KR20190129287A - 표면발광 레이저소자 및 이를 포함하는 발광장치 - Google Patents

표면발광 레이저소자 및 이를 포함하는 발광장치 Download PDF

Info

Publication number
KR20190129287A
KR20190129287A KR1020180053703A KR20180053703A KR20190129287A KR 20190129287 A KR20190129287 A KR 20190129287A KR 1020180053703 A KR1020180053703 A KR 1020180053703A KR 20180053703 A KR20180053703 A KR 20180053703A KR 20190129287 A KR20190129287 A KR 20190129287A
Authority
KR
South Korea
Prior art keywords
reflective layer
layer
region
aperture
disposed
Prior art date
Application number
KR1020180053703A
Other languages
English (en)
Other versions
KR102468924B1 (ko
Inventor
이정식
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020180053703A priority Critical patent/KR102468924B1/ko
Priority to US17/054,405 priority patent/US11984703B2/en
Priority to PCT/KR2019/005621 priority patent/WO2019216685A1/ko
Publication of KR20190129287A publication Critical patent/KR20190129287A/ko
Application granted granted Critical
Publication of KR102468924B1 publication Critical patent/KR102468924B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

실시예는 표면발광 레이저소자 및 이를 포함하는 발광장치에 관한 것이다.
실시예에 따른 표면발광 레이저소자는 제1 전극(215); 상기 제1 전극(215) 상에 배치된 기판(210); 상기 기판(210) 상에 배치된 제1 반사층(220); 상기 제1 반사층(220) 상에 배치되고, 캐비티 영역을 포함하는 활성영역(230); 상기 활성영역(230) 상에 배치되며, 애퍼처(aperture)(241) 및 절연영역(242)을 포함하는 애퍼처 영역(240); 상기 애퍼처 영역(240) 상에 배치되는 제2 반사층(250); 및 상기 제2 반사층(250) 상에 배치되는 제2 전극(280)을 포함할 수 있다.
상기 애퍼처 영역(240)의 절연영역(242)은 외륜에서 내측방향으로 형성된 제1 리세스(242R1)를 포함할 수 있다.
상기 애퍼처 영역(240)의 애퍼처(241)는, 상기 제1 리세스(242R1)에 대응되는 영역에 제2 리세스(241R2)를 포함할 수 있다.

Description

표면발광 레이저소자 및 이를 포함하는 발광장치{A SURFACE-EMITTING LASER DEVICE AND LIGHT EMITTING DEVICE INCLUDING THE SAME}
실시예는 반도체 소자에 관한 것으로, 보다 상세하게는 표면발광 레이저소자 및 이를 포함하는 발광장치에 관한 것이다.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저 소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용할 수 있다.
따라서, 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 Gas나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다.
또한, 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다. 예를 들어, 종래 반도체 광원소자 기술 중에, 수직공진형 표면발광 레이저(Vertical-Cavity Surface-Emitting Laser: VCSEL)가 있는데, 이는 광 통신, 광병렬 처리, 광연결 등에 사용되고 있다. 한편, 이러한 통신용 모듈에서 사용되는 레이저 다이오드의 경우, 저전류에서 작동하기 하도록 설계되어 있다.
한편 기존의 데이터(Data) 광통신용 구조에서는 응답속도가 중요하였으나, 최근 센서용 고전압 패키지(High Power PKG)에 적용되면서 광출력과 전압 효율이 중요한 특성이 된다.
예를 들어, 3D 센싱 카메라는 객체의 심도 정보(Depth Information)를 포착할 수 있는 카메라로서, 최근 증강현실과 맞물려 각광을 받고 있다. 한편, 카메라 모듈의 심도 센싱을 위해서는 별도 센서를 탑재하며, 구조광(Structured Light: SL) 방식과 ToF(Time of Flight) 방식 등 두 가지로 구분된다.
구조광(SL) 방식은 특정 패턴의 레이저를 피사체에 방사한 후 피사체 표면의 모양에 따라 패턴이 변형된 정도를 분석해 심도를 계산한 후 이미지센서가 찍은 사진과 합성해 3D 촬영 결과를 얻게 된다.
이에 비해 ToF 방식는 레이저가 피사체에 반사되어 돌아오는 시간을 측정해 심도를 계산한 후, 이미지센서가 찍은 사진과 합성해 3D 촬영 결과를 얻게 되는 방식이다.
이에 따라 SL 방식은 레이저가 매우 정확하게 위치해야 하는 반면에, ToF 기술은 향상된 이미지센서에 의존한다는 점에서 대량 생산에 유리한 장점이 있으며, 하나의 휴대폰에 어느 하나의 방식 또는 두 가지 방식 모두를 채용할 수도 있다.
예를 들어, 휴대폰의 전면에 트루뎁스(True Depth)라는 3D 카메라를 SL 방식으로 구현할 수 있고, 후면에는 ToF 방식으로 적용할 수도 있다.
한편, VCSEL을 구조광(Structured Light) 센서, ToF(Time of Flight)센서, 또는 LDAF(Laser Diode Autofocus) 등에 적용하게 되면 고 전류에서 작동하게 되므로 광도출력이 감소하거나 문턱 전류가 증가하는 등의 문제점이 발생한다.
앞서 기술한 바와 같이, VCSEL 패키지 기술 중에 ToF 방식은 광원인 VCSEL 칩과 디퓨져(diffuser)를 통한 플래시 형태(Flash type)의 펄스 프로젝션(Pulse Projection)으로 반사 펄스(reflected pulse) 빔의 시간차를 계산하여 심도(Depth)를 추출한다.
예를 들어, 도 1은 VCSEL 칩에서의 빔 발산(beam divergence)과 디퓨져 빔 각(Diffuser beam angle)의 조합으로 FOI(Field of Interest)와 FOV(Field Of View)를 결정하는 방식에 대한 예시도이다. FOI와 FOV 결정하기 위해서는 VCSEL 칩에서의 빔 발산(beam divergence)의 제어가 중요하다.
이에 따라 VCSEL 기술에서 FOI와 FOV를 제어하기 위해서는 VCSEL 칩에서의 빔 발산 모드(beam divergence mode) 및 빔 발산 각(beam divergence angle)의 제어가 중요하다.
도 2a는 종래기술에서 애퍼처 크기(aperture size)에 따른 모드(mode) 변화 데이터이며, 도 2b는 종래기술에서 모드(mode) 별 빔 패턴(beam pattern)의 데이터이다.
종래기술에서는 고출력 VCSEL 패키지의 요구에 따라 애퍼처 사이즈가 증가되고 있는 추세이다.
VCSEL 기술에서 단일 기본 모드(Single fundamental mode) 안정화를 위해서는 작은 사이즈 애퍼처(small size aperture), 예를 들어 반경(r) 3 ㎛ 이하가 바람직하나, 고출력 VCSEL 패키지에서는 큰 사이즈 애퍼처(large size aperture)가 필요한 실정이다.
한편, 도 2a와 같이 애퍼처 사이즈, 예를 들어 애퍼처의 반지름(rA)이 증가하는 경우 모드 호핑(Mode hopping)으로 인한 발광모드 변화 또는 발산각이 변화되는 문제가 발생된다.
구체적으로, 도 2a와 도 2b를 참조하면 애퍼처의 반지름(rA)이 증가하는 경우 발산 모드(mode)가 변화하게 되므로 고차모드로 변화(higher mode shift) 현상이 발생하게 된다.
예를 들어, 종래기술에서 애퍼처 사이즈가 증가함에 따라 LP01(rA=2㎛), LP21(rA=4㎛), LP41(rA=6㎛)로 고차 모드로 변화(higher mode shift) 현상이 발생하게 된다.
그런데, 이러한 고차 모드로 변화 현상은 출사 빔의 발산각(divergence angle of beams)의 증가 또는 빔 패턴(beam pattern)이 분열되는 문제를 유발 한다.
예를 들어, 도 2b와 같이, 애퍼처 사이즈가 증가함에 따라 LP01(rA=2㎛), LP21(rA=4㎛), LP41(rA=6㎛)로 고차 모드로 변화현상이 발생하게 됨에 따라 빔 패턴의 분열 현상이 커지는 문제가 있다.
다음으로 도 3은 종래 VCSEL의 애퍼처에서 인가 전류의 증가 또는 애퍼처 사이즈 증가에 따라 발진 모드가 (a)에서 (d)로 고차모드로의 변화 현상이 발생하게 되며, 이에 따라 출사 빔의 빔 패턴(beam pattern)이 분열되는 문제가 발생됨을 알 수 있다.
다음으로 또 다른 기술적 문제와 관련하여, 종래기술에 의하면 고전류 인가됨에 따라 애퍼처 에지(aperture edge)에서의 전류밀집(current crowding) 발생 시 레이저 출사영역인 애퍼처의 손상(damage)이 발생할 수 있으며, 저 전류에서 주 모드(dominant mode)가 발진되다가 고전류가 인가됨에 따라 고차 모드(higher mode) 발진으로 인해 출사 빔의 발산각(divergence angle of beams)이 증가되는 광학적 문제가 발생되고 있다.
또한 종래 VCSEL 구조에서는 많은 수의 반사층, 예를 들어 DBR(distributed Bragg reflector)을 통해 반사율을 증대시킨다. 예를 들어, 종래기술에는 반사층인 DBR은 AlxGaAs 계열의 물질을 Al의 조성을 달리하여 교대로 배치하게 하여 반사율을 증대시킨다.
그런데, 이러한 DBR에서 직렬 저항(series resistance)이 발생하는 이슈가 있어서, 종래기술에서는 DBR에서 저항발생을 방지하기 위해 도핑농도를 증가시켜서 저항을 낮추어 전압효율을 향상시키려는 시도가 있다. 그러나 도핑농도의 증가 시 도펀트에 의해 내부 광흡수가 발생되어 광출력 저하되는 기술적 모순상황이 발생하고 있다.
또한 종래기술에서 반사층인 DBR은 AlxGaAs 계열의 물질을 Al의 조성을 달리하여 교대로 배치함에 따라 인접한 DBR층 사이 계면(interface)에서 에너지 밴드 벤딩(Energy Band Bending)에 의해 전기장(Electric Field)이 발생되고 있고, 이러한 전기장은 캐리어 장벽(Carrier Barrier)이 되어 광출력이 저하되는 문제가 발생되고 있다.
또한 VCSEL의 고전압 패키지(High Power PKG) 개발 시에는 광 출력과 전압 효율이 중요한 특성인데, 광 출력과 전압효율을 동시에 향상시키는데 한계가 있다.
예를 들어, 종래기술의 VCSEL 구조는 활성층과 소정의 공진기(cavity)를 포함하는 활성 영역을 구비하는데, 이러한 활성 영역은 내부 저항이 높아 구동전압이 상승하여 전압효율이 저하되는 기술적 문제점이 있다.
또한 종래기술에서 광출력을 향상시키기 위해서는 활성층 주변에서 광집중(optical confinement)이 필요한데, 종래기술에서는 이에 대한 적절한 해결책이 없는 실정이다.
실시예는 고전류 인가시 또는 애퍼처 사이즈의 증대에도 불구하고 고차 모드 이동(higher mode shift)에 따른 출사 빔 패턴(beam pattern)이 분열되는 문제를 방지할 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공하고자 한다.
또한 실시예는 전압효율을 향상시키면서도 광출력도 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공하고자 한다.
또한 실시예는 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공하고자 한다.
또한 실시예는 활성층 주변에서 광집중(optical confinement) 효율 향상을 통해 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공하고자 한다.
실시예에 따른 표면발광 레이저소자는 제1 전극(215); 상기 제1 전극(215) 상에 배치된 기판(210); 상기 기판(210) 상에 배치된 제1 반사층(220); 상기 제1 반사층(220) 상에 배치되고, 캐비티 영역을 포함하는 활성영역(230); 상기 활성영역(230) 상에 배치되며, 애퍼처(aperture)(241) 및 절연영역(242)을 포함하는 애퍼처 영역(240); 상기 애퍼처 영역(240) 상에 배치되는 제2 반사층(250); 및 상기 제2 반사층(250) 상에 배치되는 제2 전극(280)을 포함할 수 있다.
상기 애퍼처 영역(240)의 절연영역(242)은 외륜에서 내측방향으로 형성된 제1 리세스(242R1)를 포함할 수 있다.
상기 애퍼처 영역(240)의 애퍼처(241)는, 상기 제1 리세스(242R1)에 대응되는 영역에 제2 리세스(241R2)를 포함할 수 있다.
상기 절연영역(242)의 제1 리세스(242R1)는 복수로 구비될 수 있다.
상기 제1 리세스(242R1)의 제1 각도(θ1)는 5 ˚내지 30 ˚일 수 있다.
상기 제2 리세스(241R2)의 제2 각도(θ2)는 2 ˚내지 45 ˚일 수 있다.
상기 애퍼처(241)는, 상기 제2 리세스(241R2)와 이격된 제1 애퍼처(241q)와 상기 제2 리세스(241R2)와 인접한 제2 애퍼처(241p)를 포함할 수 있다.
상기 애퍼처 영역의 중심(240C)을 기준으로 상기 제1 애퍼처(241q)의 제1 반경(r1)은 상기 제2 애퍼처(241p)의 제2 반경(r2)에 비해 클 수 있다.
또한 다른 실시예에 따른 표면발광 레이저소자는 제1 전극(215); 상기 제1 전극(215) 상에 배치된 기판(210); 상기 기판(210) 상에 배치된 제1 반사층(220); 상기 제1 반사층(220) 상에 배치되고, 캐비티 영역을 포함하는 활성영역(230); 상기 활성영역(230) 상에 배치되며, 애퍼처(aperture)(241) 및 절연영역(242)을 포함하는 애퍼처 영역(240); 상기 애퍼처 영역(240) 상에 배치되는 제2 반사층(250); 및 상기 제2 반사층(250) 상에 배치되는 제2 전극(280)을 포함할 수 있다.
상기 제2 전극(280)은, 상기 제2 반사층(250) 상에 컨택 전극(282)과 상기 컨택 전극(282)과 전기적으로 연결되는 패드 전극(284)을 포함할 수 있다.
상기 컨택 전극(282)은, 상기 애퍼처(41) 외곽에 배치되는 제1 컨택전극(82a)과, 상기 애퍼처(241) 방향으로 연장되는 복수의 돌출전극(282p)을 포함할 수 있다.
실시예의 발광장치는 상기 표면발광 레이저소자를 포함할 수 있다.
실시예는 고전류 인가시 또는 애퍼처 사이즈의 증대에도 불구하고 빔 모드(beam mode)를 제어함으로써 고차 모드 이동(higher mode shift)에 따른 출사 빔의 빔 패턴(beam pattern)이 분열되는 문제를 방지할 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
예를 들어, 실시예에 의하면 애퍼처 영역에 리세스(recess) 또는 딥(dip)을 배치함으로써 리세스 또는 딥에 의해 광학적 구속(optical confinement)로 인해 가용 모드를 제어함으로써 고차모드 쉬프트(higher mode shift)가 지연 되고 모드(mode)가 유지되는 특별한 기술적 효과가 있다.
예를 들어, 실시예에서 애퍼처 영역에 리세스 또는 딥이 4개 배치된 경우, LPxy mode에서 x가 짝수일 경우에만 모드 발진 가능함으로써 특정 모드(mode)가 안정하게 발진하는 에너지 마진(energy margin) 증가로 발진 모드의 안정화를 확보할 수 있는 특별한 기술적 효과가 있다.
또한 실시예에 의하면, 전압효율을 향상시키면서도 광출력도 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
또한 실시예에 의하면 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
또한 실시예에 의하면, 발광층 주변에서 광집중(optical confinement) 효율 향상을 통해 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
도 1은 종래기술에서 VCSEL 칩에서의 빔 발산(beam divergence)과 디퓨져 빔 각(Diffuser beam angle)의 조합으로 FOI(Field of Interest)와 FOV(Field Of View)를 결정하는 방식에 대한 예시도.
도 2a는 종래기술에서 애퍼처 크기(aperture size)에 따른 모드(mode) 변화 데이터.
도 2b는 종래기술에서 모드(mode) 별 빔 패턴(beam pattern)의 데이터.
도 3은 종래 VCSEL에서 애퍼처에서 인가 전류의 증가 또는 애퍼처 사이즈 증가에 따른 고차 모드로 변화(higher mode shift) 데이터.
도 4는 실시예에 따른 표면발광 레이저소자의 평면도.
도 5는 도 4에 도시된 실시예에 따른 표면발광 레이저소자의 제1 영역(C1) 확대도.
도 6a는 도 5에 도시된 실시예에 따른 표면발광 레이저소자의 A1-A2 선을 따른 제1 단면도.
도 6b는 도 5에 도시된 실시예에 따른 표면발광 레이저소자의 A3-A4 선을 따른 제2 단면도.
도 7은 도 6a에 도시된 실시예에 따른 표면발광 레이저소자의 제1 부분(B1) 단면도.
도 8a와 도 8b는 도 6a에 도시된 실시예에 따른 표면발광 레이저소자의 제1 애퍼처 영역의 평면 개념도 및 발광모드 예시도.
도 9a는 표면발광 레이저소자에서 모드(mode)에 따른 발광 이미지(image) 데이터.
도 9b는 표면발광 레이저소자에서 모드에 따른 피크 에너지(peak energy)의 파장의 데이터.
도 9c는 실시예에 따른 표면발광 레이저소자에서 모드(Mode) 안정화 메커니즘 개념도.
도 10a 내지 도 10d는 도 8a에 도시된 실시예에 따른 표면발광 레이저소자의 애퍼처 영역의 제조공정 설명도.
도 11은 도 10c에 도시된 실시예에 따른 표면발광 레이저소자의 애퍼처 영역의 단면도.
도 12는 종래기술에서 패드 전극 구조 예시도.
도 13은 실시예에 따른 표면발광 레이저소자에서 제2 전극 구조 예시도.
도 14는 제2 실시예에 따른 표면발광 레이저소자에서 굴절률과 광에너지의 제1 분포 데이터.
도 15는 제2 실시예에 따른 표면발광 레이저소자에서 굴절률의 제2 분포 데이터.
도 16a는 제2 실시예에 따른 표면발광 레이저소자의 제1 반사층에서의 굴절률에 대한 데이터.
도 16b는 제3 실시예에 따른 표면발광 레이저소자의 제2 반사층에서의 굴절률에 대한 데이터.
도 17은 제3 실시예에 따른 반도체 소자에서 에너지밴드 다이어 그램 예시도.
도 18은 제4 실시예에 따른 반도체 소자에서 에너지밴드 다이어 그램 예시도.
도 19a와 도 19b는 실시예에 따른 반도체 소자의 캐비티 영역에서 도핑 농도 데이터.
도 20은 제5 실시예에 따른 반도체 소자에서 에너지밴드 다이어 그램 예시도.
도 21a 내지 도 29는 실시예에 따른 표면발광 레이저소자의 제조공정도.
도 30은 실시예에 따른 표면발광 레이저소자가 적용된 이동 단말기의 사시도.
이하 상기의 과제를 해결하기 위한 구체적으로 실현할 수 있는 실시예를 첨부한 도면을 참조하여 설명한다.
실시예의 설명에 있어서, 각 element의 " 상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
(제1 실시예)
도 4는 실시예에 따른 표면발광 레이저소자(201)의 평면도이며, 도 5는 도 4에 도시된 실시예에 따른 표면발광 레이저소자의 제1 영역(C1) 확대도이다.
도 4를 참조하면, 실시예에 따른 표면발광 레이저소자(201)는 발광부(E)와 패드부(P)를 포함할 수 있으며, 상기 발광부(E)는 도 5와 같이 복수의 발광 에미터(E1, E2, E3)를 포함할 수 있으며, 수십에서 수백개의 발광 에미터를 포함할 수도 있다.
도 5를 참조하면, 실시예에서 표면발광 레이저소자(201)는 개구부인 애퍼처(241) 외의 영역에 제2 전극(280)이 배치되며, 상기 애퍼처(241)에 대응되는 표면에는 패시베이션층(270)이 배치될 수 있다.
다음으로, 도 6a는 도 5에 도시된 실시예에 따른 표면발광 레이저소자의 A1-A2 선을 따른 제1 단면도이며, 도 6b는 도 5에 도시된 실시예에 따른 표면발광 레이저소자의 A3-A4 선을 따른 제2 단면도이다.
도 6a와 도 6b를 참조하면, 실시예에서 표면발광 레이저소자(201)는 제1 전극(215), 기판(210), 제1 반사층(220), 활성영역(230), 애퍼처 영역(240), 제2 반사층(250), 제2 전극(280), 패시베이션층(270) 중 어느 하나 이상을 포함할 수 있다.
상기 애퍼처 영역(240)은 개구부인 애퍼처(241)(aperture) 및 절연영역(242)을 포함할 수 있다. 상기 절영영역(242)은 전류차단 기능으로 하며 산화층으로 칭해질 수 있으며, 상기 애퍼처 영역(240)은 산화영역으로 칭해질 수 있으나 이에 한정되는 것은 아니다.
상기 제2 전극(280)은 컨택 전극(282)과 패드 전극(284)을 포함할 수 있다.
다음으로 도 7은 도 6a에 도시된 실시예에 따른 표면발광 레이저소자의 제1 부분(B1)의 확대 단면도이다.
이하 도 6a와 도 7을 중심으로 실시예에 따른 표면발광 레이저소자(201)의 기술적 특징을 설명하기로 하며, 도 8a 내지 도 13을 참조하여 기술적 효과도 함께 설명하기로 한다. 실시예의 도면에서 x축의 방향은 기판(210)의 길이방향에 평행한 방향일 수 있으며, y축은 x축에 수직한 방향일 수 있다.
<기판, 제1 전극>
우선, 도 6a를 참조하면, 실시예에서 기판(210)은 전도성 기판 또는 비전도성 기판일 수 있다. 전도성 기판을 사용할 경우 전기 전도도가 우수한 금속을 사용할 수 있고, 표면발광 레이저소자(201) 작동 시 발생하는 열을 충분히 발산시킬 수 있어야 하므로 열전도도가 높은 GaAs 기판, 또는 금속기판을 사용하거나 실리콘(Si) 기판 등을 사용할 수 있다.
비전도성 기판을 사용할 경우, AlN 기판이나 사파이어(Al2O3) 기판 또는 세라믹 계열의 기판을 사용할 수 있다.
실시예에서 기판(210)의 하부에 제1 전극(215)이 배치될 수 있으며, 상기 제1 전극(215)은 도전성 재료로 단층 또는 다층으로 배치될 수 있다. 예를 들어, 상기 제1 전극(215)은 금속일 수 있고, 알루미늄(Al), 티타늄(Ti), 크롬(Cr), 니켈(Ni), 구리(Cu), 금(Au) 중 적어도 하나를 포함하여 단층 또는 다층 구조로 형성되어 전기적 특성을 향상시켜 광출력을 높일 수 있다.
<제1 반사층, 제2 반사층>
도 7을 참조하면, 상기 제1 반사층(220)은 제1 도전형으로 도핑될 수 있다. 예를 들어, 상기 제1 도전형 도펀트는 Si, Ge, Sn, Se, Te 등과 같은 n형 도펀트를 포함할 수 있다.
또한 상기 제1 반사층(220)은 갈륨계 화합물, 예를 들면 AlGaAs를 포함할 수 있으나 이에 한정되는 것은 아니다. 상기 제1 반사층(220)은 분산 브래그 반사기(DBR: Distributed Bragg Reflector)일 수 있다. 예를 들어, 제1 반사층(220)은 서로 다른 굴절 률을 가지는 물질로 이루어진 제1 층 및 제2 층이 교대로 적어도 1회 이상 적층된 구조일 수 있다.
예를 들어, 도 7과 같이, 상기 제1 반사층(220)은 기판(210) 상에 배치된 제1 그룹 제1 반사층(221) 및 상기 제1 그룹 제1 반사층(221) 상에 배치된 제2 그룹 제1 반사층(222)을 포함할 수 있다.
제1 그룹 제1 반사층(221)과 제2 그룹 제1 반사층(222)은 AlxGa(1-x)As(0<x<1)의 조성식을 갖는 반도체 물질로 이루어진 복수의 층을 구비할 수 있으며, 각 층 내의 Al이 증가하면 각 층의 굴절률은 감소하고, Ga가 증가하면 각 층의 굴절률은 증가할 수 있다.
그리고, 각각의 층의 두께는 λ/4n일 수 있고, λ는 활성영역(230)에서 발생하는 광의 파장일 수 있고, n은 상술한 파장의 광에 대한 각 층의 굴절률일 수 있다. 여기서, λ는 650 내지 980나노미터(nm)일 수 있고, n은 각층의 굴절률일 수 있다. 이러한 구조의 제1 반사층(220)은 약 940 나노미터의 파장 영역의 광에 대하여 99.999%의 반사율을 가질 수 있다.
각 제1 반사층(220)에서의 층의 두께는 각각의 굴절률과 활성영역(230)에서 방출되는 광의 파장 λ에 따라 결정될 수 있다.
또한 도 7과 같이, 제1 그룹 제1 반사층(221)과 제2 그룹 제1 반사층(222)도 각각 단일 또는 복수의 층으로 형성될 수 있다.
예를 들어, 제1 그룹 제1 반사층(221)은 제1 그룹 제1-1 층(221a)과 제1 그룹 제1-2 층(221b)의 약 30~40 페어(pair)를 포함할 수 있다. 상기 제1 그룹 제1-1 층(221a)은 상기 제1 그룹 제1-2 층(221b)보다 두껍게 형성될 수 있다. 예를 들어, 상기 제1 그룹 제1-1 층(221a)은 약 40~60nm로 형성될 수 있고, 상기 제1 그룹 제1-2 층(221b)은 약 20~30nm로 형성될 수 있다.
또한, 제2 그룹 제1 반사층(222)도 제2 그룹 제1-1 층(222a)과 제2 그룹 제1-2 층(222b)의 약 5~15 페어(pair)를 포함할 수 있다. 상기 제2 그룹 제1-1 층(222a)은 상기 제2 그룹 제1-2 층(222b)보다 두껍게 형성될 수 있다. 예를 들어, 상기 제2 그룹 제1-1 층(222a)은 약 40~60nm로 형성될 수 있고, 상기 제2 그룹 제1-2 층(222b)은 약 20~30nm로 형성될 수 있다.
또한 도 7과 같이, 상기 제2 반사층(250)은 갈륨계 화합물 예를 들면 AlGaAs를 포함할 수 있으며, 제2 반사층(250)은 제2 도전형 도펀트가 도핑될 수 있다. 상기 제2 도전형 도펀트는 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트일 수 있다. 한편, 제1 반사층(220)이 p형 도펀트로 도핑될 수도 있고, 제2 반사층(250)이 n형 도펀트로 도핑될 수도 있다.
상기 제2 반사층(250)도 분산 브래그 반사기(DBR: Distributed Bragg Reflector)일 수 있다. 예를 들어, 제2 반사층(250)은 서로 다른 굴절률을 가지는 물질로 이루어진 복수의 층이 교대로 적어도 1회 이상 적층된 구조일 수 있다.
제2 반사층(250)의 각 층은 AlGaAs를 포함할 수 있고, 상세하게는 AlxGa(1-x)As(0<x<1)의 조성식을 갖는 반도체 물질로 이루어질 수 있다. 여기서, Al이 증가하면 각 층의 굴절률은 감소하고, Ga가 증가하면 각 층의 굴절률은 증가할 수 있다. 그리고, 제2 반사층(250)의 각 층의 두께는 λ/4n이고, λ는 활성층에서 방출되는 광의 파장일 수 있고, n은 상술한 파장의 광에 대한 각 층의 굴절률일 수 있다.
이러한 구조의 제2 반사층(250)은 약 940 나노미터의 파장 영역의 광에 대하여 99.9%의 반사율을 가질 수 있다.
상기 제2 반사층(250)은 층들이 교대로 적층되어 이루어질 수 있으며, 제1 반사층(220) 내에서 층들의 페어(pair) 수는 제2 반사층(250) 내에서 층들의 페어 수보다 더 많을 수 있으며, 이때 상술한 바와 같이 제1 반사층(220)의 반사율은 99.999% 정도로서 제2 반사층(250)의 반사율인 99.9%보다 클 수 있다.
실시예에서 제2 반사층(250)은 상기 활성영역(230)에 인접하게 배치된 제1 그룹 제2 반사층(251) 및 상기 제1 그룹 제2 반사층(251)보다 상기 활성영역(230)에서 이격배치 된 제2 그룹 제2 반사층(252)을 포함할 수 있다.
도 7과 같이, 제1 그룹 제2 반사층(251)과 제2 그룹 제2 반사층(252)도 각각 단일 또는 복수의 층으로 형성될 수 있다.
예를 들어, 제1 그룹 제2 반사층(251)은 제1 그룹 제2-1 층(251a)과 제1 그룹 제2-2 층(251b)의 약 1~5 페어(pair)를 포함할 수 있다. 상기 제1 그룹 제2-1 층(251a)은 상기 제1 그룹 제2-2 층(251b)보다 두껍게 형성될 수 있다. 예를 들어, 상기 제1 그룹 제2-1 층(251a)은 약 40~60nm로 형성될 수 있고, 상기 제1 그룹 제2-2 층(251b)은 약 20~30nm로 형성될 수 있다.
또한, 제2 그룹 제2 반사층(252)도 제2 그룹 제2-1 층(252a)과 제2 그룹 제2-2 층(252b)의 약 5~15 페어(pair)를 포함할 수 있다. 상기 제2 그룹 제2-1 층(252a)은 상기 제2 그룹 제2-2 층(252b)보다 두껍게 형성될 수 있다. 예를 들어, 상기 제2 그룹 제2-1 층(252a)은 약 40~60nm로 형성될 수 있고, 상기 제2 그룹 제2-2 층(252b)은 약 20~30nm로 형성될 수 있다.
<활성영역>
계속하여 도 7을 참조하면, 활성영역(230)이 제1 반사층(220)과 제2 반사층(250) 사이에 배치될 수 있다.
상기 활성영역(230)은 활성층(232)과 적어도 하나 이상의 캐비티(231, 233)를 포함할 수 있다. 예를 들어, 상기 활성영역(230)은 활성층(232)과, 상기 활성층(232)의 하측에 배치되는 제1 캐비티(231), 상측에 배치되는 제2 캐비티(233)를 포함할 수 있다. 실시예의 활성영역(230)은 제1 캐비티(231)와 제2 캐비티(233)를 모두 포함하거나, 둘 중의 하나만 포함할 수도 있다.
상기 활성층(232)은 단일 우물구조, 다중 우물구조, 단일 양자우물 구조, 다중 양자우물(MQW: Multi Quantum Well) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나를 포함할 수 있다.
상기 활성층(232)은 Ⅲ-Ⅴ족 원소의 화합물 반도체 재료를 이용하여 양자우물층(232a)과 양자벽층(232b)을 포함할 수 있다. 상기 양자우물층(232a)은 상기 양자벽층(232b)의 에너지 밴드 갭보다 작은 에너지 밴드 갭을 갖는 물질로 형성될 수 있다. 상기 활성층(232)은 InGaAs/AlxGaAs, AlGaInP/GaInP, AlGaAs/AlGaAs, AlGaAs/GaAs, GaAs/InGaAs 등의 1 내지 3 페어 구조로 형성될 수 있으나 이에 한정되지는 않는다. 상기 활성층(232)에는 도펀트가 도핑되지 않을 수 있다.
다음으로 상기 제1 캐비티(231)와 상기 제2 캐비티(233)는 AlyGa(1-y)As(0<y<1) 물질로 형성될 수 있으나 이에 한정되지 않는다. 예를 들어, 상기 제1 캐비티(231)와 상기 제2 캐비티(233)는 각각 AlyGa(1-y)As으로된 복수의 층을 포함할 수 있다.
예를 들어, 상기 제1 캐비티(231)는 제1-1 캐비티층(231a)과 제1-2 캐비티층(231b)을 포함할 수 있다. 상기 제1-1 캐비티층(231a)은 상기 제1-2 캐비티층(231b)에 비해 상기 활성층(232)에서 더 이격될 수 있다. 상기 제1-1 캐비티층(231a)은 상기 제1-2 캐비티층(231b)에 비해 더 두껍게 형성될 수 있으나 이에 한정되는 것은 아니다.
예를 들어, 상기 제1-1 캐비티층(231a)이 약 60~70nm로 형성되고, 상기 제1-2 캐비티층(231b)은 약 40~55nm로 형성될 수 있으나 이에 한정되는 것은 아니다.
또한 상기 제2 캐비티(233)는 제2-1 캐비티층(233a)과 제2-2 캐비티층(233b)을 포함할 수 있다. 상기 제2-2 캐비티층(233b)은 상기 제2-1 캐비티층(233a)에 비해 상기 활성층(232)에서 더 이격될 수 있다. 상기 제2-2 캐비티층(233b)은 상기 제2-1 캐비티층(233a)에 비해 더 두껍게 형성될 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 상기 제2-2 캐비티층(233b)이 약 60~70nm로 형성되고, 상기 제2-1 캐비티층(233a)은 약 40~55nm로 형성될 수 있으나 이에 한정되는 것은 아니다.
<애퍼처 영역>
다시 도 6a를 참조하면, 실시예에서 애퍼처 영역(240)은 절연영역(242)과 애퍼처(241)를 포함할 수 있다. 상기 애퍼처(241)는 개구로 칭해질 수 있으며, 상기 애퍼처 영역(240)은 개구 영역으로 칭해질 수도 있다.
상기 절연영역(242)은 절연층, 예를 들어 알루미늄 산화물로 이루어져서 전류 차단영역으로 작용할 수 있으며, 절연영역(242)에 의해 광 발산 영역인 애퍼처(241)가 정의될 수 있다.
예를 들어, 상기 애퍼처 영역(240)이 AlGaAs(aluminum gallium arsenide)를 포함하는 경우, 애퍼처 영역(240)의 AlGaAs가 H2O와 반응하여 가장자리가 알루미늄산화물(Al2O3)로 변함에 따라 절연영역(242)이 형성될 수 있고, H2O와 반응하지 않은 중앙영역은 AlGaAs로 이루어진 애퍼처(241)가 될 수 있다.
실시예에 의하면, 애퍼처(241)를 통해 활성영역(230)에서 발광된 광을 상부 영역으로 발산할 수 있으며, 절연영역(242)과 비교하여 애퍼처(241)의 광 투과율이 우수할 수 있다.
도 7을 참조하면 상기 절연영역(242)은 복수의 층을 포함할 수 있으며, 예를 들어, 상기 절연영역(242)은 제1 절연층(242a) 및 제2 절연층(242b)을 포함할 수 있다. 상기 제1 절연층(242a)의 두께는 상기 제2 절연층(242b)과 서로 같거나 서로 다른 두께로 형성될 수 있다.
한편, 실시예의 기술적 과제중의 하나는 고전류 인가시 또는 애퍼처 사이즈의 증대에도 불구하고 고차 모드 이동(higher mode shift)에 따른 출사 빔 패턴(beam pattern)이 분열되는 문제를 방지할 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공하고자 함이다.
도 8a는 도 6a에 도시된 실시예에 따른 표면발광 레이저소자의 애퍼처 영역(240)의 평면 개념도이다.
실시예에 따른 표면발광 레이저소자는 소정의 메사영역(M)에 의해 애퍼처 영역(240)이 정의될 수 있으며, 상기 애퍼처 영역(240)은 개구부 내지 발산영역인 애퍼처(aperture)(241) 및 절연영역(242)을 포함할 수 있다.
실시예에서 상기 애퍼처 영역(240)의 절연영역(242)은 그 외륜 또는 외측에서 내측방향으로 형성된 제1 리세스(242R1)를 포함할 수 있으며, 상기 애퍼처 영역(240)의 애퍼처(241)는 상기 절연영역(242)의 제1 리세스(242R1)에 대응되는 영역에 제2 리세스(241R2)를 포함할 수 있다.
상기 절연영역(242)의 제1 리세스(242R1)와 상기 애퍼처(241)의 제2 리세스(241R2)는 복수로 구비될 수 있으며, 예를 들어 4개로 도시되었으나 이에 한정되는 것은 아니다.
상기 제1 리세스(242R1)와 상기 제2 리세스(241R2)는 그 수평단면이 삼각형 등의 다각형 형상일 수 있으나 이에 한정되는 것은 아니다. 상기 제1 리세스(242R1) 또는 제2 리세스(241R2)는 제1 ?(dip) 또는 제2 ?으로 칭해질 수 있으나 이에 한정되는 것은 아니다.
도 8b는 도 8a에 도시된 실시예에 따른 표면발광 레이저소자의 애퍼처 영역(240)에서 발광모드 예시도이다.
실시예에 의하면 애퍼처 영역(240)에 리세스 또는 ?을 배치함으로써 리세스 또는 딥에 의해 광학적 구속(optical confinement)로 인해 가용 모드를 제어함으로써 고차모드 쉬프트(higher mode shift)가 지연 되고 모드(mode)가 유지되는 특별한 기술적 효과가 있다.
예를 들어, 실시예에 의하면 애퍼처 영역(240)의 애퍼처(241)에 제2 리세스(241R2)를 복수로 배치함으로써 제2 리세스(241R2) 사이의 애퍼처에서 레이저 발진(L)이 되도록 광학적 구속(optical confinement)을 함으로써 가용모드를 제어하여 고차모드 쉬프트(higher mode shift)가 지연 되고 이를 통해 모드(mode)가 유지되는 특별한 기술적 효과가 있다.
이에 따라 실시예에 의하면, 고전류 인가시 또는 애퍼처 사이즈의 증대에도 불구하고 빔 모드(beam mode)를 제어함으로써 고차 모드 이동(higher mode shift)에 따른 출사 빔의 빔 패턴(beam pattern)이 분열되는 문제를 방지할 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
도 9a는 표면발광 레이저소자에서 모드(mode)에 따른 발광 이미지(image) 데이터이며, LPxy 표기에 따른 발광 모드(mode)에 따른 발광 이미지(image)이며, xy 지표 상승에 따라 고차 모드(higher mode)화되어 이미지가 복잡화된다.
참조로 측정장비 관련하여, 표면발광 레이저소자의 빔 프로파일(Far field Beam profile)의 측정은 Beam profiler 측정기인 8050M-GE-TE(Thorlabs, Inc.)를 사용하였다(8050M-GE-TE 사양정보: 8 Megapixel Monochrome Scientific CCD Camera, Hermetically Sealed Cooled Package, GigE Interface).
도 9b는 표면발광 레이저소자에서 모드에 따른 피크 에너지(peak energy)의 파장의 데이터이다.
표면발광 레이저소자에서 고차 모드(higher mode)일수록 피크(peak) 단파장 쉬프트(shift)가 높은 에너지(higher energy)에서 발생되며, 이러한 쉬프트는 연속적이 아닌 산발적인 쉬프트가 발생되어 에너지(energy)의 불연속적인 변화(hopping)가 발생된다.
도 9c는 실시예에 따른 표면발광 레이저소자에서 모드(Mode) 안정화 메커니즘 개념도이다.
실시예에 의하면 애퍼처(241)에 제2 리세스(R2)를 배치함으로써 제2 리세스(241R2)의 광학적 구속(optical confinement)로 인해 가용 모드를 제어함으로써 고차모드 쉬프트(higher mode shift)가 지연 되고 모드(mode)가 유지되는 특별한 기술적 효과가 있다.
예를 들어, 실시예에서 애퍼처(241)에 제2 리세스(241R2)가 4개 배치된 경우, LPxy mode에서 x가 짝수일 경우에만 모드 발진이 가능하고, LPxy mode에서 x가 홀수일 때는 제2 리세스(241R2)에서 발진모드가 걸려서 발진이 차단되도록 제어함으로써 특정 모드(mode)가 안정하게 발진하는 에너지 마진(energy margin) 증가로 발진 모드의 안정화를 확보할 수 있는 특별한 기술적 효과가 있다. 다만, 발진이 차단되는 모드는 예시적일 뿐이며 위 내용에 한정되는 것은 아니다.
다음으로 도 10a 내지 도 10d는 도 8a에 도시된 실시예에 따른 표면발광 레이저소자의 애퍼처 영역(240)의 제조공정 설명도이며, 도 11은 도 10c에 도시된 실시예에 따른 표면발광 레이저소자의 애퍼처 영역(240)의 단면도이다.
도 10a를 참조하면, 애퍼처 영역(240)을 형성하기 위해, AlGa 계열층(241a)을 형성하고, 상기 AlGa 계열층(241a)을 메사에칭(M)에 의해 애퍼처 영역을 정의할 수 있다.
이후 AlGa 계열층(241a)의 외곽으로부터 내측방향으로 제1 리세스(242R1)를 형성할 수 있다. 이때 애퍼처(241)에 대응되는 애퍼처 설계영역(241M)이 중심영역에 예정될 수 있다.
상기 애퍼처 설계영역(241M)의 반경(r)은 AlGa 계열층(241a)의 반경(R)보다 작을 수 있다.
도 10b는 제1 리세스(242R1)의 확대도이며, 제1 리세스(242R1)는 복수로 구비될 수 있으며 다각형 형상일 수 있으며, 예를 들어 이등변 삼각형 형상일 수 있으나 이에 한정되는 것은 아니다.
예를 들어, 상기 제1 리세스(242R1)의 제1 높이(l1)은 AlGa 계열층(241a)의 반경(R)에서 애퍼처 설계영역(241M)의 반경(r)을 뺀 값 이하일 수 있다.
또한 상기 제1 리세스(242R1)의 제1 각도(θ1)는 5 ˚내지 30 ˚일 수 있으며, 제1 각도(θ1)가 5˚미만의 경우에는 이후 진행되는 제2 리세스(241R2) 형성이 제대로 이루어 지지 않을 수 있으며, 제1 각도(θ1)가 30˚ 초과의 경우에는 이후 형성되는 제2 리세스(241R2) 영역이 너무 넓어 발산되는 애퍼처(241) 넓이 확보가 어려울 수 있다.
다음으로, 도 10c를 참조하면, 애퍼처 영역(240)을 형성하기 위해, AlGa 계열층(241a)에 산화공정을 통해 절연영역(242)을 형성하고, 절연영역(242)에 의해 애퍼처(241)를 정의할 수 있다.
이때 애퍼처(241)에는 제1 리세스(242R1)에 대응되는 영역에 제2 리세스(241R2)를 포함할 수 있다.
도 10d는 제2 리세스(241R2)의 확대도이며, 제2 리세스(241R2)는 복수로 구비될 수 있으며 다각형 형상일 수 있다. 예를 들어, 제1 리세스(242R1)가 이등변 삼각형 형상인 경우, 제2 리세스(241R2)는 이등변 삼각형 형상일수 있으나 이에 한정되는 것은 아니다.
상기 제2 리세스(241R2)의 제2 각도(θ2)는 2 ˚내지 45 ˚일 수 있으며, 제2 각도(θ2)가 2˚ 미만의 경우에는 광 구속 효과가 미미할 수 있으며, 제2 각도(θ2)가 45˚ 초과의 경우에는 이후 형성되는 제2 리세스(241R2) 영역이 너무 넓어 발산되는 애퍼처(241) 넓이 확보가 어려울 수 있다.
다음으로 도 11은 도 10c에 도시된 실시예에 따른 표면발광 레이저소자의 A5-A6 선을 따른 애퍼처 영역(240)의 단면도이다.
실시예에 의하면, 제2 반사층(250)으로부터 활성영역(230)까지 제거를 통해 제1 리세스(242R1)를 형성할 수 있다. 상기 제1 리세스(242R1)를 형성하기 위해 활성영역(230)을 지나 제1 반사층(220)까지 일부 제거될 수 있으나 이에 한정되는 것은 아니다.
이후, 산화공정을 통해 절연영역(242)이 형성되어 애퍼처(241)가 정의될 수 있다. 이때, 제1 리세스(242R1)에 대응되는 영역에 산화공정이 진행된 절연영역(242)을 제2 리세스(241R2)로 정의할 수 있다.
실시예에서 애퍼처(241)는 제2 리세스(241R2)와 이격된 제1 애퍼처(241q)와 제2 리세스(241R2)와 인접한 제2 애퍼처(241p)를 포함할 수 있다. 애퍼처 영역의 중심(240C)을 기준으로 상기 제1 애퍼처(241q)의 제1 반경(r1)은 상기 제2 애퍼처(241p)의 제2 반경(r2)에 비해 클 수 있다.
실시예에 의하면 애퍼처 영역에 리세스(recess)를 배치함으로써 리세스에 의해 광학적 구속(optical confinement)로 인해 가용 모드를 제어함으로써 고차모드 쉬프트(higher mode shift)가 지연 되고 모드(mode)가 유지되는 특별한 기술적 효과가 있다.
이를 통해, 실시예에 의하면, 고전류 인가시 또는 애퍼처 사이즈의 증대에도 불구하고 빔 모드(beam mode)를 제어함으로써 고차 모드 이동(higher mode shift)에 따른 출사 빔의 빔 패턴(beam pattern)이 분열되는 문제를 방지할 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
<제2 전극, 오믹컨택층, 패시베이션층>
다시 도 6a를 참조하면, 실시예에 따른 표면방출 레이저소자(201)는 제2 반사층(250)으로부터 애퍼처 영역(240)과 활성영역(230)까지 메사 식각되어 에미터가 정의될 수 있다. 또한, 제1 반사층(220)의 일부까지도 메사 식각될 수 있다.
제2 반사층(250) 상에는 제2 전극(280) 배치될 수 있으며, 상기 제2 전극(280)은 컨택 전극(282)과 패드 전극(284)을 포함할 수 있다.
상기 컨택 전극(282)의 사이의 영역에서 제2 반사층(250)이 노출되는 영역에는 패시베이션층(270)이 배치될 수 있으며, 상술한 애퍼처(241)와 상하간에 대응될 수 있다. 상기 컨택 전극(282)은 제2 반사층(250)과 패드 전극(284) 사이의 오믹 접촉특성을 향상시킬 수 있다.
제2 전극(280)은 도전성 재료로 이루어질 수 있고, 예를 들면 금속일 수 있다. 예를 들어, 상기 제2 전극(280)은 알루미늄(Al), 티타늄(Ti), 크롬(Cr), 니켈(Ni), 구리(Cu), 금(Au) 중 적어도 하나를 포함하여 단층 또는 다층 구조로 형성될 수 있다.
도 6a에서 메사 식각된 발광 구조물의 측면과 상부면 및 제1 반사층(220)의 상부면에 패시베이션층(270)이 배치될 수 있다. 패시베이션층(270)은 소자 단위로 분리된 표면방출 레이저소자(201)의 측면에도 배치되어, 표면방출 레이저소자(201)를 보호하고 절연시킬 수 있다. 패시베이션층(270)은 절연성 물질로 이루어질 수 있고, 예를 들면 질화물 또는 산화물로 이루어질 수 있다. 예를 들어, 패시베이션층(270)은 폴리이미드(Polymide), 실리카(SiO2), 또는 질화 실리콘(Si3N4) 중 적어도 하나를 포함할 수 있다.
패시베이션층(270)은 발광 구조물의 상부면에서의 두께가 컨택 전극(282)보다 얇을 수 있으며, 이를 통해 컨택 전극(282)이 패시베이션층(270) 상부로 노출될 수 있다. 노출된 컨택 전극(282)과 전기적으로 접촉하며 패드 전극(284)이 배치될 수 있는데, 패드 전극(284)은 패시베이션층(270)의 상부로 연장되어 배치되어 외부로부터 전류를 공급받을 수 있다.
이하 도 12와 도 13을 참조하여 실시예에서 전극구조를 개선하여 모드 제어가 가능한 점을 설명하기로 한다.
도 12는 종래기술에서 전극 구조 예시도이다. 예를 들어, 종래기술은 애퍼처(41) 상측에 제2 반사층(50)이 배치되고, 애퍼처(41) 외곽에 제2 전극, 예를 들어 컨택전극(82)이 배치되는 구조이다.
이에 따라 종래기술에서는 고전류 인가시 또는 애퍼처 사이즈의 증대시에 고차 모드 이동(higher mode shift)에 따른 출사 빔 패턴(beam pattern)이 분열되는 문제가 발생하고 있다.
도 13은 실시예에 따른 표면발광 레이저소자에서 제2 전극 구조 예시도이다.
도 6a와 도 13을 참조하면, 다른 실시예에 따른 표면발광소자는 제1 전극(215)과, 상기 제1 전극(215) 상에 배치된 기판(210)과, 상기 기판(210) 상에 배치된 제1 반사층(220)과, 상기 제1 반사층(220) 상에 배치되고, 캐비티 영역을 포함하는 활성영역(230)과, 상기 활성영역(230) 상에 배치되며, 애퍼처(aperture)(241) 및 절연영역(242)을 포함하는 애퍼처 영역(240)과, 상기 애퍼처 영역(240) 상에 배치되는 제2 반사층(250) 및 상기 제2 반사층(250) 상에 배치되는 제2 전극(280)을 포함할 수 있다.
상기 제2 전극(280)은, 상기 제2 반사층(250) 상에 컨택 전극(282)과 상기 컨택 전극(282)과 전기적으로 연결되는 패드 전극(284)을 포함할 수 있다.
상기 컨택 전극(282)은, 상기 애퍼처(41) 외곽에 배치되는 제1 컨택전극(82a)과, 상기 애퍼처(241) 방향으로 연장되는 복수의 돌출전극(282p)을 포함할 수 있다.
예를 들어, 실시예에 의하면 애퍼처(241) 상측에 제2 반사층(250)이 배치될 수 있으며, 실시예의 컨택전극(282)은 애퍼처(41) 외곽에 제1 컨택전극(282a)이 배치되고, 상기 애퍼처(241) 방향으로 연장되는 복수의 돌출전극(282p)을 포함할 수 있다.
상기 복수의 돌출전극(282p)은 4개인 경우로 도시되었으나 이에 한정되는 것은 아니며, 2개 이상의 복수로 형성될 수 있다.
실시예에 의하면 컨택 전극(282)의 돌출전극(282p)을 애퍼처(241) 위치에 인접하도록 연장함으로써 전류 인젝션 콘트라스트(Current injection contrast) 이용하여 발광 모드를 제어(mode control)할 수 있는 특별한 기술적 효과가 있다.
예를 들어, 실시예는 애퍼처(41) 외곽에 제1 컨택전극(282a)이 배치되고, 상기 애퍼처(241) 방향으로 연장되는 복수의 돌출전극(282p)을 포함함으로써, 복수의 돌출전극(282p) 사이에서 광학적 구속(optical confinement)을 유발하여 레이저 발산(L)에 대한 가용 모드를 제어함으로써 고차모드 쉬프트(higher mode shift)가 지연 되고 모드(mode)가 유지되는 특별한 기술적 효과가 있다.
(제2 실시예)
다음으로 도 14 내지 도 16b를 참조하여 제2 실시예에 따른 표면발광 레이저소자(202)의 기술적 효과를 상세히 설명하기로 한다.
제2 실시예는 제1 실시예의 기술적 특징을 채용할 수 있으며, 이하 제2 실시예의 주된 특징을 중심으로 설명하기로 한다.
도 14는 제2 실시예에 따른 표면발광 레이저소자(202)에서 굴절률과 광에너지의 제1 분포 데이터이다.
제2 실시예에 의하면, 표면발광 레이저소자에서 발광된 광 에너지의 분포는 도 14에 도시된 바와 같이, 활성영역(230)을 중심으로 최대 값을 가지며, 활성영역(230)으로부터 멀어질수록 소정의 주기로 감소할 수 있다. 한편, 실시예에서 광 에너지 분포(E)는 도 14에 도시된 분포 데이터에 한정되는 것은 아니며 각 층에서의 광 에너지 분포는 각 층의 조성, 두께 등에 의해 도 14에 도시된 것과 다를 수 있다.
도 14를 참조하면, 제2 실시예에 따른 표면발광 레이저소자(202)는 제1 반사층(220), 제2 반사층(250) 및 상기 제1 반사층(220)과 제2 반사층(250) 사이에 배치되는 활성영역(230)을 포함할 수 있다. 이때, 실시예에 따른 표면발광 레이저소자(202)는 제1 반사층(220), 제2 반사층(250) 및 활성영역(230)의 물질에 따라 굴절률(n)이 도 14에 도시된 것과 같을 수 있으나 이에 한정되는 것은 아니다.
실시예의 기술적 과제 중의 하나는, 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공하고자 함이다.
도 14를 참조하면, 실시예에 따른 표면발광 레이저소자에서 위치에 따른 광 에너지 분포를 알 수 있는데, 앞서 설명한 바와 같이 활성영역(230)에서 상대적으로 이격될수록 광 에너지 분포가 낮아지며, 실시예는 광 에너지 분포를 고려하여, 상기 제1 그룹 제1 반사층(221)에서의 제1 도전형 도펀트의 농도가 상기 제2 그룹 제1 반사층(222)에서의 도펀트 농도보다 높게 제어할 수 있다.
예를 들어, 도 16a를 참조하면, 실시예에서 상기 제1 반사층(220)은, 상기 활성영역(230) 일측에 배치된 제1 그룹 제1 반사층(221) 및 상기 제1 그룹 제1 반사층(221)보다 상기 활성영역(230)에서 근접하여 배치 된 제2 그룹 제1 반사층(222)을 포함할 수 있다.
이때, 상기 활성영역(230)에 인접하게 배치된 제2 그룹 제1 반사층(222)에서의 광 에너지가 제1 그룹 제1 반사층(221)에서의 광 에너지보다 높게 된다.
실시예는 광 에너지 분포를 고려하여, 상기 제2 그룹 제1 반사층(222)에서의 제1 도전형 도펀트의 농도가 상기 제1 그룹 제1 반사층(221)에서의 도펀트 농도보다 낮게 제어하고, 광 에너지가 상대적으로 낮은 제1 그룹 제1 반사층(221) 영역에 제1 도전형 도펀트를 상대적으로 높게 도핑 함으로써, 제2 그룹 제1 반사층(222)에서는 도펀트에 의한 광 흡수를 최소하여 광 출력을 향상시킴과 아울러 제1 그룹 제1 반사층(221)에서는 상대적으로 높은 도펀트에 의한 저항 개선으로 전압효율을 향상시켜, 광출력과 전압효율을 동시에 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있는 특유의 기술적 효과가 있다.
예를 들어, 상기 제1 그룹 제1 반사층(221)에서의 도펀트의 농도는 약 2.00E18 일 수 있으며, 상기 제2 그룹 제1 반사층(222)에서는 약 1.00E18 일 수 있으나 이에 한정되는 것은 아니다.
또한 실시예에서 상기 제2 반사층(250)은, 상기 활성영역(230)에 인접하게 배치된 제1 그룹 제2 반사층(251) 및 상기 제1 그룹 제2 반사층(251)보다 상기 활성영역(230)에서 이격배치 된 제2 그룹 제2 반사층(252)을 포함할 수 있다.
이때 상기 활성영역(230)에 인접하게 배치된 제1 그룹 제2 반사층(251)에서의 광 에너지가 제2 그룹 제2 반사층(252)에서의 광 에너지보다 높게 된다.
이를 통해, 실시예는 광 에너지 분포를 고려하여, 상기 제1 그룹 제2 반사층(251)에서의 제2 도전형 도펀트의 농도가 상기 제2 그룹 제2 반사층(252)에서의 도펀트 농도보다 낮게 제어하고, 광 에너지가 상대적으로 낮은 제2 그룹 제2 반사층(252) 영역에 제2 도전형 도펀트를 상대적으로 높게 도핑 함으로써, 제1 그룹 제2 반사층(251)에서는 도펀트에 의한 광 흡수를 최소하여 광 출력을 향상시킴과 아울러 제2 그룹 제2 반사층(252)에서는 도펀트에 의한 저항 개선으로 전압효율을 향상시켜, 광출력과 전압효율을 동시에 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있는 특유의 기술적 효과가 있다.
실시예는 광 에너지 분포를 고려하여, 광 에너지가 높은 영역에서는 도핑 농도를 낮게 할 수 있고, 광 에너지가 낮은 영역에서는 도핑농도를 높게 제어함으로써, 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
다음으로 실시예의 기술적 과제 중의 하나는, 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공하고자 함이다.
종래 VCSEL 구조에서는 인접하는 DBR층 사이 계면(interface)에서 에너지 밴드 벤딩(Energy Band Bending)에 의해 전기장(Electric Field) 발생에 의해 캐리어 장벽(barrier)이 발생되어 광출력이 저하되는 문제가 있다.
또한 실시예의 기술적 과제 중의 하나는, 전압효율을 향상시키면서도 광출력도 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공하고자 함이다.
즉, 종래기술에서는 반사층인 DBR에서 저항발생을 방지하기 위해 도핑농도를 증가시켜서 저항을 낮추어 전압효율을 향상시키려는 시도가 있으나, 도핑농도의 증가 시 도펀트에 의해 내부 광흡수가 발생되어 광출력 저하되는 기술적 모순상황이 발생하고 있다.
실시예는 이러한 기술적 과제를 해결하기 위해, 반사층에서의 제1 도전형 도펀트의 농도를 광 에너지 분포 모드를 고려하여 제어함으로써 전압효율을 향상시키면서도 광출력도 향상시킬 수 있는 기술적 효과가 있다.
도 15는 제2 실시예에 따른 표면발광 레이저소자(202)에서 굴절률(n)의 제2 분포 데이터이다.
도 16a는 도 15에 도시된 제2 실시예에 따른 표면발광 레이저소자의 제1 반사층(220)에 대한 굴절률(N1)의 데이터이고, 도 16b는 제2 반사층(250)에 대한 굴절률(N2)의 데이터이다.
우선 도 16을 참조하면, 실시예에서 제1 반사층(220)은 제1 그룹 제1 반사층(221) 및 제2 그룹 제1 반사층(222)을 포함할 수 있다.
이때 상기 제1 그룹 제1 반사층(221)은 복수의 층을 포함할 수 있으며, 예를 들어 제1-1 반사층(221p), 제1-2 반사층(221q), 제1-3 반사층(221r) 및 제1-4 반사층(221s)을 포함할 수 있다.
실시예에서 제1 그룹 제1 반사층(221)은 제1-1 반사층(221p) 내지 제1-4 반사층(221s)을 하나의 페어(pair)로 하는 경우 복수의 페어를 포함할 수 있다. 예를 들어, 실시예에서 제1 그룹 제1 반사층(221)은 제1-1 반사층(221p) 내지 제1-4 반사층(221s)의 약 30~40 페어(pair)를 포함할 수 있다.
또한 상기 제2 그룹 제1 반사층(222)은 복수의 층을 포함할 수 있으며, 예를 들어 제1-5 반사층(222p), 제1-6 반사층(222q), 제1-7 반사층(222r) 및 제1-8 반사층(222s)을 포함할 수 있다.
또한, 제2 그룹 제1 반사층(222)도 제1-5 반사층(222p) 내지 제1-8 반사층(222s)을 하나의 페어(pair)로 하는 경우 복수의 페어를 포함할 수 있다. 예를 들어, 실시예에서 제2 그룹 제1 반사층(222)은 제1-5 반사층(222p) 내지 제1-8 반사층(222s)을 하나의 페어(pair)로 하는 경우 약 5~15 페어(pair)를 포함할 수 있다.
종래 VCSEL 구조에서는 인접하는 DBR층 사이 계면(interface)에서 에너지 밴드 벤딩(Energy Band Bending)에 의해 전기장(Electric Field) 발생에 의해 캐리어 장벽(barrier)이 발생되어 광출력이 저하되는 문제가 있다.
이에 실시예의 기술적 과제 중의 하나는, 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공하고자 함이다.
도 16a를 참조하면, 실시예에서 상기 제1 그룹 제1 반사층(221)은 제1-1 반사층(221p), 제1-2 반사층(221q), 제1-3 반사층(221r) 및 제1-4 반사층(221s)을 포함할 수 있으며, 각 층은 굴절률이 서로 다를 수 있다.
예를 들어, 상기 제1 그룹 제1 반사층(221)은, 제1 굴절률을 가지는 제1-1 반사층(221p)과, 상기 제1 굴절률보다 낮은 제2 굴절률을 가지며 상기 제1-1 반사층(221p)의 일측에 배치되는 제1-2 반사층(221q) 및 상기 제1 굴절률과 상기 제2 굴절률 사이의 제3 굴절률을 가지며 상기 제1-1 반사층(221p)과 제1-2 반사층(221q)의 사이에 배치되는 제1-3 반사층(221r)을 포함할 수 있다.
예를 들어, 상기 제1 그룹 제1 반사층(221)은, 제1 알루미늄 농도를 가지는 제1-1 반사층(221p)과, 상기 제1 알루미늄 농도보다 높은 제2 알루미늄 농도를 가지며 상기 제1-1 반사층(221p)의 일측에 배치되는 제1-2 반사층(221q) 및 상기 제1 알루미늄 농도에서 상기 제2 알루미늄 농도로 변화하는 제3 알루미늄 농도를 가지며 상기 제1-1 반사층(221p)과 상기 제1-2 반사층(221q) 사이에 배치되는 제1-3 반사층(221r)을 포함할 수 있다.
예를 들어, 제1 그룹 제1 반사층(221)이 AlxGa(1-x)As(0<x<1)를 포함하는 경우, 제1-1 반사층(221p)이 Al0.12Ga0.88As일 수 있으며, 제1-2 반사층(221q)은 Al0.88Ga0.12As일 수 있고, 제1-3 반사층(221r)은 Alx3Ga(1-x3)As(0.12≤X3≤0.88)일 수 있으나 이에 한정되는 것은 아니다.
또한 상기 제1 그룹 제1 반사층(221)은, 상기 제1-2 반사층(221q)의 외측에 배치되며 제1 알루미늄 농도에서 상기 제2 알루미늄 농도로 변화하는 제4 알루미늄 농도를 가지는 제1-4 반사층(221s)을 더 포함할 수 있다.
예를 들어, 제1 그룹 제1 반사층(221)이 AlxGa(1-x)As(0<x<1)를 포함하는 경우, 제1-4 반사층(221s)은 Alx4Ga(1-x4)As(0.12≤X4≤0.88)일 수 있으나 이에 한정되는 것은 아니다.
이를 통해, 실시예에 의하면 인접한 제1-1 반사층(221p)과 제1-2 반사층(221q) 사이에 중간 영역의 알루미늄 농도를 구비한 제1-3 반사층(221r) 또는 제1-4 반사층(221s)을 구비함으로써 인접한 반사층 사이 계면(interface)에서 에너지 밴드 벤딩(Energy Band Bending)에 의한 전기장(Electric Field) 발생을 최소화하여 캐리어 장벽(barrier)을 낮춤으로써 광출력을 향상시킬 수 있는 기술적 효과가 있다.
이에 따라 실시예에 의하면, 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
또한 실시예에서 상기 제1-2 반사층(221q)의 두께는 상기 제1-1 반사층(221p)의 두께보다 두꺼울 수 있다. 또한 상기 제1-1 반사층(221p) 또는 상기 제1-2 반사층(221q)의 두께는 상기 제1-3 반사층(221r) 또는 상기 제1-4 반사층(221s)의 두께보다는 두꺼울 수 있다.
이때 제1-2 반사층(221q)의 제2 알루미늄 농도는 제1-1 반사층(221p)의 제1 알루미늄 농도가 높을 수 있다. 또한 제1-1 반사층(221p)의 제1 알루미늄 농도는 제1-3 반사층(221r)의 제3 알루미늄 농도 또는 제1-4 반사층(221s)의 제4 알루미늄 농도보다 높을 수 있다.
이에 따라 알루미늄 농도가 상대적으로 높은 제1-2 반사층(221q)의 두께가 상기 제1-1 반사층(221p)의 두께보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
또한 알루미늄 농도가 상대적으로 높은 제1-1 반사층(221p)의 두께가 상기 제1-3 반사층(221r) 또는 제1-4 반사층(221s)의 두께보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
예를 들어, 상기 제1-2 반사층(221q)의 두께는 약 50~55nm일 수 있으며, 상기 제1-1 반사층(221p)의 두께는 약 40~45nm일 수 있고, 알루미늄 농도가 상대적으로 높은 제1-2 반사층(221q)의 두께가 상기 제1-1 반사층(221p)의 두께보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
또한 상기 제1-3 반사층(221r)의 두께는 약 22~27 nm일 수 있으며, 상기 제1-4 반사층(221s)의 두께는 약 22~27 nm일 수 있으며, 알루미늄 농도가 상대적으로 높은 제1-2 반사층(221q), 제1-1 반사층(221p)의 두께가 제1-3 반사층(221r), 제1-4 반사층(221s)보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
계속하여 도 16a를 참조하면, 실시예에서 상기 제2 그룹 제1 반사층(222)은 제1-5 반사층(222p), 제1-6 반사층(222q), 제1-7 반사층(222r) 및 제1-8 반사층(222s)을 포함할 수 있으며, 각 층은 굴절률이 서로 다를 수 있다.
예를 들어, 상기 제2 그룹 제1 반사층(222)은, 제5 굴절률을 가지는 제1-5 반사층(222p)과, 상기 제5 굴절률보다 낮은 제6 굴절률을 가지며 상기 제1-5 반사층(222p)의 일측에 배치되는 제1-6 반사층(222q) 및 상기 제5 굴절률과 상기 제6 굴절률 사이의 제7 굴절률을 가지며 상기 제1-5 반사층(222p)과 제1-6 반사층(222q)의 사이에 배치되는 제1-7 반사층(222r)을 포함할 수 있다.
예를 들어, 상기 제2 그룹 제1 반사층(222)은, 제5 알루미늄 농도를 가지는 제1-5 반사층(222p)과, 상기 제5 알루미늄 농도보다 높은 제6 알루미늄 농도를 가지며 상기 제1-5 반사층(222p)의 일측에 배치되는 제1-6 반사층(222q) 및 상기 제5 알루미늄 농도에서 상기 제6 알루미늄 농도로 변화하는 제7 알루미늄 농도를 가지며 상기 제1-5 반사층(222p)과 상기 제1-6 반사층(222q) 사이에 배치되는 제1-7 반사층(222r)을 포함할 수 있다.
예를 들어, 제2 그룹 제1 반사층(222)이 AlxGa(1-x)As(0<x<1)를 포함하는 경우, 제1-5 반사층(222p)이 Al0.12Ga0.88As일 수 있으며, 제1-6 반사층(222q)은 Al0.88Ga0.12As일 수 있고, 제1-7 반사층(222r)은 Alx3Ga(1-x3)As(0.12≤X3≤0.88)일 수 있으나 이에 한정되는 것은 아니다.
또한 상기 제2 그룹 제1 반사층(222)은, 상기 제1-6 반사층(222q)의 외측에 배치되며 제5 알루미늄 농도에서 상기 제6 알루미늄 농도로 변화하는 제8 알루미늄 농도를 가지는 제1-8 반사층(222s)을 더 포함할 수 있다.
예를 들어, 제2 그룹 제1 반사층(222)이 AlxGa(1-x)As(0<x<1)를 포함하는 경우, 제1-8 반사층(222s)은 Alx4Ga(1-x4)As(0.12≤X4≤0.88)일 수 있으나 이에 한정되는 것은 아니다.
이를 통해, 실시예에 의하면 인접한 제1-5 반사층(222p)과 제1-6 반사층(222q) 사이에 중간 영역의 알루미늄 농도를 구비한 제1-7 반사층(222r) 또는 제1-8 반사층(222s)을 구비함으로써 인접한 반사층 사이 계면(interface)에서 에너지 밴드 벤딩(Energy Band Bending)에 의한 전기장(Electric Field) 발생을 최소화하여 캐리어 장벽(barrier)을 낮춤으로써 광출력을 향상시킬 수 있는 기술적 효과가 있다.
이에 따라 실시예에 의하면, 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
또한 실시예에서 상기 제1-6 반사층(222q)의 두께는 상기 제1-5 반사층(222p)의 두께보다 두꺼울 수 있다. 또한 상기 제1-5 반사층(222p) 또는 상기 제1-6 반사층(222q)의 두께는 상기 제1-7 반사층(222r) 또는 상기 제1-8 반사층(222s)의 두께보다는 두꺼울 수 있다.
이때 제1-6 반사층(222q)의 제6 알루미늄 농도는 제1-5 반사층(222p)의 제5 알루미늄 농도보가 높을 수 있다. 또한 제1-5 반사층(222p)의 제5 알루미늄 농도는 제1-7 반사층(222r)의 제7 알루미늄 농도 또는 제1-8 반사층(222s)의 제8 알루미늄 농도보다 높을 수 있다.
이에 따라 알루미늄 농도가 상대적으로 높은 제1-6 반사층(222q)의 두께가 상기 제1-5 반사층(222p)의 두께보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
또한 알루미늄 농도가 상대적으로 높은 제1-5 반사층(222p)의 두께가 상기 제1-7 반사층(222r) 또는 제1-8 반사층(222s)의 두께보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
예를 들어, 상기 제1-6 반사층(222q)의 두께는 약 50~55nm일 수 있으며, 상기 제1-5 반사층(222p)의 두께는 약 40~45nm일 수 있고, 알루미늄 농도가 상대적으로 높은 제1-6 반사층(222q)의 두께가 상기 제1-5 반사층(222p)의 두께보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
또한 상기 제1-7 반사층(222r)의 두께는 약 22~27 nm일 수 있으며, 상기 제1-8 반사층(222s)의 두께는 약 22~27 nm일 수 있으며, 알루미늄 농도가 상대적으로 높은 제1-6 반사층(222q), 제1-5 반사층(222p)의 두께가 제1-7 반사층(222r), 제1-8 반사층(222s)보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
다음으로 도 16b는 도 15에 도시된 제2 실시예에 따른 표면발광 레이저소자(202)의 제2 반사층(250)의 굴절률(N2)의 데이터이다.
도 16b를 참조하면, 실시예에서 제2 반사층(250)은 제1 그룹 제2 반사층(251) 및 제2 그룹 제2 반사층(252)을 포함할 수 있다.
이때 상기 제1 그룹 제2 반사층(251)은 복수의 층을 포함할 수 있으며, 예를 들어 제2-1 반사층(251p), 제2-2 반사층(251q), 제2-3 반사층(251r) 및 제2-4 반사층(251s)을 포함할 수 있다.
실시예에서 제1 그룹 제2 반사층(251)은 제2-1 반사층(251p) 내지 제2-4 반사층(251s)을 하나의 페어(pair)로 하는 경우 복수의 페어를 포함할 수 있다. 예를 들어, 실시예에서 제1 그룹 제2 반사층(251)은 제2-1 반사층(251p) 내지 제2-4 반사층(251s)의 약 2~5 페어(pair)를 포함할 수 있다.
또한 상기 제2 그룹 제2 반사층(252)은 복수의 층을 포함할 수 있으며, 예를 들어 제2-5 반사층(252p), 제2-6 반사층(252q), 제2-7 반사층(252r) 및 제2-8 반사층(252s)을 포함할 수 있다.
상기 제2 그룹 제2 반사층(252)도 제2-5 반사층(252p) 내지 제2-8 반사층(252s)을 하나의 페어(pair)로 하는 경우 복수의 페어를 포함할 수 있다. 예를 들어, 실시예에서 제2 그룹 제2 반사층(252)은 제2-5 반사층(252p) 내지 제2-8 반사층(252s)을 하나의 하나의 페어(pair)로 하는 경우 약 10~20 페어(pair)를 포함할 수 있다.
실시예의 기술적 과제 중의 하나는, 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공하고자 함이다.
도 16b를 참조하면, 실시예에서 상기 제1 그룹 제2 반사층(251)은 제2-1 반사층(251p), 제2-2 반사층(251q), 제2-3 반사층(251r) 및 제2-4 반사층(251s)을 포함할 수 있으며, 각 층은 굴절률이 서로 다를 수 있다.
예를 들어, 상기 제1 그룹 제2 반사층(251)은, 제1 굴절률을 가지는 제2-1 반사층(251p)과, 상기 제1 굴절률보다 낮은 제2 굴절률을 가지며 상기 제2-1 반사층(251p)의 일측에 배치되는 제2-2 반사층(251q) 및 상기 제1 굴절률과 상기 제2 굴절률 사이의 제3 굴절률을 가지며 상기 제2-1 반사층(251p)과 제2-2 반사층(251q)의 사이에 배치되는 제2-3 반사층(251r)을 포함할 수 있다.
예를 들어, 상기 제1 그룹 제2 반사층(251)은, 제1 알루미늄 농도를 가지는 제2-1 반사층(251p)과, 상기 제1 알루미늄 농도보다 높은 제2 알루미늄 농도를 가지며 상기 제2-1 반사층(251p)의 일측에 배치되는 제2-2 반사층(251q) 및 상기 제1 알루미늄 농도에서 상기 제2 알루미늄 농도로 변화하는 제3 알루미늄 농도를 가지며 상기 제2-1 반사층(251p)과 상기 제2-2 반사층(251q) 사이에 배치되는 제2-3 반사층(251r)을 포함할 수 있다.
예를 들어, 제1 그룹 제2 반사층(251)이 AlxGa(1-x)As(0<x<1)를 포함하는 경우, 제2-1 반사층(251p)이 Al0.12Ga0.88As일 수 있으며, 제2-2 반사층(251q)은 Al0.88Ga0.12As일 수 있고, 제2-3 반사층(251r)은 Alx3Ga(1-x3)As(0.12≤X3≤0.88)일 수 있으나 이에 한정되는 것은 아니다.
또한 상기 제1 그룹 제2 반사층(251)은, 상기 제2-2 반사층(251q)의 외측에 배치되며 제1 알루미늄 농도에서 상기 제2 알루미늄 농도로 변화하는 제4 알루미늄 농도를 가지는 제2-4 반사층(251s)을 더 포함할 수 있다.
예를 들어, 제1 그룹 제2 반사층(251)이 AlxGa(1-x)As(0<x<1)를 포함하는 경우, 제2-4 반사층(251s)은 Alx4Ga(1-x4)As(0.12≤X4≤0.88)일 수 있으나 이에 한정되는 것은 아니다.
이를 통해, 실시예에 의하면 인접한 제2-1 반사층(251p)과 제2-2 반사층(251q) 사이에 중간 영역의 알루미늄 농도를 구비한 제2-3 반사층(251r) 또는 제2-4 반사층(251s)을 구비함으로써 인접한 반사층 사이 계면(interface)에서 에너지 밴드 벤딩(Energy Band Bending)에 의한 전기장(Electric Field) 발생을 최소화하여 캐리어 장벽(barrier)을 낮춤으로써 광출력을 향상시킬 수 있는 기술적 효과가 있다.
이에 따라 실시예에 의하면, 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
또한 실시예에서 상기 제2-2 반사층(251q)의 두께는 상기 제2-1 반사층(251p)의 두께보다 두꺼울 수 있다. 또한 상기 제2-1 반사층(251p) 또는 상기 제2-2 반사층(251q)의 두께는 상기 제2-3 반사층(251r) 또는 상기 제2-4 반사층(251s)의 두께보다는 두꺼울 수 있다.
이때 제2-2 반사층(251q)의 제2 알루미늄 농도는 제2-1 반사층(251p)의 제1 알루미늄 농도가 높을 수 있다. 또한 제2-1 반사층(251p)의 제1 알루미늄 농도는 제2-3 반사층(251r)의 제3 알루미늄 농도 또는 제2-4 반사층(251s)의 제4 알루미늄 농도보다 높을 수 있다.
이에 따라 알루미늄 농도가 상대적으로 높은 제2-2 반사층(251q)의 두께가 상기 제2-1 반사층(251p)의 두께보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
또한 알루미늄 농도가 상대적으로 높은 제2-1 반사층(251p)의 두께가 상기 제2-3 반사층(251r) 또는 제2-4 반사층(251s)의 두께보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
예를 들어, 상기 제2-2 반사층(251q)의 두께는 약 50~55nm일 수 있으며, 상기 제2-1 반사층(251p)의 두께는 약 26~32nm일 수 있고, 알루미늄 농도가 상대적으로 높은 제2-2 반사층(251q)의 두께가 상기 제2-1 반사층(251p)의 두께보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
또한 상기 제2-3 반사층(251r)의 두께는 약 22~27 nm일 수 있으며, 상기 제2-4 반사층(251s)의 두께는 약 22~27 nm일 수 있으며, 알루미늄 농도가 상대적으로 높은 제2-2 반사층(251q), 제2-1 반사층(251p)의 두께가 제2-3 반사층(251r), 제2-4 반사층(251s)보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
계속하여 도 16b를 참조하면, 실시예에서 상기 제2 그룹 제2 반사층(252)은 제2-5 반사층(252p), 제2-6 반사층(252q), 제2-7 반사층(252r) 및 제2-8 반사층(252s)을 포함할 수 있으며, 각 층은 굴절률이 서로 다를 수 있다.
예를 들어, 상기 제2 그룹 제2 반사층(252)은, 제5 굴절률을 가지는 제2-5 반사층(252p)과, 상기 제5 굴절률보다 낮은 제6 굴절률을 가지며 상기 제2-5 반사층(252p)의 일측에 배치되는 제2-6 반사층(252q) 및 상기 제5 굴절률과 상기 제6 굴절률 사이의 제7 굴절률을 가지며 상기 제2-5 반사층(252p)과 제2-6 반사층(252q)의 사이에 배치되는 제2-7 반사층(252r)을 포함할 수 있다.
예를 들어, 상기 제2 그룹 제2 반사층(252)은, 제5 알루미늄 농도를 가지는 제2-5 반사층(252p)과, 상기 제5 알루미늄 농도보다 높은 제6 알루미늄 농도를 가지며 상기 제2-5 반사층(252p)의 일측에 배치되는 제2-6 반사층(252q) 및 상기 제5 알루미늄 농도에서 상기 제6 알루미늄 농도로 변화하는 제7 알루미늄 농도를 가지며 상기 제2-5 반사층(252p)과 상기 제2-6 반사층(252q) 사이에 배치되는 제2-7 반사층(252r)을 포함할 수 있다.
예를 들어, 제2 그룹 제2 반사층(252)이 AlxGa(1-x)As(0<x<1)를 포함하는 경우, 제2-5 반사층(252p)이 Al0.12Ga0.88As일 수 있으며, 제2-6 반사층(252q)은 Al0.88Ga0.12As일 수 있고, 제2-7 반사층(252r)은 Alx3Ga(1-x3)As(0.12≤X3≤0.88)일 수 있으나 이에 한정되는 것은 아니다.
또한 상기 제2 그룹 제2 반사층(252)은, 상기 제2-6 반사층(252q)의 외측에 배치되며 제5 알루미늄 농도에서 상기 제6 알루미늄 농도로 변화하는 제8 알루미늄 농도를 가지는 제2-8 반사층(252s)을 더 포함할 수 있다.
예를 들어, 제2 그룹 제2 반사층(252)이 AlxGa(1-x)As(0<x<1)를 포함하는 경우, 제2-8 반사층(252s)은 Alx4Ga(1-x4)As(0.12≤X4≤0.88)일 수 있으나 이에 한정되는 것은 아니다.
이를 통해, 실시예에 의하면 인접한 제2-5 반사층(252p)과 제2-6 반사층(252q) 사이에 중간 영역의 알루미늄 농도를 구비한 제2-7 반사층(252r) 또는 제2-8 반사층(252s)을 구비함으로써 인접한 반사층 사이 계면(interface)에서 에너지 밴드 벤딩(Energy Band Bending)에 의한 전기장(Electric Field) 발생을 최소화하여 캐리어 장벽(barrier)을 낮춤으로써 광출력을 향상시킬 수 있는 기술적 효과가 있다.
이에 따라 실시예에 의하면, 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
또한 실시예에서 상기 제2-6 반사층(252q)의 두께는 상기 제2-5 반사층(252p)의 두께보다 두꺼울 수 있다. 또한 상기 제2-5 반사층(252p) 또는 상기 제2-6 반사층(252q)의 두께는 상기 제2-7 반사층(252r) 또는 상기 제2-8 반사층(252s)의 두께보다는 두꺼울 수 있다.
이때 제2-6 반사층(252q)의 제6 알루미늄 농도는 제2-5 반사층(252p)의 제5 알루미늄 농도보가 높을 수 있다. 또한 제2-5 반사층(252p)의 제5 알루미늄 농도는 제2-7 반사층(252r)의 제7 알루미늄 농도 또는 제2-8 반사층(252s)의 제8 알루미늄 농도보다 높을 수 있다.
이에 따라 알루미늄 농도가 상대적으로 높은 제2-6 반사층(252q)의 두께가 상기 제2-5 반사층(252p)의 두께보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
또한 알루미늄 농도가 상대적으로 높은 제2-5 반사층(252p)의 두께가 상기 제2-7 반사층(252r) 또는 제2-8 반사층(252s)의 두께보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
예를 들어, 상기 제2-6 반사층(252q)의 두께는 약 50~55nm일 수 있으며, 상기 제2-5 반사층(252p)의 두께는 약 40~45nm일 수 있고, 알루미늄 농도가 상대적으로 높은 제2-6 반사층(252q)의 두께가 상기 제2-5 반사층(252p)의 두께보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
또한 상기 제2-7 반사층(252r)의 두께는 약 22~27 nm일 수 있으며, 상기 제2-8 반사층(252s)의 두께는 약 22~27 nm일 수 있으며, 알루미늄 농도가 상대적으로 높은 제2-6 반사층(252q), 제2-5 반사층(252p)의 두께가 제2-7 반사층(252r), 제2-8 반사층(252s)보다 두꺼우므로 격자 품질을 향상시켜 광출력에 기여할 수 있다.
다음으로 실시예의 기술적 과제 중의 하나는, 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공하고자 함이다.
잠시 도 14를 참조하면, 실시예에 따른 표면발광 레이저소자에서 위치에 따른 광 에너지(E) 분포를 알 수 있는데, 활성영역(230)에서 상대적으로 이격될수록 광 에너지 분포가 낮아지며, 실시예는 광 에너지 분포를 고려하여, 도 16b를 참조하면, 상기 제1 그룹 제2 반사층(251)에서의 제1 도전형 도펀트의 농도가 상기 제2 그룹 제2 반사층(252)에서의 도펀트 농도보다 낮게 제어할 수 있다.
예를 들어, 실시예는 상기 제1 그룹 제2 반사층(251)에서의 도펀트의 농도는 약 7.00E17 내지 1.50E18 일 수 있으며, 상기 제2 그룹 제2 반사층(252)에서는 약 1.00E18 내지 3.00E18으로 제어할 수 있다. 실시예에서 농도단위 1.00E18는 1.00X1018(atoms/cm3)를 의미할 수 있다. 실시예에서 p형 도펀트는 C(Carbon)일 수 있으나 이에 한정되는 것은 아니다.
이를 통해 실시예는 상기 제2 그룹 제2 반사층(252)에서의 제2 도전형 도펀트의 농도가 상기 제1 그룹 제2 반사층(251)에서의 도펀트 농도보다 높게 제어하고, 광 에너지가 상대적으로 높은 제1 그룹 제2 반사층(251) 영역에 제2 도전형 도펀트를 상대적으로 낮게 도핑 함으로써, 제1 그룹 제2 반사층(251)에서는 도펀트에 의한 광 흡수를 최소하여 광 출력을 향상시킴과 아울러 제2 그룹 제2 반사층(252)에서는 상대적으로 높은 도펀트에 의한 저항 개선으로 전압효율을 향상시켜, 광출력과 전압효율을 동시에 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있는 특유의 기술적 효과가 있다.
또한 종래기술에 의하면 정상파(Standing wave)가 DBR과 계면(interference)에서 진행될 이러한 도펀트에 의하여 흡수가 일어날 가능성이 있다. 이에 따라 실시예는 정상파의 광학적 반사도(optical power reflectance)가 가장 작은 노드 포지션(node position)에서는 많은 도핑을 진행하여 저항을 최소화하고, 안티노드 포지션(antinode position)에서는 되도록이면 낮은 도핑을 진행함으로써 광흡수를 최소화할 수 있는 기술적 효과가 있다. 상기 노드 포지션은 각 층의 굴절률이 상승 또는 하강하여 변화하는 지점을 의미할 수 있다.
계속하여 도 16b를 참조하면, 상기 제1 그룹 제2 반사층(251)에서 제2-1 반사층(251p)과 제2-2 반사층(251q)의 굴절률은 상점 또는 하점으로 변화하지 않는 안티노드 포지션일 수 있다. 또한 상기 제1 그룹 제2 반사층(251)에서 제2-3 반사층(251r)과 제2-4 반사층(251s)의 굴절률은 상승 또는 또는 하강하여 변화하는 노드 포지션일 수 있다.
이에 따라 실시예에서 제2-3 반사층(251r) 또는 제2-4 반사층(251s)의 제2 도전형 도핑농도는 제2-1 반사층(251p) 또는 제2-2 반사층(251q)의 제2 도전형 도핑농도 보다 높게 제어할 수 있다.
예를 들어, 제2-3 반사층(251r) 또는 제2-4 반사층(251s)의 제2 도전형 도핑농도는 약 1.00E18 내지 1.50E18일 수 있으며, 제2-1 반사층(251p) 또는 제2-2 반사층(251q)의 제2 도전형 도핑농도는 약 6.00E17 내지 8.00E17일 수 있다.
이에 따라 정상파의 광학적 반사도(optical power reflectance)가 낮은 노드 포지션(node position)인 제2-3 반사층(251r) 또는 제2-4 반사층(251s)에서는 많은 도핑을 진행하여 저항을 최소화하고, 안티노드 포지션(antinode position)인 제2-1 반사층(251p) 또는 제2-2 반사층(251q)에서는 낮은 도핑을 진행함으로써 광흡수를 최소화할 수 있는 복합적인 기술적 효과가 있다.
또한 실시예에서 노드 포지션인 제2-3 반사층(251r) 또는 제2-4 반사층(251s) 중에 활성영역(230)에서 멀어지는 방향으로 굴절률이 증가하는 노드 포지션인 제2-4 반사층(251s)의 제2 도전형 도펀트의 농도가 굴절률이 감소하는 노드 포지션인 제2-3 반사층(251r)의 제2 도전형 도펀트의 농도보다 높게 제어할 수 있다.
이를 통해 광학적 반사도가 상대적으로 더 낮은 굴절률이 증가하는 노드 포지션인 제2-4 반사층(251s)의 제2 도전형 도펀트의 농도를 높게 제어하여 전기적 특성을 개선할 수 있다.
예를 들어, 제2-4 반사층(251s)의 제2 도전형 도핑농도는 약 1.50E18일 수 있으며, 제2-3 반사층(251r)의 제2 도전형 도핑농도는 약 1.00E18일 수 있으며, 광학적 반사도가 상대적으로 더 낮은 제2-4 반사층(251s)의 제2 도전형 도펀트의 농도를 높게 제어하여 전기적 특성을 개선할 수 있다.
계속하여 도 16b를 참조하면, 상기 제2 그룹 제2 반사층(252)에서 제2-5 반사층(252p)과 제2-6 반사층(252q)의 굴절률은 상점 또는 하점으로 변화하지 않는 안티노드 포지션일 수 있다. 또한 상기 제2 그룹 제2 반사층(252)에서 제2-7 반사층(252r)과 제2-8 반사층(252s)의 굴절률은 상승 또는 또는 하강하여 변화하는 노드 포지션일 수 있다.
실시예는 제2-7 반사층(252r) 또는 제2-8 반사층(252s)의 제2 도전형 도핑농도는 제2-5 반사층(252p) 또는 제2-6 반사층(252q)의 제2 도전형 도핑농도 보다 높게 제어할 수 있다.
예를 들어, 제2-7 반사층(252r) 또는 제2-8 반사층(252s)의 제2 도전형 도핑농도는 약 2.00E18 내지 3.00E18일 수 있으며, 제2-5 반사층(252p) 또는 제2-6 반사층(252q)의 제2 도전형 도핑농도는 약 1.00E18 내지 1.50E18일 수 있다.
이에 따라 정상파의 광학적 반사도(optical power reflectance)가 낮은 노드 포지션(node position)인 제2-7 반사층(252r) 또는 제2-8 반사층(252s)에서는 많은 도핑을 진행하여 저항을 최소화하고, 안티노드 포지션(antinode position)인 제2-5 반사층(252p) 또는 제2-6 반사층(252q)에서는 낮은 도핑을 진행함으로써 광흡수를 최소화할 수 있는 복합적인 기술적 효과가 있다.
또한 실시예에서 노드 포지션인 제2-7 반사층(252r) 또는 제2-8 반사층(252s) 중에 활성영역(230)에서 멀어지는 방향으로 굴절률이 증가하는 노드 포지션인 제2-8 반사층(252s)의 제2 도전형 도펀트의 농도가 굴절률이 감소하는 노드 포지션인 제2-7 반사층(252r)의 제2 도전형 도펀트의 농도보다 높게 제어할 수 있다.
이를 통해 광학적 반사도가 상대적으로 더 낮은 굴절률이 증가하는 노드 포지션인 제2-8 반사층(252s)의 제2 도전형 도펀트의 농도를 높게 제어하여 전기적 특성을 개선할 수 있다.
예를 들어, 제2-8 반사층(252s)의 제2 도전형 도핑농도는 약 3.00E18일 수 있으며, 제2-7 반사층(252r)의 제2 도전형 도핑농도는 약 2.00E18일 수 있으며, 광학적 반사도가 상대적으로 더 낮은 제2-8 반사층(252s)의 제2 도전형 도펀트의 농도를 높게 제어하여 전기적 특성을 개선할 수 있다.
다음으로 아래 표 1은 종래기술(비교예)와 실시예에서의 칩 특성 데이터이다.
실시예에 의하면, 표 1에서와 같이 광출력, 전압특성 등이 현저히 향상됨을 알 수 있다.
비교예 실시예 비고
Emitter 수(ea) 202 202
칩 특성(@2.5A) Wp nm 937.5 939
Pop mW 1516 1858 22.6% 증가
Vf V 2.19 1.96 0.23V 감소
PCE % 27.8 38.0 36.7% 증가
(제3 실시예)
다음으로 도 17은 제3 실시예에 따른 표면발광 레이저소자에서 에너지밴드 다이어 그램(203) 예시도이다.
제3 실시예는 제1 실시예, 제2 실시예의 기술적 특징을 채용할 수 있다.
예를 들어, 도 17을 참조하면, 실시예에서 제1 반사층(220)이 AlxGa(1-x)As(0<x<1)을 포함하는 경우, Al의 농도에 그레이딩(grading)를 두어 인접하는 반사층 사이의 전기장(Electric Field) 발생을 최소화할 수 있다.
예를 들어, 상기 제1 반사층(220)이 제1 알루미늄 농도의 제1 층(220p)과 제2 알루미늄 농도의 제2 층(220q)을 포함하는 경우, 상기 제1 알루미늄 농도의 제1 층(220p)과 제2 알루미늄 농도의 제2 층(220q) 사이에 제3 농도의 알루미늄 농도의 제3층(220r)의 개재하고, 상기 제3층(220r)의 알루미늄 농도는 상기 제1 층(220p)과 상기 제2 층(220q) 사이의 알루미늄 농도 사이 값을 가질 수 있다.
예를 들어, 제1 반사층(220)은 Al0.12Ga0.88As인 제1 층(220p)과 Al0.88Ga0.12As인 제2 층(220q) 사이에 Alx3Ga(1-x3)As(0.12≤X3≤0.88)인 제3층(220r)을 개재할 수 있다. 이를 통해 실시예에 의하면 제1 층(220p)과 제2 층(220q) 사이에 중간 영역의 알루미늄 농도를 구비한 제3 층(220r)을 구비함으로써 인접한 반사층 사이 계면(interface)에서 에너지 밴드 벤딩(Energy Band Bending)에 의한 전기장(Electric Field) 발생을 최소화하여 캐리어 장벽(barrier)을 낮춤으로써 광출력을 향상시킬 수 있는 기술적 효과가 있다.
이에 따라 실시예에 의하면, 반사층에서의 전기장 발생에 따른 캐리어 배리어 영향을 최소화하여 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 표면발광 레이저패키지를 제공할 수 있다.
이하 제3 실시예의 주된 기술적 특징을 중심으로 설명하기로 한다.
계속하여 도 17을 참조하면, 제3 실시예는 제1 반사층(220) 상에 활성영역(230)을 포함할 수 있다.
이때, 상기 활성영역(230)은 활성층(232) 및 상기 활성층(232)의 하측에 배치되는 제1 캐비티(231), 상측에 배치되는 제2 캐비티(233)를 포함할 수 있다. 실시예의 활성영역(230)은 제1 캐비티(231)와 제2 캐비티(233)를 모두 포함하거나, 둘 중의 하나만 포함할 수도 있다.
상기 제1 캐비티(231)와 상기 제2 캐비티(233)는 AlyGa(1-y)As(0<y<1)물질로 형성될 수 있으나 이에 한정되지 않는다. 예를 들어, 상기 제1 캐비티(231)와 상기 제2 캐비티(233)는 각각 AlyGa(1-y)As으로된 복수의 층을 포함할 수 있다.
예를 들어, 상기 제1 캐비티(231)는 제1-1 캐비티층(231a)과 제1-2 캐비티층(231b)을 포함할 수 있다. 상기 제1-1 캐비티층(231a)은 상기 제1-2 캐비티층(231b)에 비해 상기 활성층(232)에서 더 이격될 수 있다. 상기 제1-1 캐비티층(231a)은 상기 제1-2 캐비티층(231b)에 비해 더 두껍게 형성될 수 있으나 이에 한정되는 것은 아니다.
실시예의 기술적 과제 중의 하나는, 전압효율을 향상시켜 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 표면발광 레이저패키지를 제공하고자 함이다.
실시예는 이러한 기술적 과제를 해결하기 위해, 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있는 표면발광 레이저소자 및 이를 포함하는 표면발광 레이저패키지를 제공할 수 있다.
우선, 도 17을 참조하면, 제3 실시예에서 상기 활성영역(230)은, 상기 제1 반사층(220) 상에 배치되는 제1 캐비티(231)와, 양자우물(232a)과 양자벽(232b)을 포함하며 상기 제1 캐비티(231) 상에 배치되는 활성층(232)을 포함하고, 상기 제1 캐비티(231)는, 상기 제1 반사층(220)과 인접하고 제1 도전형 제1 도핑층(261)을 포함할 수 있다.
제3 실시예에 의하면, 제1 캐비티(231)의 일부 영역에 제1 도전형 제1 도핑층(261)을 포함함으로써 기존 활성영역에 비해 저항을 감소시킴으로써 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다.
예를 들어, 제3 실시예에서 제1 캐비티(231)가 제1-1 캐비티층(231a)과 제1-2 캐비티층(231b)을 포함하는 경우, 상기 활성층(232)에서 더 이격되어 배치된 제1-1 캐비티층(231a)에 제1 도전형 제1 도핑층(261)을 포함함으로써 종래 활성영역에 비해 저항을 감소시킴으로써 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다.
아래 표 2은 비교예와 실시예의 표면발광 레이저소자의 특성 데이터이다. 비교예는 캐비티에 도핑이 진행되지 않는 경우이다.
구분 비교예 제3 실시예
에미터 개수 202 202
Wp(nm) 943.2 942.4
Vf(V) 2.19 2.07
PCE(%) 38.9 39.3
제3 실시예는 캐비티에 도핑이 진행됨에 따라 활성영역에서 저항감소를 통해 비교예에 비해 동작전압(Vf)이 낮아졌으며, 광효율이나 광출력을 향상시킬 수 있는 기술적 효과가 있다.제3 실시예에서 제1 도전형 제1 도핑층(261)의 영역은 상기 제1 캐비티(231)의 영역 대비 10% 내지 70%로 제어됨으로써 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다. 이때, 상기 제1 도전형 제1 도핑층(261)의 영역이 상기 제1 캐비티(231)의 영역 대비 70%를 초과시 도핑영역에 의한 광 흡수로 인해 광출력이 저하될 수 있으며, 그 영역이 10% 미만의 경우 저항 감소효과의 기여도가 낮을 수 있다. 또한 실시예에서 제1 도전형 제1 도핑층(261)의 영역은 상기 제1 캐비티(231)의 영역 대비 20% 내지 50%로 제어될 수 있다.
실시예에서 상기 “영역”은 각 층이 차지하는 “폭”을 기준으로 비교될 수 있다. 또한 상기 “영역”은 각 층이 차지하는 “체적”일 수도 있다.
실시예에서 제1 도전형 제1 도핑층(261)에서 제1 도전형 도펀트의 농도는 1x1017~8x1017(atoms/cm3)범위로 제어됨으로써 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다. 이때, 상기 제1 도전형 제1 도핑층(261)에서 제1 도전형 도펀트의 농도가 그 상한을 초과시 도핑영역에 의한 광 흡수로 인해 광출력이 저하될 수 있으며, 그 하한 미만의 경우 저항 감소효과의 기여도가 낮을 수 있다.
이 때 실시예에서 제1 캐비티(231)에 위치하는 제1 도전형 제1 도핑층(261)의 제1 도전형 도펀트의 농도는 제1 반사층(220)의 제1 도전형 도펀트의 농도보다 낮게 제어됨으로써 도핑영역에 의한 광 흡수를 방지함과 동시에 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있다.
예를 들어, 상기 제1 도전형 제1 도핑층(261)의 제1 도전형 도펀트의 농도는 1x1018~2x1018(atoms/cm3)범위인 경우, 상기 제1 도전형 제1 도핑층(261)에서 제1 도전형 도펀트의 농도는 1x1017~8x1017(atoms/cm3)범위로 제어됨으로써 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다.
또한 실시예의 기술적 과제 중의 하나는, 발광층 주변에서 광집중(optical confinement) 효율 향상을 통해 광출력을 향상시킬 수 있는 표면발광 레이저소자 및 이를 포함하는 표면발광 레이저패키지를 제공하고자 함이다.
실시예는 이러한 기술적 과제를 해결하기 위해, 실시예는 발광층 주변의 활성영역(230)에서의 광집중(optical confinement) 효율 향상을 통해 광출력을 향상시킬 수 있는 기술적 효과가 있다.
구체적으로, 상기 제1 캐비티(231)가 AlxGaAs계열층(0<X<1)을 포함하는 경우에, 상기 제1 캐비티(231)의 Al의 농도를 상기 활성층(232) 방향으로 감소하도록 제어함으로써 도 17에서와 같이, 제1 캐비티(231)의 밴드갭 에너지 준위가 활성층(232) 방향으로 감소하도록 제어함으로써 광집중(optical confinement) 효율 향상을 통해 광출력을 향상시킬 수 있는 기술적 효과가 있다.
또한, 상기 제2 캐비티(233)가 AlxGaAs계열층(0<X<1)을 포함하는 경우에, 상기 제2 캐비티(233)의 Al의 농도를 상기 활성층(232) 방향으로 감소하도록 제어함으로써 도 17에서와 같이, 제2 캐비티(233)의 밴드갭 에너지 준위가 활성층(232) 방향으로 감소하도록 제어함으로써 광집중(optical confinement) 효율 향상을 통해 광출력을 향상시킬 수 있는 기술적 효과가 있다.
(제4 실시예)
다음으로, 도 18은 제4 실시예에 따른 표면발광 레이저소자에서 에너지밴드 다이어 그램(204) 예시도이다.
제4 실시예는 앞서 설명된 제1 실시예 내지 제3 실시예의 기술적 특징을 채용할 수 있으며, 이하 제4 실시예의 주된 특징을 중심으로 설명하기로 한다.
제4 실시예에서 상기 제2 캐비티(233)의 제2 폭(T2)이 상기 제1 캐비티(231)의 제1 폭(T1)에 비해 크게 형성될 수 있다.
예를 들어, 상기 제2 캐비티(233)는 AlyGa(1-y)As(0<y<1)물질로 형성될 수 있으나 이에 한정되지 않으며, AlyGa(1-y)As으로된 단층 또는 복수의 층을 포함할 수 있다.
예를 들어, 상기 제2 캐비티(233)는 제2-1 캐비티층(233a)과 제2-2 캐비티층(233b)을 포함할 수 있다. 상기 제2-2 캐비티층(233b)은 상기 제2-1 캐비티층(233a)에 비해 상기 활성층(232)에서 더 이격될 수 있다. 상기 제2-2 캐비티층(233b)은 상기 제2-1 캐비티층(233a)에 비해 더 두껍게 형성될 수 있으나 이에 한정되는 것은 아니다. 이때, 상기 제2-2 캐비티층(233b)이 약 60~70nm로 형성되고, 상기 제2-1 캐비티층(233a)은 약 40~55nm로 형성될 수 있으나 이에 한정되는 것은 아니다.
제4 실시예에 의하면, 상기 제2 캐비티(233)의 제2 폭(T2)이 상기 제1 캐비티(231)의 제1 폭(T1)에 비해 크게 형성됨으로써 공진 효율을 향상시킴으로써 광 출력을 향상시킬 수 있다.
다음으로, 도 19a와 도 19b는 도 18에 도시된 제4 실시예에 따른 표면발광 레이저소자의 활성영역 중 제1 도전형 제1 도핑층(261)에서의 도핑농도 데이터이다.
예를 들어, 도 19a와 도 19b에서 가로축은 활성층(232)에서 제1 반사층(220) 방향(X방향)으로 거리가 증가할 때의 제1 도전형 제1 도핑층(261)에서 제1 도전형 도펀트의 도핑농도이다.
실시예에 의하면, 상기 제1 도전형 제1 도핑층(261)에서 제1 도전형 도펀트의 농도는 상기 활성층(232)의 방향에서 상기 제1 반사층(220)의 방향으로 증가하도록 제어함으로써, 활성층(232)에 인접한 영역에서의 도핑농도 증가를 제어하여 광 흡수에 따른 광도 저하를 방지함과 아울러, 상기 제1 반사층(220)에 인접한 영역에서의 도핑농도를 증대시켜 저항 감소에 따른 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다.
예를 들어, 도 19a를 참조하면, 제1 도전형 제1 도핑층(261)이 제1-1 도핑층(261a)과 제1-2 도핑층(261b)을 포함하는 경우, 제1-1 도핑층(261a)에 비해 활성층(232)에서 더 이격되어 배치된 제1-2 도핑층(261b)에서의 도핑농도가 d1에서 d2 내지 d3로 증가함에 따라, 활성층(232)에 인접한 제1-1 도핑층(261a)에서의 광 흡수에 따른 광도 저하를 방지함과 아울러, 상기 제1 반사층(220)에 인접한 제1-2 도핑층(261b)영역에서의 저항 감소에 따른 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다.
또한, 도 19b를 참조하면, 제1 도전형 제1 도핑층(261)이 제1-1 도핑층(261a), 제1-2 도핑층(261b) 및 제1-3 도핑층(261c)을 포함하는 경우, 제1-1 도핑층(261a)에 비해 활성층(232)에서 더 이격되어 배치된 제1-2 도핑층(261b)과 제1-3 도핑층(261c)에서의 도핑농도가 각각 d1, d2, d3로 순차적으로 증가함에 따라, 활성층(232)에 인접한 영역에서의 광 흡수에 따른 광도 저하를 방지함과 아울러, 상기 제1 반사층(220)에 인접한 영역에서의 저항 감소에 따른 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다.
(제5 실시예)
다음으로, 도 20은 제5 실시예에 따른 표면발광 레이저소자에서 에너지밴드 다이어 그램(205) 예시도이다.
제5 실시예는 제1 실시예 내지 제4 실시예의 기술적 특징을 채용할 수 있으며, 이하 제5 실시예의 특징을 중심으로 설명하기로 한다.
제5 실시예에 의하면, 상기 활성영역(230)은, 상기 제2 반사층(250)과 상기 활성층(232) 사이에 배치되는 제2 캐비티(233)를 포함하고, 상기 제2 캐비티(233)는 상기 제2 반사층(250)과 인접하며, 제2 도전형 제2 도핑층(262)을 포함할 수 있다.
실시예에 의하면, 제2 캐비티(233)의 일부 영역에 제2 도전형 제2 도핑층(262)을 포함함으로써 기존 활성영역에 비해 저항을 감소시킴으로써 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다.
예를 들어, 실시예에서 제2 캐비티(233)가 제2-1 캐비티층(233a)과 제2-2 캐비티층(233b)을 포함하는 경우, 상기 활성층(232)에서 더 이격되어 배치된 제2-2 캐비티층(233b)에 제2 도전형 제2 도핑층(262)을 포함함으로써 종래기술에 비해 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다. 예를 들어, 제2 캐비티(233)에 도핑이 진행된 실시예의 경우, 활성영역에서 저항감소를 통해 비교예에 비해 동작전압(Vf)이 낮아졌으며, 광효율이나 광출력을 향상시킬 수 있는 기술적 효과가 있다.
실시예에서 제2 도전형 제2 도핑층(262)의 영역은 상기 제2 캐비티(233)의 영역 대비 10% 내지 70%로 제어됨으로써 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다. 이때, 상기 제2 도전형 제2 도핑층(262)의 영역이 상기 제2 캐비티(233)의 영역 대비 70%를 초과시 도핑영역에 의한 광 흡수로 인해 광출력이 저하될 수 있으며, 그 영역이 10% 미만의 경우 저항 감소효과의 기여도가 낮을 수 있다.
실시예를 참조하면, 상기 제1 도전형 제1 도핑층(261)과 상기 제2 도전형 제2 도핑층(262)의 합계 영역은 상기 활성영역(230)의 전체 영역의 20% 내지 70%로 제어될 수 있으며, 그 상한을 초과시 도핑영역에 의한 광 흡수로 인해 광출력이 저하될 수 있으며, 하한 미만시 저항 감소효과의 기여도가 낮을 수 있다.
실시예에서 제2 도전형 제2 도핑층(262)에서 제2 도전형 도펀트의 농도는 1x1017~8x1017(atoms/cm3)범위로 제어됨으로써 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다. 이때, 상기 제2 도전형 제2 도핑층(262)에서 제2 도전형 도펀트의 농도가 그 상한을 초과시 도핑영역에 의한 광 흡수로 인해 광출력이 저하될 수 있으며, 그 하한 미만의 경우 저항 감소효과의 기여도가 낮을 수 있다.
또한 실시예에서 제2 도전형 제2 도핑층(262)의 제2 도전형 도펀트의 농도는 제2 반사층(250)의 제2 도전형 도펀트의 농도 이하로 제어됨으로써 도핑영역에 의한 광 흡수를 방지함과 동시에 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있다.
예를 들어, 상기 제2 도전형 제2 도핑층(262)의 제2 도전형 도펀트의 농도는 7x1017~3x1018(atoms/cm3)범위인 경우, 상기 제2 도전형 제2 도핑층(262)에서 제2 도전형 도펀트의 농도는 1x1017~7x1017(atoms/cm3)범위로 제어됨으로써 활성영역에서의 저항감소를 통해 전압효율을 향상시켜 광출력을 향상시킬 수 있는 기술적 효과가 있다.
(제조방법)
이하 도 21a 내지 도 29를 참조하여 실시예에 따른 표면발광 레이저소자의 제조방법을 설명하기로 한다. 한편, 아래 제조방법은 제1 실시예의 제조방법을 중심으로 설명하나, 제조방법이 제1 실시예의 제조에만 적용되는 것은 아니며, 제2 실시예 내지 제5 실시예의 제조방법에도 적용될 수 있다.
우선, 도 21a와 같이, 기판(210) 상에 제1 반사층(220), 활성영역(230) 및 제2 반사층(250)을 포함하는 발광구조물을 형성시킨다.
상기 기판(210)은 반도체 물질 성장에 적합한 물질이나 캐리어 웨이퍼로 형성될 수 있으며, 열 전도성이 뛰어난 물질로 형성될 수 있고, 전도성 기판 또는 절연성 기판을 포함할 수 있다.
예를 들어, 기판(210)이 전도성 기판인 경우, 전기 전도도가 우수한 금속을 사용할 수 있고, 표면발광 레이저소자(200) 작동 시 발생하는 열을 충분히 발산시킬 수 있어야 하므로 열전도도가 높은 GaAs 기판, 또는 금속기판을 사용하거나 실리콘(Si) 기판 등을 사용할 수 있다.
또한 기판(210)이 비전도성 기판인 경우, AlN 기판이나 사파이어(Al2O3) 기판 또는 세라믹 계열의 기판을 사용할 수 있다.
또한 실시예는 기판(210)으로 제1 반사층(220)과 동종의 기판을 사용할 수 있다. 예를 들어, 기판(210)이 제1 반사층(220)과 동종인 GaAs 기판일 때 제1 반사층(210)과 격자 상수가 일치하여, 제1 반사층(220)에 격자 부정합 등의 결함이 발생하지 않을 수 있다.
다음으로, 기판(210) 상에 제1 반사층(220)이 형성될 수 있으며, 도 21b는 도 21a에 도시된 실시예에 따른 표면발광 레이저소자의 제2 영역(B2)의 확대 단면도이다.
이하 도 21a와 도 21b를 함께 참조하여 실시예의 실시예에 따른 표면발광 레이저소자를 설명하기로 한다.
상기 제1 반사층(220)은 화학증착방법(CVD) 혹은 분자선 에피택시(MBE) 혹은 스퍼터링 혹은 수산화물 증기상 에피택시(HVPE) 등의 방법을 사용하여 성장될 수 있다.
상기 제1 반사층(220)은 제1 도전형으로 도핑될 수 있다. 예를 들어, 상기 제1 도전형 도펀트는 Si, Ge, Sn, Se, Te 등과 같은 n형 도펀트를 포함할 수 있다.
상기 제1 반사층(220)은 갈륨계 화합물, 예를 들면 AlGaAs를 포함할 수 있으나 이에 한정되는 것은 아니다. 상기 제1 반사층(220)은 분산 브래그 반사기(DBR: Distributed Bragg Reflector)일 수 있다. 예를 들어, 제1 반사층(220)은 서로 다른 굴절 률을 가지는 물질로 이루어진 층들이 교대로 적어도 1회 이상 적층된 구조일 수 있다.
예를 들어, 도 21b와 같이, 상기 제1 반사층(220)은 상기 기판(210) 상에 배치된 제1 그룹 제1 반사층(221) 및 상기 제1 그룹 제1 반사층(221) 상에 배치된 제2 그룹 제1 반사층(222)을 포함할 수 있다.
상기 제1 그룹 제1 반사층(221)과 제2 그룹 제1 반사층(222)은 AlxGa(1-x)As(0<x<1)의 조성식을 갖는 반도체 물질로 이루어진 복수의 층을 구비할 수 있으며, 각 층 내의 Al이 증가하면 각 층의 굴절률은 감소하고, Ga가 증가하면 각 층의 굴절률은 증가할 수 있다.
또한 도 21b와 같이, 제1 그룹 제1 반사층(221)과 제2 그룹 제1 반사층(222)도 각각 단일 또는 복수의 층으로 형성될 수 있다. 예를 들어, 제1 그룹 제1 반사층(221)은 제1 그룹 제1-1 층(221a)과 제1 그룹 제1-2 층(221b)의 약 30~40 페어(pair)를 포함할 수 있다. 또한, 제2 그룹 제1 반사층(222)도 제2 그룹 제1-1 층(222a)과 제2 그룹 제1-2 층(222b)의 약 5~15 페어(pair)를 포함할 수 있다.
다음으로, 제1 반사층(220) 상에 활성영역(230)이 형성될 수 있다.
도 21b와 같이, 상기 활성영역(230)은 활성층(232) 및 상기 활성층(232)의 하측에 배치되는 제1 캐비티(231), 상측에 배치되는 제2 캐비티(233)를 포함할 수 있다. 실시예의 활성영역(230)은 제1 캐비티(231)와 제2 캐비티(233)를 모두 포함하거나, 둘 중의 하나만 포함할 수도 있다.
상기 활성층(232)은 Ⅲ-Ⅴ족 원소의 화합물 반도체 재료를 이용하여 양자우물층(232a)과 양자벽층(232b)을 포함할 수 있다. 상기 활성층(232)은 InGaAs/AlxGaAs, AlGaInP/GaInP, AlGaAs/AlGaAs, AlGaAs/GaAs, GaAs/InGaAs 등의 1 내지 3 페어 구조로 형성될 수 있으나 이에 한정되지는 않는다. 상기 활성층(232)에는 도펀트가 도핑되지 않을 수 있다.
상기 제1 캐비티(231)와 상기 제2 캐비티(233)는 AlyGa(1-y)As(0<y<1) 물질로 형성될 수 있으나 이에 한정되지 않는다. 예를 들어, 상기 제1 캐비티(231)와 상기 제2 캐비티(233)는 각각 AlyGa(1-y)As으로된 복수의 층을 포함할 수 있다.
예를 들어, 상기 제1 캐비티(231)는 제1-1 캐비티층(231a)과 제1-2 캐비티층(231b)을 포함할 수 있다. 또한 상기 제2 캐비티(233)는 제2-1 캐비티층(233a)과 제2-2 캐비티층(233b)을 포함할 수 있다.
다음으로, 활성영역(230) 상에 애퍼처 영역(240)을 형성하기 위한 AlGa 계열층(241a)을 형성할 수 있다. 상기 AlGa 계열층(241a)은 복수의 층을 포함할 수 있다. 예를 들어, 상기 AlGa 계열층(241a)은 제1 AlGa 계열층(241a1)과 제2 AlGa 계열층(241a2)을 포함할 수 있다.
상기 AlGa 계열층(241a)은 AlzGa(1-z)As(0<z<1) 등의 물질을 포함할 수 있으나 이에 한정되는 것은 아니다.
상기 AlGa 계열층(241a)은 도전성 재료를 포함할 수 있으며, 제1 반사층(220) 및 제2 반사층(250)과 동종의 재료를 포함할 수 있으나 이에 한정되는 것은 아니다.
예를 들어, 상기 AlGa 계열층(241a)이 AlGaAs 계열물질을 포함하는 경우, 상기 AlGa 계열층(241a)은 AlxGa(1-x)As(0<x<1)의 조성식을 갖는 반도체 물질로 이루어질 수 있으며, 예를 들면 Al0.98Ga0.02As의 조성식을 가질 수 있으나 이에 한정되는 것은 아니다.
다음으로, 상기 AlGa 계열층(241a)상에 제2 반사층(250)이 형성될 수 있다.
상기 제2 반사층(250)은 갈륨계 화합물 예를 들면 AlGaAs를 포함할 수 있다. 예를 들어, 제2 반사층(250)의 각 층은 AlGaAs를 포함할 수 있고, 상세하게는 AlxGa(1-x)As(0<x<1)의 조성식을 갖는 반도체 물질로 이루어질 수 있다.
상기 제2 반사층(250)은 제2 도전형 도펀트가 도핑될 수 있다. 예를 들어, 상기 제2 도전형 도펀트는 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트일 수 있다. 한편, 제1 반사층(220)이 p형 도펀트로 도핑될 수도 있고, 제2 반사층(250)이 n형 도펀트로 도핑될 수도 있다.
상기 제2 반사층(250)도 분산 브래그 반사기(DBR: Distributed Bragg Reflector)일 수 있다. 예를 들어, 제2 반사층(250)은 서로 다른 굴절률을 가지는 물질로 이루어진 복수의 층이 교대로 적어도 1회 이상 적층된 구조일 수 있다.
예를 들어, 상기 제2 반사층(250)은 상기 활성영역(230)에 인접하게 배치된 제1 그룹 제2 반사층(251) 및 상기 제1 그룹 제2 반사층(251)보다 상기 활성영역(230)에서 이격배치 된 제2 그룹 제2 반사층(252)을 포함할 수 있다.
또한 상기 제1 그룹 제2 반사층(251)과 제2 그룹 제2 반사층(252)도 각각 단일 또는 복수의 층으로 형성될 수 있다. 예를 들어, 제1 그룹 제2 반사층(251)은 제1 그룹 제2-1 층(251a)과 제1 그룹 제2-2 층(251b)의 약 1~5 페어(pair)를 포함할 수 있다 또한, 제2 그룹 제2 반사층(252)도 제2 그룹 제2-1 층(252a)과 제2 그룹 제2-2 층(252b)의 약 5~15 페어(pair)를 포함할 수 있다.
다음으로 도 22a는 실시예에 따른 표면발광 레이저소자의 제1 영역(C1) 확대도이고, 도 22b는 도 22a에 도시된 실시예에 따른 표면발광 레이저소자의 A1-A2선을 따른 단면도이다.
실시예는 도 22b와 같이, 소정의 마스크(300)를 사용하여 발광 구조물을 식각하여 메사영역(M)을 형성할 수 있다. 이때, 제2 반사층(250)으로부터 AlGa 계열층(241a)과 활성영역(230)까지 메사 식각될 수 있고, 제1 반사층(220)의 일부까지 메사 식각될 수도 있다. 메사 식각에서는 ICP(inductively coupled plasma) 에칭 방법으로, 주변 영역의 제2 반사층(250)으로부터 AlGa 계열층(241a)과 활성영역(230)을 제거할 수 있으며, 메사 식각 영역은 측면이 기울기를 가지고 식각될 수 있다.
다음으로 도 23a는 실시예에 따른 표면발광 레이저소자의 제1 영역(C1) 확대도이고, 도 23b는 도 23a에 도시된 실시예에 따른 표면발광 레이저소자의 A1-A2선을 따른 단면도이다.
실시예는 도 23b와 같이, AlGa 계열층(241a)의 가장 자리 영역을 절연영역(242)으로 변화시킬 수 있으며, 예를 들면 습식 산화(Wet Oxidation)으로 변화시킬 수 있다. 이를 통해 절연영역(242)과 비 산화영역인 애퍼처(241)를 포함하는 애퍼처 영역(240)을 형성할 수 있다.
예를 들어, AlGa 계열층(241a)의 가장 자리 영역으로부터 산소를 공급하면, AlGa 계열층의 AlGaAs가 H2O와 반응하여 알루미늄 산화물(Al2O3)가 형성될 수 있다. 이때, 반응 시간 등을 조절하여, AlGa 계열층의 중앙 영역은 산소와 반응하지 않고 가장 자리영역만 산소와 반응하여 알루미늄 산화물의 절연영역(242)이 형성될 수 있도록 한다.
또한 실시예는 이온 주입(Ion implantation)을 통해 AlGa 계열층의 가장 자리 영역을 절연영역(242)으로 변화시킬 수도 있으며 이에 한정하지 않는다. 이온 주입 시에는 300keV 이상의 에너지로 포톤(photon)이 공급될 수 있다.
상술한 반응 공정 후에, 애퍼처 영역(240)의 중앙 영역은 도전성의 AlGaAs가 배치되고 가장 자리 영역에는 비도전성의 Al2O3가 배치될 수 있다. 중앙 영역의 AlGaAs는 활성영역(230)에서 방출되는 광이 상부 영역으로 진행되는 부분으로 애퍼처(241)로 정의될 수 있다.
실시예의 기술적 과제중의 하나는 고전류 인가시 또는 애퍼처 사이즈의 증대에도 불구하고 고차 모드 이동(higher mode shift)에 따른 출사 빔 패턴(beam pattern)이 분열되는 문제를 방지할 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공하고자 함이다.
이하 도 24a 내지 도 26을 참조하여 실시예에 따른 애퍼처 영역(240)의 기술적 특징을 상술하기로 한다.
도 24a는 실시예에 따른 표면발광 레이저소자의 애퍼처 영역(240)의 평면 개념도이다.
실시예에 따른 표면발광 레이저소자는 소정의 메사영역(M)에 의해 애퍼처 영역(240)이 정의될 수 있으며, 상기 애퍼처 영역(240)은 개구부 내지 발산영역인 애퍼처(aperture)(241) 및 절연영역(242)을 포함할 수 있다.
실시예에서 상기 애퍼처 영역(240)의 절연영역(242)은 그 외측 또는 외륜에서 내측방향으로 형성된 제1 리세스(242R1)를 포함할 수 있으며, 상기 애퍼처 영역(240)의 애퍼처(241)는 상기 절연영역(242)의 제1 리세스(242R1)에 대응되는 영역에 제2 리세스(241R2)를 포함할 수 있다.
상기 절연영역(242)의 제1 리세스(242R1)와 상기 애퍼처(241)의 제2 리세스(241R2)는 복수로 구비될 수 있으며, 예를 들어 4개로 도시되었으나 이에 한정되는 것은 아니다.
상기 제1 리세스(242R1)와 상기 제2 리세스(241R2)는 그 수평단면이 삼각형 등의 다각형 형상일 수 있으나 이에 한정되는 것은 아니다. 상기 제1 리세스(242R1) 또는 제2 리세스(241R2)는 제1 ?(dip) 또는 제2 ?으로 칭해질 수 있으나 이에 한정되는 것은 아니다.
도 24b는 도 24a에 도시된 실시예에 따른 표면발광 레이저소자의 애퍼처 영역(240)에서 발광모드 예시도이다.
실시예에 의하면 애퍼처 영역(240)에 리세스 또는 ?을 배치함으로써 리세스 또는 딥에 의해 광학적 구속(optical confinement)로 인해 가용 모드를 제어함으로써 고차모드 쉬프트(higher mode shift)가 지연 되고 모드(mode)가 유지되는 특별한 기술적 효과가 있다.
예를 들어, 실시예에 의하면 애퍼처 영역(240)의 애퍼처(241)에 제2 리세스(241R2)를 복수로 배치함으로써 제2 리세스(241R2) 사이의 애퍼처에서 레이저 발진(L)이 되도록 광학적 구속(optical confinement)을 함으로써 가용모드를 제어하여 고차모드 쉬프트(higher mode shift)가 지연 되고 이를 통해 모드(mode)가 유지되는 특별한 기술적 효과가 있다.
이에 따라 실시예에 의하면, 고전류 인가시 또는 애퍼처 사이즈의 증대에도 불구하고 빔 모드(beam mode)를 제어함으로써 고차 모드 이동(higher mode shift)에 따른 출사 빔의 빔 패턴(beam pattern)이 분열되는 문제를 방지할 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
종래기술에 의하면, 표면발광 레이저소자에서 고차 모드(higher mode)일수록 피크(peak) 단파장 쉬프트(shift)가 높은 에너지(higher energy)에서 발생이되며, 이러한 쉬프트는 연속적이 아닌 산발적인 쉬프트가 발생되어 에너지(energy)의 불연속적인 변화(hopping)가 발생된다.
실시예에 의하면 애퍼처(241)에 제2 리세스(R2)를 배치함으로써 제2 리세스(241R2)의 광학적 구속(optical confinement)로 인해 가용 모드를 제어함으로써 고차모드 쉬프트(higher mode shift)가 지연 되고 모드(mode)가 유지되는 특별한 기술적 효과가 있다.
예를 들어, 실시예에서 애퍼처(241)에 제2 리세스(241R2)가 4개 배치된 경우, LPxy mode에서 x가 짝수일 경우에만 모드 발진이 가능하고, LPxy mode에서 x가 홀수일 때는 제2 리세스(241R2)에서 발진모드가 걸려서 발진이 차단되도록 제어함으로써 특정 모드(mode)가 안정하게 발진하는 에너지 마진(energy margin) 증가로 발진 모드의 안정화를 확보할 수 있는 특별한 기술적 효과가 있다. 다만, 발진이 차단되는 모드는 예시적일 뿐이며 위 내용에 한정되는 것은 아니다.
도 25a 내지 도 25d는 도 24a에 도시된 실시예에 따른 표면발광 레이저소자의 애퍼처 영역(240)의 제조공정 설명도이며, 도 26은 도 25c에 도시된 실시예에 따른 표면발광 레이저소자의 애퍼처 영역(240)의 단면도이다.
도 25a를 참조하면, 애퍼처 영역(240)을 형성하기 위해, AlGa 계열층(241a)을 형성하고, 상기 AlGa 계열층(241a)을 메사에칭(M)에 의해 애퍼처 영역을 정의할 수 있다.
이후 AlGa 계열층(241a)의 외곽으로부터 내측방향으로 제1 리세스(242R1)를 형성할 수 있다. 이때 애퍼처(241)에 대응되는 애퍼처 설계영역(241M)이 중심영역에 예정될 수 있다.
상기 애퍼처 설계영역(241M)의 반경(r)은 AlGa 계열층(241a)의 반경(R)보다 작을 수 있다.
도 25b는 제1 리세스(242R1)의 확대도이며, 제1 리세스(242R1)는 복수로 구비될 수 있으며 다각형 형상일 수 있으며, 예를 들어 이등변 삼각형 형상일 수 있으나 이에 한정되는 것은 아니다.
예를 들어, 상기 제1 리세스(242R1)의 제1 높이(l1)은 AlGa 계열층(241a)의 반경(R)에서 애퍼처 설계영역(241M)의 반경(r)을 뺀 값 이하일 수 있다.
또한 상기 제1 리세스(242R1)의 제1 각도(θ1)는 5 ˚내지 30 ˚일 수 있으며, 제1 각도(θ1)가 5˚미만의 경우에는 이후 진행되는 제2 리세스(241R2) 형성이 제대로 이루어 지지 않을 수 있으며, 제1 각도(θ1)가 30˚ 초과의 경우에는 이후 형성되는 제2 리세스(241R2) 영역이 너무 넓어 발산되는 애퍼처(241) 넓이 확보가 어려울 수 있다.
다음으로, 도 25b를 참조하면, 애퍼처 영역(240)을 형성하기 위해, AlGa 계열층(241a)에 산화공정을 통해 절연영역(242)을 형성하고, 절연영역(242)에 의해 애퍼처(241)를 정의할 수 있다.
이때 애퍼처(241)에는 제1 리세스(242R1)에 대응되는 영역에 제2 리세스(241R2)를 포함할 수 있다.
도 25d는 제2 리세스(241R2)의 확대도이며, 제2 리세스(241R2)는 복수로 구비될 수 있으며 다각형 형상일 수 있다. 예를 들어, 제1 리세스(242R1)가 이등변 삼각형 형상인 경우, 제2 리세스(241R2)는 이등변 삼각형 형상일수 있으나 이에 한정되는 것은 아니다.
상기 제2 리세스(241R2)의 제2 각도(θ2)는 2 ˚내지 45 ˚일 수 있으며, 제2 각도(θ2)가 2˚미만의 경우에는 광 구속 효과가 미미할 수 있으며, 제2 각도(θ2)가 45˚ 초과의 경우에는 이후 형성되는 제2 리세스(241R2) 영역이 너무 넓어 발산되는 애퍼처(241) 넓이 확보가 어려울 수 있다.
다음으로 도 26은 도 25c에 도시된 실시예에 따른 표면발광 레이저소자의 A5-A6 선을 따른 애퍼처 영역(240)의 단면도이다.
실시예에 의하면, 제2 반사층(250)으로부터 활성영역(230)까지 제거를 통해 제1 리세스(242R1)를 형성할 수 있다. 상기 제1 리세스(242R1)를 형성하기 위해 활성영역(230)을 지나 제1 반사층(220)까지 일부 제거될 수 있으나 이에 한정되는 것은 아니다.
이후, 산화공정을 통해 절연영역(242)이 형성되어 애퍼처(241)가 정의될 수 있다. 이때, 제1 리세스(242R1)에 대응되는 영역에 산화공정이 진행된 절연영역(242)을 제2 리세스(241R2)로 정의할 수 있다.
실시예에서 애퍼처(241)는 제2 리세스(241R2)와 이격된 제1 애퍼처(241q)와 제2 리세스(241R2)와 인접한 제2 애퍼처(241p)를 포함할 수 있다. 애퍼처 영역의 중심(240C)을 기준으로 상기 제1 애퍼처(241q)의 제1 반경(r1)은 상기 제2 애퍼처(241p)의 제2 반경(r2)에 비해 클 수 있다.
실시예에 의하면 애퍼처 영역에 리세스(recess)를 배치함으로써 리세스에 의해 광학적 구속(optical confinement)로 인해 가용 모드를 제어함으로써 고차모드 쉬프트(higher mode shift)가 지연 되고 모드(mode)가 유지되는 특별한 기술적 효과가 있다.
이를 통해, 실시예에 의하면, 고전류 인가시 또는 애퍼처 사이즈의 증대에도 불구하고 빔 모드(beam mode)를 제어함으로써 고차 모드 이동(higher mode shift)에 따른 출사 빔의 빔 패턴(beam pattern)이 분열되는 문제를 방지할 수 있는 표면발광 레이저소자 및 이를 포함하는 발광장치를 제공할 수 있다.
다음으로 도 27a는 실시예에 따른 표면발광 레이저소자의 제1 영역(C1) 확대도이고, 도 27b는 도 27a에 도시된 실시예에 따른 표면발광 레이저소자의 A1-A2선을 따른 단면도이다.
도 27b와 같이, 발광 구조물의 상부면에 패시베이션층(270)이 형성될 수 있다. 상기 패시베이션층(270)은 폴리마이드(Polymide), 실리카(SiO2), 또는 질화 실리콘(Si3N4) 중 적어도 하나를 포함할 수 있다.
상기 패시베이션층(270)은 이후 형성되는 제2 전극(280)과 전기적으로 연결되도록 제2 반사층(250)의 일부를 노출시킬 수 있다.
다음으로 도 28a는 실시예에 따른 표면발광 레이저소자의 제1 영역부분(C1) 확대도이고, 도 28b는 도 28a에 도시된 실시예에 따른 표면발광 레이저소자의 A1-A2선을 따른 단면도이다.
실시예에 의하면 도 28b와 제2 반사층(250) 상에 컨택 전극(282)이 형성될 수 있으며, 컨택 전극(282)의 사이의 중앙영역은 애퍼처(241)와 대응될 수 있다. 상기 컨택 전극(282)은 제2 반사층(250)과의 오믹 접촉 특성을 향상시킬 수 있다.
다음으로, 컨택 전극(282)과 전기적으로 접촉되는 패드 전극(284)이 형성될 수 있으며, 패드 전극(284)은 패시베이션층(270)의 상부로 연장되어 배치되어 외부로부터 전류를 공급받을 수 있다.
상기 컨택 전극(282)과 패드 전극(284)은 도전성 재료로 이루어질 수 있다. 예를 들어, 컨택 전극(282)과 패드 전극(284)은 알루미늄(Al), 티타늄(Ti), 크롬(Cr), 니켈(Ni), 구리(Cu), 금(Au) 중 적어도 하나를 포함하여 단층 또는 다층 구조로 형성될 수 있다.
다음으로, 상기 기판(210)의 아래에는 제1 전극(215)이 배치될 수 있다. 상기 제1 전극(215)의 배치 전에 소정의 그라인딩 공정 등을 통해 상기 기판(210)의 저면 일부를 제거하여 방열 효율을 향상시킬 수 있다. 상기 제1 전극(215)은 도전성 재료로 이루어질 수 있고, 예를 들면 금속일 수 있다. 예를 들어, 상기 제1 전극(215)은 알루미늄(Al), 티타늄(Ti), 크롬(Cr), 니켈(Ni), 구리(Cu), 금(Au) 중 적어도 하나를 포함하여 단층 또는 다층 구조로 형성될 수 있다.
상술한 반도체 소자는 레이저 다이오드일 수 있으며, 2개의 반사층 내부가 공진기로 작용할 수 있다. 이때, 제1 도전형의 제1 반사층(220)과 제2 도전형의 제2 반사층(250)으로부터 전자와 정공이 활성층으로 공급되어, 활성영역(230)에서 방출된 광이 공진기 내부에서 반사되어 증폭되고 문턱 전류에 도달하면, 상술한 애퍼처(241)를 통하여 외부로 방출될 수 있다.
실시예에 따른 반도체 소자에서 방출된 광은 단일 파장 및 단일 위상의 광일 수 있으며, 제1 반사층(220), 제2 반사층(250)과 활성영역(230)의 조성 등에 따라 단일 파장 영역이 변할 수 있다.
이하 도 29를 참조하여 실시예에서 전극구조를 개선하여 모드 제어가 가능한 점을 설명하기로 한다.
종래기술은 고전류 인가시 또는 애퍼처 사이즈의 증대시에 고차 모드 이동(higher mode shift)에 따른 출사 빔 패턴(beam pattern)이 분열되는 문제가 발생하고 있다.
도 29는 실시예에 따른 표면발광 레이저소자에서 제2 전극 구조 예시도이다.
예를 들어, 실시예에 의하면 애퍼처(241) 상측에 제2 반사층(250)이 배치될 수 있으며, 실시예의 컨택전극(282)은 애퍼처(41) 외곽에 제1 컨택전극(82a)이 배치되고, 상기 애퍼처(241) 방향으로 연장되는 복수의 돌출전극(282p)을 포함할 수 있다.
상기 복수의 돌출전극(282p)은 4개인 경우로 도시되었으나 이에 한정되는 것은 아니며, 2개 이상의 복수로 형성될 수 있다.
실시예에 의하면, 애퍼처(41) 외곽에 제1 컨택전극(282a)이 배치되고, 상기 애퍼처(241) 방향으로 연장되는 복수의 돌출전극(282p)을 포함함으로써, 복수의 돌출전극(282p) 사이에서 광학적 구속(optical confinement)을 유발하여 레이저 발산(L)에 대한 가용 모드를 제어함으로써 고차모드 쉬프트(higher mode shift)가 지연 되고 모드(mode)가 유지되는 기술적 효과가 있다.
이에 따라 실시예에 의하면 컨택 전극(282)의 돌출전극(282p)을 애퍼처(241) 위치에 인접하도록 연장함으로써 전류 인젝션 콘트라스트(Current injection contrast) 이용하여 발광 모드를 제어(mode control)할 수 있는 특별한 기술적 효과가 있다.
(이동 단말기)
다음으로 도 30은 실시예에 따른 표면발광 레이저소자가 적용된 이동 단말기의 사시도이다.
도 30에 도시된 바와 같이, 실시예의 이동 단말기(1500)는 후면에 제공된 카메라 모듈(1520), 플래쉬 모듈(1530), 자동 초점 장치(1510)를 포함할 수 있다. 여기서, 상기 자동 초점 장치(1510)는 발광부로서 앞서 설명된 실시예에 따른 표면발광 레이저소자의 패키지 중의 하나를 포함할 수 있다.
상기 플래쉬 모듈(1530)은 그 내부에 광을 발광하는 발광소자를 포함할 수 있다. 상기 플래쉬 모듈(1530)은 이동 단말기의 카메라 작동 또는 사용자의 제어에 의해 작동될 수 있다.
상기 카메라 모듈(1520)은 이미지 촬영 기능 및 자동 초점 기능을 포함할 수 있다. 예컨대 상기 카메라 모듈(1520)은 이미지를 이용한 자동 초점 기능을 포함할 수 있다.
상기 자동 초점 장치(1510)는 레이저를 이용한 자동 초점 기능을 포함할 수 있다. 상기 자동 초점 장치(1510)는 상기 카메라 모듈(1520)의 이미지를 이용한 자동 초점 기능이 저하되는 조건, 예컨대 10m 이하의 근접 또는 어두운 환경에서 주로 사용될 수 있다. 상기 자동 초점 장치(1510)는 앞서 기술된 실시예의 표면발광 레이저소자를 포함하는 발광부와, 포토 다이오드와 같은 빛 에너지를 전기 에너지로 변환하는 수광부를 포함할 수 있다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 실시예를 한정하는 것이 아니며, 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 설정하는 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
제1 전극(215); 기판(210); 제1 반사층(220);
활성영역(230); 애퍼처(aperture)(241), 절연영역(242);
애퍼처 영역(240); 제2 반사층(250); 제2 전극(280);
제1 리세스(242R1), 제2 리세스(241R2)

Claims (7)

  1. 제1 전극;
    상기 제1 전극 상에 배치된 기판;
    상기 기판 상에 배치된 제1 반사층;
    상기 제1 반사층 상에 배치되고, 캐비티 영역을 포함하는 활성영역;
    상기 활성영역 상에 배치되며, 애퍼처(aperture) 및 절연영역을 포함하는 애퍼처 영역;
    상기 애퍼처 영역 상에 배치되는 제2 반사층; 및
    상기 제2 반사층 상에 배치되는 제2 전극을 포함하고,
    상기 애퍼처 영역의 절연영역은 외륜에서 내측방향으로 형성된 제1 리세스를 포함하며,
    상기 애퍼처 영역의 애퍼처는, 상기 제1 리세스에 대응되는 영역에 제2 리세스를 포함하는 것을 특징으로 하는 표면발광 레이저소자.
  2. 제1 항에 있어서,
    상기 절연영역의 제1 리세스는 복수로 구비되는 표면발광 레이저소자.
  3. 제1 항에 있어서,
    상기 제1 리세스의 제1 각도는 5 ˚내지 30 ˚인 표면발광 레이저소자.
  4. 제1 항에 있어서,
    상기 제2 리세스의 제2 각도는 2 ˚내지 45 ˚인 표면발광 레이저소자.
  5. 제1 항에 있어서,
    상기 애퍼처는,
    상기 제2 리세스와 이격된 제1 애퍼처와 상기 제2 리세스와 인접한 제2 애퍼처를 포함하며,
    상기 애퍼처 영역의 중심을 기준으로 상기 제1 애퍼처의 제1 반경은 상기 제2 애퍼처의 제2 반경에 비해 큰 표면발광 레이저소자.
  6. 제1 전극;
    상기 제1 전극 상에 배치된 기판;
    상기 기판 상에 배치된 제1 반사층;
    상기 제1 반사층 상에 배치되고, 캐비티 영역을 포함하는 활성영역;
    상기 활성영역 상에 배치되며, 애퍼처(aperture) 및 절연영역을 포함하는 애퍼처 영역;
    상기 애퍼처 영역 상에 배치되는 제2 반사층; 및
    상기 제2 반사층 상에 배치되는 제2 전극을 포함하고,
    상기 제2 전극은,
    상기 제2 반사층 상에 컨택 전극과 상기 컨택 전극과 전기적으로 연결되는 패드 전극을 포함하고,
    상기 컨택 전극은,
    상기 애퍼처 외곽에 배치되는 제1 컨택전극과,
    상기 애퍼처 방향으로 연장되는 복수의 돌출전극을 포함하는 표면발광 레이저소자.
  7. 제1 항 내지 제6 항 중 어느 하나의 표면발광 레이저소자를 포함하는 발광장치.
KR1020180053703A 2018-05-10 2018-05-10 표면발광 레이저소자 및 이를 포함하는 발광장치 KR102468924B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020180053703A KR102468924B1 (ko) 2018-05-10 2018-05-10 표면발광 레이저소자 및 이를 포함하는 발광장치
US17/054,405 US11984703B2 (en) 2018-05-10 2019-05-10 Surface emitting laser device and a light emitting device including the same
PCT/KR2019/005621 WO2019216685A1 (ko) 2018-05-10 2019-05-10 표면발광 레이저소자 및 이를 포함하는 발광장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180053703A KR102468924B1 (ko) 2018-05-10 2018-05-10 표면발광 레이저소자 및 이를 포함하는 발광장치

Publications (2)

Publication Number Publication Date
KR20190129287A true KR20190129287A (ko) 2019-11-20
KR102468924B1 KR102468924B1 (ko) 2022-11-22

Family

ID=68728977

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180053703A KR102468924B1 (ko) 2018-05-10 2018-05-10 표면발광 레이저소자 및 이를 포함하는 발광장치

Country Status (1)

Country Link
KR (1) KR102468924B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093798A (ja) * 2003-09-18 2005-04-07 Seiko Epson Corp 面発光型半導体レーザおよびその製造方法
JP2006041181A (ja) * 2004-07-27 2006-02-09 Sony Corp 面発光半導体レーザー及びこれを用いた光学装置
US20110194579A1 (en) * 2008-01-10 2011-08-11 Sony Corporation Vertical cavity surface emitting laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093798A (ja) * 2003-09-18 2005-04-07 Seiko Epson Corp 面発光型半導体レーザおよびその製造方法
JP2006041181A (ja) * 2004-07-27 2006-02-09 Sony Corp 面発光半導体レーザー及びこれを用いた光学装置
US20110194579A1 (en) * 2008-01-10 2011-08-11 Sony Corporation Vertical cavity surface emitting laser

Also Published As

Publication number Publication date
KR102468924B1 (ko) 2022-11-22

Similar Documents

Publication Publication Date Title
JP7411974B2 (ja) 面発光レーザ素子及びこれを含む発光装置
US11942762B2 (en) Surface-emitting laser device and light emitting device including the same
US11984703B2 (en) Surface emitting laser device and a light emitting device including the same
KR102484972B1 (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR102472459B1 (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR102084067B1 (ko) 표면발광 레이저 소자 및 이를 포함하는 발광장치
US11894659B2 (en) Surface emitting laser device and a light emitting device including the same
KR102569495B1 (ko) 표면 광방출 레이저 소자 및 이를 포함하는 발광장치
US20210159672A1 (en) Surface emitting laser device and light emitting device including same
KR102468924B1 (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR102504307B1 (ko) 표면방출발광 레이저소자, 이를 포함하는 발광장치 및 이의 제조방법
KR102475920B1 (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR20190129440A (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR102447104B1 (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR102430961B1 (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR20200012613A (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR102635056B1 (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR20200049026A (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR102502918B1 (ko) 표면발광레이저 소자
KR102515674B1 (ko) 표면 광방출 레이저 소자 및 이를 포함하는 발광장치
KR102563217B1 (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR20200001177A (ko) 표면발광레이저 소자 및 이를 포함하는 발광장치
KR20190119387A (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR20190084898A (ko) 표면발광 레이저소자 및 이를 포함하는 발광장치
KR20190068096A (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant