KR20190129395A - Passivation With Evaporator - Google Patents

Passivation With Evaporator Download PDF

Info

Publication number
KR20190129395A
KR20190129395A KR1020180053968A KR20180053968A KR20190129395A KR 20190129395 A KR20190129395 A KR 20190129395A KR 1020180053968 A KR1020180053968 A KR 1020180053968A KR 20180053968 A KR20180053968 A KR 20180053968A KR 20190129395 A KR20190129395 A KR 20190129395A
Authority
KR
South Korea
Prior art keywords
passivation
thin film
aluminum
aluminum oxide
forming
Prior art date
Application number
KR1020180053968A
Other languages
Korean (ko)
Other versions
KR102071789B1 (en
Inventor
장수창
정광호
김형수
Original Assignee
주식회사 야스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 야스 filed Critical 주식회사 야스
Priority to KR1020180053968A priority Critical patent/KR102071789B1/en
Publication of KR20190129395A publication Critical patent/KR20190129395A/en
Application granted granted Critical
Publication of KR102071789B1 publication Critical patent/KR102071789B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • H01L51/0008
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An objective of the present invention is to provide a novel aluminum oxide (Al_2O_3) passivation method which can replace ALD. According to the above objective, the present invention provides an aluminum oxide (Al_2O_3) passivation method, in which an aluminum evaporation material is supplied using an aluminum evaporation source, and at the same time, oxygen gas is supplied to form an aluminum oxide (Al_2O_3) thin film, so that passivation is performed.

Description

증발원을 이용한 패시베이션{Passivation With Evaporator}Passivation with Evaporator

본 발명은 마이크로 올레드(Micro OLED) 등을 포함한 소자의 패시베이션에 관한 것이다. The present invention relates to passivation of devices including Micro OLEDs and the like.

마이크로 올레드(Micro OLED)는 고해상도와 빠른 응답속도로 인해 VR 기기 등에 적용될 수 있어 수요가 증가할 것으로 보인다. 이러한 마이크로 올레드의 기존 제조공정은 도 1과 같다. 웨이퍼에 유기물 박막을 상향식 증발원으로 형성하고, 전극을 스퍼터링으로 형성한 다음, 웨이퍼를 플립(Flip)시켜 페이스 업(Face Up) 상태가 되게 하고, 원자층 증착법(ALD)을 이용하여 산화알루미늄(Al2O3)을 얇게 형성하여 패시베이션하고 최종적으로 PI 패턴을 프린팅으로 형성하여 마감한다.Micro OLED is expected to increase as it can be applied to VR devices due to its high resolution and fast response speed. Existing manufacturing process of such micro oled is shown in FIG. The organic thin film is formed on the wafer as a bottom-up evaporation source, the electrode is sputtered, and then the wafer is flipped to a face up state, and aluminum oxide (AlD) is used by atomic layer deposition (ALD). 2 O 3 ) to form a thin passivation and finally to form a PI pattern by printing to finish.

상기와 같은 종래의 ALD 패시베이션 공정은 알루미늄 전구체와 산소 기체를 흘려주며 퍼지 가스로 퍼징하는 단계를 거치기 때문에 전구체에 포함된 불순물이 완전히 제거되지 않아 문제될 수 있다. 또한, 반응성을 높이기 위해 플라즈마 ALD를 실시하는 과정에서 기존 박막을 손상시키는 문제도 지닌다. The conventional ALD passivation process as described above may be problematic because the impurities contained in the precursor are not completely removed because the aluminum precursor and the oxygen gas flow through the purge gas. In addition, there is a problem of damaging the existing thin film in the process of performing the plasma ALD to increase the reactivity.

등록특허 10-1318241호는 태양전지의 패시베이션에서 산화알루미늄박막을 ALD로 형성하는 기술에 대해 기재한다. 상기 공보 기술 역시 ALD에 의한 패시베이션이 지니는 상기 문제점을 동일하게 나타낼 수 있다. Patent 10-1318241 describes a technique for forming an aluminum oxide thin film into ALD in passivation of a solar cell. The publication technique may also present the same problem of passivation by ALD.

따라서 본 발명의 목적은 ALD를 대체할 수 있는 새로운 산화알루미늄(Al2O3) 패시베이션 방법을 제공하고자 한다.It is therefore an object of the present invention to provide a novel aluminum oxide (Al 2 O 3 ) passivation method that can replace ALD.

상기 목적에 따라 본 발명은 알루미늄 증발원을 이용하여 알루미늄 증발물을 공급하는 동시에 산소 기체를 공급하여 산화알루미늄(Al2O3) 박막을 형성함으로써 패시베이션 하는 것을 특징으로 하는 산화알루미늄(Al2O3) 패시베이션 방법을 제공한다.The present invention oxidation, characterized in that the passivation by forming an aluminum oxide to aluminum evaporation water supply oxygen gas at the same time for supplying (Al 2 O 3) thin film by using an aluminum evaporation source of aluminum (Al 2 O 3) in accordance with the purpose It provides a passivation method.

본 발명에 따르면 알루미늄 증발원으로부터 알루미늄 증발물이 공급되고 동시에 산소 기체가 공급되어 고온의 알루미늄 증발물이 산소와 반응하여 산화알루미늄 박막을 형성하기 때문에 전구체를 이용할 때와 달리 불순물이 개입하지 않는다. 또한, 증발물은 이온을 형성하지 않기 때문에 아크(arc) 손상을 입힐 염려가 없어 안정적이고 신뢰도 높은 패시베이션이 이루어질 수 있다. According to the present invention, since the aluminum evaporate is supplied from the aluminum evaporation source and at the same time oxygen gas is supplied so that the hot aluminum evaporate reacts with oxygen to form an aluminum oxide thin film, impurities do not intervene unlike when using a precursor. In addition, since the evaporate does not form ions, there is no fear of causing arc damage, so that stable and reliable passivation can be achieved.

도 1은 종래 마이크로 올레드의 제조공정과 여기에 적용된 패시베이션 방법을 보여주는 순서도이다.
도 2는 본 발명에 따른 마이크로 올레드의 제조공정과 여기에 적용된 패시베이션 방법을 보여주는 순서도이다.
1 is a flow chart showing a manufacturing process of a conventional micro oled and a passivation method applied thereto.
Figure 2 is a flow chart showing the manufacturing process of the micro-oleed according to the present invention and the passivation method applied thereto.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세히 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.

도 2는 본 발명에 따라 증발원을 이용하여 패시베이션을 실시하는 마이크로 올레드 제조공정 순서도이다. Figure 2 is a flow diagram of a micro-oleed manufacturing process for performing passivation using an evaporation source according to the present invention.

마이크로 올레드의 제조과정은 다음과 같다.The manufacturing process of the micro oled is as follows.

웨이퍼에 유기물 박막을 상향식 증발원으로 형성한 다음, 금속 전극은 스퍼터링 방법으로 형성한다. 다음, 웨이퍼를 플립(Flip)시켜 페이스 업(Face Up) 상태가 되게 하는 종래 공정과 달리 플립하지 않은 상태에서 알루미늄 증발원을 사용하여 알루미늄 증발물을 분사하면서 챔버에 산소 기체를 도입하여 알루미늄 증발물이 산소와 반응하여 산화알루미늄 박막으로 형성되게 한다. 즉, 증발 공정을 이용하여 전극 면 위에 산화알루미늄(Al2O3) 박막을 형성함으로써 패시베이션한다. 산화알루미늄(Al2O3)으로 패이베이션 된 웨이퍼를 플립시키고 여기에 PI 패턴을 형성한다. After forming the organic thin film on the wafer as a bottom-up evaporation source, the metal electrode is formed by the sputtering method. Next, unlike the conventional process of flipping the wafer to face up, the aluminum evaporate is introduced by introducing oxygen gas into the chamber while spraying the aluminum evaporate using an aluminum evaporation source without flipping. Reacts with oxygen to form an aluminum oxide thin film. That is, passivation is performed by forming an aluminum oxide (Al 2 O 3 ) thin film on the electrode surface using an evaporation process. Flip the wafer passivated with aluminum oxide (Al 2 O 3 ) and form a PI pattern thereon.

기존의 ALD에 의한 패시베이션을 증발공정으로 대체함으로써 파티클 등의 이물이 잔류하지 않으며, 증발 공정은 전하를 띤 입자없이 박막이 형성되기 때문에 박막 손상없이 패시베이션할 수 있다. By replacing the existing passivation by ALD with an evaporation process, foreign substances such as particles do not remain, and the evaporation process can passivate without damaging the thin film because the thin film is formed without charged particles.

본 발명의 패시베이션 방법은 마이크로 올레드(Micro OLED), 올레드(OLED), 태양전지 등을 포함한 반도체 소자 제조에 적용될 수 있다. The passivation method of the present invention can be applied to the manufacture of semiconductor devices including micro OLEDs, OLEDs, solar cells, and the like.

본 발명의 권리는 위에서 설명된 실시 예에 한정되지 않고 청구범위에 기재The rights of the present invention are not limited to the embodiments described above, but are described in the claims.

된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.As defined by the above description, it will be apparent to those skilled in the art that various modifications and adaptations can be made within the scope of the claims.

Claims (3)

알루미늄 증발원을 이용하여 알루미늄 증발물을 공급하는 동시에 산소 기체를 공급하여 산화알루미늄(Al2O3) 박막을 형성함으로써 패시베이션 하는 것을 특징으로 하는 패시베이션 방법.A passivation method characterized in that the passivation by forming an aluminum oxide (Al 2 O 3 ) thin film by supplying the aluminum evaporate using the aluminum evaporation source and at the same time supplying oxygen gas. 제1항에 있어서, 산화알루미늄(Al2O3) 박막으로 패시베이션되는 소자는 마이크로 올레드(Micro OLED), 태양전지, 또는 OLED 중 어느 하나를 포함하는 것을 특징으로 하는 패시베이션 방법.The passivation method of claim 1, wherein the device passivated with an aluminum oxide (Al 2 O 3 ) thin film comprises any one of a micro OLED, a solar cell, and an OLED. 웨이퍼에 유기물 박막을 상향식 증발원으로 형성하는 단계;
상기 유기물 박막 위에 스퍼터링으로 금속 전극을 형성하는 단계;
상기 금속 전극이 형성된 상태에서 제1항의 방법으로 패시베이션 하는 단계; 및
상기 산화알루미늄(Al2O3) 박막으로 패시베이션 된 웨이퍼를 플립시키고 여기에 PI 패턴을 형성하는 단계;를 포함하는 것을 특징으로 하는 마이크로 올레드의 제조방법.

Forming an organic thin film on the wafer as a bottom-up evaporation source;
Forming a metal electrode on the organic thin film by sputtering;
Passivating the metal electrode with the method of claim 1; And
Flipping the wafer passivated with the aluminum oxide (Al 2 O 3 ) thin film and forming a PI pattern thereon.

KR1020180053968A 2018-05-10 2018-05-10 Passivation With Evaporator KR102071789B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180053968A KR102071789B1 (en) 2018-05-10 2018-05-10 Passivation With Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180053968A KR102071789B1 (en) 2018-05-10 2018-05-10 Passivation With Evaporator

Publications (2)

Publication Number Publication Date
KR20190129395A true KR20190129395A (en) 2019-11-20
KR102071789B1 KR102071789B1 (en) 2020-01-30

Family

ID=68728973

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180053968A KR102071789B1 (en) 2018-05-10 2018-05-10 Passivation With Evaporator

Country Status (1)

Country Link
KR (1) KR102071789B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140102565A (en) * 2013-02-14 2014-08-22 삼성디스플레이 주식회사 Organic light emitting device having thin film encapsulation and method for fabricating the same
KR101481098B1 (en) * 2013-07-01 2015-01-14 주식회사 선익시스템 In-line deposition system and in-line deposition method
US20170009334A1 (en) * 2015-07-09 2017-01-12 Rubicon Technology, Inc. Hard aluminum oxide coating for various applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140102565A (en) * 2013-02-14 2014-08-22 삼성디스플레이 주식회사 Organic light emitting device having thin film encapsulation and method for fabricating the same
KR101481098B1 (en) * 2013-07-01 2015-01-14 주식회사 선익시스템 In-line deposition system and in-line deposition method
US20170009334A1 (en) * 2015-07-09 2017-01-12 Rubicon Technology, Inc. Hard aluminum oxide coating for various applications

Also Published As

Publication number Publication date
KR102071789B1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
CN104593722B (en) The preparation method of mask plate
JP4598161B2 (en) Film forming apparatus and electronic device manufacturing method
TWI622095B (en) Method and apparatus for reducing particle defects in plasma etch chambers
KR101083148B1 (en) Plasma etching method, plasma etching apparatus, and storage medium
TWI703227B (en) Physical vapor deposition of low-stress nitrogen-doped tungsten films
CN106856163A (en) A kind of forming method of high aspect ratio figure structure
US8936702B2 (en) System and method for sputtering a tensile silicon nitride film
TW202018811A (en) Etching method of magnetic tunnel junction
TWI575605B (en) Pvd aln film with oxygen doping for a low etch rate hardmask film
KR102071789B1 (en) Passivation With Evaporator
TW201322328A (en) Etching method and etching device for mask layer and etching method for interlayer dielectric layer
KR20070050143A (en) Methods for fabricating transparent conductive oxide electrode
KR20090065825A (en) Shadow mask and method for fabricating of the same
TW201304162A (en) Method for rear point contact fabrication for solar cells
CN101562134B (en) Method for preparing tunnel window
JP2013175797A (en) Plasma etching method, plasma etching device, and storage medium
CN106887381B (en) A kind of optimization method of etching cavity environmental stability
US9721766B2 (en) Method for processing target object
US8329502B2 (en) Conformal coating of highly structured surfaces
CN113512697A (en) High-precision silicon-based mask plate and processing method thereof
CN108493235A (en) A kind of MSM structures and preparation method thereof based on Mo/ZnON/Mo
CN101969104B (en) OLED manufacturing process with submicrometer structure
CN114068407A (en) Method for controlling aperture size of via hole on TFT substrate
KR20220125906A (en) Patterning method of organic-inorganic hybrid perovskite through photo-lithography process
TWM649504U (en) Optical sensing elements with transparent conductive structure

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant