KR20190129598A - Lnt rich control method of mild hybrid electric vehicle and mild hybrid electric vehicle - Google Patents

Lnt rich control method of mild hybrid electric vehicle and mild hybrid electric vehicle Download PDF

Info

Publication number
KR20190129598A
KR20190129598A KR1020180054487A KR20180054487A KR20190129598A KR 20190129598 A KR20190129598 A KR 20190129598A KR 1020180054487 A KR1020180054487 A KR 1020180054487A KR 20180054487 A KR20180054487 A KR 20180054487A KR 20190129598 A KR20190129598 A KR 20190129598A
Authority
KR
South Korea
Prior art keywords
lnt
rich
soc
mhsg
state
Prior art date
Application number
KR1020180054487A
Other languages
Korean (ko)
Other versions
KR102518595B1 (en
Inventor
남기훈
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020180054487A priority Critical patent/KR102518595B1/en
Publication of KR20190129598A publication Critical patent/KR20190129598A/en
Application granted granted Critical
Publication of KR102518595B1 publication Critical patent/KR102518595B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

The present invention relates to a lean NOx trap (LOT)-rich control method of a mild hybrid vehicle, capable of optimally maintaining an NH_3 generation amount. According to one embodiment of the present invention, the LOT-rich control method of a mild hybrid vehicle comprises the following steps: determining whether the vehicle is in an LNT-rich state; checking the state of charge (SOC) of a first battery in the case of the LNT-rich state; controlling the fuel amount of a mild hybrid starter and generator (MHSG) to control a motor when the SOC of the first battery is equal to or greater than a first SOC; determining whether the vehicle is in an LNT-rich breakthrough state; determining whether an NH_3 generation condition is satisfied in the case of the LNT-rich breakthrough state; determining whether an LNT-rich state is maintained for a predetermined time after the LNT-rich breakthrough state when the NH_3 generation condition is satisfied; and terminating the LNT-rich state when the LNT-rich state is maintained for the predetermined time after the LNT-rich breakthrough state.

Description

마일드 하이브리드 차량의 LNT 리치 제어 방법 및 마일드 하이브리드 차량{LNT RICH CONTROL METHOD OF MILD HYBRID ELECTRIC VEHICLE AND MILD HYBRID ELECTRIC VEHICLE}LNT RICH CONTROL METHOD OF MILD HYBRID ELECTRIC VEHICLE AND MILD HYBRID ELECTRIC VEHICLE}

본 발명은 마일드 하이브리드 차량의 LNT 리치 제어 방법 및 마일드 하이브리드 차량에 관한 것으로, 더욱 상세하게는, LNT 리치 제어를 통해 NH3 발생량을 최적으로 유지하기 위한 마일드 하이브리드 차량의 LNT 리치 제어 방법 및 마일드 하이브리드 차량에 관한 것이다.The present invention relates to a LNT rich control method and a mild hybrid vehicle of a mild hybrid vehicle, and more particularly, to a LNT rich control method and a mild hybrid vehicle of a mild hybrid vehicle for optimally maintaining the amount of NH3 generated through LNT rich control. It is about.

주지하는 바와 같이 하이브리드 차량(hybrid electric vehicle)은 내연기관(internal combustion engine)과 배터리 전원을 함께 사용한다. 즉, 하이브리드 차량은 내연기관의 동력과 모터의 동력을 효율적으로 조합하여 사용한다.As is well known, hybrid electric vehicles use an internal combustion engine and battery power together. That is, a hybrid vehicle uses a combination of the power of an internal combustion engine and the power of a motor efficiently.

하이브리드 차량은 엔진과 모터의 파워 분담비에 따라 마일드(mild) 타입과 하드(hard) 타입으로 구분할 수 있다. 마일드 타입의 하이브리드 차량(이하, 마일드 하이브리드 차량이라 한다)은 알터네이터 대신에 엔진을 시동하거나 상기 엔진의 출력에 의해 발전하는 시동 발전기(mild hybrid starter & generator; MHSG)가 구비된다. 하드 타입의 하이브리드 차량은 엔진을 시동하거나 상기 엔진의 출력에 의해 발전하는 시동 발전기와 차량을 구동하는 구동 모터가 각각 별도로 구비된다.Hybrid vehicles can be classified into mild and hard types according to the power sharing ratio of the engine and the motor. A mild hybrid vehicle (hereinafter referred to as a mild hybrid vehicle) is provided with a mild hybrid starter & generator (MHSG) that starts the engine or generates power by the output of the engine instead of the alternator. The hybrid vehicle of the hard type is provided with a starter generator for starting the engine or generated by the output of the engine and a drive motor for driving the vehicle.

마일드 하이브리드 차량은 MHSG를 이용하여 주행 상태에 따라 엔진 토크를 보조할 수 있으며, 회생제동을 통해 배터리(예를 들어, 48 V 배터리)를 충전할 수 있다. 이에 따라, 마일드 하이브리드 차량의 연비가 향상될 수 있다.Mild hybrid vehicles can use the MHSG to support engine torque based on driving conditions and recharge the battery (eg 48 V battery) via regenerative braking. Accordingly, fuel economy of the mild hybrid vehicle can be improved.

한편, 엔진의 배기 시스템은 배기가스 중에 함유된 공해 물질인 일산화탄소(CO), 탄화수소(HC), 입자상물질(Particulate Matter, PM), 질소산화물(NOx) 등을 감소시키기 위해 디젤산화촉매(Diesel Oxidation Catalyst, DOC) 장치, 입자상물질 제거용 필터(Diesel Particulate matter Filter, DPF), 선택적환원촉매 (Selective Catalyst Reduction, SCR 촉매) 장치, 및 질소산화물 흡장촉매(Lean NOx Trap, LNT 촉매) 장치 등과 같은 배기가스 후처리 장치를 구비하고 있다.On the other hand, the exhaust system of the engine is a diesel oxidation catalyst (Diesel Oxidation) to reduce the carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM), nitrogen oxides (NOx), etc. contained in the exhaust gas Emissions such as Catalyst (DOC) devices, Diesel Particulate matter Filters (DPF) devices, Selective Catalyst Reduction (SCR catalyst) devices, and Lean NOx Trap (LNT catalyst) devices A gas aftertreatment device is provided.

LNT 촉매는 SCR 촉매 대비 장치가 간단하고 비용이 매우 저렴하나, 고온 고부하시 질소산화물 정화 효율은 크게 낮다. 따라서, 상대적으로 질소산화물 정화 부담이 적고 배기온이 낮은 소형 차량에 LNT 촉매가 적용되는데, 향후 도래하는 실제 도로주행 배출가스(RDE; Real Driving Emission) 배기규제를 SCR 촉매 없이 LNT 촉매로 대응하기 위해서는 큰 폭의 LNT 촉매의 질소산화물 정화 성능 개선이 요구된다.LNT catalysts are simpler and less expensive than SCR catalysts, but their nitrogen oxide purification efficiency is significantly lower at high temperatures and high loads. Therefore, the LNT catalyst is applied to a small vehicle having a relatively low nitrogen oxide purification burden and low exhaust temperature. In order to cope with future LDE (RDE) emission regulation without an SCR catalyst, There is a need to improve the nitrogen oxide purification performance of large LNT catalysts.

LNT 촉매는 산소를 다량으로 포함하는 리치 상태일 때 질소산화물과의 반응에 의해 암모니아(NH3)가 다량으로 발생되고, 암모니아는 환원제로 작용하여 SCR 장치의 정화율이 개선되고, 우레아의 소모량을 감소시킬 수 있다. 따라서, 마일드 하이브리드 차량에서 LNT 촉매의 리치 상태 제어를 통해 암모니아의 발생량을 최적으로 유지하는 방안이 연구되고 있다.The LNT catalyst generates a large amount of ammonia (NH 3) by reaction with nitrogen oxide when it is in a rich state containing a large amount of oxygen, and ammonia acts as a reducing agent, improving the purification rate of the SCR device and reducing the consumption of urea. You can. Therefore, a method of optimally maintaining the amount of ammonia generated through the control of the rich state of the LNT catalyst in a mild hybrid vehicle has been studied.

따라서, 본 발명이 해결하고자 하는 과제는, 마일드 하이브리드 차량에서 LNT 리치 상태 제어를 통해 NH3 발생량을 최적으로 유지하기 위한 방법 및 그 마일드 하이브리드 차량을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method and a mild hybrid vehicle for optimally maintaining the amount of NH3 generated through LNT rich state control in a mild hybrid vehicle.

본 발명의 일 실시예에 따른 마일드 하이브리드 차량의 LNT(Lean NOx Trap) 리치 제어 방법은, LNT의 리치 상태인지 판단하는 단계와, 상기 LNT의 리치 상태이면, 제1 배터리의 충전량(SOC)을 확인하는 단계와, 상기 제1 배터리의 SOC가 제1 SOC 이상이면 시동 발전기(mild hybrid starter & generator; MHSG)의 연료량을 제어하여 모터 제어를 수행하는 단계와, 상기 LNT의 리치 임계점(breakthrough) 상태인지 판단하는 단계와, 상기 LNT의 리치 임계점 상태이면, NH3 발생 조건을 만족하는지 판단하는 단계와, NH3 발생 조건을 만족하면, 상기 LNT의 리치 임계점 상태 후 일정 시간 이상 동안 유지하는지 판단하는 단계, 및 상기 LNT의 리치 임계점 상태 후 상기 LNT의 리치 상태를 일정 시간 이상 동안 유지하면, 상기 LNT의 리치 상태를 종료하는 단계를 포함한다.Lean NOx trap (LNT) rich control method of a mild hybrid vehicle according to an embodiment of the present invention, determining whether the LNT is in a rich state, and if the LNT is in a rich state, checking the amount of charge (SOC) of the first battery If the SOC of the first battery is greater than or equal to the first SOC, controlling a fuel amount of a mild hybrid starter & generator (MHSG) to perform motor control; and whether the LNT has a breakthrough state of the LNT. Determining, if the LNT is in the rich threshold state, determining whether the NH3 generation condition is satisfied, and if the NH3 is generated, determining whether the LNT is maintained for a predetermined time or more after the rich threshold state of the LNT, and If the rich state of the LNT after the rich threshold state of the LNT for a predetermined time or more, comprising the step of terminating the rich state of the LNT.

본 발명의 일 실시예에 따른 마일드 하이브리드 차량의 LNT 리치 제어 방법은, 상기 제1 배터리의 SOC를 확인하는 단계 후에, 상기 제1 배터리의 SOC가 제2 SOC 미만이면, 상기 MHSG의 연료량을 제어하여 상기 MHSG의 충전 제어를 수행하는 단계를 더 포함할 수 있다. In the LNT rich control method of a mild hybrid vehicle according to an embodiment of the present invention, after the SOC of the first battery is checked, if the SOC of the first battery is less than the second SOC, the fuel amount of the MHSG is controlled. The method may further include performing charging control of the MHSG.

본 발명의 일 실시예에 따른 마일드 하이브리드 차량의 LNT 리치 제어 방법은, 상기 제1 배터리의 SOC를 확인하는 단계 후에, 상기 제1 배터리의 SOC가 제2 SOC이상 제1 SOC 미만이면, 상기 MHSG의 연료량을 제어하여 상기 MHSG의 충전 제어 및 모터 제어를 수행하는 단계를 더 포함할 수 있다.In the LNT rich control method of a mild hybrid vehicle according to an embodiment of the present invention, after the SOC of the first battery is determined, if the SOC of the first battery is greater than or equal to the second SOC and less than the first SOC, The method may further include controlling a fuel amount to perform charge control and motor control of the MHSG.

상기 일정 시간은 2초 이상 10초 미만일 수 있다.The predetermined time may be 2 seconds or more and less than 10 seconds.

상기 제1 SOC는 70%이고, 상기 제2 SOC는 30%일 수 있다.The first SOC may be 70%, and the second SOC may be 30%.

상기 NH3 발생 조건은 SCR 입구 배기온도가 200도 이상인 것을 포함할 수 있다. The NH 3 generation condition may include an SCR inlet exhaust temperature of 200 degrees or more.

상기 LNT의 리치 상태는 상기 LNT의 NOx 흡장량, 배기 가스 온도, 및 엔진 운전점 등을 고려하여 결정될 수 있다. The rich state of the LNT may be determined in consideration of the NOx occlusion amount, the exhaust gas temperature, the engine operating point, and the like of the LNT.

상기 모터 제어는 차량의 가속을 포함할 수 있다.The motor control may include acceleration of the vehicle.

상기 MHSG의 충전 제어는 차량의 제동, 감속, 변속, 및 코스팅(coasting)을 포함할 수 있다. Charge control of the MHSG may include braking, deceleration, shifting, and coasting of the vehicle.

한편, 본 발명의 일 실시예에 따른 마일드 하이브리드 차량은, 엔진과, 상기 엔진을 기동하거나 상기 엔진의 출력에 의해 발전하는 MHSG와, 상기 MHSG에 전기를 공급하거나 상기 MHSG를 통해 회수되는 전기를 통해 충전되는 제1 배터리와, 상기 엔진과 연결되는 배기 파이프에 장착되어 배기 가스에 포함된 질소산화물을 제거하는 LNT와, 상기 LNT 후단에 설치되며, 입자상 물질(Particulate Matter; PM)을 필터링하여 태우는 입자상물질 제거용 필터(Diesel Particulate matter Filter, DPF)와, 상기 DPF 후단에 설치되며, 환원제를 통해 질소산화물을 정화시키는 선택적 환원 촉매(Selective Catalytic Reduction; SCR), 및 상기 제1 배터리의 SOC에 따라 모터 제어 및/또는 충전 제어를 수행하고, 상기 LNT의 리치 임계점 상태 여부를 판단하고, 상기 LNT의 리치 임계점 상태 후 리치 상태 유지 시간에 따라 상기 LNT 리치 상태를 종료 또는 유지하도록 제어하는 제어기를 포함한다.On the other hand, a mild hybrid vehicle according to an embodiment of the present invention, through the engine, the MHSG to start the engine or generate power by the output of the engine, and electricity supplied to the MHSG or recovered through the MHSG A first battery to be charged, an LNT mounted on an exhaust pipe connected to the engine to remove nitrogen oxides contained in the exhaust gas, and a particulate installed on the rear end of the LNT and filtering and burning particulate matter (PM). According to the Diesel Particulate Matter Filter (DPF), a selective reduction catalyst (SCR) installed at the rear end of the DPF and purifying nitrogen oxides through a reducing agent, and a motor according to the SOC of the first battery. Perform control and / or charging control, determine whether the LNT has a rich threshold state, and maintain a rich state after the rich threshold state of the LNT And a controller for controlling to terminate or maintain the LNT rich state.

상기 제어기는, 상기 제1 배터리의 SOC가 제1 SOC 이상이면, 상기 MHSG의 연료량을 제어하여 모터 제어를 수행할 수 있다. The controller may perform motor control by controlling the fuel amount of the MHSG when the SOC of the first battery is equal to or greater than the first SOC.

상기 제어기는, 상기 제1 배터리의 SOC가 제2 SOC 미만이면, 상기 MHSG의 연료량을 제어하여 상기 MHSG의 충전 제어를 수행할 수 있다.When the SOC of the first battery is less than the second SOC, the controller may control the fuel amount of the MHSG to perform charge control of the MHSG.

상기 제어기는, 상기 제1 배터리의 SOC가 제2 SOC 이상 제1 SOC 미만이면, 상기 MHSG의 연료량을 제어하여 상기 MHSG의 충전 제어 및 모터 제어를 수행할 수 있다.When the SOC of the first battery is greater than or equal to the second SOC and less than the first SOC, the controller may control the fuel amount of the MHSG to perform charge control and motor control of the MHSG.

상기 제어기는, 상기 LNT 리치 임계점 상태이고, 상기 LNT의 리치 임계점 상태 후 리치 상태 유지 시간이 일정 시간 이상이라고 판단하면, 상기 LNT 리치 상태를 종료할 수 있다. The controller may terminate the LNT rich state when it is determined that the LNT rich threshold state and the rich state holding time after the rich threshold state of the LNT is a predetermined time or more.

상기 일정 시간은 2초 이상 10초 이하일 수 있다. The predetermined time may be 2 seconds or more and 10 seconds or less.

상기 제1 SOC는 70%이고, 상기 제2 SOC는 30%일 수 있다.The first SOC may be 70%, and the second SOC may be 30%.

상기 제1 배터리는 48V 배터리일 수 있다.The first battery may be a 48V battery.

상술한 바와 같이 본 발명의 실시예에 따르면, 마일드 하이브리드 차량의 배터리의 충전량에 따라 모터 제어 및/또는 충전 제어를 수행하여 엔진 운전점 이탈을 방지하고, LNT 리치 임계점 상태 후 LNT 촉매의 리치 상태를 일정 시간 유지하여, 암모니아 발생량을 증가시켜 SCR 장치의 정화율을 개선하고 우레아의 소모량을 감소시킬 수 있다.As described above, according to the exemplary embodiment of the present invention, the motor control point and / or the charge control may be performed according to the charge amount of the battery of the mild hybrid vehicle, thereby preventing the engine operating point departure, and the rich state of the LNT catalyst after the LNT rich threshold state. By maintaining it for some time, the amount of ammonia produced can be increased to improve the purification rate of the SCR device and to reduce the consumption of urea.

도 1은 본 발명의 일 실시예에 따른 마일드 하이브리드 차량을 도시한 블록도이다.
도 2는 본 발명의 일 실시예에 따른 마일드 하이브리드 차량의 LNT 리치 제어 방법의 흐름도이다.
도 3은 본 발명의 일 실시예에 따른 마일드 하이브리드 차량의 LNT 리치 제어 방법의 LNT 리치 임계점 상태 후 유지 시간에 따른 암모니아 발생량의 관계를 나타내는 그래프이다.
1 is a block diagram illustrating a mild hybrid vehicle according to an exemplary embodiment of the present invention.
2 is a flowchart of a LNT rich control method of a mild hybrid vehicle according to an exemplary embodiment of the present invention.
3 is a graph showing the relationship between the amount of ammonia generated according to the holding time after the LNT rich threshold state of the LNT rich control method of the mild hybrid vehicle according to an embodiment of the present invention.

이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms.

본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 부여한다.In order to clearly describe the present invention, parts irrelevant to the description are omitted, and like reference numerals designate like elements throughout the specification.

또한, 도면에서 나타난 각 구성은 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도면에 도시된 바에 한정되지 않는다.In addition, since each configuration shown in the drawings is arbitrarily shown for convenience of description, the present invention is not necessarily limited to those shown in the drawings.

도 1은 본 발명의 일 실시예에 따른 마일드 하이브리드 차량을 도시한 블록도이다.1 is a block diagram illustrating a mild hybrid vehicle according to an exemplary embodiment of the present invention.

도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 마일드 하이브리드 차량은 엔진(10), 변속기(20), 시동 발전기(mild hybrid starter & generator; MHSG)(30), 제1 배터리(40), 차동기어장치(80), 및 휠(90)을 포함한다.As shown in FIG. 1, a mild hybrid vehicle according to an embodiment of the present invention includes an engine 10, a transmission 20, a mild hybrid starter & generator (MHSG) 30, and a first battery 40. ), Differential gear device 80, and wheel 90.

엔진(10)은 연료와 공기를 연소시켜 화학적 에너지를 기계적 에너지로 변환한다.The engine 10 burns fuel and air to convert chemical energy into mechanical energy.

마일드 하이브리드 차량의 동력 전달은 엔진(10)의 토크가 변속기(20)의 입력축에 전달되고, 변속기(20)의 출력축으로부터 출력된 토크가 차동기어장치(80)를 경유하여 차축에 전달된다. 차축이 휠(90)을 회전시킴으로써 엔진(10)의 토크에 의해 마일드 하이브리드 차량이 주행하게 된다.In the power transmission of the mild hybrid vehicle, torque of the engine 10 is transmitted to the input shaft of the transmission 20, and torque output from the output shaft of the transmission 20 is transmitted to the axle via the differential gear device 80. As the axle rotates the wheel 90, the mild hybrid vehicle is driven by the torque of the engine 10.

MHSG(30)는 전기적 에너지를 기계적 에너지로 변환하거나 기계적 에너지를 전기적 에너지로 변환한다. 즉, MHSG(30)는 엔진(10)을 기동하거나 엔진(10)의 출력에 의해 발전할 수 있다. 또한, MHSG(30)는 엔진(10)의 토크를 보조할 수 있다. 마일드 하이브리드 차량은 엔진(10)의 연소 토크를 주동력으로 하면서 MHSG(30)의 토크를 보조 동력으로 이용할 수 있다. 엔진(10)과 MHSG(30)는 벨트(32)를 통해 연결될 수 있다.The MHSG 30 converts electrical energy into mechanical energy or converts mechanical energy into electrical energy. That is, the MHSG 30 can start the engine 10 or generate power by the output of the engine 10. In addition, the MHSG 30 may assist the torque of the engine 10. The mild hybrid vehicle can use the torque of the MHSG 30 as an auxiliary power while making the combustion torque of the engine 10 the main power. The engine 10 and the MHSG 30 may be connected through the belt 32.

제1 배터리(40)는 MHSG(30)에 전기를 공급하거나, 회생제동 모드에서 MHSG(30)를 통해 회수되는 전기를 통해 충전될 수 있다. 제1 배터리(40)는 48V 배터리일 수 있다. 마일드 하이브리드 차량은 제1 배터리(40)로부터 공급되는 전압을 저전압으로 변환하는 LDC(low voltage DC-DC converter)(50)와 저전압을 사용하는 차량 전장 부품(70)에 저전압을 공급하는 제2 배터리(60)를 더 포함할 수 있다. 제2 배터리(60)는 12V 배터리일 수 있다.The first battery 40 may supply electricity to the MHSG 30 or may be charged through electricity recovered through the MHSG 30 in the regenerative braking mode. The first battery 40 may be a 48V battery. The mild hybrid vehicle includes a low voltage DC-DC converter (LDC) 50 for converting a voltage supplied from the first battery 40 to a low voltage, and a second battery for supplying low voltage to the vehicle electrical component 70 using the low voltage. 60 may further include. The second battery 60 may be a 12V battery.

엔진(10)은 연료와 공기가 유입되는 다수의 연소실(11), 연소실(11) 내로 유입된 연료와 공기를 점화시키는 점화 장치(12), 및 연료를 분사하는 인젝터(13)를 포함할 수 있다. 엔진(10)은 흡기 매니폴드(14)에 연결되어 연소실(11) 내부로 공기를 유입받으며 연소 과정에서 발생한 배기 가스는 배기 매니폴드(15)에 모인 후 엔진(10) 외부로 배출되게 된다. 인젝터(13)는 연소실(11) 내 또는 흡기 매니폴드(14)에 장착될 수 있다.The engine 10 may include a plurality of combustion chambers 11 into which fuel and air are introduced, an ignition device 12 to ignite the fuel and air introduced into the combustion chamber 11, and an injector 13 to inject fuel. have. The engine 10 is connected to the intake manifold 14 to receive air into the combustion chamber 11, and the exhaust gas generated in the combustion process is collected in the exhaust manifold 15 and then discharged to the outside of the engine 10. The injector 13 may be mounted in the combustion chamber 11 or in the intake manifold 14.

스로틀 밸브(16)는 흡기 매니폴드(14)로 공기를 공급하도록 형성된 흡기 라인에 배치된다. 스로틀 밸브(16)의 개도량에 따라 흡기 매니폴드(14)로 공급되는 공기의 흐름이 제어된다.The throttle valve 16 is disposed in the intake line formed to supply air to the intake manifold 14. The flow of air supplied to the intake manifold 14 is controlled in accordance with the opening amount of the throttle valve 16.

배기 파이프(17)는 배기 매니폴드(15)에 연결되어 배기 가스를 차량의 외부로 배출시킨다. 배기 파이프(17) 상에는 촉매(18)가 장착되어 배기 가스에 포함된 탄화수소, 일산화탄소, 및 질소산화물을 제거할 수 있다.The exhaust pipe 17 is connected to the exhaust manifold 15 to exhaust the exhaust gas to the outside of the vehicle. A catalyst 18 may be mounted on the exhaust pipe 17 to remove hydrocarbons, carbon monoxide, and nitrogen oxides contained in the exhaust gas.

한편, 본 발명의 일 실시예에 따른 마일드 하이브리드 차량은 배기 파이프(17) 상에, 질소산화물 흡장촉매(Lean NOx Trap; LNT)(18), 입자상물질 제거용 필터(Diesel Particulate matter Filter, DPF)(22), 및 선택적 환원 촉매(Selective Catalytic Reduction; SCR)(24)가 엔진(10)의 배기 매니폴드(15) 측으로부터 차례로 설치될 수 있다. On the other hand, the mild hybrid vehicle according to an embodiment of the present invention on the exhaust pipe 17, the NOx trap (LNT) 18, the particulate matter filter (DPF) for removing particulate matter (DPF) 22, and a Selective Catalytic Reduction (SCR) 24 may be installed in turn from the exhaust manifold 15 side of the engine 10.

LNT(18)는 배기 가스가 리치인 분위기에서 흡장된 질소산화물을 탈착하며, 배기가스에 포함된 질소산화물 또는 탈착된 질소산화물을 환원시킨다. The LNT 18 desorbs the nitrogen oxide stored in the atmosphere in which the exhaust gas is rich, and reduces the nitrogen oxide or the desorbed nitrogen oxide contained in the exhaust gas.

DPF(22)는 LNT(18) 후단에 설치되며, 입자상 물질(Particulate Matter; PM)을 필터링하여 태우는 역할을 하며, SCR(24)은 DPF(22) 후단에 설치되며, 우레아(Urea)와 같은 환원제를 통해 질소산화물을 정화시킨다. The DPF 22 is installed at the rear of the LNT 18, and filters and burns particulate matter (PM), and the SCR 24 is installed at the rear of the DPF 22, such as urea. The nitrogen oxide is purified through a reducing agent.

제어기는 제1 배터리(40)의 SOC에 따라 모터 제어 및/또는 충전 제어를 수행하고, LNT(18)의 리치 임계점 상태 여부를 판단하고, LNT(18)의 리치 임계점 상태 후 리치 상태 유지 시간에 따라 LNT 리치 상태를 종료 또는 유지하도록 제어한다. The controller performs motor control and / or charging control according to the SOC of the first battery 40, determines whether the LNT 18 is in the rich threshold state, and at the rich state holding time after the rich threshold state of the LNT 18. Accordingly, control to terminate or maintain the LNT rich state.

제어기는, 제1 배터리(40)의 SOC가 제1 SOC 이상이면, MHSG(30)의 연료량을 제어하여 모터 제어를 수행한다. 모터 제어시, 엔진에 공급되어야 하는 연료량의 증가가 요구되고, 운전자에 의한 가속이 요구된다. MHSG 모터 제어를 통한 엔진 운전점 이탈이 방지될 수 있다. If the SOC of the first battery 40 is greater than or equal to the first SOC, the controller controls the amount of fuel in the MHSG 30 to perform motor control. In motor control, an increase in the amount of fuel to be supplied to the engine is required, and acceleration by the driver is required. Deviation from the engine operating point via MHSG motor control can be prevented.

제어기는, 제1 배터리(40)의 SOC가 제2 SOC 미만이면, MHSG(30)의 연료량을 제어하여 MHSG(30)의 충전 제어를 수행한다. 충전 제어시, 엔진에 공급되어야 하는 연료량의 감소가 요구되고, 충전 제어는 차량의 제동, 감속, 변속, 및 코스팅(coasting)을 포함한다. MHSG 충전 제어를 통한 엔진 운전점 이탈이 방지될 수 있다.If the SOC of the first battery 40 is less than the second SOC, the controller controls the fuel amount of the MHSG 30 to perform charge control of the MHSG 30. In the charge control, a reduction in the amount of fuel to be supplied to the engine is required, and the charge control includes braking, deceleration, shifting, and coasting of the vehicle. Deviation from the engine operating point through the MHSG charge control can be prevented.

제어기는, 제1 배터리(40)의 SOC가 제2 SOC 이상 제1 SOC 미만이면, MHSG(30)의 연료량을 제어하여 MHSG(30)의 충전 제어 및 모터 제어를 동시에 수행한다. When the SOC of the first battery 40 is greater than or equal to the second SOC and less than the first SOC, the controller controls the fuel amount of the MHSG 30 to simultaneously perform charge control and motor control of the MHSG 30.

이 때, 제1 SOC는 약 70%일 수 있고, 제2 SOC는 약 30%일 수 있다.At this time, the first SOC may be about 70%, and the second SOC may be about 30%.

제어기는 LNT(18)의 리치 임계점 상태 후 리치 상태 유지 시간이 일정 시간 이상이라고 판단하면, LNT 리치 상태를 종료한다. 이 때, 일정 시간은 약 2초 이상 약 10초 이하일 수 있다. If the controller determines that the rich state holding time is longer than a predetermined time after the rich threshold state of the LNT 18, the controller ends the LNT rich state. In this case, the predetermined time may be about 2 seconds or more and about 10 seconds or less.

제어기는 설정된 프로그램에 의하여 동작하는 하나 이상의 프로세서로 구현될 수 있으며, 상기 설정된 프로그램은 후술하는 본 발명의 실시예에 따른 마일드 하이브리드 차량의 전력 제어 방법에 포함된 각 단계를 수행하기 위한 일련의 명령을 포함할 수 있다.The controller may be implemented by one or more processors operating by a set program, wherein the set program executes a series of instructions for performing each step included in the power control method of the mild hybrid vehicle according to the embodiment of the present invention described below. It may include.

도 2는 본 발명의 일 실시예에 따른 마일드 하이브리드 차량의 LNT 리치 제어 방법의 흐름도이고, 도 3은 본 발명의 일 실시예에 따른 마일드 하이브리드 차량의 LNT 리치 제어 방법의 LNT 리치 임계점 상태 후 유지 시간에 따른 암모니아 발생량의 관계를 나타내는 그래프이다.2 is a flowchart illustrating a LNT rich control method of a mild hybrid vehicle according to an embodiment of the present invention, and FIG. 3 is a retention time after an LNT rich threshold state of a LNT rich control method of a mild hybrid vehicle according to an embodiment of the present invention. Is a graph showing the relationship between the amount of ammonia generated.

도 2를 참조하면, 우선, 엔진의 정상 운전 중, LNT가 리치 상태인지 판단한다(S201). LNT의 리치 상태는 LNT의 NOx 흡장량, 배기가스 온도, 엔진 운전점 등을 고려하여 결정될 수 있다. Referring to FIG. 2, first, during normal operation of the engine, it is determined whether the LNT is in a rich state (S201). The rich state of the LNT may be determined in consideration of the NOx occlusion amount of the LNT, the exhaust gas temperature, the engine operating point, and the like.

그 후, LNT가 리치 상태이면, 제1 배터리의 SOC를 확인한다(S202). 제1 배터리는 48V 일 수 있다. Thereafter, when the LNT is in the rich state, the SOC of the first battery is checked (S202). The first battery may be 48V.

그 후, 제1 배터리의 SOC가 제1 SOC 이상이면 MHSG의 연료량을 제어하여 모터 제어를 수행한다(S203). 모터 제어시, 엔진에 공급되어야 하는 연료량의 증가가 요구되고, 운전자에 의한 가속이 요구된다. MHSG 모터 제어를 통한 엔진 운전점 이탈이 방지될 수 있다.After that, when the SOC of the first battery is equal to or greater than the first SOC, the motor amount is controlled by controlling the fuel amount of the MHSG (S203). In motor control, an increase in the amount of fuel to be supplied to the engine is required, and acceleration by the driver is required. Deviation from the engine operating point via MHSG motor control can be prevented.

그 후, LNT의 리치 임계점(breakthrough) 상태인지 판단한다(S206). LNT의 리치 임계점은 LNT의 리치 상태가 종료되어야 하는 시점이다. LNT 리치 임계점 상태로 판단되면, NH3 발생 조건을 만족하는지 판단한다(S207). NH3 발생 조건은 SCR 입구의 배기온도가 약 200도 이상인 SCR 촉매 활성화 온도인 조건일 수 있다.Thereafter, it is determined whether the LNT has a rich breakthrough state (S206). The rich threshold of the LNT is the point at which the rich state of the LNT should end. If it is determined that the LNT rich threshold state, it is determined whether the NH3 generation condition (S207). The NH 3 generation condition may be a condition that the SCR catalyst activation temperature at which the exhaust temperature of the SCR inlet is about 200 degrees or more.

그 후, NH3 발생 조건을 만족하면, LNT의 리치 임계점 상태 후 일정 시간(Δt) 이상 유지하는지 판단한다(S208). 일정 시간(Δt) 은 약 2초 이상 약 10초 이하로 설정될 수 있다. After that, if the NH3 generation condition is satisfied, it is determined whether or not to maintain a predetermined time Δt or more after the rich threshold state of the LNT (S208). The predetermined time Δt may be set to about 2 seconds or more and about 10 seconds or less.

LNT의 리치 상태를 일정 시간(Δt) 이상 유지하면, LNT의 리치 상태를 정상 종료한다(S209).If the rich state of the LNT is maintained for a predetermined time (Δt) or more, the rich state of the LNT is normally terminated (S209).

도 3을 참조하면, LNT의 리치 임계점 상태 전 LNT의 리치 상태가 종료된 경우 860초에서 885초까지의 기간동안 NH3가 약 0.0015g 발생되고, LNT의 리치 임계점 상태시 LNT의 리치 상태가 종료된 경우 NH3가 약 0.0037g 발생되었음을 확인할 수 있다. LNT의 리치 임계점 상태 후 2초 유지 후 LNT의 리치 상태가 종료된 경우 NH3가 약 0.008g 발생되고, 4초 유지 후 LNT의 리치 상태가 종료된 경우 NH3가 약 0.0096g 발생되며, 6초 유지 후 LNT의 리치 상태가 종료된 경우 NH3가 약 0.01g 발생되었음을 확인하였다. 즉, LNT 리치 임계점 상태 종료 후 2초 이상 유지시 NH3 발생량 및 NH3 발생 효율이 가장 우수함을 알 수 있다. Referring to FIG. 3, when the rich state of the LNT is terminated before the rich threshold state of the LNT, about 0.0015 g of NH3 is generated during the period from 860 to 885 seconds, and the rich state of the LNT is terminated when the rich threshold state of the LNT is completed. In this case, it can be confirmed that about 0.0037 g of NH3 is generated. After 2 seconds after the LNT rich threshold state, NH3 is generated about 0.008g when the rich state of LNT is terminated, and about 0.0096g is generated when the rich state of LNT is terminated after 4 seconds. When the rich state of the LNT was terminated, it was confirmed that about 0.01 g of NH 3 was generated. That is, it can be seen that the NH3 generation amount and the NH3 generation efficiency are the best when the LNT rich threshold state is maintained for 2 seconds or more.

한편, 제1 배터리의 SOC를 확인하는 단계(S202) 후에, 제1 배터리의 SOC가 제2 SOC 미만이면, MHSG의 연료량을 제어하여 MHSG의 충전 제어를 수행한다(S204). 충전 제어시, 엔진에 공급되어야 하는 연료량의 감소가 요구되고, 충전 제어는 차량의 제동, 감속, 변속, 및 코스팅(coasting)을 포함한다. MHSG 충전 제어를 통한 엔진 운전점 이탈이 방지될 수 있다.On the other hand, after checking the SOC of the first battery (S202), if the SOC of the first battery is less than the second SOC, the fuel amount of the MHSG is controlled to perform charging control of the MHSG (S204). In the charge control, a reduction in the amount of fuel to be supplied to the engine is required, and the charge control includes braking, deceleration, shifting, and coasting of the vehicle. Deviation from the engine operating point through the MHSG charge control can be prevented.

또한, 제1 배터리의 SOC를 확인하는 단계(S202) 후에, 제1 배터리의 SOC가 제2 SOC 이상 제1 SOC 미만이면, MHSG의 연료량을 제어하여 MHSG의 충전 제어 및 모터 제어를 수행한다(S205). 제1 SOC는 약 70%일 수 있고, 제2 SOC는 약 30%일 수 있다.In addition, after checking the SOC of the first battery (S202), if the SOC of the first battery is greater than or equal to the second SOC and less than the first SOC, the fuel amount of the MHSG is controlled to perform charge control and motor control of the MHSG (S205). ). The first SOC may be about 70% and the second SOC may be about 30%.

이와 같이, 본 발명의 실시예에 따르면, 마일드 하이브리드 차량의 배터리의 충전량에 따라 모터 제어 및/또는 충전 제어를 수행하여 엔진 운전점 이탈을 방지하고, LNT 리치 임계점 상태 후 LNT 촉매의 리치 상태를 일정 시간 유지하여, 암모니아 발생량을 증가시켜 SCR 장치의 정화율을 개선하고 우레아의 소모량을 감소시킬 수 있다.As described above, according to an exemplary embodiment of the present invention, the motor control point and / or the charge control may be performed according to the charge amount of the battery of the mild hybrid vehicle, thereby preventing the engine driving point from being separated, and the rich state of the LNT catalyst after the LNT rich threshold state is fixed. By maintaining time, the amount of ammonia produced can be increased to improve the purification rate of the SCR device and to reduce the consumption of urea.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

10: 엔진 20: 변속기
30: 시동 발전기(MHSG) 40: 제1 배터리
50: LDC 60: 제2 배터리
70: 차량 전장 부품 80: 차동기어장치
90: 휠
10: engine 20: transmission
30: starting generator (MHSG) 40: first battery
50: LDC 60: secondary battery
70: vehicle electrical component 80: differential gear
90: wheel

Claims (17)

LNT(Lean NOx Trap)의 리치 상태인지 판단하는 단계;
상기 LNT의 리치 상태이면, 제1 배터리의 충전량(SOC)을 확인하는 단계:
상기 제1 배터리의 SOC가 제1 SOC 이상이면 시동 발전기(mild hybrid starter & generator; MHSG)의 연료량을 제어하여 모터 제어를 수행하는 단계;
상기 LNT의 리치 임계점(breakthrough) 상태인지 판단하는 단계;
상기 LNT의 리치 임계점 상태이면, NH3 발생 조건을 만족하는지 판단하는 단계;
NH3 발생 조건을 만족하면, 상기 LNT의 리치 임계점 상태 후 일정 시간 이상 동안 유지하는지 판단하는 단계; 및
상기 LNT의 리치 임계점 상태 후 상기 LNT의 리치 상태를 일정 시간 이상 동안 유지하면, 상기 LNT의 리치 상태를 종료하는 단계를 포함하는 마일드 하이브리드 차량의 LNT 리치 제어 방법.
Determining whether a Lean NOx Trap (LNT) is in a rich state;
Checking the charge amount SOC of the first battery when the LNT is in a rich state:
If the SOC of the first battery is greater than or equal to the first SOC, controlling a fuel amount of a mild hybrid starter & generator (MHSG) to perform motor control;
Determining whether the LNT is in a rich breakthrough state;
Determining whether an NH3 generation condition is satisfied when the LNT has a rich threshold state;
Determining whether to maintain for a predetermined time after the rich threshold state of the LNT when the NH3 generation condition is satisfied; And
If the rich state of the LNT is maintained for a predetermined time or more after the rich threshold state of the LNT, ending the rich state of the LNT.
제 1 항에서,
상기 제1 배터리의 SOC를 확인하는 단계 후에,
상기 제1 배터리의 SOC가 제2 SOC 미만이면, 상기 MHSG의 연료량을 제어하여 상기 MHSG의 충전 제어를 수행하는 단계를 더 포함하는 마일드 하이브리드 차량의 LNT 리치 제어 방법.
In claim 1,
After checking the SOC of the first battery,
If the SOC of the first battery is less than the second SOC, controlling the fuel amount of the MHSG to perform charging control of the MHSG.
제 2 항에서,
상기 제1 배터리의 SOC를 확인하는 단계 후에,
상기 제1 배터리의 SOC가 제2 SOC 이상 제1 SOC 미만이면, 상기 MHSG의 연료량을 제어하여 상기 MHSG의 충전 제어 및 모터 제어를 수행하는 단계를 더 포함하는 마일드 하이브리드 차량의 LNT 리치 제어 방법.
In claim 2,
After checking the SOC of the first battery,
If the SOC of the first battery is greater than or equal to the second SOC and less than the first SOC, controlling the fuel amount of the MHSG to perform charge control and motor control of the MHSG.
제 1 항에서,
상기 일정 시간은 2초 이상 10초 미만인 마일드 하이브리드 차량의 LNT 리치 제어 방법.
In claim 1,
The predetermined time is LNT rich control method of a mild hybrid vehicle that is more than 2 seconds less than 10 seconds.
제 3 항에서,
상기 제1 SOC는 70%이고, 상기 제2 SOC는 30%인 마일드 하이브리드 차량의 LNT 리치 제어 방법.
In claim 3,
Wherein the first SOC is 70% and the second SOC is 30%.
제 1 항에서,
상기 NH3 발생 조건은 SCR 입구 배기온도가 200도 이상인 것을 포함하는 마일드 하이브리드 차량의 LNT 리치 제어 방법.
In claim 1,
The NH3 generation conditions are LNT rich control method of a mild hybrid vehicle comprising an SCR inlet exhaust temperature of 200 degrees or more.
제 1 항에서,
상기 LNT의 리치 상태는 상기 LNT의 NOx 흡장량, 배기 가스 온도, 및 엔진 운전점 등을 고려하여 결정되는 마일드 하이브리드 차량의 LNT 리치 제어 방법.
In claim 1,
The rich state of the LNT LNT rich control method of a mild hybrid vehicle is determined in consideration of the NOx occlusion amount, exhaust gas temperature, the engine operating point of the LNT.
제 1 항에서,
상기 모터 제어는 차량의 가속을 포함하는 마일드 하이브리드 차량의 LNT 리치 제어 방법.
In claim 1,
The motor control method of LNT rich control of a mild hybrid vehicle including the acceleration of the vehicle.
제 1 항에서,
상기 MHSG의 충전 제어는 차량의 제동, 감속, 변속, 및 코스팅(coasting)을 포함하는 마일드 하이브리드 차량의 LNT 리치 제어 방법.
In claim 1,
The charging control of the MHSG is LNT rich control method of a mild hybrid vehicle including braking, deceleration, shifting, and coasting of the vehicle.
엔진;
상기 엔진을 기동하거나 상기 엔진의 출력에 의해 발전하는 MHSG;
상기 MHSG에 전기를 공급하거나 상기 MHSG를 통해 회수되는 전기를 통해 충전되는 제1 배터리;
상기 엔진과 연결되는 배기 파이프에 장착되어 배기 가스에 포함된 질소산화물을 제거하는 LNT;
상기 LNT 후단에 설치되며, 입자상 물질(Particulate Matter; PM)을 필터링하여 태우는 입자상물질 제거용 필터(Diesel Particulate matter Filter, DPF);
상기 DPF 후단에 설치되며, 환원제를 통해 질소산화물을 정화시키는 선택적 환원 촉매(Selective Catalytic Reduction; SCR); 및
상기 제1 배터리의 SOC에 따라 모터 제어 및/또는 충전 제어를 수행하고, 상기 LNT의 리치 임계점 상태 여부를 판단하고, 상기 LNT의 리치 임계점 상태 후 리치 상태 유지 시간에 따라 상기 LNT 리치 상태를 종료 또는 유지하도록 제어하는 제어기를 포함하는 마일드 하이브리드 차량.
engine;
An MHSG which starts the engine or generates power by the output of the engine;
A first battery supplied with electricity to the MHSG or charged through electricity recovered through the MHSG;
An LNT mounted on an exhaust pipe connected to the engine to remove nitrogen oxide contained in exhaust gas;
A particulate matter removal filter (DPF) installed at the rear end of the LNT and filtering and burning particulate matter (Particulate Matter; PM);
A selective reduction catalyst (SCR) installed at a rear end of the DPF and purifying nitrogen oxide through a reducing agent; And
Perform motor control and / or charge control according to the SOC of the first battery, determine whether the LNT has a rich threshold state, and terminate the LNT rich state according to the rich state maintenance time after the rich threshold state of the LNT; A mild hybrid vehicle comprising a controller for controlling to maintain.
제 10 항에서,
상기 제어기는,
상기 제1 배터리의 SOC가 제1 SOC 이상이면, 상기 MHSG의 연료량을 제어하여 모터 제어를 수행하는 마일드 하이브리드 차량.
In claim 10,
The controller,
If the SOC of the first battery is greater than or equal to the first SOC, the mild hybrid vehicle to control the fuel amount of the MHSG to perform the motor control.
제 11 항에서,
상기 제어기는, 상기 제1 배터리의 SOC가 제2 SOC 미만이면, 상기 MHSG의 연료량을 제어하여 상기 MHSG의 충전 제어를 수행하는 마일드 하이브리드 차량.
In claim 11,
And the controller controls charge of the MHSG by controlling the fuel amount of the MHSG when the SOC of the first battery is less than the second SOC.
제 12 항에서,
상기 제어기는, 상기 제1 배터리의 SOC가 제2 SOC 이상 제1 SOC 미만이면, 상기 MHSG의 연료량을 제어하여 상기 MHSG의 충전 제어 및 모터 제어를 수행하는 마일드 하이브리드 차량.
In claim 12,
And the controller controls the amount of fuel in the MHSG when the SOC of the first battery is greater than or equal to the second SOC and less than the first SOC to perform charge control and motor control of the MHSG.
제 10 항에서,
상기 제어기는,
상기 LNT 리치 임계점 상태이고,
상기 LNT의 리치 임계점 상태 후 리치 상태 유지 시간이 일정 시간 이상이라고 판단하면, 상기 LNT 리치 상태를 종료하는 마일드 하이브리드 차량.
In claim 10,
The controller,
The LNT rich threshold state,
And the LNT rich state is terminated when it is determined that the rich state maintaining time is longer than a predetermined time after the rich threshold state of the LNT.
제 14 항에서,
상기 일정 시간은 2초 이상 10초 미만인 마일드 하이브리드 차량.
The method of claim 14,
The predetermined time is a mild hybrid vehicle that is more than 2 seconds less than 10 seconds.
제 13 항에서,
상기 제1 SOC는 70%이고, 상기 제2 SOC는 30%인 마일드 하이브리드 차량.
In claim 13,
And wherein the first SOC is 70% and the second SOC is 30%.
제 10 항에서,
상기 제1 배터리는 48V 배터리인 마일드 하이브리드 차량.
In claim 10,
And the first battery is a 48V battery.
KR1020180054487A 2018-05-11 2018-05-11 Lnt rich control method of mild hybrid electric vehicle and mild hybrid electric vehicle KR102518595B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180054487A KR102518595B1 (en) 2018-05-11 2018-05-11 Lnt rich control method of mild hybrid electric vehicle and mild hybrid electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180054487A KR102518595B1 (en) 2018-05-11 2018-05-11 Lnt rich control method of mild hybrid electric vehicle and mild hybrid electric vehicle

Publications (2)

Publication Number Publication Date
KR20190129598A true KR20190129598A (en) 2019-11-20
KR102518595B1 KR102518595B1 (en) 2023-04-05

Family

ID=68729429

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180054487A KR102518595B1 (en) 2018-05-11 2018-05-11 Lnt rich control method of mild hybrid electric vehicle and mild hybrid electric vehicle

Country Status (1)

Country Link
KR (1) KR102518595B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050120981A (en) * 2004-06-21 2005-12-26 현대자동차주식회사 Engine control method of diesel hybrid vehicle
JP2009113581A (en) * 2007-11-05 2009-05-28 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for hybrid electric vehicle
EP2211033A1 (en) * 2007-11-09 2010-07-28 Mitsubishi Fuso Truck and Bus Corporation Exhaust purification device for hybrid electric automobile
JP2012154247A (en) * 2011-01-26 2012-08-16 Denso Corp Exhaust gas treatment device
KR101703625B1 (en) * 2015-10-05 2017-02-22 현대자동차 주식회사 System and method for controlling hybrid vehicle when lnt is regeneratated
KR20170025877A (en) * 2015-08-31 2017-03-08 현대자동차주식회사 System and method for controlling hybrid vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050120981A (en) * 2004-06-21 2005-12-26 현대자동차주식회사 Engine control method of diesel hybrid vehicle
JP2009113581A (en) * 2007-11-05 2009-05-28 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for hybrid electric vehicle
EP2211033A1 (en) * 2007-11-09 2010-07-28 Mitsubishi Fuso Truck and Bus Corporation Exhaust purification device for hybrid electric automobile
JP2012154247A (en) * 2011-01-26 2012-08-16 Denso Corp Exhaust gas treatment device
KR20170025877A (en) * 2015-08-31 2017-03-08 현대자동차주식회사 System and method for controlling hybrid vehicle
KR101703625B1 (en) * 2015-10-05 2017-02-22 현대자동차 주식회사 System and method for controlling hybrid vehicle when lnt is regeneratated

Also Published As

Publication number Publication date
KR102518595B1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
US9821795B2 (en) Hybrid vehicle and control method for hybrid vehicle
US9162672B2 (en) Method for controlling an exhaust-gas aftertreatment device of a hybrid drive, and hybrid drive
KR102371252B1 (en) System and method of controlling vehicle in cold start
JP6859826B2 (en) Plug-in hybrid vehicle
EP2211033A1 (en) Exhaust purification device for hybrid electric automobile
JP5130162B2 (en) Control device and control method for hybrid vehicle
JP7206683B2 (en) Hybrid vehicle control device
JP2009035117A (en) Exhaust cleaning controller for internal combustion engine in hybrid vehicle
CN110552767B (en) Motor vehicle and method for operating a motor vehicle
JP4066191B2 (en) Series type hybrid vehicle exhaust purification system
CN106988843B (en) Method and device for exhaust gas aftertreatment of an internal combustion engine
JP6191237B2 (en) Hybrid electric vehicle and control method thereof
JP4367521B2 (en) Exhaust gas purification system for internal combustion engine
JP4631767B2 (en) Exhaust gas purification device for hybrid system
US10272901B2 (en) Method and apparatus for controlling MHSG of mild hybrid electric vehicle
KR102383250B1 (en) Vehicular system and method of heating particulate filter usign the same
KR102518595B1 (en) Lnt rich control method of mild hybrid electric vehicle and mild hybrid electric vehicle
WO2020080063A1 (en) Hybrid system, hybrid system control device, and hybrid system control method
JP6115307B2 (en) Hybrid electric vehicle and control method thereof
JP2006220036A (en) Control system for hybrid engine with filter
JP7435514B2 (en) Internal combustion engine exhaust purification system
WO2020085003A1 (en) Hybrid system, hybrid system control device, and hybrid system control method
CN115324756B (en) Driving active regeneration method and device and electronic equipment
JP2011194926A (en) Vehicle and control method thereof
JP2015051743A (en) Hybrid vehicle control device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant