KR20190125141A - 뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치 - Google Patents

뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치 Download PDF

Info

Publication number
KR20190125141A
KR20190125141A KR1020180074916A KR20180074916A KR20190125141A KR 20190125141 A KR20190125141 A KR 20190125141A KR 1020180074916 A KR1020180074916 A KR 1020180074916A KR 20180074916 A KR20180074916 A KR 20180074916A KR 20190125141 A KR20190125141 A KR 20190125141A
Authority
KR
South Korea
Prior art keywords
neural network
channel
pdf
parameter values
distribution
Prior art date
Application number
KR1020180074916A
Other languages
English (en)
Inventor
하상원
이준행
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to US16/282,748 priority Critical patent/US11836603B2/en
Publication of KR20190125141A publication Critical patent/KR20190125141A/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0495Quantised networks; Sparse networks; Compressed networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/483Computations with numbers represented by a non-linear combination of denominational numbers, e.g. rational numbers, logarithmic number system or floating-point numbers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/096Transfer learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Image Analysis (AREA)

Abstract

피처 맵들 각각에 포함된 각 채널에서 이용되는 부동 소수점 타입의 파라미터 값들에 대한 채널 별 프로파일 정보를 데이터 세트로 입력 받는 분류 네트워크를 이용하여 채널 별 프로파일 정보에 적합한 PDF 유형을 각 채널 별로 결정하고, 결정된 PDF 유형에 기초하여 파라미터 값들의 분포 범위를 통계적으로 커버하는 고정 소수점 표현을 각 채널 별로 결정함으로써 뉴럴 네트워크의 파라미터를 양자화하는 방법 및 장치를 제공할 수 있다.

Description

뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치{Method and apparatus for quantizing parameters of neural network}
본 개시는 뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치에 관한 것이다.
뉴럴 네트워크(neural network)는 생물학적 뇌를 모델링한 컴퓨터 과학적 아키텍쳐(computational architecture)를 참조한다. 최근 뉴럴 네트워크 기술이 발전함에 따라, 다양한 종류의 전자 시스템에서 뉴럴 네트워크 장치를 사용하여 입력 데이터를 분석하고 유효한 정보를 추출하는 연구가 활발히 진행되고 있다.
뉴럴 네트워크 장치는 복잡한 입력 데이터에 대한 많은 양의 연산을 필요로 한다. 뉴럴 네트워크 장치가 입력을 실시간으로 분석하고, 정보를 추출하기 위해서 뉴럴 네트워크 연산을 효율적으로 처리할 수 있는 기술이 요구된다. 특히, 스마트폰과 같은, 저전력 고성능 임베디드 시스템은 제한된 리소스를 가지므로, 복잡한 입력 데이터를 처리하는데 필요한 연산량을 감소시키면서도 정확도 손실을 최소화할 수 있는 기술이 요구된다.
다양한 실시예들은 뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치를 제공하는데 있다. 본 개시가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 이하의 실시예들로부터 또 다른 기술적 과제들이 유추될 수 있다.
상술한 기술적 과제를 해결하기 위한 수단으로서, 일 측면에 따른 뉴럴 네트워크의 파라미터들을 양자화하는 방법은, 부동 소수점들을 이용하여 미리 훈련된(pre-trained) 뉴럴 네트워크에 제1 데이터 세트가 입력됨에 따라 피처 맵들 각각에 포함된 각 채널에서 이용되는 부동 소수점 타입의 제1 파라미터 값들에 대한 채널 별 프로파일 정보를 획득하는 단계; 상기 채널 별 프로파일 정보를 데이터 세트로 입력 받는 분류 네트워크(Classification Network)를 이용하여 상기 채널 별 프로파일 정보에 적합한 확률 밀도 함수(Probability Density Function: PDF) 유형을 상기 각 채널 별로 결정하는 단계; 상기 결정된 PDF 유형에 기초하여 상기 제1 파라미터 값들의 분포 범위를 통계적으로 커버하는 고정 소수점 표현을 상기 각 채널 별로 결정하는 단계; 및 상기 각 채널 별로 결정된 고정 소수점 표현에 기초하여 고정 소수점 타입의 양자화된 뉴럴 네트워크를 생성하는 단계를 포함할 수 있다.
또한, 다른 측면에 따른 장치는, 적어도 하나의 프로그램이 저장된 메모리; 및 상기 적어도 하나의 프로그램을 실행함으로써 뉴럴 네트워크의 파라미터들을 양자화하는 프로세서를 포함하고, 상기 프로세서는, 부동 소수점들을 이용하여 미리 훈련된 뉴럴 네트워크에 제1 데이터 세트가 입력됨에 따라 피처 맵들 각각에 포함된 각 채널에서 이용되는 부동 소수점 타입의 제1 파라미터 값들에 대한 채널 별 프로파일 정보를 획득하고, 상기 채널 별 프로파일 정보를 데이터 세트로 입력 받는 분류 네트워크를 이용하여 상기 채널 별 프로파일 정보에 적합한 PDF 유형을 상기 각 채널 별로 결정하고, 상기 결정된 PDF 유형에 기초하여 상기 제1 파라미터 값들의 분포 범위를 통계적으로 커버하는 고정 소수점 표현을 상기 각 채널 별로 결정하며, 상기 각 채널 별로 결정된 고정 소수점 표현에 기초하여 고정 소수점 타입의 양자화된 뉴럴 네트워크를 생성할 수 있다.
도 1은 일부 실시예에 따른 산출 그래프(computational graph)의 아키텍처를 설명하기 위한 도면이다.
도 2는 일부 실시예에 따른 뉴럴 네트워크에서 수행되는 연산을 설명하기 위한 도면이다.
도 3은 일부 실시예에 따른 뉴럴 네트워크 양자화 장치의 하드웨어 구성을 도시한 블록도이다.
도 4는 일부 실시예에 따른 미리 훈련된 뉴럴 네트워크를 양자화하여 하드웨어 가속기에 채용하는 것을 설명하기 위한 도면이다.
도 5는 일부 실시예에 따른 뉴럴 네트워크의 파라미터들을 양자화하는 방법을 나타내는 흐름도이다.
도 6은 일부 실시예에 따른 기 정의된 복수의 PDF 유형들의 예시를 나타내는 도면이다.
도 7은 일부 실시예에 따른 분류 네트워크를 훈련시키는 방법을 나타내는 흐름도이다.
도 8은 일부 실시예에 따른 뉴럴 네트워크의 파라미터들을 양자화하는 방법을 이용하여 양자화를 수행한 결과를 종래기술에 따른 양자화 방법을 이용하여 양자화를 수행한 결과와 비교한 도면이다.
도 9는 일부 실시예에 따른 전자 시스템의 구성을 나타내는 블록도이다.
본 실시예들에서 사용되는 용어는 본 실시예들에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 기술분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 임의로 선정된 용어도 있으며, 이 경우 해당 실시예의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서, 본 실시예들에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 실시예들의 전반에 걸친 내용을 토대로 정의되어야 한다.
실시예들에 대한 설명들에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 그 중간에 다른 구성요소를 사이에 두고 전기적으로 연결되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 실시예들에서 사용되는 "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 도는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
하기 실시예들에 대한 설명은 권리범위를 제한하는 것으로 해석되지 말아야 하며, 해당 기술분야의 당업자가 용이하게 유추할 수 있는 것은 실시예들의 권리범위에 속하는 것으로 해석되어야 할 것이다. 이하 첨부된 도면들을 참조하면서 오로지 예시를 위한 실시예들을 상세히 설명하기로 한다.
도 1은 일부 실시예에 따른 산출 그래프(computational graph)의 아키텍처를 설명하기 위한 도면이다.
도 1을 참고하면, 산출 그래프(1)는 노드들과 에지들을 이용하여 표현된 수학적 모델을 나타내는 그래프이다. 산출 그래프(1)의 아키텍처는 뉴럴 네트워크의 아키텍처에 해당될 수 있으나, 이 밖에도 다양한 모델들을 표현할 수 있다. 여기서, 뉴럴 네트워크는 딥 뉴럴 네트워크(Deep Neural Network, DNN) 또는 n-계층 뉴럴 네트워크(n-layers neural networks)의 아키텍처일 수 있다. DNN 또는 n-계층 뉴럴 네트워크는 컨볼루션 뉴럴 네트워크(Convolutional Neural Networks, CNN), 리커런트 뉴럴 네트워크(Recurrent Neural Networks, RNN), Deep Belief Networks, Restricted Boltzman Machines 등에 해당될 수 있다. 예를 들어, 뉴럴 네트워크는 컨볼루션 뉴럴 네트워크(CNN)로 구현될 수 있으나, 이에 제한되지 않는다. 도 1의 산출 그래프(1)가 컨볼루션 뉴럴 네트워크를 표현하는 것인 경우, 산출 그래프(1)는 컨볼루션 뉴럴 네트워크 중 일부의 레이어들에 해당될 수 있다. 따라서, 산출 그래프(1)는 컨볼루션 뉴럴 네트워크의 컨볼루션 레이어, 풀링 레이어(pooling layer), 풀리 커넥티드(fully connected) 레이어 등에 해당될 수 있다. 다만, 이하에서는 편의상, 산출 그래프(1)가 컨볼루션 뉴럴 네트워크의 컨볼루션 레이어에 해당되는 것으로 가정하여 설명하도록 하겠으나, 이에 제한되지 않고 산출 그래프(1)는 다른 수학적 모델들의 표현에 해당될 수도 있다.
컨볼루션 레이어에서, 제 1 피처 맵(feature map 1, FM1)은 입력 피처 맵에 해당될 수 있고, 제 2 피처 맵(FM2)는 출력 피처 맵에 해당될 수 있다. 피처 맵은 입력 데이터의 다양한 특징이 표현된 데이터 세트를 의미할 수 있다. 피처 맵들(FM1, FM2)은 2차원 이상의 고차원 매트릭스일 수 있고, 각각의 액티베이션(activation) 파라미터들을 갖는다. 피처 맵들(FM1, FM2)이 예를 들어 3차원 피처 맵들에 해당되는 경우, 피처 맵들(FM1, FM2)은 너비(W)(또는 칼럼이라고 함), 높이(H)(또는 로우라고 함) 및 깊이(D)를 가진다. 이때, 깊이(D)는 채널들의 개수로 지칭될 수 있다.
컨볼루션 레이어에서, 제 1 피처 맵(FM1) 및 웨이트 맵(WM)에 대한 컨볼루션 연산이 수행될 수 있고, 그 결과 제 2 피처 맵(FM2)이 생성될 수 있다. 웨이트 맵(WM)은 제 1 피처 맵(FM1)을 필터링할 수 있으며, 필터 또는 커널(kernel)로 지칭된다. 웨이트 맵(WM)의 깊이, 즉 웨이트 맵(WM)의 채널 개수는 제 1 피처 맵(FM1)의 깊이와 제 2 피처 맵(FM2)의 깊이를 곱한 값, 즉 제 1 피처 맵(FM1)의 채널 개수와 제 2 피처 맵(FM2)의 채널 개수를 곱한 값과 동일하다. 다만, 웨이트 맵(WM)이 4차원 매트릭스이고 커널의 크기(kernel size)가 k인 경우, 웨이트 맵(WM)의 채널 개수는 "제 1 피처 맵(FM1)의 깊이 * 제 2 피처 맵(FM2)의 깊이 * k * k" 와 같이 계산될 수 있다. 웨이트 맵(WM)은 제 1 피처 맵(FM1)을 슬라이딩 윈도우 방식으로 시프트된다. 각 시프트 동안, 웨이트 맵(WM)에 포함되는 웨이트들 각각이 제 1 피처 맵(FM1)과 중첩된 영역에서의 모든 피처 값과 곱해지고 더해질 수 있다. 제 1 피처 맵(FM1)과 웨이트 맵(WM)이 컨볼루션됨에 따라, 제 2 피처 맵(FM2)의 하나의 채널이 생성될 수 있다. 도 1에는 하나의 웨이트 맵(WM)이 표시되었으나, 실질적으로는 복수의 웨이트 맵들이 제 1 피처 맵(FM1)과 컨볼루션 되어, 제 2 피처 맵(FM2)의 복수의 채널들이 생성될 수 있다.
한편, 컨벌루션 레이어의 제 2 피처 맵(FM2)은 다음 레이어의 입력 피처 맵이 될 수 있다. 예를 들어, 제 2 피처 맵(FM2)는 풀링(pooling) 레이어의 입력 피처 맵이 될 수 있다.
도 2는 일부 실시예에 따른 뉴럴 네트워크에서 수행되는 연산을 설명하기 위한 도면이다.
도 2를 참조하면, 뉴럴 네트워크(2)는 입력 레이어, 히든 레이어들 및 출력 레이어를 포함하는 구조를 가지며, 수신되는 입력 데이터(예를 들어,
Figure pat00001
Figure pat00002
)를 기초로 연산을 수행하고, 수행 결과를 기초로 출력 데이터(예를 들어,
Figure pat00003
Figure pat00004
)를 생성할 수 있다.
뉴럴 네트워크(2)는 앞서 설명된 바와 같이, 2개 이상의 히든 레이어들을 포함하는 DNN 또는 n-계층 뉴럴 네트워크일 수 있다. 예를 들어, 도 2에 도시된 바와 같이, 뉴럴 네트워크(2)는 입력 레이어(Layer 1), 2개의 히든 레이어들(Layer 2 및 Layer 3) 및 출력 레이어(Layer 4)를 포함하는 DNN일 수 있다. 뉴럴 네트워크(2)가 DNN 아키텍처로 구현된 경우 유효한 정보를 처리할 수 있는 보다 많은 레이어들을 포함하므로, 뉴럴 네트워크(2)는 싱글 레이어를 갖는 뉴럴 네트워크보다 복잡한 데이터 집합들을 처리할 수 있다. 한편, 뉴럴 네트워크(2)는 4개의 레이어들을 포함하는 것으로 도시되어 있으나, 이는 예시에 불과할 뿐 뉴럴 네트워크(2)는 더 적거나 많은 레이어들을 포함하거나, 더 적거나 많은 채널들을 포함할 수 있다. 즉, 뉴럴 네트워크(2)는 도 2에 도시된 것과는 다른, 다양한 구조의 레이어들을 포함할 수 있다.
뉴럴 네트워크(2)에 포함된 레이어들 각각은 복수의 채널들을 포함할 수 있다. 채널은 뉴런(neuron), 프로세싱 엘리먼트(Processing element, PE), 유닛(unit) 또는 이와 유사한 용어들로 알려진, 복수의 인공 노드(artificial node)들에 해당될 수 있다. 예를 들어, 도 2에 도시된 바와 같이, Layer 1은 2개의 채널들(노드들), Layer 2 및 Layer 3 각각은 3개의 채널들을 포함할 수 있다. 다만, 이는 예시에 불과할 뿐 뉴럴 네트워크(2)에 포함된 레이어들 각각은 다양한 개수의 채널들(노드들)을 포함할 수 있다.
뉴럴 네트워크(2)의 레이어들 각각에 포함된 채널들은 서로 연결되어 데이터를 처리할 수 있다. 예를 들어, 하나의 채널은 다른 채널들로부터 데이터를 수신하여 연산할 수 있고, 연산 결과를 또 다른 채널들로 출력할 수 있다.
채널들 각각의 입력 및 출력 각각은 입력 액티베이션 및 출력 액티베이션이라고 지칭될 수 있다. 즉, 액티베이션은 한 채널의 출력임과 동시에, 다음 레이어에 포함된 채널들의 입력에 해당되는 파라미터일 수 있다. 한편, 채널들 각각은 이전 레이어에 포함된 채널들로부터 수신된 액티베이션들 및 웨이트들에 기초하여 자신의 액티베이션을 결정할 수 있다. 웨이트는 각 채널에서의 출력 액티베이션을 계산하기 위해 이용되는 파라미터로서, 채널들 간의 연결관계에 할당되는 값일 수 있다.
채널들 각각은 입력을 수신하여 출력 액티베이션을 출력하는 연산 유닛(computational unit) 또는 프로세싱 엘리먼트(processing element)에 의해 처리될 수 있고, 채널들 각각의 입력-출력은 매핑될 수 있다. 예를 들어,
Figure pat00005
는 액티베이션 함수(activation function)이고,
Figure pat00006
는 (i-1) 번째 레이어에 포함된 k 번째 채널로부터 i 번째 레이어에 포함된 j번째 채널로의 웨이트며,
Figure pat00007
는 i 번째 레이어에 포함된 j 번째 채널의 바이어스(bias)이고,
Figure pat00008
는 i 번째 레이어의 j 번째 채널의 액티베이션이라고 할 때, 액티베이션
Figure pat00009
는 다음과 같은 수학식 1을 이용하여 계산될 수 있다.
Figure pat00010
도 2에 도시된 바와 같이, 2번째 레이어(Layer 2)의 첫 번째 채널(CH 1)의 액티베이션은
Figure pat00011
로 표현될 수 있다. 또한,
Figure pat00012
은 수학식 1에 따라
Figure pat00013
의 값을 가질 수 있다. 다만, 앞서 설명한 수학식 1은 뉴럴 네트워크(2)에서 데이터를 처리하기 위해 이용되는 액티베이션 및 웨이트를 설명하기 위한 예시일 뿐, 이에 제한되지 않는다. 액티베이션은 이전 레이어로부터 수신된 액티베이션들의 합(sum)에 액티베이션 함수를 적용한 값을 Rectified Linear Unit (ReLU)을 통과시킴으로써 획득된 값일 수 있다.
앞서 설명한 것과 같이, 뉴럴 네트워크(2)에서는 수많은 데이터 집합들이 상호 연결된 복수의 채널들 간에 교환되고, 레이어를 지나면서 수많은 연산 과정을 거친다. 따라서, 복잡한 입력 데이터를 처리하는데 필요한 연산량을 감소시키면서도 정확도 손실을 최소화할 수 있는 기술이 요구된다.
도 3은 일부 실시예에 따른 뉴럴 네트워크 양자화 장치의 하드웨어 구성을 도시한 블록도이다.
도 3을 참고하면, 뉴럴 네트워크 양자화 장치(10)는 프로세서(110) 및 메모리(120)를 포함한다. 도 3에 도시된 뉴럴 네트워크 양자화 장치(10)에는 본 실시예들와 관련된 구성요소들만이 도시되어 있다. 따라서, 뉴럴 네트워크 양자화 장치(10)에는 도 3에 도시된 구성요소들 외에 다른 범용적인 구성요소들이 더 포함될 수 있음은 당업자에게 자명하다.
뉴럴 네트워크 양자화 장치(10)는 뉴럴 네트워크를 생성하거나, 뉴럴 네트워크를 훈련(train)(또는 학습(learn))하거나, 부동 소수점 타입의 뉴럴 네트워크를 고정 소수점 타입의 뉴럴 네트워크로 양자화하거나, 또는 뉴럴 네트워크를 재훈련(retrain)하는 기능들과 같은 다양한 프로세싱 기능들을 갖는 컴퓨팅 디바이스에 해당된다. 예를 들어, 뉴럴 네트워크 양자화 장치(10)는 PC(personal computer), 서버 디바이스, 모바일 디바이스 등의 다양한 종류의 디바이스들로 구현될 수 있다.
프로세서(110)는 뉴럴 네트워크 양자화 장치(10)를 제어하기 위한 전반적인 기능을 수행하는 역할을 한다. 예를 들어, 프로세서(110)는 뉴럴 네트워크 양자화 장치(10) 내의 메모리(120)에 저장된 프로그램들을 실행함으로써, 뉴럴 네트워크 양자화 장치(10)를 전반적으로 제어한다. 프로세서(110)는 뉴럴 네트워크 양자화 장치(10) 내에 구비된 CPU(central processing unit), GPU(graphics processing unit), AP(application processor) 등으로 구현될 수 있으나, 이에 제한되지 않는다.
메모리(120)는 뉴럴 네트워크 양자화 장치(10) 내에서 처리되는 각종 데이터들을 저장하는 하드웨어로서, 예를 들어, 메모리(120)는 뉴럴 네트워크 양자화 장치(10)에서 처리된 데이터들 및 처리될 데이터들을 저장할 수 있다. 또한, 메모리(120)는 뉴럴 네트워크 양자화 장치(10)에 의해 구동될 애플리케이션들, 드라이버들 등을 저장할 수 있다. 메모리(120)는 DRAM일 수 있으나, 이에 한정되는 것은 아니다. 메모리(120)는 휘발성 메모리(volatile memory) 또는 불휘발성 메모리(nonvolatile memory) 중 적어도 하나를 포함할 수 있다. 불휘발성 메모리는 ROM (Read Only Memory), PROM (Programmable ROM), EPROM (Electrically Programmable ROM), EEPROM (Electrically Erasable and Programmable ROM), 플래시 메모리, PRAM (Phase-change RAM), MRAM (Magnetic RAM), RRAM (Resistive RAM), FRAM (Ferroelectric RAM) 등을 포함한다. 휘발성 메모리는 DRAM (Dynamic RAM), SRAM (Static RAM), SDRAM (Synchronous DRAM), PRAM (Phase-change RAM), MRAM (Magnetic RAM), RRAM (Resistive RAM), FeRAM (Ferroelectric RAM) 등을 포함한다. 실시예에 있어서, 메모리(120)는 HDD(Hard Disk Drive), SSD(Solid State Drive), CF(compact flash), SD(secure digital), Micro-SD(micro secure digital), Mini-SD(mini secure digital), xD(extreme digital) 또는 Memory Stick 중 적어도 하나를 포함할 수 있다.
프로세서(110)는 주어진 초기 뉴럴 네트워크를 반복적으로 훈련(학습)시킴으로써, 훈련된 뉴럴 네트워크를 생성할 수 있다. 예를 들어, 주어진 초기 뉴럴 네트워크가 훈련됨에 따라 미리 훈련된(pre-trained) 뉴럴 네트워크가 생성될 수 있다. 이때, 초기 뉴럴 네트워크는 뉴럴 네트워크의 처리 정확도 확보 차원에서 부동 소수점 타입의 파라미터들, 예를 들어 32비트 부동 소수점 정밀도(32bit floating point precision)의 파라미터들을 가질 수 있다. 여기서, 파라미터들은 예를 들어 뉴럴 네트워크의 입/출력 액티베이션들, 웨이트들, 바이어스들 등 뉴럴 네트워크에 입/출력되는 다양한 종류의 데이터를 포함할 수 있다. 뉴럴 네트워크의 반복적인 훈련이 진행됨에 따라, 뉴럴 네트워크의 부동 소수점 파라미터들은 주어진 입력에 대해 보다 정확한 출력을 연산하기 위해 조정될(tuned) 수 있다.
다만, 부동 소수점은 고정 소수점에 비해 상대적으로 많은 연산량과 많은 메모리 액세스 빈도가 요구된다. 특히, 뉴럴 네트워크의 처리에 소요되는 연산량의 대부분은 다양한 파라미터들의 연산을 수행하는 컨볼루션 연산으로 알려져 있다. 따라서, 비교적 처리 성능이 낮은 스마트폰, 태블릿, 웨어러블 디바이스 등과 같은 모바일 디바이스, 임베디드(embedded) 디바이스 등에서는 부동 소수점 타입의 파라미터들을 갖는 뉴럴 네트워크의 처리가 원활하지 않을 수 있다. 결국, 이와 같은 디바이스들에서 연산량을 충분히 감소시키면서 허용 가능한 정확도 손실 내에서 뉴럴 네트워크를 구동시키기 위해서는, 뉴럴 네트워크에서 처리되는 부동 소수점 타입의 파라미터들은 양자화되는 것이 바람직하다. 여기서, 파라미터 양자화는, 부동 소수점 타입의 파라미터를, 고정 소수점 타입의 파라미터로 변환하는 것을 의미한다.
뉴럴 네트워크 양자화 장치(10)는 뉴럴 네트워크가 채용될(deployed) 디바이스(예를 들어, 모바일 디바이스, 임베디드 디바이스 등)의 처리 성능을 고려하여, 훈련된 뉴럴 네트워크의 파라미터들을 소정 비트들의 고정 소수점 타입으로 변환하는 양자화를 수행할 수 있다. 뉴럴 네트워크가 채용될 디바이스는 뉴럴 네트워크 양자화 장치(10) 자신일 수도 있고, 뉴럴 네트워크 양자화 장치(10) 외부의 다른 디바이스일 수도 있다. 뉴럴 네트워크 양자화 장치(10)는 양자화된 뉴럴 네트워크를 채용될 디바이스에 전달한다. 뉴럴 네트워크가 채용될 디바이스는, 구체적인 예시로 뉴럴 네트워크를 이용한 음성 인식, 영상 인식 등을 수행하는 자율주행 자동차, 로보틱스, 스마트폰, 태블릿 디바이스, AR(Augmented Reality) 디바이스, IoT(Internet of Things) 디바이스 등일 수 있으나, 이에 제한되지 않는다.
한편, 주어진 초기 뉴럴 네트워크를 반복적으로 훈련시킴으로써 미리 훈련된 뉴럴 네트워크를 생성하는 동작은 프로세서(110)에 의해 수행되지 않을 수도 있다. 예를 들어, 프로세서(110)를 포함하는 뉴럴 네트워크 양자화 장치(10)가 아닌 별도의 외부 디바이스에 의해 초기 뉴럴 네트워크가 반복적으로 훈련됨에 따라 미리 훈련된 뉴럴 네트워크가 생성될 수 있고, 프로세서(110)는 외부 디바이스로부터 미리 훈련된 뉴럴 네트워크를 수신할 수 있다. 일 예에서, 프로세서(110)는 서버에 의해 생성된, 미리 훈련된 뉴럴 네트워크를 서버로부터 수신할 수 있다.
프로세서(110)는 미리 훈련된 뉴럴 네트워크를 메모리(120)에 저장할 수 있다. 예를 들어, 프로세서(110)는 초기 뉴럴 네트워크를 직접 학습시킴으로써 미리 훈련된 뉴럴 네트워크를 생성한 후 메모리(120)에 저장할 수 있고, 미리 훈련된 뉴럴 네트워크를 외부로부터 수신한 후 메모리(120)에 저장할 수도 있다.
프로세서(110)는 메모리(120)에 저장된, 부동 소수점들을 이용하여 미리 훈련된 뉴럴 네트워크의 데이터를 획득한다. 미리 훈련된 뉴럴 네트워크는 부동 소수점 타입의 파라미터들로 반복적으로 훈련된 데이터일 수 있다. 뉴럴 네트워크의 훈련은, 훈련 데이터 세트(training dataset)를 입력으로 하여 먼저 반복적으로 훈련되고, 이어서 테스트 데이터 세트(test dataset)로 다시 반복적으로 훈련된 것일 수 있으나, 반드시 이에 제한되지 않는다. 훈련 데이터 세트는 뉴럴 네트워크를 훈련시키기 위한 입력 데이터이고, 테스트 데이터 세트는 훈련 데이터 세트와 겹치지 않는 입력 데이터로서, 훈련 데이터 세트로 훈련된 뉴럴 네트워크의 성능을 측정하면서 훈련시키기 위한 데이터이다.
프로세서(110)는 미리 훈련된 뉴럴 네트워크 데이터로부터, 피처 맵들 및 커널들 각각에 포함된 각 채널에서 이용된 부동 소수점 타입의 파라미터 값들에 대한 채널 별 통계적 분포를 분석한다. 이때, 프로세서(110)는 뉴럴 네트워크가 미리 훈련되는 동안 각 채널에서 이용되었던 부동 소수점 타입의 액티베이션들, 웨이트들 및 바이어스들의 파라미터 값들에 대한 채널 별 통계량을 구함으로써, 통계적 분포를 분석할 수 있다.
프로세서(110)는 분석된 채널 별 통계적 분포에 기초하여, 파라미터 값들의 분포 범위를 통계적으로 커버하는, 채널 별 파라미터의 고정 소수점 표현을 결정한다. 이로써, 부동 소수점 타입의 뉴럴 네트워크는 고정 소수점 타입의 뉴럴 네트워크로 변환될 수 있다. 본 실시예에 따르면, 부동 소수점 타입으로부터 고정 소수점 타입으로의 변환은 각 채널에 대한 통계적 분포에 기초하여 수행되므로, 각 채널에 할당된 고정 소수점 표현은 채널마다 같거나 또는 서로 다를 수 있다. 즉, 채널 별로 파라미터의 고정 소수점 표현의 프랙션 길이(fraction length)가 제각각일 수 있다.
나아가서, 프로세서(110)는 채널 별 고정 소수점 표현의 파라미터로 피처 맵들 및 커널들 간의 컨볼루션 연산을 수행한 결과에 기초하여 바이어스 및 채널 별 웨이트의 프랙션 길이들을 결정한다. 한편, 바이어스의 프랙션 길이 및 채널 별 웨이트의 프랙션 길이는 양자화된 뉴럴 네트워크의 제약조건(constraint)으로 설정될 수 있다.
프로세서(110)에 의해 각 채널 별 파라미터가 고정 소수점 타입으로 양자화되는 알고리즘에 대해서는, 이하 해당 도면들을 참고하여 구체적으로 설명하도록 한다.
한편, 메모리(120)는 예를 들어, 훈련되지 않은 초기 뉴럴 네트워크 데이터, 훈련 과정에서 생성된 뉴럴 네트워크 데이터, 모든 훈련이 완료된 뉴럴 네트워크 데이터, 양자화된 뉴럴 네트워크 데이터 등 프로세서(110)에 의해 처리될 또는 처리된 뉴럴 네트워크 관련 데이터 세트를 저장할 수 있고, 또한 프로세서(110)에 의해 실행될 뉴럴 네트워크의 훈련 알고리즘, 양자화 알고리즘 등에 관련된 다양한 프로그램들을 저장할 수 있다.
도 4는 일부 실시예에 따른 미리 훈련된 뉴럴 네트워크를 양자화하여 하드웨어 가속기에 채용하는 것을 설명하기 위한 도면이다.
도 4를 참고하면, PC, 서버 등과 같은 외부 디바이스의 프로세서는 부동 소수점 타입(예를 들어, 32비트 부동 소수점 타입)의 뉴럴 네트워크(410)를 훈련한 뒤, 훈련된 뉴럴 네트워크(410)를 뉴럴 네트워크 양자화 장치(10)로 전달할 수 있다. 다만 이에 제한되는 것은 아니며, 앞서 도 3을 참조하여 설명한 바와 같이, 훈련된 뉴럴 네트워크(410)는 뉴럴 네트워크 양자화 장치(10)의 프로세서(110)에 의해 생성될 수도 있다.
미리 훈련된 뉴럴 네트워크(410) 자체는 부동 소수점 타입의 파라미터들로 인하여 저전력 또는 저성능의 하드웨어 가속기에서 효율적으로 처리되지 않을 수 있으므로, 뉴럴 네트워크 양자화 장치(10)의 프로세서(110)는 부동 소수점 타입의 뉴럴 네트워크(410)를 고정 소수점 타입(예를 들어, 16비트 이하의 고정 소수점 타입)의 뉴럴 네트워크(420)로 양자화한다. 하드웨어 가속기는 뉴럴 네트워크(420)의 구동을 위한 전용 하드웨어로서, 비교적 저전력 또는 저성능으로 구현되기 때문에 부동 소수점 연산 보다는 고정 소수점 연산에 보다 적합하게 구현될 수 있다. 하드웨어 가속기는 예를 들어, 뉴럴 네트워크 구동을 위한 전용 모듈인 NPU(neural processing unit), TPU(Tensor Processing Unit), Neural Engine 등에 해당될 수 있으나, 이에 제한되지 않는다.
양자화된 뉴럴 네트워크(420)를 구동하는 하드웨어 가속기는, 뉴럴 네트워크 양자화 장치(10)와 동일한 장치 내에 구현될 수 있다. 하지만, 이에 제한되지 않고, 하드웨어 가속기는 뉴럴 네트워크 양자화 장치(10)와는 별도의 독립적인 디바이스에 구현될 수도 있다.
도 5는 일부 실시예에 따른 뉴럴 네트워크의 파라미터들을 양자화하는 방법을 나타내는 흐름도이다. 도 5의 방법은 앞서 설명한 뉴럴 네트워크 양자화 장치(10)의 프로세서(110)에 의해 수행될 수 있다.
단계 510에서, 프로세서(110)는 부동 소수점들을 이용하여 미리 훈련된 뉴럴 네트워크에 제1 데이터 세트가 입력됨에 따라 피처 맵들 각각에 포함된 각 채널에서 이용되는 부동 소수점 타입의 제1 파라미터 값들에 대한 채널 별 프로파일 정보를 획득할 수 있다. 채널 별 프로파일 정보는 미리 훈련된 뉴럴 네트워크의 네트워크 모델, 레이어 파라미터들 및 제1 데이터 세트에 기초하여 결정될 수 있다. 프로세서(110)는 제1 파라미터 값들을 획득하기 위해 미리 훈련된 뉴럴 네트워크에 제1 데이터 세트를 입력할 수 있다. 제1 데이터 세트는 양자화가 수행되기 전 미리 훈련된 뉴럴 네트워크를 훈련하기 위해 이용되었던 훈련 데이터 세트일 수 있다. 예를 들어, 제1 데이터 세트는 소정 개수 이하의 이미지 샘플들에 대응될 수 있다.
일 예에서, 제1 데이터 세트는 10개 이하의 랜덤하게 선택된 이미지 샘플들에 대응될 수 있다. 본 개시에 따른 뉴럴 네트워크의 파라미터를 양자화하는 방법은 후술할 구체적인 과정들을 통해 10개 이하의 작은 수의 이미지 샘플들만으로 일정 수준 이상의 정확도를 갖는 양자화를 수행할 수 있다. 다만, 샘플들의 종류는 이미지 샘플로 한정되는 것이 아니고, 음성 샘플 등을 포함한 다양한 종류의 샘플일 수 있다. 또한, 해당 예시는 10개 이하의 작은 수의 이미지 샘플들만으로 일정 수준 이상의 정확도를 갖는 양자화를 수행할 수 있음을 설명하기 위한 것일 뿐일 뿐, 샘플들의 개수를 10개 이하로 제한하고자 하는 것은 아니다.
미리 훈련된 뉴럴 네트워크에 제1 데이터 세트가 입력됨에 따라 다양한 연산들이 수행될 수 있고, 미리 훈련된 뉴럴 네트워크에 포함되는 피처 맵들 각각에 포함된 각 채널에서 이용되는 부동 소수점 타입의 제1 파라미터 값들이 결정될 수 있다. 예를 들어, 제1 파라미터 값들은 피처 맵들 각각에 포함된 각 채널에서 이용된 부동 소수점 타입의 액티베이션들일 수 있다.
채널 별 프로파일 정보는 제1 파라미터 값들의 평균, 분산, 기대값, 비대칭도, 첨도, 초비대칭도 및 초첨도 중 적어도 하나를 포함할 수 있다. 비대칭도(skewness)는 통계적 분포에서 평균값에 관한 비대칭의 방향과 그 정도를 나타내는 특성값으로서, 제1 파라미터 값들의 평균에 관한 3차 모멘트에 기초하여 결정될 수 있다. 첨도(kurtosis)는 통계적 분포가 중심경향값을 중심으로 집중적으로 분포되어 있는 정도 혹은 분포의 뾰족한 정도를 나타내는 척도로서, 제1 파라미터 값들의 평균에 관한 4차 모멘트에 기초하여 결정될 수 있다. 초비대칭도(hyper skewness) 및 초첨도(hyper kurtosis)는 각각 제1 파라미터 값들의 평균에 관한 5차 모멘트 및 6차 모멘트에 기초하여 결정되는 값일 수 있다. 다만, 이에 제한되는 것은 아니고, 채널 별 프로파일 정보는 제1 파라미터 값들의 통계적 분포와 관련된 다양한 척도들을 포함할 수 있다.
단계 520에서, 프로세서(110)는 채널 별 프로파일 정보를 데이터 세트로 입력 받는 분류 네트워크(Classification Network)를 이용하여 채널 별 프로파일 정보에 적합한 확률 밀도 함수(Probability Density Function: PDF) 유형을 각 채널 별로 결정할 수 있다.
분류 네트워크는 채널 별 프로파일 정보를 입력 받아 PDF 유형을 출력하는 뉴럴 네트워크를 의미할 수 있다. 분류 네트워크는 초기 뉴럴 네트워크 및 미리 훈련된 뉴럴 네트워크와는 상이한 뉴럴 네트워크로서, 채널 별 프로파일 정보에 기초하여 적절한 PDF 유형을 도출하는데 이용되는 뉴럴 네트워크일 수 있다. 예를 들어, 분류 네트워크는 제1 데이터 세트에 대응되는 채널 별 프로파일 정보에 기초하여 각 채널 별로 고정 소수점 표현을 결정하기 위해 이용되는데 가장 적합한 PDF 유형을 기 정의된 복수의 PDF 유형들 중에서 선택하도록 훈련된 뉴럴 네트워크일 수 있다. 특정 PDF 유형이 각 채널 별로 고정 소수점 표현을 결정하기 위해 이용되는데 가장 적합하다는 것은 채널에서 이용되는 파라미터 값들의 통계적 분포를 해당 PDF 유형으로 가정하여 양자화를 수행하였을 때 양자화 오류(quantization error)가 최소화된다는 것을 의미할 수 있다.
한편, 기 정의된 복수의 PDF 유형들은 피처 맵들 각각에 포함된 각 채널에서 이용되는 부동 소수점 타입의 파라미터 값들의 통계적 분포를 나타내기 위해 미리 정의된 유형들일 수 있다. 이하 도 6을 참조하여 기 정의된 복수의 PDF 유형들의 예시를 상세히 설명한다.
도 6은 일부 실시예에 따른 기 정의된 복수의 PDF 유형들의 예시를 나타내는 도면이다.
도 6을 참조하면, 기 정의된 복수의 PDF 유형들은 라플라스(LaPlace) 분포(610), 하이퍼 시컨트(Hyp. Secant) 분포(620), 로지스틱(Logistic) 분포(630), 정규(Normal) 분포(640), 레이즈드-코사인(Raised-Cosine) 분포(650), 위그너(Wigner) 분포(660) 및 균등(Uniform) 분포(670) 중 적어도 하나를 포함할 수 있다. 다만, 이에 제한되는 것은 아니며, 기 정의된 복수의 PDF 유형들은 슈퍼 코시(Super Cauchy) 분포 등과 같은 다양한 확률적 분포 유형들을 더 포함할 수 있다.
다시 도 5로 돌아와서, 프로세서(110)는 각 채널 별로 결정된 PDF 유형을 출력할 수 있다. 프로세서(110)는 각 채널 별로 결정된 PDF 유형 및 각 채널의 프로파일 정보를 매칭한 데이터 세트를 이용하여 분류 네트워크를 다시 훈련시킬 수 있다. 다만, 이에 제한되는 것은 아니며, 분류 네트워크는 별도의 데이터 세트를 이용하여 훈련될 수도 있다. 이하 도 7을 참조하여 분류 네트워크를 훈련시키는 방법을 보다 상세히 설명할 것이다.
단계 530에서, 프로세서(110)는 결정된 PDF 유형에 기초하여 제1 파라미터 값들의 분포 범위를 통계적으로 커버하는 고정 소수점 표현을 각 채널 별로 결정할 수 있다. 예를 들어, 프로세서(110)는 결정된 PDF 유형에 기초하여 해당 채널의 파라미터들을 어떠한 프랙션 길이를 갖는 고정 소수점 표현으로 양자화할 것인지에 관한 양자화 레벨을 판단할 수 있다.
구체적으로, 프로세서(110)는 결정된 PDF 유형에 따른 통계적 분포에서 파라미터들의 통계적 최대 값(Xmax) 및 통계적 최소 값(Xmin)을 구하고, 이 통계적 최대 값(Xmax) 및 통계적 최소 값(Xmin) 사이 범위의 부동 소수점 값들을 통계적으로 커버할 수 있는 고정 소수점 표현을 결정할 수 있다. 이때, 프랙션 길이는 양자화 레벨에 따라 함께 결정될 수 있다. 일 예에서, 프로세서(110)는 고정 소수점 표현을 나타내는 비트들의 개수를 고정한 상태에서 양자화 오류가 최소화되도록 고정 소수점 표현의 프랙션 길이를 결정할 수 있다.
통계적 최대 값(Xmax) 및 통계적 최소 값(Xmin)은 양자화 오류를 최소화할 수 있는 범위에 기초한 값들일 수 있다. 본 실시예들에 따르면, 통계적 최대 값(Xmax) 및 통계적 최소 값(Xmin)은 다양하게 정의될 수 있다. 예를 들어, 통계적 최대 값(Xmax) 및 통계적 최소 값(Xmin)은 결정된 PDF 유형에 따른 통계적 분포에서 파라미터들의 실제 최대 파라미터 값 및 실제 최소 파라미터 값에 해당될 수 있다. 또는, 통계적 최대 값(Xmax) 및 통계적 최소 값(Xmin)은, 결정된 PDF 유형에 따른 통계적 분포의 평균, 분산 또는 표준편차 등을 기준으로 구한, 확률적으로 양자화 오류를 최소화시키는 상한 및 하한 범위일 수 있다. 한편, 결정된 PDF 유형으로부터 양자화 오류를 최소화시키기 위한 최적의 범위를 계산하는 방식들(예를 들어, 최적의 델타 등)은 당해 기술분야에 많이 소개되어 있고, 본 실시예들은 이와 같은 방식들을 적용하여 주어진 결정된 PDF 유형에 따른 통계적 분포에 적합한 고정 소수점 표현을 결정할 수 있다.
단계 540에서, 프로세서(110)는 각 채널 별로 결정된 고정 소수점 표현에 기초하여 고정 소수점 타입의 양자화된 뉴럴 네트워크를 생성할 수 있다. 예를 들어, 프로세서(110)는 채널 1에 대해 결정된 고정 소수점 표현에 기초하여 채널 1의 부동 소수점 파라미터들을 채널 1의 부동 소수점 파라미터 값들의 분포 범위가 통계적으로 커버될 수 있는 프랙션 길이의 고정 소수점 표현으로 양자화한다. 또한, 프로세서(110)는 나머지 채널들 각각의 부동 소수점 파라미터들 또한 나머지 채널들 각각의 부동 소수점 파라미터 값들이 통계적으로 커버될 수 있는 프랙션 길이들의 고정 소수점 표현들로 양자화한다. 즉, 부동 소수점 타입의 파라미터를 고정 소수점 타입의 파라미터로 양자화하는 것은, 뉴럴 네트워크의 레이어에 포함된 채널 단위로 수행된다. 이와 같이, 채널 단위로 양자화가 수행됨에 따라 레이어 단위로 양자화가 수행되는 경우와 비교하여 정확도 손실이 최소화될 수 있다. 또한, 전술한 방법에 따라 뉴럴 네트워크를 양자화하는 경우 각 채널 별로 최적화된 PDF 유형을 결정하여 양자화를 수행하므로, 양자화 결과 재훈련 과정을 거치지 않고도 높은 정확도가 획득될 수 있다.
한편, 미리 훈련된 뉴럴 네트워크로 입력되는 제1 데이터 세트의 종류에 따라 출력 피처 맵들 각각에 포함된 각 채널에서 이용되는 액티베이션들은 달라질 수 있으나, 커널들 각각에 포함되는 웨이트들이 어떤 확률적 분포를 갖는지는 미리 훈련된 뉴럴 네트워크가 생성되는 과정에서 미리 결정될 수 있다. 따라서, 프로세서(110)는 웨이트들에 대해서는 전술한 단계들을 수행하지 않을 수 있다. 프로세서(110)는 미리 훈련된 뉴럴 네트워크의 데이터로부터, 커널들 각각에 포함되는 웨이트들의 최대값을 획득하고, 획득된 최대값에 기초하여 웨이트들을 나타내기 위한 고정 소수점 표현의 프랙션 길이를 결정하는 방식으로 웨이트들에 대한 양자화를 수행할 수 있다. 다만, 이에 제한되는 것은 아니다.
도 7은 일부 실시예에 따른 분류 네트워크를 훈련시키는 방법을 나타내는 흐름도이다.
도 7의 방법은 앞서 설명한 뉴럴 네트워크 양자화 장치(10)의 프로세서(110)에 의해 수행될 수 있다. 다만, 이에 제한되는 것은 아니며, 도 7의 방법은 별도의 외부 디바이스에 의해 수행될 수 있다. 뉴럴 네트워크 양자화 장치(10)의 프로세서(110)는 별도의 외부 디바이스에서 훈련된 분류 네트워크를 수신하고, 수신된 분류 네트워크를 이용하여 도 5의 방법을 수행할 수도 있다. 이하에서는 뉴럴 네트워크 양자화 장치(10)의 프로세서(110)가 도 7의 방법을 수행하는 것으로 설명하지만, 도 7의 방법을 수행하는 주체가 달라질 수 있음은 해당 기술 분야의 통상의 기술자라면 쉽게 이해할 수 있다.
단계 710에서, 프로세서(110)는 미리 훈련된 뉴럴 네트워크에 제2 데이터 세트가 입력됨에 따라 피처 맵들 각각에 포함된 각 채널에서 이용되는 부동 소수점 타입의 제2 파라미터 값들에 대한 프로파일 정보를 획득할 수 있다. 제2 데이터 세트는 양자화가 수행되기 전 미리 훈련된 뉴럴 네트워크를 훈련하기 위해 이용되었던 훈련 데이터 세트일 수 있다. 예를 들어, 제2 데이터 세트는 소정 개수 이하의 이미지 샘플들에 대응될 수 있다. 제2 데이터 세트는 제1 데이터 세트와 상이한 데이터 세트일 수 있다. 다만 이에 제한되는 것은 아니며, 제2 데이터 세트는 제1 데이터 세트와 동일한 데이터 세트일 수도 있다.
제2 파라미터 값들에 대한 프로파일 정보는 제2 파라미터 값들의 평균, 분산, 기대값, 비대칭도, 첨도, 초비대칭도 및 초첨도 중 적어도 하나를 포함할 수 있다. 제2 파라미터 값들에 대한 프로파일 정보는 미리 훈련된 뉴럴 네트워크의 네트워크 모델, 레이어 파라미터들 및 제2 데이터 세트에 기초하여 결정될 수 있다.
단계 720에서, 프로세서(110)는 제2 파라미터 값들의 분포 범위를 통계적으로 커버하는 후보 고정 소수점 표현을 복수의 PDF 유형들 각각에 대해 결정할 수 있다. 예를 들어, 프로세서(110)는 제2 파라미터 값들의 확률적 분포가 라플라스 분포를 따른다고 가정하고, 제2 파라미터 값들의 분포 범위를 통계적으로 커버하는 제1 후보 고정 소수점 표현을 결정할 수 있다. 또한, 프로세서(110)는 제2 파라미터 값들의 확률적 분포가 하이퍼 시컨트 분포를 따른다고 가정하고, 제2 파라미터 값들의 분포 범위를 통계적으로 커버하는 제2 후보 고정 소수점 표현을 결정할 수 있다. 또한, 프로세서(110)는 제2 파라미터 값들의 확률적 분포가 복수의 PDF 유형들 중 나머지 PDF 유형들 각각을 따른다고 가정하고, 제2 파라미터 값들의 분포 범위를 통계적으로 커버하는 후보 고정 소수점 표현들 각각을 결정할 수 있다.
프로세서(110)가 제2 파라미터 값들의 분포 범위를 통계적으로 커버하는 후보 고정 소수점 표현을 결정한다는 것은 고정 소수점 표현을 나타내는 비트들의 개수를 고정한 상태에서 복수의 PDF 유형들 각각에 대해 양자화 오류가 최소화되도록 고정 소수점 표현의 프랙션 길이를 결정하는 것에 대응될 수 있다. 한편, 제2 파라미터 값들은 미리 훈련된 뉴럴 네트워크로 입력되는 제2 데이터 세트의 종류에 따라 다른 값들을 갖는, 출력 피처 맵들 각각에 포함된 각 채널에서 이용되는 액티베이션들일 수 있다. 한편, 액티베이션들과는 달리, 커널들 각각에 포함되는 웨이트들이 어떤 확률적 분포를 갖는지는 미리 훈련된 뉴럴 네트워크가 생성되는 과정에서 미리 결정될 수 있으므로, 프로세서(110)는 모든 커널들에 대해서는, 웨이트들의 최대값에 기초하여 웨이트들을 나타내기 위한 고정 소수점 표현의 프랙션 길이를 결정할 수 있다.
단계 730에서, 프로세서(110)는 복수의 PDF 유형들 각각에 대해 결정된 후보 고정 소수점 표현에 기초하여 제2 파라미터 값들을 양자화 할 수 있다. 또한, 프로세서(110)는 웨이트들의 최대값에 기초하여 결정된 프랙션 길이를 갖는 고정 소수점 표현에 기초하여 웨이트들을 양자화할 수 있다. 프로세서(110)는 양자화 결과 가장 높은 SQNR(Signal-to-Quantization-Noise Ratio)을 갖는 후보 고정 소수점 표현에 대응되는 최적 PDF 유형을 결정할 수 있다. SQNR은 신호의 양자화 오류에 대한 비율을 의미하는 것으로서, SQNR이 가장 높다는 것은 양자화 오류가 가장 작다는 것을 의미할 수 있다. 결과적으로, 최적 PDF 유형은 특정 프로파일 정보에 대응되는 파라미터 값들의 통계적 분포를 최적 PDF 유형이라고 가정하여 양자화를 수행하였을 때 양자화 오류가 최소화되도록 하는 확률적 분포를 의미할 수 있다. 일 예에서, 프로세서(110)는 양자화된 뉴럴 네트워크와 양자화되지 않은 뉴럴 네트워크를 비교하여 SQNR을 측정할 수 있다.
단계 740에서, 프로세서(110)는 제2 파라미터 값들에 대한 프로파일 정보 및 최적 PDF 유형을 매칭함으로써 훈련 데이터 세트를 생성할 수 있다. 예를 들어, 프로세서(110)는 제2 파라미터 값들에 대한 프로파일 정보 및 최적 PDF 유형을 매칭하여 데이터 및 라벨 쌍(data and label pair)을 생성할 수 있다. 데이터는 각 채널에 대해 피처 맵들을 프로파일링한 정보(예를 들어, 각 채널에 포함되는 제2 파라미터 값들의 평균, 분산, 비대칭도, 첨도 등)를 포함할 수 있고, 라벨은 최적 PDF 유형을 포함할 수 있다. 생성된 훈련 데이터 세트는 분류 네트워크를 훈련시키는데 이용될 수 있다.
단계 750에서, 프로세서(110)는 훈련 데이터 세트를 이용하여 분류 네트워크를 훈련시킬 수 있다. 프로세서(110)는 프로파일 정보 및 최적 PDF 유형이 매칭된 다수의 훈련 데이터 세트를 이용하여 분류 네트워크를 훈련시킴으로써, 어떠한 프로파일 정보가 분류 네트워크에 입력되더라도 해당 프로파일 정보에 대응되는 채널에 대한 양자화를 수행하였을 때 양자화 에러를 최소화할 수 있는 최적 PDF 유형이 분류 네트워크로부터 출력되도록 할 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 또한, 상술한 본 발명의 실시예에서 사용된 데이터의 구조는 컴퓨터로 읽을 수 있는 기록매체에 여러 수단을 통하여 기록될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드 디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
도 8은 일부 실시예에 따른 뉴럴 네트워크의 파라미터들을 양자화하는 방법을 이용하여 양자화를 수행한 결과를 종래기술에 따른 양자화 방법을 이용하여 양자화를 수행한 결과와 비교한 도면이다.
도 8을 참조하면, 다양한 종류의 뉴럴 네트워크들에 대해 일부 실시예에 따른 양자화 방법 및 종래 기술들에 의한 양자화 방법들 각각을 이용하여 양자화를 수행하였을 때, 양자화되지 않은(즉, 32비트 부동 소수점 정밀도를 갖는) 기준 네트워크(Reference)와 비교하여 정확도 차이가 얼마나 나는지를 나타내는 시뮬레이션 결과가 도시되어 있다.
도 8에 도시된 표에서, Layer-wise는 레이어 별 양자화를 수행한 경우를 의미하고, Channel-wise는 채널 별 양자화를 수행한 경우를 의미한다. 또한, Max는 파라미터 값들의 최대값에 기초하여 양자화를 수행한 경우를 의미하고, Laplace는 파라미터 값들의 통계적 분포가 라플라스 분포임을 가정하여 양자화를 수행한 경우를 의미하며, S.Cauchy는 파라미터 값들의 통계적 분포가 슈퍼 코시 분포임을 가정하여 양자화를 수행한 경우를 의미한다.
한편, PDF-aware는 파라미터 값들의 통계적 분포에 가장 적합한 PDF를 도출하여 양자화를 수행하는 경우를 의미하는 것으로서, 일부 실시예에 따른 양자화 방법에 대응된다.
도 8을 참조하면, 레이어 별 양자화를 수행하는 경우보다 채널 별 양자화를 수행하는 경우 정확도 손실이 더 적음을 알 수 있고, 동일하게 채널 별 양자화를 수행하는 경우라도 일부 실시예에 따른 양자화 방법(PDF-aware)을 이용하여 양자화를 수행하는 경우에 평균적인 정확도 손실이 가장 적음을 알 수 있다. 이와 같이, 본 개시에 따른 뉴럴 네트워크의 파라미터를 양자화하는 방법에 따르면, 적은 개수의 이미지 샘플들만을 이용하거나 미세 조정(fine-tuning)을 위한 재훈련 과정을 거치지 않더라도 정확도 손실이 최소화될 수 있음을 알 수 있다.
도 9는 일부 실시예에 따른 전자 시스템의 구성을 나타내는 블록도이다.
도 9를 참고하면, 전자 시스템(900)은 뉴럴 네트워크를 기초로 입력 데이터를 실시간으로 분석하여 유효한 정보를 추출하고, 추출된 정보를 기초로 상황 판단을 하거나 또는 전자 시스템(900)이 탑재되는 전자 디바이스의 구성들을 제어할 수 있다. 예컨대 전자 시스템(900)은 드론(drone), 첨단 운전자 보조 시스템(Advanced Drivers Assistance System; ADAS) 등과 같은 로봇 장치, 스마트 TV, 스마트폰, 의료 디바이스, 모바일 디바이스, 영상 표시 디바이스, 계측 디바이스, IoT 디바이스 등에 적용될 수 있으며, 이 외에도 다양한 종류의 전자 디바이스들 중 적어도 하나에 탑재될 수 있다.
전자 시스템(900)은 프로세서(910), RAM(920), 뉴럴 네트워크 장치(930), 메모리(940), 센서 모듈(950) 및 통신 모듈(960)을 포함할 수 있다. 전자 시스템(900)은 입출력 모듈, 보안 모듈, 전력 제어 장치 등을 더 포함할 수 있다. 전자 시스템(900)의 하드웨어 구성들 중 일부는 적어도 하나의 반도체 칩에 탑재될 수 있다. 뉴럴 네트워크 장치(930)는 앞서 설명된 뉴럴 네트워크 전용 하드웨어 가속기 자체 또는 이를 포함하는 장치일 수 있다.
프로세서(910)는 전자 시스템(900)의 전반적인 동작을 제어한다. 프로세서(910)는 하나의 프로세서 코어(Single Core)를 포함하거나, 복수의 프로세서 코어들(Multi-Core)을 포함할 수 있다. 프로세서(910)는 메모리(940)에 저장된 프로그램들 및/또는 데이터를 처리 또는 실행할 수 있다. 일부 실시예에 있어서, 프로세서(910)는 메모리(940)에 저장된 프로그램들을 실행함으로써, 뉴럴 네트워크 장치(930)의 기능을 제어할 수 있다. 프로세서(910)는 CPU, GPU, AP 등으로 구현될 수 있다.
RAM(920)은 프로그램들, 데이터, 또는 명령들(instructions)을 일시적으로 저장할 수 있다. 예컨대 메모리(940)에 저장된 프로그램들 및/또는 데이터는 프로세서(910)의 제어 또는 부팅 코드에 따라 RAM(920)에 일시적으로 저장될 수 있다. RAM(920)은 DRAM(Dynamic RAM) 또는 SRAM(Static RAM) 등의 메모리로 구현될 수 있다.
뉴럴 네트워크 장치(930)는 수신되는 입력 데이터를 기초로 뉴럴 네트워크의 연산을 수행하고, 수행 결과를 기초로 정보 신호를 생성할 수 있다. 뉴럴 네트워크는 CNN, RNN, Deep Belief Networks, Restricted Boltzman Machines 등을 포함할 수 있으나 이에 제한되지 않는다. 뉴럴 네트워크 장치(930)는 앞서 설명된 고정 소수점 타입으로 양자화된 뉴럴 네트워크를 이용하여 처리를 수행하는 하드웨어로서, 앞서 설명된 뉴럴 네트워크 전용 하드웨어 가속기에 해당될 수 있다.
정보 신호는 음성 인식 신호, 사물 인식 신호, 영상 인식 신호, 생체 정보 인식 신호 등과 같은 다양한 종류의 인식 신호 중 하나를 포함할 수 있다. 예를 들어, 뉴럴 네트워크 장치(930)는 비디오 스트림에 포함되는 프레임 데이터를 입력 데이터로서 수신하고, 프레임 데이터로부터 프레임 데이터가 나타내는 이미지에 포함된 사물에 대한 인식 신호를 생성할 수 있다. 그러나, 이에 제한되는 것은 아니며, 전자 시스템(900)이 탑재된 전자 장치의 종류 또는 기능에 따라 뉴럴 네트워크 장치(930)는 다양한 종류의 입력 데이터를 수신할 수 있고, 입력 데이터에 따른 인식 신호를 생성할 수 있다.
메모리(940)는 데이터를 저장하기 위한 저장 장소로서, OS(Operating System), 각종 프로그램들, 및 각종 데이터를 저장할 수 있다. 실시예에 있어서, 메모리(940)는 뉴럴 네트워크 장치(930)의 연산 수행 과정에서 생성되는 중간 결과들, 예컨대 출력 피처 맵을 출력 피처 리스트 또는 출력 피처 매트릭스 형태로 저장할 수 있다. 실시예에 있어서, 메모리(940)에는 압축된 출력 피처 맵이 저장될 수 있다. 또한, 메모리(940)는 뉴럴 네트워크 장치(930)에서 이용되는 양자화된 뉴럴 네트워크 데이터, 예컨대, 파라미터들, 웨이트 맵 또는 웨이트 리스트를 저장할 수 있다.
메모리(940)는 DRAM일 수 있으나, 이에 한정되는 것은 아니다. 메모리(940)는 휘발성 메모리 또는 불휘발성 메모리 중 적어도 하나를 포함할 수 있다. 불휘발성 메모리는 ROM, PROM, EPROM, EEPROM, 플래시 메모리, PRAM, MRAM, RRAM, FRAM 등을 포함한다. 휘발성 메모리는 DRAM, SRAM, SDRAM, PRAM, MRAM, RRAM, FeRAM 등을 포함한다. 실시예에 있어서, 메모리(940)는 HDD, SSD, CF, SD, Micro-SD, Mini-SD, xD 또는 Memory Stick 중 적어도 하나를 포함할 수 있다.
센서 모듈(950)은 전자 시스템(900)이 탑재되는 전자 장치 주변의 정보를 수집할 수 있다. 센서 모듈(950)은 전자 장치의 외부로부터 신호(예컨대 영상 신호, 음성 신호, 자기 신호, 생체 신호, 터치 신호 등)를 센싱 또는 수신하고, 센싱 또는 수신된 신호를 데이터로 변환할 수 있다. 이를 위해, 센서 모듈(950)은 센싱 장치, 예컨대 마이크, 촬상 장치, 이미지 센서, 라이더(LIDAR; light detection and ranging) 센서, 초음파 센서, 적외선 센서, 바이오 센서, 및 터치 센서 등 다양한 종류의 센싱 장치 중 적어도 하나를 포함할 수 있다.
센서 모듈(950)은 변환된 데이터를 뉴럴 네트워크 장치(930)에 입력 데이터로서 제공할 수 있다. 예를 들어, 센서 모듈(950)은 이미지 센서를 포함할 수 있으며, 전자 장치의 외부 환경을 촬영하여 비디오 스트림을 생성하고, 비디오 스트림의 연속하는 데이터 프레임을 뉴럴 네트워크 장치(930)에 입력 데이터로서 순서대로 제공할 수 있다. 그러나 이에 제한되는 것은 아니며 센서 모듈(950)은 다양한 종류의 데이터를 뉴럴 네트워크 장치(930)에 제공할 수 있다.
통신 모듈(960)은 외부 디바이스와 통신할 수 있는 다양한 유선 또는 무선 인터페이스를 구비할 수 있다. 예컨대 통신 모듈(960)은 유선 근거리통신망(Local Area Network; LAN), Wi-fi(Wireless Fidelity)와 같은 무선 근거리 통신망 (Wireless Local Area Network; WLAN), 블루투스(Bluetooth)와 같은 무선 개인 통신망(Wireless Personal Area Network; WPAN), 무선 USB (Wireless Universal Serial Bus), Zigbee, NFC (Near Field Communication), RFID (Radio-frequency identification), PLC(Power Line communication), 또는 3G (3rd Generation), 4G (4th Generation), LTE (Long Term Evolution) 등 이동 통신망(mobile cellular network)에 접속 가능한 통신 인터페이스 등을 포함할 수 있다.
실시 예에 있어서, 통신 모듈(960)은 외부 디바이스로부터 양자화된 뉴럴 네트워크에 관한 데이터를 수신할 수 있다. 여기서, 외부 디바이스는 도 3의 뉴럴 네트워크 양자화 장치(10)와 같이 방대한 양의 데이터를 기초로 훈련을 수행하고, 훈련된 뉴럴 네트워크를 고정 소수점 타입으로 양자화하고, 양자화된 뉴럴 네트워크 데이터를 전자 시스템(900)에 제공하는 디바이스일 수 있다. 수신된 양자화된 뉴럴 네트워크 데이터는 메모리(940)에 저장될 수 있다.
이상에서 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속한다.

Claims (20)

  1. 뉴럴 네트워크의 파라미터들을 양자화하는 방법에 있어서,
    부동 소수점들을 이용하여 미리 훈련된(pre-trained) 뉴럴 네트워크에 제1 데이터 세트가 입력됨에 따라 피처 맵들 각각에 포함된 각 채널에서 이용되는 부동 소수점 타입의 제1 파라미터 값들에 대한 채널 별 프로파일 정보를 획득하는 단계;
    상기 채널 별 프로파일 정보를 데이터 세트로 입력 받는 분류 네트워크(Classification Network)를 이용하여 상기 채널 별 프로파일 정보에 적합한 확률 밀도 함수(Probability Density Function: PDF) 유형을 상기 각 채널 별로 결정하는 단계;
    상기 결정된 PDF 유형에 기초하여 상기 제1 파라미터 값들의 분포 범위를 통계적으로 커버하는 고정 소수점 표현을 상기 각 채널 별로 결정하는 단계; 및
    상기 각 채널 별로 결정된 고정 소수점 표현에 기초하여 고정 소수점 타입의 양자화된 뉴럴 네트워크를 생성하는 단계를 포함하는, 방법.
  2. 제 1항에 있어서,
    상기 분류 네트워크는 상기 각 채널 별로 상기 고정 소수점 표현을 결정하기 위해 이용되는데 가장 적합한 PDF 유형을 기 정의된 복수의 PDF 유형들 중에서 선택하도록 훈련된 뉴럴 네트워크이고,
    상기 방법은,
    상기 분류 네트워크를 훈련시키는 단계를 더 포함하는, 방법.
  3. 제 2항에 있어서,
    상기 분류 네트워크를 훈련시키는 단계는,
    상기 미리 훈련된 뉴럴 네트워크에 제2 데이터 세트가 입력됨에 따라 피처 맵들 각각에 포함된 각 채널에서 이용되는 부동 소수점 타입의 제2 파라미터 값들에 대한 프로파일 정보를 획득하는 단계;
    상기 제2 파라미터 값들의 분포 범위를 통계적으로 커버하는 후보 고정 소수점 표현을 상기 복수의 PDF 유형들 각각에 대해 결정하는 단계;
    상기 복수의 PDF 유형들 각각에 대해 결정된 후보 고정 소수점 표현에 기초하여 상기 제2 파라미터 값들을 양자화하고, 상기 양자화 결과 가장 높은 SQNR(Signal-to-Quantization-Noise Ratio)을 갖는 후보 고정 소수점 표현에 대응되는 최적 PDF 유형을 결정하는 단계;
    상기 제2 파라미터 값들에 대한 프로파일 정보 및 상기 최적 PDF 유형을 매칭함으로써 훈련 데이터 세트를 생성하는 단계; 및
    상기 훈련 데이터 세트를 이용하여 상기 분류 네트워크를 훈련시키는 단계를 더 포함하는, 방법.
  4. 제 3항에 있어서,
    상기 고정 소수점 표현을 상기 복수의 PDF 유형들 각각에 대해 결정하는 단계는,
    상기 고정 소수점 표현을 나타내는 비트들의 개수를 고정한 상태에서 상기 복수의 PDF 유형들 각각에 대해 양자화 오류(quantization error)가 최소화되도록 상기 고정 소수점 표현의 프랙션 길이를 결정하는 단계를 포함하는, 방법.
  5. 제 1항에 있어서,
    상기 고정 소수점 표현을 결정하는 단계는,
    상기 고정 소수점 표현을 나타내는 비트들의 개수를 고정한 상태에서 양자화 오류가 최소화되도록 상기 고정 소수점 표현의 프랙션 길이를 결정하는 단계를 포함하는, 방법.
  6. 제 1항에 있어서,
    상기 제1 파라미터 값들은 피처 맵들 각각에 포함된 각 채널에서 이용된 부동 소수점 타입의 액티베이션들을 포함하는, 방법.
  7. 제 1항에 있어서,
    상기 제1 데이터 세트는 소정 개수 이하의 이미지 샘플들에 대응되는, 방법.
  8. 제 1항에 있어서,
    상기 채널 별 프로파일 정보는 상기 제1 파라미터 값들의 평균(average), 분산(variance), 기대값(expected value), 비대칭도(skewness), 첨도(kurtosis), 초비대칭도(hyperskewness) 및 초첨도(hyperkurtosis) 중 적어도 하나를 포함하는, 방법.
  9. 제 1항에 있어서,
    상기 고정 소수점 타입의 양자화된 뉴럴 네트워크를 생성하는 단계는,
    상기 미리 훈련된 뉴럴 네트워크의 데이터로부터, 커널들 각각에 포함되는 웨이트들의 최대값을 획득하는 단계; 및
    상기 획득된 최대값에 기초하여 상기 웨이트들을 나타내기 위한 고정 소수점 표현의 프랙션 길이를 결정하는 단계를 포함하는, 방법.
  10. 제 2항에 있어서,
    상기 복수의 PDF 유형들은 라플라스(LaPlace) 분포, 하이퍼 시컨트(Hyp. Secant) 분포, 로지스틱(Logistic) 분포, 정규(Normal) 분포, 레이즈드-코사인(Raised-Cosine) 분포, 위그너(Wigner) 분포, 균등(Uniform) 분포 및 슈퍼 코시(Super Cauchy) 분포 중 적어도 하나를 포함하는, 방법.
  11. 적어도 하나의 프로그램이 저장된 메모리; 및
    상기 적어도 하나의 프로그램을 실행함으로써 뉴럴 네트워크의 파라미터들을 양자화하는 프로세서를 포함하고,
    상기 프로세서는,
    부동 소수점들을 이용하여 미리 훈련된 뉴럴 네트워크에 제1 데이터 세트가 입력됨에 따라 피처 맵들 각각에 포함된 각 채널에서 이용되는 부동 소수점 타입의 제1 파라미터 값들에 대한 채널 별 프로파일 정보를 획득하고,
    상기 채널 별 프로파일 정보를 데이터 세트로 입력 받는 분류 네트워크를 이용하여 상기 채널 별 프로파일 정보에 적합한 PDF 유형을 상기 각 채널 별로 결정하고,
    상기 결정된 PDF 유형에 기초하여 상기 제1 파라미터 값들의 분포 범위를 통계적으로 커버하는 고정 소수점 표현을 상기 각 채널 별로 결정하며,
    상기 각 채널 별로 결정된 고정 소수점 표현에 기초하여 고정 소수점 타입의 양자화된 뉴럴 네트워크를 생성하는, 장치.
  12. 제 11항에 있어서,
    상기 분류 네트워크는 상기 각 채널 별로 상기 고정 소수점 표현을 결정하기 위해 이용되는데 가장 적합한 PDF 유형을 기 정의된 복수의 PDF 유형들 중에서 선택하도록 훈련된 뉴럴 네트워크이고,
    상기 프로세서는 상기 분류 네트워크를 훈련시키는, 장치.
  13. 제 12항에 있어서,
    상기 프로세서는,
    상기 미리 훈련된 뉴럴 네트워크에 제2 데이터 세트가 입력됨에 따라 피처 맵들 각각에 포함된 각 채널에서 이용되는 부동 소수점 타입의 제2 파라미터 값들에 대한 프로파일 정보를 획득하고,
    상기 제2 파라미터 값들의 분포 범위를 통계적으로 커버하는 후보 고정 소수점 표현을 상기 복수의 PDF 유형들 각각에 대해 결정하며,
    상기 복수의 PDF 유형들 각각에 대해 결정된 후보 고정 소수점 표현에 기초하여 상기 제2 파라미터 값들을 양자화하고, 상기 양자화 결과 가장 높은 SQNR을 갖는 후보 고정 소수점 표현에 대응되는 최적 PDF 유형을 결정하며,
    상기 제2 파라미터 값들에 대한 프로파일 정보 및 상기 최적 PDF 유형을 매칭함으로써 훈련 데이터 세트를 생성하고,
    상기 훈련 데이터 세트를 이용하여 상기 분류 네트워크를 훈련시키는, 장치.
  14. 제 13항에 있어서,
    상기 프로세서는,
    상기 고정 소수점 표현을 나타내는 비트들의 개수를 고정한 상태에서 상기 복수의 PDF 유형들 각각에 대해 양자화 오류가 최소화되도록 상기 고정 소수점 표현의 프랙션 길이를 결정하는, 장치.
  15. 제 11항에 있어서,
    상기 프로세서는,
    상기 고정 소수점 표현을 나타내는 비트들의 개수를 고정한 상태에서 양자화 오류가 최소화되도록 상기 고정 소수점 표현의 프랙션 길이를 결정하는, 장치.
  16. 제 11항에 있어서,
    상기 제1 파라미터 값들은 피처 맵들 각각에 포함된 각 채널에서 이용된 부동 소수점 타입의 액티베이션들을 포함하는, 장치.
  17. 제 11항에 있어서,
    상기 제1 데이터 세트는 소정 개수 이하의 이미지 샘플들에 대응되는, 장치.
  18. 제 11항에 있어서,
    상기 채널 별 프로파일 정보는 상기 제1 파라미터 값들의 평균, 분산, 기대값, 비대칭도, 첨도, 초비대칭도 및 초첨도 중 적어도 하나를 포함하는, 장치.
  19. 제 11항에 있어서,
    상기 프로세서는,
    상기 미리 훈련된 뉴럴 네트워크의 데이터로부터, 커널들 각각에 포함되는 웨이트들의 최대값을 획득하고,
    상기 획득된 최대값에 기초하여 상기 웨이트들을 나타내기 위한 고정 소수점 표현의 프랙션 길이를 결정하는, 장치.
  20. 제 12항에 있어서,
    상기 복수의 PDF 유형들은 라플라스 분포, 하이퍼 시컨트 분포, 로지스틱 분포, 정규 분포, 레이즈드-코사인 분포, 위그너 분포, 균등 분포 및 슈퍼 코시 분포 중 적어도 하나를 포함하는, 장치.
KR1020180074916A 2018-04-27 2018-06-28 뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치 KR20190125141A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/282,748 US11836603B2 (en) 2018-04-27 2019-02-22 Neural network method and apparatus with parameter quantization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862663433P 2018-04-27 2018-04-27
US62/663,433 2018-04-27

Publications (1)

Publication Number Publication Date
KR20190125141A true KR20190125141A (ko) 2019-11-06

Family

ID=68541697

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180074916A KR20190125141A (ko) 2018-04-27 2018-06-28 뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치

Country Status (2)

Country Link
US (1) US11836603B2 (ko)
KR (1) KR20190125141A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021096152A1 (en) * 2019-11-15 2021-05-20 Samsung Electronics Co., Ltd. Asymmetric normalized correlation layer for deep neural network feature matching
US11132772B2 (en) 2019-06-11 2021-09-28 Samsung Electronics Co., Ltd. Asymmetric normalized correlation layer for deep neural network feature matching
WO2022108361A1 (ko) * 2020-11-18 2022-05-27 인텔렉추얼디스커버리 주식회사 신경망 특징맵 양자화 방법 및 장치

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109754074A (zh) * 2018-12-29 2019-05-14 北京中科寒武纪科技有限公司 一种神经网络量化方法、装置以及相关产品
FR3094118A1 (fr) * 2019-03-20 2020-09-25 Stmicroelectronics (Rousset) Sas Procédé d’analyse d’un jeu de paramètres d’un réseau de neurones en vue d’un ajustement de zones allouées auxdits paramètres.
US11650968B2 (en) * 2019-05-24 2023-05-16 Comet ML, Inc. Systems and methods for predictive early stopping in neural network training
KR20210083935A (ko) 2019-12-27 2021-07-07 삼성전자주식회사 뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치
CN111368972B (zh) * 2020-02-21 2023-11-10 华为技术有限公司 一种卷积层量化方法及其装置
CN113298843B (zh) * 2020-02-24 2024-05-14 中科寒武纪科技股份有限公司 数据量化处理方法、装置、电子设备和存储介质
CN111695590B (zh) * 2020-04-24 2022-05-03 浙江大学 约束优化类激活映射的深度神经网络特征可视化方法
CN112200296B (zh) * 2020-07-31 2024-04-05 星宸科技股份有限公司 网络模型量化方法、装置、存储介质及电子设备
CN112287986B (zh) * 2020-10-16 2023-07-18 浪潮(北京)电子信息产业有限公司 一种图像处理方法、装置、设备及可读存储介质
CN113780523B (zh) * 2021-08-27 2024-03-29 深圳云天励飞技术股份有限公司 图像处理方法、装置、终端设备及存储介质
US11970135B2 (en) 2022-08-29 2024-04-30 Geotab Inc. Methods for shared vehicle access
US11814010B1 (en) 2022-08-29 2023-11-14 Geotab Inc. Devices for shared vehicle access

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479574A (en) * 1993-04-01 1995-12-26 Nestor, Inc. Method and apparatus for adaptive classification
TWI220479B (en) * 2003-07-09 2004-08-21 Mediatek Inc Digital signal processor based on jumping floating point arithmetic
CN106575379B (zh) 2014-09-09 2019-07-23 英特尔公司 用于神经网络的改进的定点整型实现方式
US10262259B2 (en) 2015-05-08 2019-04-16 Qualcomm Incorporated Bit width selection for fixed point neural networks
US20160328645A1 (en) 2015-05-08 2016-11-10 Qualcomm Incorporated Reduced computational complexity for fixed point neural network
US10373050B2 (en) 2015-05-08 2019-08-06 Qualcomm Incorporated Fixed point neural network based on floating point neural network quantization
US10650303B2 (en) 2017-02-14 2020-05-12 Google Llc Implementing neural networks in fixed point arithmetic computing systems
CN107239826A (zh) * 2017-06-06 2017-10-10 上海兆芯集成电路有限公司 在卷积神经网络中的计算方法及装置
US10268951B2 (en) * 2017-06-14 2019-04-23 International Business Machines Corporation Real-time resource usage reduction in artificial neural networks
US9916531B1 (en) * 2017-06-22 2018-03-13 Intel Corporation Accumulator constrained quantization of convolutional neural networks
CN107688849B (zh) * 2017-07-28 2021-04-13 赛灵思电子科技(北京)有限公司 一种动态策略定点化训练方法及装置
KR102601604B1 (ko) 2017-08-04 2023-11-13 삼성전자주식회사 뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치
US20190050710A1 (en) * 2017-08-14 2019-02-14 Midea Group Co., Ltd. Adaptive bit-width reduction for neural networks
US11755901B2 (en) * 2017-12-28 2023-09-12 Intel Corporation Dynamic quantization of neural networks
US10678508B2 (en) * 2018-03-23 2020-06-09 Amazon Technologies, Inc. Accelerated quantized multiply-and-add operations

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11132772B2 (en) 2019-06-11 2021-09-28 Samsung Electronics Co., Ltd. Asymmetric normalized correlation layer for deep neural network feature matching
WO2021096152A1 (en) * 2019-11-15 2021-05-20 Samsung Electronics Co., Ltd. Asymmetric normalized correlation layer for deep neural network feature matching
WO2022108361A1 (ko) * 2020-11-18 2022-05-27 인텔렉추얼디스커버리 주식회사 신경망 특징맵 양자화 방법 및 장치

Also Published As

Publication number Publication date
US20200026986A1 (en) 2020-01-23
US11836603B2 (en) 2023-12-05

Similar Documents

Publication Publication Date Title
KR102601604B1 (ko) 뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치
KR20190125141A (ko) 뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치
JP7329455B2 (ja) ニューラルネットワーク量子化のための方法及び装置
KR102589303B1 (ko) 고정 소수점 타입의 뉴럴 네트워크를 생성하는 방법 및 장치
US11481608B2 (en) Method and apparatus with neural network parameter quantization
KR20180129211A (ko) 뉴럴 네트워크에서 데이터를 양자화하는 방법 및 장치
US11531893B2 (en) Method and apparatus with neural network parameter quantization
US11501166B2 (en) Method and apparatus with neural network operation
JP7329352B2 (ja) 分類のためのニューラルネットワークにおいて、パラメータを処理する方法及び装置
EP3985574A1 (en) Method and apparatus with neural network pruning
KR20210121946A (ko) 뉴럴 네트워크 양자화를 위한 방법 및 장치
KR20210053791A (ko) 뉴럴 네트워크의 데이터를 처리하는 방법 및 장치
KR102581471B1 (ko) 분류를 위한 뉴럴 네트워크에서 파라미터를 처리하는 방법 및 장치
KR20200139071A (ko) 뉴럴 네트워크에서 파라미터를 양자화하는 방법 및 장치
US12026611B2 (en) Method and apparatus for quantizing parameters of neural network
KR20240035013A (ko) 뉴럴 네트워크의 파라미터 양자화 방법 및 장치
US20200125947A1 (en) Method and apparatus for quantizing parameters of neural network
KR20220117598A (ko) 유전자 발현량 예측 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal