KR20190140717A - A method for producing a distillate of a herbal medicine - Google Patents

A method for producing a distillate of a herbal medicine Download PDF

Info

Publication number
KR20190140717A
KR20190140717A KR1020180067557A KR20180067557A KR20190140717A KR 20190140717 A KR20190140717 A KR 20190140717A KR 1020180067557 A KR1020180067557 A KR 1020180067557A KR 20180067557 A KR20180067557 A KR 20180067557A KR 20190140717 A KR20190140717 A KR 20190140717A
Authority
KR
South Korea
Prior art keywords
distillate
hours
sample
water
herbal medicine
Prior art date
Application number
KR1020180067557A
Other languages
Korean (ko)
Other versions
KR102130326B1 (en
Inventor
김민영
이창현
Original Assignee
제주대학교 산학협력단
천지애협동조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제주대학교 산학협력단, 천지애협동조합 filed Critical 제주대학교 산학협력단
Priority to KR1020180067557A priority Critical patent/KR102130326B1/en
Publication of KR20190140717A publication Critical patent/KR20190140717A/en
Application granted granted Critical
Publication of KR102130326B1 publication Critical patent/KR102130326B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/42Cucurbitaceae (Cucumber family)
    • A61K36/424Gynostemma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/33Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones
    • A61K2236/331Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones using water, e.g. cold water, infusion, tea, steam distillation, decoction

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cosmetics (AREA)

Abstract

The present invention relates to a method for manufacturing a distillate of medicinal herbs, wherein the distillate manufactured by the method of the present invention is easy to take inherent aroma and odor of medicinal herbs, and preserves inherent efficacy of medicinal herbs. The method for manufacturing the distillate of medicinal herbs and the distillate manufactured by the same has advantage of having a fast absorption rate and not having any side effects.

Description

생약재의 증류액 제조방법{A method for producing a distillate of a herbal medicine}A method for producing a distillate of a herbal medicine

본 발명은 생약재의 증류액을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing a distillate of herbal medicines.

동의보감, 본초강목 등 고대 의학 문헌에 따르면 옛날부터 내려오는 우리 전통의 천연 생약재의 다양한 효능이 보고되고 있고, 근래에는 이들 생약재에 대한 과학적인 임상실험 등을 거쳐 그 효능이 하나 둘씩 규명되고 있으며, 현대에 이르러는 양약이 해결할 수 없는 불치병에 이르기까지 한약을 복용하여 치료하는 사례가 점차 늘고 있다.According to ancient medical literatures such as Dongbobogam and herbal herb, various efficacy of our traditional natural herbal medicines have been reported since ancient times. Recently, the efficacy of these herbal medicines has been scientifically tested through these herbal medicines. In recent years, more and more patients are taking herbal medicines to treat incurable diseases that cannot be resolved.

이처럼 우리 인체에 유효한 천연 생약 성분을 추출하는 방법으로 종래에는 주로 탕제법이 사용되어 왔는데, 전통적으로 탕제법은 생약재를 토기나 자기로 이루어진 약탕기에 물과 함께 넣고 장기간 달인 다음, 달여진 내용물을 삼베천으로 짜내는 방식이었다. As a way of extracting the natural herbal ingredients effective to our body, the traditional method of decoction has been used in the past. Traditionally, decoction method puts the herbal medicines together with water in a pot made of earthenware or porcelain, decoction for a long time, and then swallows the contents It was a way of squeezing out cloth.

다만 이러한 탕제법을 이용할 경우 약재의 성분 중 상당부분이 증기화되어 외부로 빠져나가므로 유효성분의 상당부분이 소실될 뿐만 아니라 탕제시에 발생하는 특유의 냄새로 인해 주변환경이 오염되는 문제점이 있었고, 특히 생약재에서 우러나오는 기름기와 한약 특유의 쓴 맛, 냄새 등으로 음용하는데 거부감이 있어 대중화하기에는 많은 문제점이 있었다. However, when using this type of cooking method, since a large part of the ingredients of the medicine vaporizes and escapes to the outside, a large part of the active ingredient is lost and there is a problem that the surrounding environment is contaminated due to the peculiar smell that occurs during the cooking. In particular, there is a lot of problems to popularize because there is a sense of refusal to drink with the bitter taste, smell, etc. peculiar to herbal and herbal medicine from herbal medicine.

최근에 이르러 생약재 추출액을 기화시켜 증기를 만들고 이를 냉각한 후 추출하여 생약재 본래 가지는 고유의 맛, 향, 냄새 등을 제거한 맑고 투명한 증류액 형태의 한약이 등장하였다. Recently, herbal medicines in the form of clear and transparent distillates have been removed by evaporating the herbal extracts, vaporizing them, cooling them, and extracting them to remove the inherent tastes, aromas, and odors.

그러나 이러한 증류액 형태의 한약은 간단한 증류과정을 거쳐 제조한 것에 불과하여 실제로 증류액에 약효성분이 존재하지 않거나 극히 미비하여, 단순히 심리적인 효과만 있을 뿐 약효가 거의 없어 한약으로 이용되기 어려운 문제점이 있었다. However, these distillate-type herbal medicines are manufactured by a simple distillation process, and in fact, no active ingredients are present in the distillate, or are extremely insignificant. there was.

이에 본 발명자들은 돌외를 생약재료로 하여 증류방법을 개선시킴으로써 생약재 본래의 고유 향 및 냄새를 줄여 복용하기 편하고, 생약재의 고유 효능이 보존된 증류액을 제조함으로써 본 발명을 완성하였다.Accordingly, the present inventors have completed the present invention by preparing a distillate, which is easy to take the inherent aroma and odor of the herbal medicine by improving the distillation method by using dolwoo as a herbal medicine, and preserved the inherent efficacy of the herbal medicine.

대한민국 등록특허 제0524659호Republic of Korea Patent No. 0524659 대한민국 등록특허 제0562460호Republic of Korea Patent No. 0562460 대한민국 공개특허 제2014-0137549호Republic of Korea Patent Publication No. 2014-0137549

본 발명의 목적은 돌외 증류액 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for preparing an extradol distillate.

본 발명은 천연 생약재의 증류액 제조방법을 제공한다.The present invention provides a method for preparing a distillate of natural herbal medicines.

구체적으로, 본 발명은 하기 단계를 포함하는 생약재 증류액 제조방법을 제공한다: Specifically, the present invention provides a herbal medicine distillate manufacturing method comprising the following steps:

(1) 생약재 및 물을 탕전기에 넣고 가열하여 탕전액을 제조하는 단계; (1) preparing herbal liquid and water by putting the herbal medicine and water in a kettle;

(2) 상기 탕전하는 단계에서 발생하는 수증기를 냉각시켜 증류액을 제조하는 단계; (2) cooling the steam generated in the step of discharging to prepare a distillate;

(3) 상기 제조된 증류액을 다시 상기 탕전액에 혼합하는 단계; (3) mixing the prepared distillate again into the discharging solution;

(4) 상기 단계 (2) 및 (3)을 반복하여 증류액을 순환시키는 단계; 및 (4) repeating steps (2) and (3) to circulate the distillate; And

(5) 순환이 끝난 최종 증류액을 추출하는 단계. (5) extracting the final distillate after the circulation.

기존에 알려진 생약재의 증류액 제조방법은 생약재를 물과 함께 가열하여 발생하는 수증기를 액화시켜 증류액을 바로 추출하는 방식이었다. 그러나 본 발명자들은 이러한 종래의 방법으로 제조된 증류액은 생약재가 가진 고유 효능이 현저히 떨어짐을 확인하였다. 이에 본 발명자들은 기존의 방법과 달리, 생약재 및 물을 가열하여 발생하는 수증기를 냉각시켜 얻은 증류액을 다시 탕전액에 혼합하여 가열하는 과정을 반복 수행함으로써 증류액이 가지는 고유 향 및 냄새를 줄이고 맛을 순화시키고 원하는 기능성 성분의 함량도 증가시킬 수 있었다. The known distillate manufacturing method of the herbal medicine was a method of directly extracting the distillate by liquefying the steam generated by heating the herbal medicine with water. However, the present inventors have confirmed that the distillate prepared by such a conventional method is significantly reduced inherent efficacy of the herbal medicine. Therefore, the present inventors, unlike the conventional method, by repeating the process of mixing the distillate obtained by cooling the herbal medicine and water generated by heating the water again to the discharging liquid to reduce the inherent aroma and odor of the distillate and taste It was possible to purify and increase the content of the desired functional ingredient.

상기 증류액을 제조하는데 사용되는 생약재 및 물의 함량은 탕전기를 이용하여 1회 제조할 수 있는 양으로 1kg 내지 5kg 생약재에 20000ml 내지 30000ml 물이 사용될 수 있으며, 생약재의 양에 따라 물의 양이 조절될 수 있다. The content of the herbal medicine and water used to prepare the distillate may be used in a 1 kg to 5 kg herbal medicine in an amount that can be prepared once by using the electric kettle, and the amount of water may be adjusted according to the amount of the herbal medicine. Can be.

상기 방법에서, 상기 단계 (4)인 증류액을 순환시키는 단계에서 순환시간은 1 내지 12시간일 수 있고, 바람직하게는 7 내지 8시간일 수 있다. 순환시간이 1시간 보다 적은 경우, 충분한 기능성 성분이 추출되지 않을 수 있고, 순환시간이 15시간 길어지는 경우, 기능성 성분이 다시 증류액에서 제거될 수 있다. In the method, the circulation time in the step (4) circulating the distillate may be 1 to 12 hours, preferably 7 to 8 hours. If the circulation time is less than 1 hour, sufficient functional components may not be extracted, and if the circulation time is 15 hours long, the functional components may be removed from the distillate again.

상기 방법에서, 상기 단계 (5)에서 증류액을 추출하는 시간은 1 내지 5시간일 수 있고, 바람직하게는 3시간 일 수 있다. In this method, the time for extracting the distillate in step (5) may be 1 to 5 hours, preferably 3 hours.

또한, 본 발명의 증류액 제조방법은 최종 추출된 증류액에 수소기체를 주입하는 단계를 추가로 포함할 수 있다. 수소는 항산화 효과가 우수한 것으로 알려져 있으며, 본 발명의 증류액에 일정 농도의 수소기체를 첨가함으로써, 증류액의 맛과 냄새가 순화되는 효과가 있음을 확인하였다. 본 발명의 일 구체예에서, 상기 첨가되는 수소기체의 농도는 생약재의 함량에 따라 조절될 수 있으며, 바람직하게는 500 내지 1000bbp 농도의 수소기체가 첨가될 수 있다. In addition, the distillate production method of the present invention may further include the step of injecting hydrogen gas to the final extracted distillate. Hydrogen is known to have an excellent antioxidant effect, and by adding a certain concentration of hydrogen gas to the distillate of the present invention, it was confirmed that the taste and smell of the distillate were purified. In one embodiment of the present invention, the concentration of the hydrogen gas to be added may be adjusted according to the content of the herbal medicine, preferably a hydrogen gas of 500 to 1000 bbp concentration may be added.

본 발명은 생약재로 돌외를 사용하여 하기의 단계를 포함하는 증류액을 제조하는 방법을 제공한다: The present invention provides a method for preparing a distillate comprising the following steps using herbal as a herbal medicine:

(1) 3kg 돌외 및 20,000 내지 25,000ml 물을 탕전기에 넣고 가열하여 탕전액을 제조하는 단계; (1) preparing a pouring liquid by adding 3 kg of dol and 20,000 to 25,000 ml of water into a mixer and heating it;

(2) 상기 탕전하는 단계에서 발생하는 수증기를 냉각시켜 증류액을 제조하는 단계; (2) cooling the steam generated in the step of discharging to prepare a distillate;

(3) 상기 제조된 증류액을 다시 상기 탕전액에 혼합하는 단계; (3) mixing the prepared distillate again into the discharging solution;

(4) 상기 단계 (2) 및 (3)을 반복하여 증류액을 8시간동안 순환시키는 단계; (4) repeating steps (2) and (3) to circulate the distillate for 8 hours;

(5) 순환이 끝난 후 증류액을 3시간 동안 추출하는 단계; 및 (5) extracting the distillate for 3 hours after the end of the circulation; And

(6) 상기 추출된 증류액에 수소기체를 주입하는 단계. (6) injecting hydrogen gas into the extracted distillate.

상기 방법에 의해 제조된 돌외 증류액은 냄새 및 향이 적고 목초맛이 적어 부드러웠으며, 폴리페놀 및 플라보노이드 함량이 높아 항산화 효과가 우수한 것을 확인하였다. The doldol distillate prepared by the above method was soft with less smell and aroma and less herb taste. It was confirmed that the antioxidant effect was high due to the high content of polyphenol and flavonoid.

본 발명에 따른 생약재의 증류액 제조방법 및 그에 의해 제조된 증류액은 생약재가 가지는 고유의 향, 냄새, 맛을 제거할 수 있어 남녀노소에 관계없이 누구든 복용할 수 있으며, 증류액으로 구성되어 있어 복용시 흡수율이 빠르고 부작용이 없는 이점이 있다.Distillate manufacturing method of the herbal medicine according to the present invention and the distillate prepared by it can remove the inherent aroma, smell, and taste of the herbal medicine can be taken by anyone regardless of age and sex, it is composed of distillate When taken, the absorption rate is fast and there are no side effects.

도 1은 1차 증류액 샘플의 총 폴리페놀 함량을 측정한 결과를 나타낸 것이다.
도 2는 2차 증류액 샘플의 총 폴리페놀 함량을 측정한 결과를 나타낸 것이다.
도 3은 2차 증류액 샘플의 총 플라보노이드 함량을 측정한 결과를 나타낸 것이다.
도 4는 2차 증류액 샘플 4-A 및 4-B의 DPPH 소거활성을 측정한 결과를 나타낸 것이다.
도 5는 2차 증류액 샘플 4-B를 다시 재현한 증류액의 농도별 DPPH 소거활성을 측정한 결과를 나타낸 것이다.
도 6은 돌외 증류액의 농도별 superoxide 라디칼 소거활성을 측정한 결과를 나타낸 것이다.
도 7은 돌외 증류액의 농도별 hydrogen peroxide 소거활성을 측정한 결과를 나타낸 것이다.
도 8은 돌외 증류액의 농도별 nitric oxide 소거활성을 측정한 결과를 나타낸 것이다.
도 9는 돌외 증류액의 농도별 금속 촉매제로 인한 자유라디컬 생성 억제 활성을 측정한 결과를 나타낸 것이다.
도 10은 돌외 증류액의 농도별 환원력을 측정한 결과를 나타낸 것이다.
Figure 1 shows the results of measuring the total polyphenol content of the first distillate sample.
Figure 2 shows the results of measuring the total polyphenol content of the secondary distillate sample.
Figure 3 shows the results of measuring the total flavonoid content of the secondary distillate sample.
Figure 4 shows the results of measuring the DPPH scavenging activity of the secondary distillate samples 4-A and 4-B.
Figure 5 shows the results of measuring the DPPH scavenging activity by concentration of the distillate re-reproduced the second distillate sample 4-B.
Figure 6 shows the results of measuring the superoxide radical scavenging activity according to the concentration of the extradol distillate.
Figure 7 shows the results of measuring the hydrogen peroxide scavenging activity according to the concentration of the extradol distillate.
Figure 8 shows the results of measuring the nitric oxide scavenging activity of each concentration of the extradol distillate.
Figure 9 shows the results of measuring the free radical production inhibitory activity due to the metal catalyst for each concentration of the extradol distillate.
Figure 10 shows the results of measuring the reducing power of each concentration of the extradol distillate.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.

실시예Example 1.  One. 돌외Stone 증류액 제조 및 평가 Distillate Preparation and Evaluation

본 발명자들은 돌외를 생약제로 사용하여 가장 최적의 상태인 증류액을 생산하는 것을 목적으로 하여 순환시간, 추출시간 및 첨가 수소의 농도 등을 다양하게 조절하여 최적의 증류액을 제조하였다. 구체적인 제조 과정은 다음과 같다. The present inventors prepared an optimal distillate by variously adjusting the circulation time, extraction time, and the concentration of added hydrogen for the purpose of producing a distillate in the most optimal state using a dodol as a herbal medicine. The specific manufacturing process is as follows.

1. 1차 증류액 샘플의 제조 및 관능평가1. Preparation and Sensory Evaluation of Primary Distillate Sample

탕전기에 돌외 전초 1kg과 물 22,000~25,000ml를 넣고 106℃에서 탕전시 발생하는 수증기를 냉각기를 이용하여 액화시켜 증류액을 추출하였다. 증류액 추출은 수증기를 액화시킨 증류액을 바로 추출하는 것과 일정시간 증류액을 순환장치를 이용하여 다시 탕전기로 밀어넣어 탕전액과 혼합시키는 과정을 반복하여 증류액을 순환시킨 후 추출하는 것에 대한 차이를 알아보기 위해 순환시간0, 30분, 1시간, 2시간, 3시간, 4시간, 5시간, 6시간, 7시간, 8시간, 12시간, 16시간)을 달리하며 증류액을 추출하였다. 또한, 추출시간에 따라 증류액의 차이를 살펴보기 위해 추출시간(1시간, 2시간, 3시간, 4시간, 5시간, 6시간)을 달리하며 증류액을 추출하였다. 수소농도에 따른 증류액의 차이를 살펴보기 위해 수소농도 충진시간을 측정하여 시간에 따른 수소농도를 측정하였다 (500ml 증류액에 1분, 2분, 3분 ,4분, 5분으로 차이를 두고 수소가스를 충진함). 1kg of dodol outpost and 22,000 ~ 25,000ml of water were put into the condenser and the distillate was extracted by liquefying the water vapor generated when discharging at 106 ℃ using a cooler. Distillate extraction is to extract the distilled water liquefied immediately and to circulate and extract the distillate by repeating the process of distilling the distillate for a certain period of time using a circulator to mix with the distillate. Distillate was extracted by varying the circulation time 0, 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 12 hours, 16 hours). . In addition, the distillate was extracted by varying the extraction time (1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours) to see the difference between the distillates according to the extraction time. In order to examine the difference of distillate according to the hydrogen concentration, the hydrogen concentration was measured by measuring the filling time of hydrogen concentration (1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes in 500ml distillate). Hydrogen gas).

그 결과, 순환시간에 따른 증류액의 관능평가를 실시한 결과, 순환시키지 않거나 짧은 시간 순환시킨 경우 향이 강하며, 목초맛이 난 반면에, 순환시간을 증가시킬수록 향이 감소하고 맛또한 목초맛이 제거되어 거부감이 줄어들었으며, 증류액의 색이 진해짐을 확인하였다(표 1 내지 표 5). 특히, 8시간 순환시킨 경우 가장 진한색상을 나타냈으며, 그 이상의 시간을 순환시킨 경우 다시 색상이 옅어짐을 확인하였다. 이를 통해 증류액에 포함된 성분의 함량이 순환시간에 영향을 받음을 확인할 수 있었다(표 6). As a result, the sensory evaluation of the distillate according to the circulation time showed that the scent is strong when it is not circulated or circulated for a short time, and the taste of the herb is different, while the flavor decreases as the circulation time is increased and the taste is also removed. Rejection was reduced, it was confirmed that the color of the distillate darkened (Table 1 to Table 5). In particular, it was confirmed that the darkest color when cycled for 8 hours, the color fades again when cycled more time. This confirmed that the content of the components contained in the distillate was affected by the circulation time (Table 6).

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

Figure pat00006
Figure pat00006

아울러, 추출시간에 따른 증류액의 관능평가를 실시한 결과, 추출시간이 증가할수록 향이 감소하고 맛 또한 목초맛이 제거되어 거부감이 줄어들었다. 또한 색상은 4시간 추출하는 경우 가장 진했으며, 이후 차차 옅어짐을 확인하였다. 이를 통해 증류액에 포함된 성분이 추출시간에도 영향을 받음을 확인할 수 있었다(표 7 내지 표 9). In addition, as a result of the sensory evaluation of the distillate according to the extraction time, as the extraction time increases, the aroma decreases and the taste is also removed, the taste is removed, the rejection is reduced. In addition, the color was the darkest when extracted for 4 hours, and then gradually faded. This confirmed that the components contained in the distillate was also affected by the extraction time (Table 7 to Table 9).

Figure pat00007
Figure pat00007

Figure pat00008
Figure pat00008

Figure pat00009
Figure pat00009

수소의 농도에 따른 증류액의 관능평가를 실시한 결과, 수소농도가 증가할수록 맛이 부드러워짐을 확인할 수 있었다(표 10)As a result of sensory evaluation of the distillate according to the concentration of hydrogen, it was confirmed that the taste becomes softer as the concentration of hydrogen is increased (Table 10).

Figure pat00010
Figure pat00010

2. 2차 증류액 샘플의 제조 및 관능 평가2. Preparation and Sensory Evaluation of Secondary Distillate Sample

상기 1차 샘플의 제조를 통해서 순환시간, 추출시간 및 수소 농도가 증류액의 성분 및 관능평가에 영향을 미침을 확인하였고, 1차 샘플 제조 결과를 토대로 보다 최적화된 돌외 증류액 제조 조건을 확립하기 위해 2차 샘플을 제조하였다.Through the preparation of the primary sample, it was confirmed that the circulation time, extraction time, and hydrogen concentration affected the component and sensory evaluation of the distillate, and to establish more optimized dodol distillate preparation conditions based on the primary sample preparation result. A secondary sample was prepared for this purpose.

2차 샘플은 탕전기에 돌외 전초 3kg과 물 24,000~25,000ml를 넣고 106도에서 탕전시 발생하는 수증기를 냉각기를 이용하여 액화시켜 증류액을 추출하였다. 증류액 추출은 수증기를 액화시킨 증류액을 바로 추출하는 것과 일정시간 증류액을 순환장치를 이용하여 다시 탕전기로 밀어넣어 탕전액과 혼합시키는 과정을 반복하여 증류액을 순환시킨 후 추출하는 것에 대한 차이를 알아보기 위해 순환시간(5시간, 6시간, 7시간, 8시간)을 달리하며 증류액을 추출하였다. 또한, 추출시간에 따라 증류액의 차이를 살펴보기 위해 추출시간(1시간, 2시간, 3시간, 4시간, 5시간, 6시간)을 달리하며 증류액을 추출하였다. 수소농도에 따른 증류액의 차이를 살펴보기 위해 수소농도 충진시간을 측정하여 시간에 따른 수소농도를 측정하였다 (500ml 증류액에 수소가스를 충진하여 수소용존농도가 617ppb, 817ppb, 933ppb). The secondary sample was put in 3kg of dodol outpost and 24,000 ~ 25,000ml of water in the electric kettle and liquefied water vapor generated at the time of discharging at 106 degrees using a cooler to extract the distillate. Distillate extraction is to extract the distilled water liquefied immediately and to circulate and extract the distillate by repeating the process of distilling the distillate for a certain period of time using a circulator to mix with the distillate. Distillate was extracted by varying the circulation time (5 hours, 6 hours, 7 hours, 8 hours) to determine the difference. In addition, the distillate was extracted by varying the extraction time (1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours) to see the difference between the distillates according to the extraction time. In order to examine the difference between the distillates according to the hydrogen concentration, the hydrogen concentration was measured by measuring the filling time of the hydrogen concentration (filling hydrogen gas into the 500 ml distillate, the hydrogen dissolved concentrations were 617ppb, 817ppb, 933ppb).

그 결과, 순환시간에 따른 증류액의 관능평가를 실시한 결과, 순환시간을 증가시킬수록 향이 감소하여 거부감이 줄어들었으며, 증류액의 색이 진해짐을 확인하였다(표 11 및 표 12). 특히, 8시간 순환시킨 경우 가장 진한색상을 나타냈으며, 그 이상의 시간을 순환시킨 경우 다시 색상이 옅어짐을 확인하였다. 이를 통해 증류액에 포함된 성분의 함량이 순환시간에 영향을 받음을 확인할 수 있었다(표 6). As a result, the sensory evaluation of the distillate according to the circulation time, as a result of increasing the circulation time, the fragrance was reduced to reduce the rejection, it was confirmed that the color of the distillate darkened (Table 11 and Table 12). In particular, it was confirmed that the darkest color when cycled for 8 hours, the color fades again when cycled more time. This confirmed that the content of the components contained in the distillate was affected by the circulation time (Table 6).

Figure pat00011
Figure pat00011

Figure pat00012
Figure pat00012

아울러, 추출시간에 따른 증류액의 관능평가를 실시한 결과, 추출시간이 증가할수록 맛, 향 및 색상에서 차이가 거의 없었으며, 단지 추출양이 증가할 뿐이었다 (표 13). 추출양에 따른 경제성 평가와 추출액 농도에 따른 약성의 차이를 고려할 때 진한 농도의 추출액의 약성이 우수할 것으로 판단되므로 추출시간은 3시간이 바람직할 것으로 판단되었다.In addition, as a result of the sensory evaluation of the distillate according to the extraction time, there was little difference in taste, aroma and color as the extraction time increased, only the amount of extraction increased (Table 13). Considering the economic evaluation according to the amount of extraction and the difference in weakness according to the concentration of the extract, it is judged that the weakness of the concentrated concentration of the extract is excellent, so the extraction time is preferably 3 hours.

Figure pat00013
Figure pat00013

2차 샘플의 수소의 농도에 따른 증류액의 관능평가를 실시한 결과, 수소농도가 증가할수록 증류액의 맛이 한층 부드러워짐을 확인하였으며, 900ppb 대 농도에서 가장 맛이 부드러웠다(표 14).As a result of sensory evaluation of the distillate according to the concentration of hydrogen in the secondary sample, it was confirmed that the taste of the distillate was softer as the hydrogen concentration was increased, and the taste was the softest at the concentration of 900 ppb (Table 14).

Figure pat00014
Figure pat00014

실시예Example 2.  2. 돌외Stone 증류액 샘플의 성분 분석 Component Analysis of Distillate Samples

실시예 1에서의 결과를 바탕으로 다양한 조건에서 제조된 증류액 샘플의 성분 분석을 한국기능식품연구원에 의뢰하여 확인하였다. 돌외에 풍부하다고 알려진 인삼사포닌 rb-1, rg1-, rg-3의 함량과 조사포닌 함량 분석을 의뢰하였다. 분석을 의뢰한 증류액 샘플의 제조는 다음과 같이 수행되었으며 구체적인 조성 및 조건은 하기 표 15에 나타내었다.Based on the results in Example 1, the component analysis of the distillate samples prepared under various conditions was confirmed by requesting the Korea Functional Food Research Institute. Ginseng saponins rb-1, rg1- and rg-3 contents and irradiated pontins were analyzed. Preparation of the distillate sample commissioned for analysis was carried out as follows and specific compositions and conditions are shown in Table 15 below.

A-1: 탕전기에 돌외 3kg와 물 25,000ml를 넣고 최종 가열 온도를 106℃로 설정하여 탕전기를 가동시켰다. 수증기가 발생하기 시작하여 냉각기가 작동하기 시작하는 시점부터 증류액이 추출되기 시작하는데 이것을 다시 탕전기로 밀어넣는 순환장치를 이용하여 16시간 동안 증류액을 계속하여 탕전기로 순환시켰다. 16시간의 순환이 끝나면 순환장치를 종료하고 3시간 동안 증류액을 포집하여 만든 샘플을 A-1로 명명하였다.A-1: The steamer was operated by putting 3 kg of stones and 25,000 ml of water in the mixer and setting the final heating temperature to 106 ° C. From the point where water vapor began to develop and the cooler started to operate, the distillate was extracted. The distillate was circulated continuously for 16 hours using a circulation device which pushes it back into the mixer. After 16 hours of circulation, the circuit was terminated and the sample made by collecting the distillate for 3 hours was named A-1.

A-2: 탕전기에 돌외 3kg와 물 25,000ml를 넣고 최종 가열 온도를 106℃로 설정하여 탕전기를 가동시켰다. 수증기가 발생하기 시작하여 냉각기가 작동하기 시작하는 시점부터 증류액이 추출되기 시작하는데 이것을 다시 탕전기로 밀어넣는 순환장치를 이용하여 12시간 동안 증류액을 계속하여 탕전기로 순환시켰다. 12시간의 순환이 끝나면 순환장치를 종료하고 3시간 동안 증류액을 포집하여 만든 샘플을 A-2로 명명하였다.A-2: The steamer was operated by putting 3 kg of stones and 25,000 ml of water in the mixer and setting the final heating temperature to 106 ° C. From the point where water vapor began to develop and the cooler began to operate, the distillate was extracted, and the distillate was circulated to the potter for 12 hours using a circulation device which pushes it back into the potter. After 12 hours of circulation, the circuit was terminated and the sample made by collecting the distillate for 3 hours was named A-2.

A-3: 탕전기에 돌외 3kg와 물 24,000ml를 넣고 최종 가열 온도를 106℃로 설정하여 탕전기를 가동시켰다. 수증기가 발생하기 시작하여 냉각기가 작동하기 시작하는 시점부터 증류액이 추출되기 시작하는데 이것을 다시 탕전기로 밀어넣는 순환장치를 이용하여 8시간 동안 증류액을 계속하여 탕전기로 순환시켰다. 8시간의 순환이 끝나면 순환장치를 종료하고 3시간 동안 증류액을 포집하여 만든 샘플을 A-3으로 명명하였다.A-3: The steamer was operated by putting 3 kg of stone and 24,000 ml of water in the mixer and setting the final heating temperature to 106 ° C. Distillate begins to be extracted from the point where water vapor starts and the cooler starts to operate, and the distillate is circulated continuously for 8 hours using a circulation device which pushes it back into the mixer. After 8 hours of circulation, the circuit was terminated and the sample made by collecting the distillate for 3 hours was named A-3.

A-4: 탕전기에 돌외 3kg와 물 24,000ml를 넣고 최종 가열 온도를 106℃로 설정하여 탕전기를 가동시켰다. 수증기가 발생하기 시작하여 냉각기가 작동하기 시작하는 시점부터 증류액이 추출되기 시작하는데 이것을 다시 탕전기로 밀어넣는 순환장치를 이용하여 6시간 동안 증류액을 계속하여 탕전기로 순환시켰다. 6시간의 순환이 끝나면 순환장치를 종료하고 3시간 동안 증류액을 포집하여 만든 샘플을 A-4로 명명하였다.A-4: 3 kg of water and 24,000 ml of water were added to the mixer, and the final heater was set to 106 ° C to start the mixer. From the point where water vapor began to develop and the cooler started to operate, the distillate was extracted, and the distillate was circulated to the binner for 6 hours using a circulation device which pushes it back into the binner. After 6 hours of circulation, the circuit was terminated and the sample made by collecting the distillate for 3 hours was named A-4.

B-1: 탕전기에 돌외 3kg와 물 24,000ml를 넣고 최종 가열 온도를 106도로 설정하여 탕전기를 가동시켰다. 수증기가 발생하기 시작하여 냉각기가 작동하기 시작하는 시점부터 증류액이 추출되기 시작하면 순환장치를 끄고 바로 증류액을 포집하여 총 5시간동안 증류액을 포집한 샘플을 B-1로 명명하였다.B-1: The steamer was operated by putting 3 kg of stone and 24,000 ml of water in the mixer and setting the final heating temperature at 106 degrees. When the distillate began to be extracted from the time when the steam began to be generated and the cooler started to operate, the sample was collected by distillate immediately after turning off the circulator and collecting the distillate for a total of 5 hours as B-1.

B-2: 탕전기에 돌외 3kg와 물 24,000ml를 넣고 최종 가열 온도를 106도로 설정하여 탕전기를 가동시켰다. 수증기가 발생하기 시작하여 냉각기가 작동하기 시작하는 시점부터 증류액이 추출되기 시작하면 순환장치를 끄고 바로 증류액을 포집하여 총 3시간동안 증류액을 포집한 샘플을 B-2로 명명하였다.B-2: The steamer was operated by putting 3 kg of stone and 24,000 ml of water in the mixer and setting the final heating temperature at 106 degrees. When steam began to be generated and the distillate was extracted from the point where the cooler began to operate, the sample was collected by dividing the distillate for 3 hours by turning off the circulator and immediately collecting the distillate.

B-3: 탕전기에 돌외 3kg와 물 25,000ml를 넣고 최종 가열 온도를 106℃로 설정하여 탕전기를 가동시켰다. 수증기가 발생하기 시작하여 냉각기가 작동하기 시작하는 시점부터 증류액이 추출되기 시작하는데 이것을 다시 탕전기로 밀어넣는 순환장치를 이용하여 16시간 동안 증류액을 계속하여 탕전기로 순환시켰다. 16시간의 순환이 끝나면 순환장치를 종료하고 1시간 동안 증류액을 포집하여 만든 샘플을 B-3으로 명명하였다.B-3: The water heater was operated by putting 3 kg of stone and 25,000 ml of water in the water mixer and setting the final heating temperature to 106 ° C. From the point where water vapor began to develop and the cooler started to operate, the distillate was extracted. The distillate was circulated continuously for 16 hours using a circulation device which pushes it back into the mixer. After 16 hours of circulation, the circuit was terminated and the sample made by collecting the distillate for 1 hour was named B-3.

B-4: 탕전기에 돌외 3kg와 물 25,000ml를 넣고 최종 가열 온도를 106℃로 설정하여 탕전기를 가동시켰다. 수증기가 발생하기 시작하여 냉각기가 작동하기 시작하는 시점부터 증류액이 추출되기 시작하는데 이것을 다시 탕전기로 밀어넣는 순환장치를 이용하여 16시간 동안 증류액을 계속하여 탕전기로 순환시켰다. 16시간의 순환이 끝나면 순환장치를 종료하고 증류액을 포집하기 시작한 시점에서 1시간이후부터 2시간까지 1시간 동안 증류액을 포집하여 만든 샘플을 B-4로 명명하였다.B-4: The steamer was operated by putting 3 kg of stones and 25,000 ml of water in the mixer and setting the final heating temperature to 106 ° C. From the point where water vapor began to develop and the cooler started to operate, the distillate was extracted. The distillate was circulated continuously for 16 hours using a circulation device which pushes it back into the mixer. After 16 hours of circulation, the sample was prepared by collecting the distillate for 1 hour from 1 hour to 2 hours after the cycle was stopped and the distillate was collected.

B-5: 탕전기에 돌외 3kg와 물 25,000ml를 넣고 최종 가열 온도를 106℃로 설정하여 탕전기를 가동시켰다. 수증기가 발생하기 시작하여 냉각기가 작동하기 시작하는 시점부터 증류액이 추출되기 시작하는데 이것을 다시 탕전기로 밀어넣는 순환장치를 이용하여 16시간 동안 증류액을 계속하여 탕전기로 순환시켰다. 16시간의 순환이 끝나면 순환장치를 종료하고 증류액을 포집하기 시작한 시점에서 2시간이후부터 3시간까지 1시간 동안 증류액을 포집하여 만든 샘플을 B-5로 명명하였다.B-5: 3 kg of water and 25,000 ml of water were added to the water mixer, and the final heating temperature was set to 106 ° C, and the water heater was operated. From the point where water vapor began to develop and the cooler started to operate, the distillate was extracted. The distillate was circulated continuously for 16 hours using a circulation device which pushes it back into the mixer. After 16 hours of circulation, the sample made by collecting the distillate for 1 hour from 2 hours to 3 hours after the end of the circulation device and collecting the distillate was named B-5.

B-6(A-3 샘플의 재현성 확인을 위한 샘플): 탕전기에 돌외 3kg와 물 24,000ml를 넣고 최종 가열 온도를 106℃로 설정하여 탕전기를 가동시켰다. 수증기가 발생하기 시작하여 냉각기가 작동하기 시작하는 시점부터 증류액이 추출되기 시작하는데 이것을 다시 탕전기로 밀어넣는 순환장치를 이용하여 8시간 동안 증류액을 계속하여 탕전기로 순환시켰다. 8시간의 순환이 끝나면 순환장치를 종료하고 3시간 동안 증류액을 포집하여 만든 샘플을 B-6으로 명명하였다. B-6 (Sample for reproducibility of A-3 sample): 3kg of water and 24,000ml of water were added to the water heater and the final heating temperature was set to 106 ° C to operate the water heater. Distillate begins to be extracted from the point where water vapor starts and the cooler starts to operate, and the distillate is circulated continuously for 8 hours using a circulation device which pushes it back into the mixer. After 8 hours of circulation, the circuit was shut down and the sample made by collecting the distillate for 3 hours was named B-6.

Figure pat00015
Figure pat00015

그 성분 분석 결과를 하기 표 16에 나타내었다. The results of component analysis are shown in Table 16 below.

Figure pat00016
Figure pat00016

상기 A-3 및 B-6 샘플에서 진세노이드 및 조사포닌의 함량이 가장 많았다. 또한, 상기 샘플은 8시간 동안 증류액을 순환시키고 3시간동안 증류액을 추출하는 조건으로 제조된 것으로 색상이 가능 진하게 나타났다. 이를 통해 증류액 제조 조건 및 방법에 따라 증류액 성분 및 함량에도 변화가 있음을 확인할 수 있었다.In the A-3 and B-6 samples, the content of ginsenoid and irradiated phononin was the highest. In addition, the sample was made to circulate the distillate for 8 hours and the distillate was extracted for 3 hours, the color appeared as dark as possible. Through this, it was confirmed that there is a change in the distillate component and content according to the distillate preparation conditions and methods.

실시예Example 3.  3. 돌외Stone 증류액의 항산화 효과 및 안정성 평가  Antioxidant Effect and Stability Evaluation of Distillate

3-1. 시료 준비3-1. Sample Preparation

하기 표 17 및 18에 나타난 조건에 따라 실시예 1의 방법으로 제조된 1차 및 2차 돌외 증류액 샘플을 사용하였다.The first and second extradol distillate samples prepared by the method of Example 1 were used according to the conditions shown in Tables 17 and 18 below.

Figure pat00017
Figure pat00017

Figure pat00018
Figure pat00018

증류액과의 비교를 위한 유기용매 돌외 추출물 시료는 돌외를 증류수로 세척·건조 후 동결건조(PVTFI 10A, (주)일신랩,한국)하여 분쇄하고, 분말상태(powder)의 시료는 -80℃ 초저온냉동고에 보관하여 사용하였다. 각 시료는 100% methanol (MeOH)과 70% ethanol (EtOH)을 추출 용매로 건물중량의 5 배 추출용매량 (g/mL, W/V)으로 유효성분에 대한 추출을 수행하였다. 100% MeOH과 70% EtOH은 shaking incubator를 이용하여 150 rpm, 25 ℃의 조건으로 72시간동안 추출하였다. 추출시간이 지난 돌외 시료는 1500 rpm에서 15 분간 원심분리 시키고 0.45 μm의 여과필터를 이용하여 부유성분을 제거하였다.Organic solvent dolsal extract sample for comparison with distillate is pulverized by washing and drying the dolsal with distilled water (PVTFI 10A, Ilsin Lab, Korea), and the powdered sample is -80 ℃ ultra low temperature It was stored and used in the freezer. Each sample was extracted with active solvent with 100% methanol (MeOH) and 70% ethanol (EtOH) as the extraction solvent with an amount of 5 times the dry weight of solvent (g / mL, W / V). 100% MeOH and 70% EtOH were extracted for 72 hours using a shaking incubator at 150 rpm and 25 ℃. After the extraction time, the extra-dol samples were centrifuged at 1500 rpm for 15 minutes and suspended components were removed using a 0.45 μm filtration filter.

3-2 총 폴리페놀 함량 측정3-2 Determination of Total Polyphenol Content

폴리페놀 화합물은 flavonoids, anthocyanins, tannins, catechins, isoflavones, lignans, resveratrols 등을 총칭하며, 식물계에 널리 분포되어있는 phytochemical로 특히 과일 및 엽채류에 다량 함유되어 있음. 폴리페놀에 존재하는 다수의 히드록실기(-OH)와 페놀고리에 의한 공명구조는 여러 화합물과 쉽게 결합하는 특성을 가지고 있어 지질 산화, 활성 산소 제거 등에 기여하여 항산화 및 항암, 항염 등의 약리 효과가 뛰어난 것으로 알려져 있다. 이에 따라 돌외 증류액에 포함된 폴리페놀 화합물의 함량을 측정함으로써 항산화 효과 등의 약리 효과를 예측할 수 있다. Polyphenol compounds are flavonoids, anthocyanins, tannins, catechins, isoflavones, lignans, resveratrols, etc., and they are phytochemicals that are widely distributed in the plant kingdom, especially in large quantities in fruits and leafy vegetables. Resonance structure by many hydroxyl group (-OH) and phenol ring in polyphenol has the property of easily binding with various compounds, contributing to lipid oxidation, removal of active oxygen, and pharmacological effects such as antioxidant, anticancer and anti-inflammatory. Is known to be outstanding. Accordingly, pharmacological effects such as antioxidant effects can be predicted by measuring the content of the polyphenol compound contained in the extra distillate.

시료의 총 폴리페놀 함량은 Folin-Denis 의 방법을 변형하여 측정하였다. 상기의 방법으로 마련된 시료에 50% Folin-Ciocalteu 시약, 95% EtOH, DW를 가하였다. 5 분 후 5% sodium carbonate 용액을 첨가한 후 혼합하고 1 시간동안 차광하여 발색시킨 다음 microplate reader (Spectra MR, Dynex, VA, US)를 이용하여 725 nm에서 흡광도를 측정하고 gallic acid 표준용액을 사용하여 구한 검량선에 의해 정량하였다.The total polyphenol content of the samples was determined by modifying the method of Folin-Denis. 50% Folin-Ciocalteu reagent, 95% EtOH, DW were added to the sample prepared by the above method. After 5 minutes, add 5% sodium carbonate solution, mix, shade for 1 hour, develop color, measure absorbance at 725 nm using microplate reader (Spectra MR, Dynex, VA, US), and use gallic acid standard solution. It was quantified by the calibration curve obtained.

그 결과, 1차 돌외 증류액 샘플에 함유된 폴리페놀의 함량을 측정한 결과 4-A와 4-B가 각각 13.1과 12.4 mg gallic acid equivalence (GAE)/L로 다른 샘플에 비해 다소 높은 함량을 보여 순환시간이 요인으로 짐작되나, 전체적으로 모든 샘플들의 총 폴리페놀 함량이 낮은 것으로 관찰되었다(도 1). 이는 2차 증류액 샘플의 총 폴리페놀 함량은 4-A와 4-B가 각각 322와 334 mg gallic acid equivalence (GAE)/L을 보여 다른 샘플에 비해 6-7배 높은 함량을 보였다. 이러한 높은 함량은 순환시간 증가 조건이 주요 요인으로 작용한 것으로 추측되며, 증류액 추출시간과 수소농도와는 무관한 것으로 판단되었다 (도 2).As a result, the content of polyphenols contained in the primary dol distillate sample was measured. As a result, 4-A and 4-B were 13.1 and 12.4 mg gallic acid equivalence (GAE) / L, respectively. The cycle time seems to be a factor, but the total polyphenol content of all the samples was observed to be low (FIG. 1). The total polyphenol content of the secondary distillate samples was 6-7 times higher than that of the other samples, with 4-A and 4-B showing 322 and 334 mg gallic acid equivalence (GAE) / L, respectively. This high content is believed to be the main factor was the increase in the circulation time conditions, it was determined that the distillate extraction time and the hydrogen concentration is not (Fig. 2).

3-3 총 플라보노이드 함량 측정3-3 Determination of Total Flavonoid Content

플라보노이드는 폴리페놀에 속하는 성분으로 C6-C3-C6를 기본골격으로 하며 노란색 내지는 담황색을 나타내는 페놀계 화합물의 총칭으로, 채소류와 식물의 잎, 꽃, 과실, 줄기 및 뿌리 등 거의 모든 부위에 함유되어 있을 뿐 아니라 곡물, 과실류 등 자연계 도처에 풍부하게 함유되어 있다. 플라보노이드는 폴리페놀과 마찬가지로 활성산소종을 효과적으로 제거하여 항산화능이 높다고 알려져 있으며 다양한 생리활성에 작용하는 것으로 보고되어 본 발명에서도 돌외 증류액의 플라보노이드 함량을 측정하였다. 측정은 구체적으로 시료 30 μL 당 5% sodium nitrite 용액 및 DW를 가하고 6 분 뒤 10% aluminium chloride 용액을 첨가한 후 다시 6 분간 실온에서 incubation 함. 4% NaOH 용액을 첨가한 후 DW로 총 용량을 맞추고 잘 혼합한 다음 15 분간 실온에서 반응시켰다. 반응시간이 종료된 후 microplate reader를 이용하여 510 nm에서 흡광도를 측정하고 rutin 표준용액을 사용하여 구한 검량선에 의해 정량하였다.Flavonoids belong to polyphenols, which are C6-C3-C6 skeletons and are yellow or light yellow phenolic compounds. They are found in almost all parts of vegetables, plants, leaves, flowers, fruits, stems and roots. In addition, it is abundant in nature, such as grains and fruits. Flavonoids, like polyphenols, are known to have high antioxidant capacity by effectively removing active oxygen species, and have been reported to act on various physiological activities. In the present invention, the flavonoid content of the extradol distillate was also measured. Specifically, 5% sodium nitrite solution and DW were added per 30 μL of the sample, and after 6 minutes, 10% aluminum chloride solution was added, followed by incubation at room temperature for 6 minutes. After adding 4% NaOH solution, the total volume was adjusted to DW, mixed well, and reacted at room temperature for 15 minutes. After the reaction time was completed, the absorbance was measured at 510 nm using a microplate reader, and quantified by a calibration curve obtained using rutin standard solution.

그 결과, 돌외 증류액 2차 샘플의 플라보이드 함량은 도 3과 같이 4-A와 4-B에서 203.5와 206.6 mg rutin equivalence (RE)/L으로 다른 샘플들보다 약 4-20배 이상 많은 함유량을 나타내었다. 이와 같이 총 플라보노이드의 함량이 현저히 높게 측정되는 원인은 총 폴리페놀 함량 결과와 같이 순환시간 증가 조건이 중요 요인으로 추측되었다.As a result, the flavoid content of the extradol distillate secondary sample was 203.5 and 206.6 mg rutin equivalence (RE) / L at 4-A and 4-B as shown in FIG. Indicated. As a result of the significantly high total flavonoid content, it was assumed that the increase in circulation time condition was an important factor as the total polyphenol content result.

3-4 항산화 효과의 평가3-4 Evaluation of Antioxidant Effects

상기 1차 및 2차 증류액 샘플 중 폴리페놀 및 플라보노이드 함량이 높은 2차 증류액 샘픔 4-B를 최종 증류액 후보로 선별하여 다시 제조한 증류액 효능의 재현성 여부와 항산화 활성을 측정하였다.Secondary distillate sample 4-B with high polyphenol and flavonoid content in the primary and secondary distillate samples was selected as a final distillate candidate and the reproducibility of the distillate efficacy and antioxidant activity were measured.

1. One. DPPHDPPH 라디칼  Radical 소거능Scavenging power 측정 Measure

여러 농도로 희석하여 준비한 시료 용액 100 μL에 실험 직전 제조된 동량의 4 mM 1,1-diphenyl-2-picrylhydrazyl (DPPH) 용액을 첨가하고 차광하여 10 분간 실온에서 반응시켰다. 517 nm에서 microplate reader를 이용하여 흡광도를 측정하여 소거능을 다음 공식에 의해 산출하였다.The same amount of 4 mM 1,1-diphenyl-2-picrylhydrazyl (DPPH) solution prepared immediately before the experiment was added to 100 µL of the sample solution prepared by diluting to various concentrations, and the mixture was shielded for 10 minutes at room temperature. The absorbance was measured by using a microplate reader at 517 nm and the scavenging ability was calculated by the following formula.

% inhibition = [{(C-CB)-(S-SB)}/(C-CB)] × 100;% inhibition = [{(C-CB)-(S-SB)} / (C-CB)] x 100;

S: absorbance of the sample, SB: Sample blank, C: control, CB: control blankS: absorbance of the sample, SB: Sample blank, C: control, CB: control blank

그 결과, 돌외 증류액 2차 샘플의 4-A와 4-B는 64.7%와 67.8%의 DPPH 라디컬 소거 활성을 나타내었다(도 4) 특히, 상기 4-B를 다시 제조하여 재현성 및 활성을 측정한 결과, 그 활성이 용량의존적으로 증가함을 보였으며 25, 50, 75, 100% 증류액에서 각각 50.8, 55, 59.7, 68.5%의 소거활성을 나타내었다(도 5). As a result, 4-A and 4-B of the secondary sample of the extradol distillate showed DP4.7 radical scavenging activity of 64.7% and 67.8% (FIG. 4). In particular, the 4-B was prepared again to improve reproducibility and activity. As a result of the measurement, the activity was increased in a dose-dependent manner, and the scavenging activity of 50.8, 55, 59.7, and 68.5% in 25, 50, 75, and 100% distillate, respectively (FIG. 5).

2. 2. SuperoxideSuperoxide 라디칼 소거 활성 Radical scavenging activity

시료 10 μL에 50 mM sodium carbonate buffre (pH 10.5), 3 mM xanthine 10 μL, 3mM ethylenediamind tetraacetic acid (EDTA) 10 μL, 0.15% bovine serum albumin solution 10 μL를 순서대로 넣고 실온에서 반응시켰다. 반응 후 6 mU/mL xanthine oxidase 100 μL를 넣고 실온에서 20분간 반응시킨 다음 6 mM copper (Ⅰ) chloride (CuCl) 10 μL를 넣어 반응을 정지시키고 560 nm에서 microplate reader를 이용하여 흡광도를 측정하여 소거능을 다음 공식에 의해 산출하였다50 μl sodium carbonate buffer (pH 10.5), 10 μl of 3 mM xanthine, 10 μl of 3mM ethylenediamind tetraacetic acid (EDTA) and 10 μl of 0.15% bovine serum albumin solution were added to 10 μl of the sample and reacted at room temperature. After the reaction, add 100 μL of 6 mU / mL xanthine oxidase and react for 20 minutes at room temperature. Then, stop the reaction by adding 10 μL of 6 mM copper (I) chloride (CuCl) and measure absorbance at 560 nm using a microplate reader. Was calculated by the following formula

% inhibition = [{(C-CB)-(S-SB)}/(C-CB)] × 100;% inhibition = [{(C-CB)-(S-SB)} / (C-CB)] x 100;

S: absorbance of the sample, SB: Sample blank, C: control, CB: control blankS: absorbance of the sample, SB: Sample blank, C: control, CB: control blank

그 결과, 돌외 증류액의 superoxide 라디칼 제거능 역시 농도 의존적인 증가를 보였으나 25% 증류액 처리시 87.7%의 높은 소거활성을 보여 DPPH에 비해 상대적으로 높은 활성을 나타내었다(도 6)As a result, the superoxide radical scavenging ability of the extradol distillate also showed a concentration-dependent increase, but showed a higher scavenging activity of 87.7% when the 25% distillate was treated (Fig. 6).

3. 3. HydorogenHydorogen peroxide  peroxide 소거능Scavenging power 측정 Measure

96 well plate에 시료와 Blank, control을 구분하여 각 효소별 시료 80 μL에 인산완충용액(0.1 M, pH 5.0) 100 μL와 10 mM의 H2O2 20 μL를 혼합하여 37 ℃의 incubator에서 5분간 반응시켰으며, 시료에는 실험직전 제조한 1.25 mM 2,2-azinobis(3-ethylbenzthiazolin)-6-sulfonicacid (ABTS) 30 μL, blank에는 증류수 30 μL를 첨가한 후 peroxidase (1 U/mL) 30 μL를 시료와 blank에 첨가하여 37 ℃의 incubator에서 10분 반응시킨 다음 microplate reader로 405 nm에서 흡광도를 측정하였다.After separating the sample, blank and control in 96 well plate, 100 μL of phosphate buffer solution (0.1 M, pH 5.0) and 20 μL of 10 mM H2O2 were mixed in 80 μL of each enzyme sample for 5 minutes in an incubator at 37 ℃. 30 μL of 1.25 mM 2,2-azinobis (3-ethylbenzthiazolin) -6-sulfonicacid (ABTS) prepared before the experiment and 30 μL of distilled water were added to the blank, followed by 30 μL of peroxidase (1 U / mL). After adding to the blank and reacted for 10 minutes in an incubator at 37 ℃, the absorbance was measured at 405 nm with a microplate reader.

돌외 증류액의 hydrogen peroxide 소거능을 측정한 결과 증류액 100%에서 85.4%의 활성을 나타내었다(도 7).As a result of measuring hydrogen peroxide scavenging ability of the extradol distillate, the distillate showed activity of 85.4% (FIG. 7).

4. Nitric oxide 라디칼 4. Nitric oxide radical 소거능Scavenging power 측정 Measure

시료 50 μL에 인산완충용액(pH 7.0)으로 제조한 동량의 10 mM sodium nitroprusside를 첨가하여 25℃에서 3 시간동안 incubation한 후, 100 μL Griess reagent (1% sulfanilamide and 0.1% N-naphthylethylene diamine dihydrochloride in 2.5% polyphosphoricacid)와 혼합하여 5 분간 반응시킨 후 540 nm에서 흡광도를 측정하여 소거능을 다음 공식에 의해 산출하였다.50 μL of the sample was added to the same amount of 10 mM sodium nitroprusside prepared in phosphate buffer solution (pH 7.0) and incubated at 25 ° C. for 3 hours, followed by 100 μL Griess reagent (1% sulfanilamide and 0.1% N-naphthylethylene diamine dihydrochloride in 2.5% polyphosphoric acid) was mixed for 5 minutes and absorbance was measured at 540 nm.

% inhibition = [{(C-CB)-(S-SB)}/(C-CB)] × 100;% inhibition = [{(C-CB)-(S-SB)} / (C-CB)] x 100;

S: absorbance of the sample, SB: Sample blank, C: control, CB: control blankS: absorbance of the sample, SB: Sample blank, C: control, CB: control blank

그 결과, 도 8에 제시한 바와 같이 25, 50, 75, 100% 증류액에서 각각 58.5, 61.6, 69.6, 75.4% 의 소거능을 나타내었다.As a result, as shown in Figure 8, the scavenging ability of 58.5, 61.6, 69.6, 75.4% in 25, 50, 75, 100% distillate, respectively.

5. 5. 금속 이온 소거능Metal ion scavenging ability 측정 Measure

Fe2+ 나 Cu2+를 포함하는 금속 이온 혹은 금속염은 유리 라디칼 생성을 촉진하여 산화적 스트레스를 유발하는데, 금속 봉쇄력은 이와 같은 금속 촉매제로 인한 자유 라디칼 생성을 억제함으로써 지질 산화를 방지할 수 있는 능력을 측정하는 지표로 이용될 수 있다.Metal ions or metal salts containing Fe2 + or Cu2 + promote free radical generation, causing oxidative stress, and metal sequestration measures the ability to prevent lipid oxidation by inhibiting free radical generation by these metal catalysts. It can be used as an indicator.

상기 금속 봉쇄력을 확인하기 위해, 시료를 250 μL 씩 96 well plate에 분주하여 2 mM ferrous chloride (FeCl2) 5 μL, 5mM ferrozine [3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-p,p-disulfonic acid monosodium salt hydrate] solution 10 μL를 가하고 상온에서 10 분간 반응시켰다. 562 nm에서 microplate reader를 이용하여 흡광도를 측정하여 소거능을 다음 공식에 의해 산출하였다.In order to confirm the metal containment, the sample was dispensed into 250 well aliquots in 96 well plates, 5 μL of 2 mM ferrous chloride (FeCl 2), 5 mM ferrozine [3- (2-pyridyl) -5,6-diphenyl-1,2 , 4-triazine-p, p-disulfonic acid monosodium salt hydrate] solution was added 10 μL and reacted at room temperature for 10 minutes. The absorbance was measured by using a microplate reader at 562 nm, and the scavenging ability was calculated by the following formula.

% inhibition = [{(C-CB)-(S-SB)}/(C-CB)] × 100;% inhibition = [{(C-CB)-(S-SB)} / (C-CB)] x 100;

S: absorbance of the sample, SB: Sample blank, C: control, CB: control blankS: absorbance of the sample, SB: Sample blank, C: control, CB: control blank

그 결과, 돌외 증류액의 봉쇄력은 시료 농도가 증가함에 따라 비례적으로 상승하여 25, 50, 75, 100% 증류액에서 각각 53.4, 64.3, 69.3, 75.9%의 소거능을 확인하였다(도 9).As a result, the blocking power of the extra-distillate distillate increased proportionally with increasing sample concentration, confirming the scavenging ability of 53.4, 64.3, 69.3, and 75.9% in 25, 50, 75, and 100% distillate, respectively (FIG. 9). .

6. 환원력 측정6. Reducing power measurement

환원력은 Fe3+ 혼합물이 항산화 물질에 의해 Fe2+로 환원되며 FeCl3와 반응하여 생성되는 Perl's prussian blue를 검증하여 확인한다. 돌외 증류액의 환원력을 측정하기 위해 시료 400 μL 당 동량의 200 mM sodium phosphate buffer (pH 6.6) 및 1% potassium ferricyanide를 가하여 50℃에서 20 분간 반응시킨 후 10% trichloroacetic acid를 동량 첨가하여 반응을 정지시킨 후, 모든 시료에 20 μL의 0.1% ferric chloride 와 100 μL의 DW를 각각 첨가한 뒤 700 nm에서 흡광도를 측정하여 소거능을 다음 공식에 의해 산출하였다.Reducing power is confirmed by verifying Perl's prussian blue produced by reacting Fe3 + mixture with FeCl3 by antioxidants. To measure the reducing power of the extradol distillate, add 200 mM sodium phosphate buffer (pH 6.6) and 1% potassium ferricyanide equivalent to 400 μL of sample and react for 20 minutes at 50 ° C, and then stop the reaction by adding the same amount of 10% trichloroacetic acid. After the addition, 20 μL of 0.1% ferric chloride and 100 μL of DW were added to each sample, and the absorbance was measured at 700 nm.

% inhibition = [{(C-CB)-(S-SB)}/(C-CB)] × 100;% inhibition = [{(C-CB)-(S-SB)} / (C-CB)] x 100;

S: absorbance of the sample, SB: Sample blank, C: control, CB: control blankS: absorbance of the sample, SB: Sample blank, C: control, CB: control blank

그 결과, 전자공여능과 동일한 추이를 나타내었다(도 10)As a result, the same trend as the electron donating ability was shown (Fig. 10).

Claims (6)

(1) 생약재 및 물을 탕전기에 넣고 가열하여 탕전액을 제조하는 단계;
(2) 상기 탕전하는 단계에서 발생하는 수증기를 냉각시켜 증류액을 제조하는 단계;
(3) 상기 제조된 증류액을 다시 상기 탕전액에 혼합하는 단계;
(4) 상기 단계 (2) 및 (3)을 반복하여 증류액을 순환시키는 단계; 및
(5) 순환이 끝난 최종 증류액을 추출하는 단계;를 포함하는 생약재의 증류액 제조방법.
(1) preparing herbal liquid and water by putting the herbal medicine and water in a kettle;
(2) cooling the steam generated in the step of discharging to prepare a distillate;
(3) mixing the prepared distillate again into the discharging solution;
(4) repeating steps (2) and (3) to circulate the distillate; And
(5) extracting the final distillate after the circulation; distillate manufacturing method of the herbal medicine comprising a.
제 1항에 있어서,
상기 최종 추출된 증류액에 수소기체를 주입하는 단계를 추가로 포함하는 생약재의 증류액 제조방법.
The method of claim 1,
Distillate manufacturing method of herbal medicines further comprising the step of injecting hydrogen gas to the final extracted distillate.
제 1항 또는 제 2항에 있어서,
상기 단계 (4)에서 증류액의 순환시간은 1 내지 12시간인 것인, 생약재의 증류액 제조방법.
The method according to claim 1 or 2,
The circulation time of the distillate in the step (4) is 1 to 12 hours, distillate manufacturing method of the herbal medicine.
제 1항 또는 제 2항에 있어서,
상기 단계 (5)에서 증류액을 추출하는 시간은 1 내지 5시간인 것인, 생약재의 증류액 제조방법.
The method according to claim 1 or 2,
The time for extracting the distillate in the step (5) is 1 to 5 hours, distillate manufacturing method of the herbal medicine.
(1) 3kg 돌외 및 20,000 내지 25,000ml 물을 탕전기에 넣고 가열하여 탕전액을 제조하는 단계;
(2) 상기 탕전하는 단계에서 발생하는 수증기를 냉각시켜 증류액을 제조하는 단계;
(3) 상기 제조된 증류액을 다시 상기 탕전액에 혼합하는 단계;
(4) 상기 단계 (2) 및 (3)을 반복하여 증류액을 8시간동안 순환시키는 단계;
(5) 순환이 끝난 후 증류액을 3시간 동안 추출하는 단계; 및
(6) 상기 추출된 증류액에 수소기체를 주입하는 단계를 포함하는 돌외의 증류액 제조방법.
(1) preparing a pouring liquid by adding 3 kg of dol and 20,000 to 25,000 ml of water into a mixer and heating it;
(2) cooling the steam generated in the step of discharging to prepare a distillate;
(3) mixing the prepared distillate again into the discharging solution;
(4) repeating steps (2) and (3) to circulate the distillate for 8 hours;
(5) extracting the distillate for 3 hours after the end of the circulation; And
(6) a distillate manufacturing method other than stone comprising the step of injecting hydrogen gas to the extracted distillate.
제 5항에 있어서,
상기 단계 (5)에서 수소기체의 농도는 900 내지 1000 PPB인 것인, 돌외의 증류액 제조방법.
The method of claim 5,
The concentration of the hydrogen gas in the step (5) is 900 to 1000 PPB, a distillate manufacturing method of the stone.
KR1020180067557A 2018-06-12 2018-06-12 A method for producing a distillate of a herbal medicine KR102130326B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180067557A KR102130326B1 (en) 2018-06-12 2018-06-12 A method for producing a distillate of a herbal medicine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180067557A KR102130326B1 (en) 2018-06-12 2018-06-12 A method for producing a distillate of a herbal medicine

Publications (2)

Publication Number Publication Date
KR20190140717A true KR20190140717A (en) 2019-12-20
KR102130326B1 KR102130326B1 (en) 2020-07-06

Family

ID=69063048

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180067557A KR102130326B1 (en) 2018-06-12 2018-06-12 A method for producing a distillate of a herbal medicine

Country Status (1)

Country Link
KR (1) KR102130326B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100524659B1 (en) 2005-01-17 2005-10-31 주식회사 엔유씨전자 An extraction method for honenia dulcis and a beverage prepared therefrom
KR100562460B1 (en) 2003-09-24 2006-03-22 공주대학교 산학협력단 Method of treatment for extracts of hovenia dulcis, extracts by the method, functional drinks and pharmaceutical compositions including the extracts
WO2011129567A2 (en) * 2010-04-15 2011-10-20 Cho Keon-Hwan Gas storage vessel, hydrogen-charging method, and hydrogen-charging apparatus
KR20140137549A (en) 2013-05-23 2014-12-03 고려인삼과학(주) A EXTRACTING METHOD Hovenia dulcis FOR ACTIVATING ALCOHOL METABOLISM AND RELIEVING A HANGOVER AND HEALTHY FUNCTIONAL FOOD CONTAINING THE SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562460B1 (en) 2003-09-24 2006-03-22 공주대학교 산학협력단 Method of treatment for extracts of hovenia dulcis, extracts by the method, functional drinks and pharmaceutical compositions including the extracts
KR100524659B1 (en) 2005-01-17 2005-10-31 주식회사 엔유씨전자 An extraction method for honenia dulcis and a beverage prepared therefrom
WO2011129567A2 (en) * 2010-04-15 2011-10-20 Cho Keon-Hwan Gas storage vessel, hydrogen-charging method, and hydrogen-charging apparatus
KR20140137549A (en) 2013-05-23 2014-12-03 고려인삼과학(주) A EXTRACTING METHOD Hovenia dulcis FOR ACTIVATING ALCOHOL METABOLISM AND RELIEVING A HANGOVER AND HEALTHY FUNCTIONAL FOOD CONTAINING THE SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
최종연구보고서, 한국식품연구원(2004)* *

Also Published As

Publication number Publication date
KR102130326B1 (en) 2020-07-06

Similar Documents

Publication Publication Date Title
Kc et al. Phytochemicals and quality of green and black teas from different clones of tea plant
Yuris et al. A comparative study of the antioxidant properties of three pineapple (Ananas comosus L.) varieties
Loganayaki et al. Antioxidant capacity and phenolic content of different solvent extracts from banana (Musa paradisiaca) and mustai (Rivea hypocrateriformis)
Peksel et al. Evaluation of antioxidant and antiacetylcholinesterase activities of the extracts of Pistacia atlantica Desf. Leaves
Chong et al. Effects of drying on the antioxidant properties of herbal tea from selected Vitex species
Deepa et al. Comparative evaluation of various total antioxidant capacity assays applied to phytochemical compounds of Indian culinary spices
Shahat et al. Antioxidant capacity and polyphenolic content of seven Saudi Arabian medicinal herbs traditionally used in Saudi Arabia
Li et al. Antioxidative activities and the chemical constituents of two Chinese teas, Camellia kucha and C. ptilophylla
Benchikh et al. The evaluation of antioxidant capacity of different fractions of Myrtus communis L. leaves
Patel et al. Study of secondary metabolites and antioxidant properties of leaves, stem and root among Hibiscus rosa-sinensis cultivars
Pinto et al. Chemical characterization and bioactive properties of a coffee-like beverage prepared from Quercus cerris kernels
Hashemi et al. Evaluation of three methods for the extraction of antioxidants from vicia faba L. bean and hulls
Malik et al. Chemo-profiling, Antioxidant potential and Ionomic analysis of Cichorium intybus L.
Polat et al. Effect of infusion time on black tea quality, mineral content and sensory properties prepared using traditional Turkish infusion method
Taheri et al. Screening antioxidant activity of extracts from different tea samples
Chidewe et al. Phytochemical Constituents and the Effect of Processing on Antioxidant Properties of Seeds of an Underutilized Wild Legume B auhinia P etersiana
Familoni et al. Polyphenolic constituents, antioxidant and hypoglycaemic potential of leaf extracts of Acalypha godseffiana from Eastern Nigeria: In vitro study
Gabr et al. Comparative study of phenolic profile, antioxidant and antimicrobial activities of aqueous extract of white and green tea
Merecz et al. The content of biologically active substances and antioxidant activity in coffee depending on brewing method
KR102130326B1 (en) A method for producing a distillate of a herbal medicine
Al-Obaidi et al. Determination of antioxidants activity in tea extract
US20080254190A1 (en) Extraction of theaflavins
Anna Antioxidant potential and radical scavenging activity of different fermentation degree tea leaves extracts
Ombra et al. Health attributes of ten Mediterranean edible flowers: anti-proliferative and enzyme-inhibitory properties
Murokore et al. Effect of Extraction Period on Total Phenolics, Total Flavonoids, and Antioxidant Capacity of Ugandan Camellia sinensis (L) Kuntze, Black Primary Grades and Green Tea

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant