 5 'to the downstream of the adh1 gene is replaced with a TAA stop codon is defective.
제 2 항에 있어서,
상기 gpd1 유전자는 서열번호 43으로 이루어진 발현 카세트의 유전체 도입에 의하여 gpd1과 gpd2 유전자가 불활성화된 것을 특징으로 하는 재조합 효모.
The method of claim 2,
The gpd1 gene is recombinant yeast, characterized in that the gpd1 and gpd2 genes are inactivated by the introduction of the genome of the expression cassette consisting of SEQ ID NO: 43.
제 3 항에 있어서,
상기 mls1 유전자는 서열번호 47로 표시되고, 상기 icl1 유전자는 서열번호 48로 표시되는 것을 특징으로 하는 재조합 효모.
The method of claim 3, wherein
The mls1 gene is represented by SEQ ID NO: 47, and the icl1 gene is recombinant yeast, characterized in that represented by SEQ ID NO: 48.
제 4 항에 있어서,
상기 spmae1 유전자는 서열번호 46으로 표시되는 것을 특징으로 하는 재조합 효모.
The method of claim 4, wherein
The spmae1 gene is recombinant yeast, characterized in that represented by SEQ ID NO: 46.
제 1 항에 있어서,
상기 효모는 숙주 세포로 사카로마이세스 세레비시애(Saccharomyces cerevisiae) 균주를 사용한 것을 특징으로 하는 재조합 효모.
The method of claim 1,
The yeast is recombinant yeast, characterized in that using Saccharomyces cerevisiae strain as a host cell.
제 10 항에 있어서,
상기 균주는 D452-2 균주인 것을 특징으로 하는 재조합 효모.
The method of claim 10,
The strain is recombinant yeast, characterized in that the D452-2 strain.
1) 청구항 제1항 내지 제10항 중에서 선택되는 어느 하나의 재조합 효모를 제조하는 단계; 및
2) 상기 재조합 효모를 배지에서 배양하는 단계를 포함하는 C4 유기산의 생성 방법.
1) preparing any one recombinant yeast selected from claims 1 to 10; And
2) C4 organic acid production method comprising the step of culturing the recombinant yeast in a medium.
KR1020180079153A 2018-07-09 2018-07-09 Recombinant yeasts of simultaneously producing ethanol and C4-organic acids KR102255175B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180079153A KR102255175B1 (en) 2018-07-09 2018-07-09 Recombinant yeasts of simultaneously producing ethanol and C4-organic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180079153A KR102255175B1 (en) 2018-07-09 2018-07-09 Recombinant yeasts of simultaneously producing ethanol and C4-organic acids

Publications (2)

Publication Number Publication Date
KR20200005776A true KR20200005776A (en) 2020-01-17
KR102255175B1 KR102255175B1 (en) 2021-05-24

Family

ID=69369969

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180079153A KR102255175B1 (en) 2018-07-09 2018-07-09 Recombinant yeasts of simultaneously producing ethanol and C4-organic acids

Country Status (1)

Country Link
KR (1) KR102255175B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315161B1 (en) 1999-11-26 2001-11-26 손재익 Method of manufacturing ethanol for fuel from recycled paper using recombinant-yeast being able to hydrolyse cellulose

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315161B1 (en) 1999-11-26 2001-11-26 손재익 Method of manufacturing ethanol for fuel from recycled paper using recombinant-yeast being able to hydrolyse cellulose

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Genbank Accession number CP004718 (2016.12.15.)* *
Genbank Accession number NM_001178566 (2018.04.04.)* *
Takahiro Oba 등. FEMS Yeast Res. Vol. 14, 페이지 789-796 (2014.06.27.)* *
Takashi Hirasawa 등. Bioengineered. Vol. 5, No. 2, 페이지 123-128 (2013.09.26.)* *

Also Published As

Publication number Publication date
KR102255175B1 (en) 2021-05-24

Similar Documents

Publication Publication Date Title
KR101704212B1 (en) A microorganism producing lactic acid and method for producing lactic acid using the same
RU2745157C1 (en) Yeast producing ektoin
EP2960326B1 (en) Microorganism capable of enhancing lactic acid production and method for producing lactic acid using same
US6268189B1 (en) Fungal lactate dehydrogenase gene and constructs for the expression thereof
US20130210097A1 (en) Glycolic acid fermentative production with a modified microorganism
US20140045230A1 (en) Dicarboxylic acid production in a filamentous fungus
CN110892073B (en) Enhanced metabolite producing yeast
KR102255175B1 (en) Recombinant yeasts of simultaneously producing ethanol and C4-organic acids
KR20190008806A (en) Transformed microorganism with enhanced productivity of lactic acid
US10501745B2 (en) Promoter and use thereof
KR102306725B1 (en) Genetically engineered yeast having acetoin producing ability and method for producing acetoin using the same
US9340809B2 (en) Microbial conversion of sugar acids and means therein
KR102605543B1 (en) Methionine-producing yeast
CN114058560A (en) Method for producing glycine
US10155967B2 (en) Microorganism having enhanced productivity of lactic acid and a process for producing lactic acid using the same
KR20190008805A (en) Recombinant sur1 gene involved in increasing productivity of lactic acid and microorganism transformed with the same
CN109689871B (en) Mutant filamentous fungus and method for producing C4 dicarboxylic acid using same
CN115873852A (en) Recombinant nucleic acid sequence, genetic engineering bacteria and method for producing 1,5-pentanediamine
CN110914434A (en) Threonine producing yeast

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant