KR20190123678A - 이동 로봇과 이동 로봇 시스템 - Google Patents

이동 로봇과 이동 로봇 시스템 Download PDF

Info

Publication number
KR20190123678A
KR20190123678A KR1020190040039A KR20190040039A KR20190123678A KR 20190123678 A KR20190123678 A KR 20190123678A KR 1020190040039 A KR1020190040039 A KR 1020190040039A KR 20190040039 A KR20190040039 A KR 20190040039A KR 20190123678 A KR20190123678 A KR 20190123678A
Authority
KR
South Korea
Prior art keywords
driving
angle
pattern
mobile robot
travel
Prior art date
Application number
KR1020190040039A
Other languages
English (en)
Inventor
이재훈
우종진
박종일
최규천
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to AU2019248258A priority Critical patent/AU2019248258A1/en
Priority to US17/045,552 priority patent/US11630462B2/en
Priority to KR1020190040039A priority patent/KR20190123678A/ko
Priority to PCT/KR2019/004058 priority patent/WO2019194632A1/ko
Priority to EP19781299.3A priority patent/EP3778148B1/en
Publication of KR20190123678A publication Critical patent/KR20190123678A/ko
Priority to KR1020210083200A priority patent/KR102489617B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/835Mowers; Mowing apparatus of harvesters specially adapted for particular purposes
    • A01D34/86Mowers; Mowing apparatus of harvesters specially adapted for particular purposes for use on sloping ground, e.g. on embankments or in ditches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/005Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators using batteries, e.g. as a back-up power source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1684Tracking a line or surface by means of sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electromagnetism (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Harvester Elements (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

본 발명은 외관을 형성하는 바디; 상기 바디를 이동시키는 주행부; 주행 영역의 경계 영역에서 발생하는 경계 신호를 감지하는 경계 신호 감지부; 및 상기 주행부가 상기 주행 영역을 복수회에 걸쳐 패턴 주행 하도록 제어하고, 제1 패턴 주행 시의 주행 각도와 제2 패턴 주행 시의 주행 각도가 서로 상이하도록 제어하는 제어부를 포함하는 이동 로봇을 제공한다. 따라서, 패턴 주행을 복수회에 걸쳐 진행할 때, 기준 축을 기준으로 서로 다른 각도로 진행함으로써 깍지 못하는 영역을 최소화할 수 있어 효율이 향상될 수 있다.

Description

이동 로봇과 이동 로봇 시스템{Moving robot and Moving robot system}
본 발명은 이동 로봇의 패턴 주행 시에 복수회의 주행에 대하여 각도를 변경하여 주행을 진행하는 이동 로봇 및 이동 로봇 시스템에 에 관한 것이다.
로봇은 산업용으로 개발되어 공장 자동화의 일 부분을 담당하여 왔다. 최근에는 로봇을 응용한 분야가 더욱 확대되어, 의료용 로봇, 우주 항공 로봇 등이 개발되고, 일반 가정에서 사용할 수 있는 가정용 로봇도 만들어지고 있다. 이러한 로봇 중에서 자력으로 주행이 가능한 것을 이동 로봇이라고 한다. 가정의 야외 환경에서 사용되는 이동 로봇의 대표적인 예는 잔디 깎기 로봇이다.
실내를 자율 주행하는 이동 로봇의 경우 벽이나 가구 등에 의해 이동 가능 영역이 제한되나, 실외를 자율 주행하는 이동 로봇의 경우 이동 가능한 영역을 사전에 설정해야 할 필요성이 있다. 또한, 상기 잔디 깎기 로봇이 잔디가 심어진 영역을 주행하도록 이동 가능한 영역을 제한할 필요성이 있다.
종래 기술(미국공개특허공보 US20170344012A1)에서는, 경계점이 설정되어 있고 그에 맞닥뜨릴 때마다 방향을 변경하여 랜덤으로 주행하는 이동 로봇이 개시되어 있다. 또한, 종래 기술(한국공개특허공보 제2015-0125508호)에서는, 잔디 깎기 로봇이 이동할 영역을 설정하기 와이어를 매설하고, 잔디 깎기 로봇은 와이어에 의해 흐르는 전류에 의해 형성되는 자기장을 센싱(sensing)하여 와이어에 의해 설정된 영역 내에서 이동할 수 있다.
또한, 종래 기술에 따르면, 와이어의 일 점을 출발점으로하여 패턴 주행을 실행하는 주행 방법이 개시되어 있다. 한 영역에 대하여는 복수회에 걸쳐 패턴 주행을 진행하고 있으며, 그에 따라 순차적으로 잔디 깎기가 진행된다.
그러나, 이와 같이 패턴 주행을 실행하는 경우, 모두 동일한 방향으로 주행이 진행되므로 경계 와이어의 형상 및 이동 로봇의 주행 영역 분할 알고리즘에 의해 깎지 못하는 영역이 발생하게 된다.
종래 기술처럼 잔디 깍기 로봇이 패턴 주행이 복수회에 걸쳐 진행될 때, 고정되어 있는 특정 각도로만 계속적으로 주행하면, 이와 같이 깍지 못하는 영역이 복수회에 걸쳐 중복되어 깍인 영역과 격차가 더욱 커지게 된다.
미국공개특허공보 US20170344012A1 (공개일 : 2017년 11월 30일) 한국공개특허공보 제2015-0125508호 (공개일 : 2015년 11월 9일)
본 발명의 제1 과제는 패턴 주행을 복수회에 걸쳐 진행할 때, 기준 축에 대하여 서로 다른 각도로 진행함으로써 깍지 못하는 영역을 최소화하는데 있다.
본 발명의 제2 과제는 복수회에 걸쳐 각도를 순차적으로 변화할 때, 최대 45도 이내에서 가변하게 함으로써 중복적인 각도가 아닌 미세하게 빗겨가는 각도로 변경하여 깍지 못하는 영역을 최소화하는 데 있다.
본 발명의 제3 과제는 잔디 깎기 로봇의 주행에 있어서, 주행 영역에서의 사용자 관점을 반영하여 주행 각도를 제어하여 사용자에게 친밀도를 높일 수 있고, 사용자의 생활 패턴을 반영하여 잔디 깎기를 진행할 수 있는 주행 방법을 제공하는 데 있다.
본 발명의 제4 과제는 사용자의 단말을 통해 사용자가 직접 주행 각도를 설정할 수 있도록 정보를 제공하고 명령을 수신하여 명령에 따라 주행 각도를 제어하는 방법을 제공하는 데 있다.
본 발명은 외관을 형성하는 바디; 상기 바디를 이동시키는 주행부; 주행 영역의 경계 영역에서 발생하는 경계 신호를 감지하는 경계 신호 감지부; 및 상기 주행부가 상기 주행 영역을 복수회에 걸쳐 패턴 주행 하도록 제어하고, 제1 패턴 주행 시의 주행 각도와 제2 패턴 주행 시의 주행 각도가 서로 상이하도록 제어하는 제어부를 포함하는 이동 로봇을 제공한다.
상기 제어부는 장축과 단축을 번갈아 주행하는 지그재그 모드의 패턴 주행을 수행하도록 상기 주행부를 제어할 수 있다.
상기 제어부는, 상기 주행 영역의 기준선에 대하여 상기 장축의 주행 각도를 상기 주행 각도로 정의하고, 상기 제1 패턴 주행과 상기 제2 패턴 주행의 각도가 서로 상이할 수 있다.
상기 제어부는, 상기 제1 패턴 주행과 상기 제2 패턴 주행의 상기 주행 각도가 상기 기준선에 대하여 서로 다른 방향으로 동일한 크기의 각도만큼 시프트될 수 있다.
시프트되어 있는 상기 주행 각도의 크기는 1도 내지 90도 사이의 값일 수 있다.
상기 주행 각도의 크기는 1도 내지 10도 사이의 값일 수 있다.
상기 주행 각도는 상기 복수회의 상기 패턴 주행에 따라 동일한 크기만큼 증가하도록 시프트될 수 있다.
상기 제어부는 상기 주행 각도를 상기 패턴 주행에 따라 15도씩 시프트할 수 있다.
상기 제어부는 새로운 장축의 상기 주행 각도에 따라 상기 단축과 상기 장축의 각도를 세팅할 수 있다.
상기 주행 영역 외의 구조물에 대한 정보에 따라 상기 주행 각도를 설정할 수 있다.
상기 제어부는 내부 공간의 창문 및 대문의 방향에 따라 상기 주행 각도를 설정할 수 있다.
상기 제어부는 마지막 패턴 주행 시 이전 패턴 주행까지의 주행 면적 중 임계 횟수 이하로 주행된 영역을 주행하도록 주행 각도를 설정할 수 있다.
한편, 본 발명은 주행 영역을 정의하는 경계 와이어; 외관을 형성하는 바디, 상기 바디를 이동시키는 주행부, 주행 영역의 경계 영역에서 발생하는 경계 신호를 감지하는 경계 신호 감지부, 및 상기 주행부가 상기 주행 영역을 복수회에 걸쳐 패턴 주행 하도록 제어하고, 제1 패턴 주행 시의 주행 각도와 제2 패턴 주행 시의 주행 각도가 서로 상이하도록 제어하는 제어부를 포함하는 이동 로봇; 및 상기 이동 로봇으로 상기 주행 각도에 대한 정보를 전송하는 사용자 단말을 포함하는 이동 로봇 시스템을 제공한다.
상기 제어부는 장축과 단축을 번갈아 주행하는 지그재그 모드의 패턴 주행을 수행하도록 상기 주행부를 제어할 수 있다.
상기 사용자 단말은 상기 이동 로봇에 대한 어플리케이션이 저장될 수 있다.
상기 제어부는, 상기 사용자 단말로 상기 주행 영역에 대한 맵 정보를 전송할 수 있다.
상기 맵 정보는 상기 주행 영역 이외의 구조물 정보를 시각적으로 나타낼 수 있다.
상기 이동 로봇이 도킹되어 충전되는 도킹 기기를 더 포함하고, 상기 경계 영역의 일단은 상기 도킹 기기에 인접하게 배치될 수 있다.
상기 도킹 기기는, 전원과 연결되는 제1 와이어 단자와, 제2 와이어 단자를 더 포함하고, 상기 경계 와이어의 일단은 상기 제1 와이어 단자에 연결되고, 상기 경계 와이어의 타단은 상기 제2 와이어 단자에 연결될 수 있다.
상기 해결 수단을 통해, 본 발명은 패턴 주행을 복수회에 걸쳐 진행할 때, 기준 축을 기준으로 서로 다른 각도로 진행함으로써 깍지 못하는 영역을 최소화할 수 있어 효율이 향상될 수 있다.
본 발명은 복수회에 걸쳐 각도를 순차적으로 변화할 때, 최대 45도 이내에서 가변하게 함으로써 중복적인 각도가 아닌 미세하게 빗겨가는 각도로 변경하여 깍지 못하는 영역이 최소화될 수 있다.
또한, 본 발명은 주행 영역에서의 사용자 관점을 반영하여 주행 각도를 제어하여 사용자에게 친밀도를 높일 수 있고, 사용자의 생활 패턴을 반영하여 잔디 깎기를 진행할 수 있다.
그리고, 본 발명은 사용자의 단말을 통해 사용자가 직접 주행 각도를 설정할 수 있도록 정보를 제공하고 명령을 수신하여 사용자의 의사에 가장 부합하는 각도로 주행을 진행할 수 있는 이동 로봇을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 이동 로봇(100)의 사시도이다.
도 2는 도 1의 이동 로봇(100)의 정면을 바라본 입면도이다.
도 3은 도 1의 이동 로봇(100)의 우측면을 바라본 입면도이다.
도 4는 도 1의 이동 로봇(100)의 하측면을 바라본 입면도이다.
도 5는 도 1의 이동 로봇(100)을 도킹(docking)시키는 도킹 기기(200)를 도 시한 사시도이다.
도 6은 도 5의 도킹 기기(200)를 정면을 바라본 입면도이다.
도 7a은 본 발명의 일 실시예에 따른 기준 와이어를 후방에서 바라본 도면이다.
도 7b는 본 발명의 일 실시예에 따른 기준 와이어를 일 측방에서 바라본 도면이다.
도 8은 도 1의 이동 로봇(100)의 제어 관계를 나타낸 블록도이다.
도 9는 본 발명의 일 실시예에 따른 이동 로봇 시스템을 도시한 도면이다.
도 10은 이동 로봇의 하나의 주행 각도 제어 방법을 도시한 순서도이다.
도 11a 내지 도 11b는 제1 실시예에 따른 각도 변환을 나타내는 상태도이다.
도 12a 내지 도 12c는 제2 실시예에 따른 각도 변환을 나타내는 상태도이다.
도 13은 이동 로봇의 다른 주행 각도 제어 방법을 도시한 순서도이다.
도 14a 및 도 14b는 도 13에 따른 각도 변환을 나타내는 상태도이다.
이하에서 언급되는 “전(F)/후(R)/좌(Le)/우(Ri)/상(U)/하(D)” 등의 방향을 지칭하는 표현은 도면에 표시된 바에 따라 정의하나, 이는 어디까지나 본 발명이 명확하게 이해될 수 있도록 설명하기 위한 것이며, 기준을 어디에 두느냐에 따라 각 방향들을 다르게 정의할 수도 있음은 물론이다.
이하에서 언급되는 구성요소 앞에 ‘제1, 제2' 등의 표현이 붙는 용어 사용은, 지칭하는 구성요소의 혼동을 피하기 위한 것일 뿐, 구성요소 들 사이의 순서, 중요도 또는 주종관계 등과는 무관하다. 예를 들면, 제1 구성요소 없이 제2 구성요소 만을 포함하는 발명도 구현 가능하다.
도면에서 각 구성의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기와 면적은 실제크기나 면적을 전적으로 반영하는 것은 아니다.
또한, 본 발명의 구조를 설명하는 과정에서 언급하는 각도와 방향은 도면에 기재된 것을 기준으로 한다. 명세서에서 구조에 대한 설명에서, 각도에 대한 기준점과 위치관계를 명확히 언급하지 않은 경우, 관련 도면을 참조하도록 한다.
이하 도 1 내지 도 6을 참조하여, 이동 로봇 중 잔디 깎기 로봇(100)을 예로 들어 설명하나, 반드시 이에 한정될 필요는 없다.
도 1 내지 도 4를 참고하여, 이동 로봇(100)은 외관을 형성하는 바디(110)를 포함한다. 바디(110)는 내부 공간을 형성한다. 이동 로봇(100)은 주행면에 대해 바디(110)를 이동시키는 주행부(120)을 포함한다. 이동 로봇(100)은 소정의 작업을 수행하는 작업부(130)를 포함한다.
바디(110)는 후술할 구동 모터 모듈(123)이 고정되는 프레임(111)을 포함한다. 프레임(111)에 후술할 블레이드 모터(132)가 고정된다. 프레임(111)은 후술할 배터리를 지지한다. 프레임(111)은 그 밖에도 다른 여러 부품들을 지지하는 뼈대 구조를 제공한다. 프레임(111)은 보조 휠(125)및 구동 휠(121)에 의해 지지된다.
바디(110)는 블레이드(131)의 양측방에서 사용자의 손가락이 블레이드(131)로 진입하는 것을 차단하기 위한 측방 차단부(111a)를 포함한다. 측방 차단부(111a)는 프레임(111)에 고정된다. 측방 차단부(111a)는 프레임(111)의 다른 부분의 하측면에 비해 하측으로 돌출되어 배치된다. 측방 차단부(111a)는 구동 휠(121)과 보조 휠(125)의 사이 공간의 상측부를 커버하며 배치된다.
한 쌍의 측방 차단부(111a-1, 111a-2)가 블레이드(131)를 사이에 두고 좌우로 배치된다. 측방 차단부(111a)는 블레이드(131)로부터 소정 거리 이격되어 배치된다.
측방 차단부(111a)의 전방면(111af)은 라운드지게 형성된다. 전방면(111af)은 측방 차단부(111a)의 하측면에서 부터 전방으로 갈수록 라운드지게 상측으로 꺾이는 표면을 형성한다. 이러한 전방면(111af)의 형상을 이용하여, 이동 로봇(100)이 전방으로 이동할 때 측방 차단부(111a)는 소정 기준 이하의 하부 장애물을 쉽게 타고 넘어갈 수 있다.
바디(110)는 블레이드(131)의 전방에서 사용자의 손가락이 블레이드(131)로 진입하는 것을 차단하기 위한 전방 차단부(111b)를 포함한다. 전방 차단부(111b)는 프레임(111)에 고정된다. 전방 차단부(111b)는 한 쌍의 보조 휠(125(L), 125(R))의 사이 공간의 상측부의 일부를 커버하며 배치된다.
전방 차단부(111b)는 프레임(111)의 다른 부분의 하측면에 비해 하측으로 돌출되는 돌출 리브(111ba)를 포함한다. 돌출 리브(111ba)는 전후 방향으로 연장된다. 돌출 리브(111ba)의 상단부는 프레임(111)에 고정되고, 돌출 리브(111ba)의 하단부는 자유단을 형성한다.
복수의 돌출 리브(111ba)가 좌우 방향으로 이격되어 배치될 수 있다. 복수의 돌출 리브(111ba)가 서로 평행하게 배치될 수 있다. 인접하는 2개의 돌출 리브(111ba)사이에 틈이 형성된다.
돌출 리브(111ba)의 전방면은 라운드지게 형성된다. 돌출 리브(111ba)의 전방면은 돌출 리브(111ba)의 하측면에서 부터 전방으로 갈수록 라운드지게 상측으로 꺾이는 표면을 형성한다. 이러한 돌출 리브(111ba)의 전방면의 형상을 이용하여, 이동 로봇(100)이 전방으로 이동할 때 돌출 리브(111ba)는 소정 기준 이하의 하부 장애물을 쉽게 타고 넘어갈 수 있다.
전방 차단부(111b)는 강성을 보조하는 보조 리브(111bb)를 포함한다. 인접하는 2개의 돌출 리브(111ba)의 상단부의 사이에, 전방 차단부(111b)의 강성을 보강하기 위한 보조 리브(111bb)가 배치된다. 보조 리브(111bb)는 하측으로 돌출되고 격자형으로 연장되어 형성될 수 있다.
프레임(111)에는 보조 휠(125)을 회전 가능하게 지지하는 캐스터(미도시)가 배치된다. 캐스터는 프레임(111)에 대해 회전 가능하게 배치된다. 캐스터는 수직 축을 중심으로 회전 가능하게 구비된다. 캐스터는 프레임(111)의 하측에 배치된다. 한 쌍의 보조 휠(125)에 대응하는 한 쌍의 캐스터가 구비된다.
바디(110)는 프레임(111)을 상측에서 덮어주는 케이스(112)를 포함한다. 케이스(112)는 이동 로봇(100)의 상측면 및 전/후/좌/우 측면을 형성한다.
바디(110)는 케이스(112)를 프레임(111)에 고정시키는 케이스연결부(미도시)를 포함할 수 있다. 케이스연결부의 상단에 케이스(112)에 고정될 수 있다. 케이스연결부는 프레임(111)에 유동 가능하게 배치될 수 있다. 케이스연결부는 프레임(111)에 대해 상하 방향으로만 유동 가능하게 배치될 수 있다. 케이스연결부는 소정 범위 내에서만 유동 가능하게 구비될 수 있다. 케이스연결부는 케이스(112)와 일체로 유동한다. 이에 따라, 케이스(112)는 프레임(111)에 대해 유동이 가능하다.
바디(110)는 전방부에 배치되는 범퍼(112b)를 포함한다. 범퍼(112b)는 외부의 장애물과 접촉 시 충격을 흡수해 주는 기능을 수행한다. 범퍼(112b) 정면부에는, 후측으로 함몰되어 좌우 방향으로 길게 형성된 범퍼홈이 형성될 수 있다. 복수의 범퍼 홈이 상하 방향으로 이격되어 배치될 수 있다. 돌출 리브(111ba)의 하단이 보조 리브(111bb)의 하단보다 더 낮은 위치에 배치된다.
범퍼(112b)는 전방면 및 좌우 측면이 서로 연결되어 형성된다. 범퍼(112b)의 전방면 및 측면은 라운드지게 연결된다.
바디(110)는 범퍼(112b)의 외표면을 감싸며 배치되는 범퍼 보조부(112c)를 포함할 수 있다. 범퍼 보조부(112c)는 범퍼(112b)에 결합된다. 범퍼 보조부(112c)는 범퍼(112b)의 전방면의 하부 및 좌우 측면의 하부를 감싸준다. 범퍼 보조부(112c)는 범퍼(112b)의 전방면 및 좌우 측면의 하반부를 덮어줄 수 있다.
범퍼 보조부(112c)의 전단면은 범퍼(112b)의 전단면보다 전방에 배치된다. 범퍼 보조부(112c)는 범퍼(112b)의 표면에서 돌출된 표면을 형성한다.
범퍼 보조부(112c)는 고무 등 충격 흡수에 유리한 재질로 형성될 수 있다. 범퍼 보조부(112c)는 플렉서블(flexible)한 재질로 형성될 수 있다.
프레임(111)에는, 범퍼(112b)가 고정되는 유동 고정부(미도시)가 구비될 수 있다. 유동 고정부는 프레임(111)의 상측으로 돌출되게 배치될 수 있다. 유동 고정부의 상단부에 범퍼(112b)가 고정될 수 있다.
범퍼(112b)는 프레임(111)에 대해 소정 범위 내 유동 가능하게 배치될 수 있다. 범퍼(112b)는 유동 고정부에 고정되어 유동 고정부와 일체로 유동할 수 있다.
유동 고정부는 프레임(111)에 유동 가능하게 배치될 수 있다. 유동 고정부는 가상의 회전축을 중심으로, 유동 고정부가 프레임(111)에 대해 소정 범위 내 회전 가능하게 구비될 수 있다. 이에 따라, 범퍼(112b)는 프레임(111)에 대해 유동 고정부와 일체로 회전 가능하게 구비될 수 있다.
바디(110)는 손잡이(113)를 포함한다. 손잡이(113)는 케이스(112)의 후측부에 배치될 수 있다.
바디(110)는 배터리를 인출입하기 위한 배터리 투입부(114)를 포함한다. 배터리 투입부(114)는 프레임(111)의 하측면에 배치될 수 있다. 배터리 투입부(114)는 프레임(111)의 후측부에 배치될 수 있다.
바디(110)는 이동 로봇(100)의 전원을 On/Off하기 위한 전원 스위치(115)를 포함한다. 전원 스위치(115)는 프레임(111)의 하측면에 배치될 수 있다.
바디(110)는 블레이드(131)의 중앙부의 하측을 가려주는 블레이드 보호부(116)를 포함한다. 블레이드 보호부(116)는 블레이드(131)의 원심 방향 부분의 날이 노출되되 블레이드(131)의 중앙부가 가려지도록 구비된다.
바디(110)는 높이 조절부(156)및 높이 표시부(157)가 배치된 부분을 개폐시키는 제1 개폐부(117)를 포함한다. 제1 개폐부(117)는 케이스(112)에 힌지(hinge) 결합되어, 열림 동작 및 닫힘 동작이 가능하게 구비된다. 제1 개폐부(117)는 케이스(112)의 상측면에 배치된다.
제1 개폐부(117)는 판형으로 형성되어, 닫힘 상태에서 높이 조절부(156)및 높이 표시부(157)의 상측을 덮어준다.
바디(110)는 디스플레이 모듈(165)및 입력부(164)가 배치된 부분을 개폐시키는 제2 개폐부(118)를 포함한다. 제2 개폐부(118)는 케이스(112)에 힌지 결합되어, 열림 동작 및 닫힘 동작이 가능하게 구비된다. 제2 개폐부(118)는 케이스(112)의 상측면에 배치된다. 제2 개폐부(118)는 제1 개폐부(117)의 후방에 배치된다.
제2 개폐부(118)는 판형으로 형성되어, 닫힘 상태에서 디스플레이 모듈(165) 및 입력부(164)를 덮어준다.
제2 개폐부(118)의 열림 가능 각도 는 제1 개폐부(117)의 열림 가능 각도 에 비해 작도록, 기설정된다. 이를 통해, 제2 개폐부(118)의 열림 상태에서도, 사용자가 제1 개폐부(117)를 쉽게 열게 해주고, 사용자가 쉽게 높이 조절부(156)를 조작할 수 있게 해준다. 또한, 제2 개폐부(118)의 열림 상태에서도, 사용자가 높이 표시부(157)의 내용을 시각적으로 확인할 수 있게 해준다.
예를 들어, 제1 개폐부(117)의 열림 가능 각도 는 닫힘 상태를 기준으로 약 80 내지 90도 정도 가 되도록 구비될 수 있다. 예를 들어, 제2 개폐부(118)의 열림 가능 각도 는 닫힘 상태를 기준으로 약 45 내지 60도 정도 가 되도록 구비될 수 있다.
제1 개폐부(117)는 전단부를 중심으로 후단부가 상측으로 들어올려져 열림 동작하고, 제2 개폐부(118)는 전단부를 중심으로 후단부가 상측으로 들어올려져 열림 동작한다. 이를 통해, 잔디 깎기 로봇(100)이 전방으로 이동할 때에도 안전한 지역인 잔디 깎기 로봇(100)의 후방에서, 사용자가 제1 개폐부(117)및 제2 개폐부(118)를 여닫을 수 있다. 또한, 이를 통해, 제1 개폐부(117)의 열림 동작과 제2 개폐부(118)의 열림 동작이 서로 간섭되지 않게 할 수 있다.
제1 개폐부(117)의 전단부에서 좌우 방향으로 연장된 회전축을 중심으로, 제1 개폐부(117)가 케이스(112)에 대해 회전 동작 가능하게 구비될 수 있다. 제2 개폐부(118)의 전단부에서 좌우 방향으로 연장된 회전축을 중심으로, 제2 개폐부(118)가 케이스(112)에 대해 회전 동작 가능하게 구비될 수 있다.
바디(110)는, 제1 구동 모터(123(L))를 내부에 수용하는 제1모터 하우징(119a)과, 제2 구동 모터(123(R))를 내부에 수용하는 제2모터 하우징(119b)을 포함할 수 있다. 제1모터 하우징(119a)은 프레임(111)의 좌측에 고정되고, 제2모터 하우징(119b)은 프레임의 우측에 고정될 수 있다. 제1모터 하우징(119a)의 우단이 프레임(111)에 고정된다. 제2모터 하우징(119b)의 좌단이 프레임(111)에 고정된다.
제1모터 하우징(119a)은 전체적으로 좌우로 높이를 형성하는 원통형으로 형성된다. 제2모터 하우징(119b)은 전체적으로 좌우로 높이를 형성하는 원통형으로 형성된다.
주행부(120)는 구동 모터 모듈(123)의 구동력에 의해 회전하는 구동휠(121)을 포함한다. 주행부(120)는 , 구동 모터 모듈(123)의 구동력에 의해 회전하는 적어도 한 쌍의 구동휠(121)을 포함할 수 있다. 구동 휠(121)은, 각각 독립적으로 회전 가능하게 좌우에 구비되는 제1휠(121(L))및 제2휠(121(R))을 포함한다. 제1휠(121(L))는 좌측에 배치되고, 제2휠(121(R))는 우측에 배치된다. 제1휠(121(L))및 제2휠(121(R))은 좌우로 이격 배치된다. 제1휠(121(L))및 제2휠(121(R))은 바디(110)의 후측 하방부에 배치된다.
제1휠(121(L))및 제2휠(121(R))은 바디(110)가 지면에 대해 회전 운동 및 전진 운동이 가능하도록 각각 독립적으로 회전 가능하게 구비된다. 예를 들어, 제1휠(121(L))과 제2휠(121(R))이 같은 회전 속도로 회전할 때, 바디(110)는 지면에 대해 전진 운동할 수 있다. 예를 들어, 제1휠(121(L))의 회전 속도 가 제2휠(121(R))의 회전 속도 보다 빠르거나 제1휠(121(L))의 회전 방향 및 제2휠(121(R))의 회전 방향이 서로 다를 때, 바디(110)는 지면에 대해 회전 운동을 할 수 있다.
제1휠(121(L))및 제2휠(121(R))은 보조 휠(125)보다 크게 형성될 수 있다. 제1휠(121(L))의 중심부에 제1 구동 모터(123(L))의 축이 고정될 수 있고, 제2휠(121(R))의 중심부에 제2 구동 모터(123(R))의 축이 고정될 수 있다.
구동 휠(121)은 지면과 접촉하는 휠 외주부(121b)를 포함한다. 예를 들어, 휠 외주부(121b)는 타이어일 수 있다. 휠 외주부(121b)에는 지면과의 마찰력을 상승시키기 위한 복수의 돌기가 형성될 수 있다.
구동 휠(121)은 휠 외주부(121b)를 고정시키고 모터(123)의 동력을 전달받는 휠 프레임(미도시)을 포함할 수 있다. 휠 프레임의 중앙부에 모터(123)의 축이 고정되어, 회전력을 전달받을 수 있다. 휠 외주부(121b)는 휠 프레임의 둘레를 감싸며 배치된다.
구동 휠(121)은 휠 프레임의 외측 표면을 덮어주는 휠 커버(121a)를 포함한다. 휠 커버(121a)는 휠 프레임을 기준으로 모터(123)가 배치된 방향의 반대 방향에 배치된다. 휠 커버(121a)는 휠 외주부(121b)의 중앙부에 배치된다.
주행부(120는 구동력을 발생시키는 구동 모터 모듈(123)을 포함한다. 구동 휠(121)에 구동력을 제공하는 구동 모터 모듈(123)을 포함한다. 구동 모터 모듈(123)은, 제1휠(121(L))의 구동력을 제공하는 제1 구동 모터(123(L))와, 제2휠(121(R))의 구동력을 제공하는 제2 구동 모터(123(R))를 포함한다. 제1 구동 모터(123(L))와 제2 구동 모터(123(R))는 좌우로 이격되어 배치될 수 있다. 제1 구동 모터(123(L))는 제2 구동 모터(123(R))의 좌측에 배치될 수 있다.
제1 구동 모터(123(L))및 제2 구동 모터(123(R))는 바디(110)의 하측부에 배치될 수 있다. 제1 구동 모터(123(L))및 제2 구동 모터(123(R))는 바디(110)의 후방부에 배치될 수 있다.
제1 구동 모터(123(L))는 제1휠(121(L))의 우측에 배치되고, 제2 구동 모터(123(R))는 제2휠(121(R))의 좌측에 배치될 수 있다. 제1 구동 모터(123(L))및 제2 구동 모터(123(R))는 바디(110)에 고정된다.
제1 구동 모터(123(L))는 제1모터 하우징(119a)의 내부에 배치되어, 좌측으로 모터축이 돌출되게 구비될 수 있다. 제2 구동 모터(123(R))는 제2모터 하우징(119b)의 내부에 배치되어, 우측으로 모터축이 돌출되게 구비될 수 있다.
본 실시예에서는 제1휠(121(L))및 제2휠(121(R))이 각각 제1 구동 모터(123(L))의 회전축 및 제2 구동 모터(123(R))의 회전축에 직접 연결되나, 제1휠(121(L))및 제2휠(121(R))에 샤프트 등의 부품이 연결될 수도 있고, 기어나 체인 등에 의해 모터(123(L), 123(R))의 회전력이 휠(121a, 120b)에 전달되게 구현될 수도 있다.
주행부(120)는, 구동 휠(121)과 함께 바디(110)를 지지하는 보조 휠(125)을 포함할 수 있다. 보조 휠(125)은 블레이드(131)의 전방에 배치될 수 있다. 보조 휠(125)은 모터에 의한 구동력을 전달받지 않는 휠로서, 바디(110)를 지면에 대해 보조적으로 지지하는 역할을 한다. 보조 휠(125)의 회전축을 지지하는 캐스터는 수직한 축에 대해 회전 가능하게 프레임(111)에 결합된다. 좌측에 배치된 제1보조 휠(125(L))과 우측에 배치된 제2보조 휠(125(R))이 구비될 수 있다.
작업부(130)는 소정의 작업을 수행하도록 구비된다. 작업부(130)는 바디(110)에 배치된다.
일 예로, 작업부(130)는 청소나 잔디 깎기 등의 작업을 수행하도록 구비될 수 있다. 다른 예로, 작업부(130)는 물건의 운반이나 물건 찾기 등의 작업을 수행하도록 구비될 수도 있다. 또 다른 예로, 작업부(130)는 주변의 외부 침입자나 위험 상황 등을 감지하는 보안 기능을 수행할 수 있다.
본 실시예에서는 작업부(130)가 잔디 깎기를 수행하는 것으로 설명하나, 작업부(130)의 작업의 종류는 여러 가지 예시가 있을 수 있으며, 본 설명의 예시로 제한될 필요가 없다.
작업부(130)는 잔디를 깎기 위해 회전 가능하게 구비된 블레이드(131)를 포함할 수 있다. 작업부(130)는 블레이드(131)의 회전력을 제공하는 블레이드 모터(132)를 포함할 수 있다.
블레이드(131)는 구동 휠(121)과 보조 휠(125)의 사이에 배치된다. 블레이드(131)는 바디(110)의 하측부에 배치된다. 블레이드(131)는 바디(110)의 하측에서 노출되도록 구비된다. 블레이드(131)는 상하 방향으로 연장된 회전축을 중심으로 회전하여, 잔디를 깎는다.
블레이드 모터(132)는 제1휠(121(L))및 제2휠(121(R))의 전방에 배치될 수 있다. 블레이드 모터(132)는 바디(110)의 내부 공간 내에서 중앙부의 하측에 배치된다.
블레이드 모터(132)는 보조 휠(125)의 후측에 배치될 수 있다. 블레이드 모터(132)는 바디(110)의 하측부에 배치될 수 있다. 모터축의 회전력은 기어 등의 구조를 이용하여 블레이드(131)에 전달된다.
이동 로봇(100)은 구동 모터 모듈(123)에 전원을 공급하는 배터리(미도시)를 포함한다. 배터리는 제1 구동 모터(123(L))에 전원을 제공한다. 배터리는 제2 구동 모터(123(R))에 전원을 제공한다. 배터리는 블레이드 모터(132)에 전원을 공급할 수 있다. 배터리는, 제어부(190), 방위각 센서(176)및 출력부(165)에 전원을 제공할 수 있다. 배터리는 바디(110)의 내부 공간 내에서 후측부의 하측에 배치될 수 있다.
이동 로봇(100)은 지면에 대한 블레이드(131)의 높이를 변경 가능하게 구비되어, 잔디의 깎는 높이를 변경할 수 있다. 이동 로봇(100)은 사용자가 블레이드(131)의 높이를 변경하기 위한 높이 조절부(156)를 포함한다. 높이 조절부(156)는 회전 가능한 다이얼을 포함하여, 다이얼을 회전시킴으로써 블레이드(131)의 높이를 변경시킬 수 있다.
이동 로봇(100)은 블레이드(131)의 높이의 수준을 표시해주는 높이 표시부(157)를 포함한다. 높이 조절부(156)의 조작에 따라 블레이드(131)의 높이가 변경되면, 높이 표시부(157)가 표시하는 높이 수준도 같이 변경된다. 예를 들어, 높이 표시부(157)에는 현재의 블레이드(131)높이 상태로 이동 로봇(100)이 잔디 깎기를 수행한 후 예상되는 잔디의 높이 값이 표시될 수 있다.
이동 로봇(100)은 도킹 기기(200)에 도킹 시, 도킹 기기(200)와 연결되는 도킹 삽입부(158)를 포함한다. 도킹 삽입부(158)는 도킹 기기(200)의 도킹 연결부(210)가 삽입되도록 함몰되게 구비된다. 도킹 삽입부(158)는 바디(110)의 정면부에 배치된다. 도킹 삽입부(158)와 도킹 연결부(210)의 연결에 의해, 이동 로봇(100)이 충전 시 정확한 위치가 안내될 수 있다.
이동 로봇(100)은, 도킹 삽입부(158)가 도킹 연결부(210)에 삽입된 상태에서, 후술할 충전 단자(211)와 접촉 가능한 위치에 배치되는 충전 대응 단자(159)를 포함할 수 있다. 충전 대응 단자(159)는 한 쌍의 충전 단자(211)(211a, 211b)와 대응되는 위치에 배치되는 한 쌍의 충전 대응 단자(159a, 159b)를 포함할 수 있다. 한 쌍의 충전 대응 단자(159a, 159b)는 도킹 삽입부(158)를 사이에 두고 좌우로 배치될 수 있다.
도킹 삽입부(158)와 한 쌍의 충전 단자(211)(211a, 211b)를 개폐 가능하게 덮어주는 단자 커버(미도시)가 구비될 수 있다. 이동 로봇(100)의 주행 시, 단자 커버는 도킹 삽입부(158)와 한 쌍의 충전 단자(211)(211a, 211b)를 가려줄 수 있다. 이동 로봇(100)이 도킹 기기(200)와 연결 시, 단자 커버가 열려 도킹 삽입부(158)와 한 쌍의 충전 단자(211)(211a, 211b)가 노출될 수 있다.
한편, 도 5 및 도 6을 참고하여, 도킹 기기(200)는 바닥에 배치되는 도킹 베이스(230)와, 도킹 베이스(230)의 전방부에서 상측으로 돌출된 도킹 지지부(220)를 포함한다.
도킹 베이스(230)는 수평방향과 나란한 면을 정의한다. 도킹 베이스(230)는 이동 로봇(100)이 안착될 수 있는 판 형상이다. 도킹 지지부(220)는 도킹 베이스(230)에서 수평방향과 교차되는 방향으로 연장된다.
이동 로봇(100)의 충전시, 도킹 삽입부(158)에 삽입되는 도킹 연결부(210)를 포함한다. 도킹 연결부(210)는 도킹 지지부(220)에서 후방으로 돌출될 수 있다.
도킹 연결부(210)는 상하 방향의 두께가 좌우 방향의 폭보다 작게 형성될 수 있다. 도킹 연결부(210)의 좌우 방향 폭은 후측으로 갈수록 좁아지게 형성될 수 있다. 상측에서 바라볼 때, 도킹 연결부(210)는 전체적으로 사다리꼴이다. 도킹 연결부(210)는 좌우 대칭된 형상으로 형성된다. 도킹 연결부(210)의 후방부는 자유단을 형성하고, 도킹 연결부(210)의 전방부는 도킹 지지부(220)에 고정된다. 도킹 연결부(210)의 후방부는 라운드진 형상으로 형성될 수 있다.
도킹 연결부(210)가 도킹 삽입부(158)에 완전히 삽입되면, 이동 로봇(100)의 도킹 기기(200)에 의한 충전이 이루어질 수 있다.
도킹 기기(200)는 이동 로봇(100)을 충전시키기 위한 충전 단자(211)를 포함한다. 충전 단자(211)와 이동 로봇(100)의 충전 대응 단자(159)가 접촉하여, 도킹 기기(200)로부터 이동 로봇(100)으로 충전을 위한 전원이 공급될 수 있다.
충전 단자(211)는 후측을 바라보는 접촉면을 포함하고, 충전 대응 단자(159)는 전방을 바라보는 접촉 대응면을 포함한다. 충전 단자(211)의 접촉면과 충전 대응 단자(159)의 접촉 대응면이 접촉함으로써, 도킹 기기(200)의 전원이 이동 로봇(100) 연결된다.
충전 단자(211)는 +극 및 -극을 형성하는 한 쌍의 충전 단자(211)(211a, 211b)를 포함할 수 있다. 제1충전 단자(211)(211a)는 제1충전 대응 단자(159a)와 접촉하게 구비되고, 제2충전 단자(211)(211b)는 제2충전 대응 단자(159b)에 접촉하게 구비된다.
한 쌍의 충전 단자(211)(211a, 211b)는 도킹 연결부(210)를 사이에 두고 배치될 수 있다. 한 쌍의 충전 단자(211)(211a, 211b)는 도킹 연결부(210)의 좌우에 배치될 수 있다.
도킹 베이스(230)는 이동 로봇(100)의 구동 휠(121)및 보조 휠(125)이 올라서는 휠 가드(232)를 포함한다. 휠 가드(232)는, 제1보조 휠(125)의 이동을 안내하는 제1휠 가드(232a)와, 제2보조 휠(125)의 이동을 안내하는 제2휠 가드(232b)를 포함한다. 제1휠 가드(232a)와 제2휠 가드(232b)의 사이에는 상측으로 볼록한 중앙 베이스(231)가 배치된다. 도킹 베이스(230)는 제1휠(121(L))및 제2휠(121(R))의 미끄럼을 방지하기 위한 슬립 방지부(234)를 포함한다. 슬립 방지부(234)는 상측으로 돌출된 복수의 돌기를 포함할 수 있다.
한편, 이동 로봇(100)의 주행 영역의 경계를 설정하기 위한 경계 와이어(290)가 구현될 수 있다. 경계 와이어(290)는 소정의 경계 신호를 발생시킬 수 있다. 이동 로봇(100)은 경계 신호를 감지하여, 경계 와이어(290)에 의해 설정된 주행 영역의 경계를 인식할 수 있다.
예를 들어, 경계 와이어(290)를 따라 소정의 전류가 흐르도록 하여, 경계 와이어(290) 주변에 자기장을 발생시킬 수 있다. 여기서, 발생된 자기장이 경계 신호다. 경계 와이어(290)에 소정의 변화 패턴을 가진 교류가 흐르도록 하여, 경계 와이어(290) 주변에 발생된 자기장이 소정의 변화 패턴을 가지며 변화할 수 있다. 이동 로봇(100)은 자기장을 감지하는 경계 신호 감지부(177)를 이용하여, 경계 와이어(290)에 소정 거리 이내로 근접하였음을 인식할 수 있고, 이를 통해 경계 와이어(290)에 의해 설정된 경계 내의 주행 영역에서만 주행을 할 수 있다.
경계 와이어(290)는 기준 와이어(270)와 구별되는 방향으로 자기장을 생성할 수 있다. 예를 들면, 경계 와이어(290)는 수평면에 실질적으로 평행하게 배치될 수 있다. 여기서, 실질적으로 평행하다 함은 수학적 의미의 완전한 평행과 일정한 수준의 오차를 포함하는 공학적 의미에서 평행을 포함할 수 있다.
경계 와이어(290)에 소정의 전류를 보내주는 역할을 도킹 기기(200)가 할 수 있다. 도킹 기기(200)는 경계 와이어(290)와 연결되는 와이어 단자(250)를 포함할 수 있다. 경계 와이어(290)의 양단이 각각 제1 와이어 단자(250a) 및 제2 와이어 단자(250b)에 연결될 수 있다. 경계 와이어(290)와 와이어 단자(250)의 연결을 통해, 도킹 기기(200)의 전원이 경계 와이어(290)에 전류를 공급할 수 있다.
경계 와이어(290)가 복수의 주행 영역의 경계를 정의하는 복수의 경계 와이어를 포함할 수 있다. 즉, 전체 영역은 랜덤한 호밍 주행 경로를 위해 2개의 영역으로 구분될 수 있다.
와이어 단자(250)는 도킹 기기(200)의 전방(F)에 배치될 수 있다. 즉, 와이어 단자(250)는 도킹 연결부(210)가 돌출된 방향의 반대 방향 측에 배치될 수 있다. 와이어 단자(250)는 도킹 지지부(220)에 배치될 수 있다. 제1 와이어 단자(250a) 및 제2 와이어 단자(250b)는 좌우로 이격되어 배치될 수 있다.
도킹 기기(200)는 와이어 단자(250)를 개폐 가능하게 덮어주는 와이어 단자 개폐부(240)를 포함할 수 있다. 와이어 단자 개폐부(240)는 도킹 지지부(220)의 전방(F)에 배치될 수 있다. 와이어 단자 개폐부(240)는 도킹 지지부(220)에 힌지 결합되어, 회전 동작을 통해 개폐 동작을 하도록 기 설정될 수 있다.
한편, 이동 로봇(100)에게 도킹 기기(200)의 위치를 인식시키기 위한 기준 와이어(270)가 구현될 수 있다. 기준 와이어(270)는 소정의 도킹 위치 신호를 발생시킬 수 있다. 이동 로봇(100)은 도킹 위치 신호를 감지하여, 기준 와이어(270)에 의해 도킹 기기(200)의 위치를 인식하고, 복귀 명령 또는 충전이 필요 할 때, 인식된 도킹 기기(200)의 위치로 복귀할 수 있다. 이러한, 도킹 기기(200)의 위치는 이동 로봇(100)의 주행의 기준점이 될 수도 있다.
기준 와이어(270)는 전기가 흐를 수 있는 도전성의 재질로 형성된다. 기준 와이어(270)는 후술하는 도킹 기기(200)의 전원과 연결될 수 있다.
예를 들어, 기준 와이어(270)를 따라 소정의 전류가 흐르도록 하여, 기준 와이어(270) 주변에 자기장을 발생시킬 수 있다. 여기서, 발생된 자기장이 도킹 위치 신호다. 기준 와이어(270)에 소정의 변화 패턴을 가진 교류가 흐르도록 하여, 기준 와이어(270) 주변에 발생된 자기장이 소정의 변화 패턴을 가지며 변화할 수 있다. 이동 로봇(100)은 자기장을 감지하는 경계 신호 감지부(177)를 이용하여, 기준 와이어(270)에 소정 거리 이내로 근접하였음을 인식할 수 있고, 이를 통해 기준 와이어(270)에 의해 설정된 도킹 기기(200)의 위치로 복귀할 수 있다.
기준 와이어(270)는 경계 와이어(290)와 구별된는 방향으로 자기장을 생성할 수 있다. 예를 들면, 기준 와이어(270)는 수평방향과 교차되는 방향으로 연장될 수 있다. 바람직하게는 기준 와이어(270)는 수평방향과 직교하는 상하 방향으로 연장될 수 있다.
기준 와이어(270)는 도킹 기기(200)에 설치될 수 있다. 기준 와이어(270)는 도킹 기기(200)에서 다양한 위치에 배치될 수 있다.
도 7a은 본 발명의 제1 실시예에 따른 기준 와이어(270)를 후방에서 바라본 도면, 도 7b는 본 발명의 제1 실시예에 따른 기준 와이어(270)를 일 측방에서 바라본 도면이다.
도 6, 도 7a 및 도 7b를 참조하면, 제1 실시예에 따른 기준 와이어(270)는 도킹 지지부(220)의 내부에 배치될 수 있다. 기준 와이어(270)는 수평 방향이 자기장 신호를 발생시켜야 하므로, 기준 와이어(270)는 수직 방향으로 연장되게 배치된다. 기준 와이어(270)가 도킹 베이스(230)에 배치되면, 도킹 베이스(230)의 두께가 매우 두꺼워 지는 단점이 존재한다.
기준 와이어(270)는 적어도 수평방향과 교차되는 방향으로 연장되는 수직 부분(271)을 포함할 수 있다. 수직 부분(271)은 상하 방향(UD)과 실질적으로 평형하게 배치될 수 있다.
기준 와이어(270)의 수직 부분(271)에서 입력되는 전기의 방향은 상부에서 하부 방향으로 진행되거나, 하부에서 상부방향으로 진행될 수 있다.
수직 부분(271)은 도킹 기기(200)의 주변 영역 전체에서 일정 이상의 도킹 위치 신호를 발생시키기 위해 복수 개가 배치될 수 있다. 예를 들면, 수직 부분(271)은 제1 수직 부분(271a)과, 제1 수직 부분(271a)에서 이격되어 배치되는 제2 수직 부분(271b)을 포함할 수 있다. 물론, 수직 부분(271)은 제1 수직 부분(271a)과 제2 수직 부분(271b) 중 어느 하나 만을 포함할 수도 있다.
제1 수직 부분(271a)과 제2 수직 부분(271b)은 좌우 방향으로 이격되어 배치된다. 제1 수직 부분(271a)은 도킹 지지부(220)의 우측 단에 인접하여 배치되고, 제2 수직 부분(271b)은 도킹 지지부(220)의 좌측 단에 인접하여 배치될 수 있다. 제1 수직 부분(271a)과 제2 수직 부분(271b)이 도킹 지지부(220)의 양단에 인접하여 배치되면, 기준 와이어(270)에 의해 자기장이 발생하는 영역이 도킹 기기(200) 주변으로 최대한 확장되게 된다.
제1 수직 부분(271a)과 제2 수직 부분(271b)의 전류의 진행 방향은 동일하거나 상이할 수 있다. 바람직하게는 제1 수직 부분(271a)이 상부에서 하부 방향으로 전기가 흐르는 경우, 제2 수직 부분(271b)은 하부에서 상부 방향으로 전기가 흐를 수 있다.
제1 수직 부분(271a)과 제2 수직 부분(271b)의 전기장의 강도를 보강하기 위해, 제1 수직 부분(271a)과 제2 수직 부분(271b)은 각각 복수 개가 구비될 수 있다. 제1 수직 부분(271a)과 제2 수직 부분(271b)은 여러 개의 와이어의 집합체일 수 있고, 제1 수직 부분(271a)과 제2 수직 부분(271b)이 일정한 배치를 가질 수도 있다. 물론, 제1 수직 부분(271a)과 제2 수직 부분(271b)은 단수 개가 배치될 수도 있다.
예를 들면, 복수 개의 제1 수직 부분(271a)은 전후 방향으로 연장되는 라인을 따라 열을 이루게 배치되고, 복수 개의 제2 수직 부분(271b)은 전후 방향으로 연장되는 라인을 따라 열을 이루게 배치될 수 있다.
복수 개의 제1 수직 부분(271a)과, 제2 수직 부분(271b)이 도킹 지지부(220)의 좌우 방향 양단에 배치되고, 전후 방향으로 열을 이루어 배치되게 되면, 복수 개의 제1 수직 부분(271a)과 제2 수직 부분(271b) 사이에 충전 단자(211), 도킹 연결부(210)가 배치될 수 있다. 복수 개의 제1 수직 부분(271a)과 제2 수직 부분(271b) 사이에 충전 단자(211), 도킹 연결부(210)가 배치되면, 충전 단자(211)와 도킹 연결부(210)의 구성을 바꾸지 않고, 기준 와이어(270)를 배치할 수 있는 이점이 존재한다.
복수 개의 제1 수직 부분(271a)과 제2 수직 부분(271b)은 서로 전기적으로 연결되거나, 별도의 전원에서 전기를 공급 받을 수 있다. 기준 와이어(270)에 소정의 전류를 보내주는 역할을 도킹 기기(200)가 할 수 있다. 도킹 기기(200)는 기준 와이어(270)와 연결되는 와이어 단자(250)를 포함할 수 있다. 기준 와이어(270)의 양단이 각각 제1 와이어 단자(250a) 및 제2 와이어 단자(250b)에 연결될 수 있다. 기준 와이어(270)와 와이어 단자(250)의 연결을 통해, 도킹 기기(200)의 전원이 기준 와이어(270)에 전류를 공급할 수 있다.
구체적으로, 복수의 제1 수직 부분(271a)의 양단이 각각 제1 와이어 단자(250a) 및 제2 와이어 단자(250b)에 연결되고, 복수의 제2 수직 부분(271b)의 양단이 각각 제1 와이어 단자(250a) 및 제2 와이어 단자(250b)에 연결될 수 있다.
물론, 다른 예에 따른 기준 와이어(270)는 수평 부분(미도시)을 더 포함할 수 있다. 이 때, 기준 와이어(270)는 제1 수직 부분(271a)과 제2 수직 부분(271b)이 서로 연결되어 하나의 전원에서 전원을 공급받는 구조를 가질 수 있다.
도 8은 도 1의 이동 로봇(100)의 제어 관계를 나타낸 블록도 이다.
도 8을 참고하면, 이동 로봇(100)은 사용자의 각종 지시를 입력할 수 있는 입력부(164)를 포함할 수 있다. 입력부(164)는 버튼, 다이얼, 터치형 디스플레이 등을 포함할 수 있다. 입력부(164)는 음성 인식을 위한 마이크(미도시)를 포함할 수 있다. 본 실시예에서, 케이스(112)의 상측부에 다수의 버튼이 배치된다.
이동 로봇(100)은 사용자에게 각종 정보를 출력해주는 출력부(165)를 포함할 수 있다. 출력부(165)는 시각적 정보를 출력하는 디스플레이 모듈을 포함할 수 있다. 출력부(165)는 청각적 정보를 출력하는 스피커(미도시)를 포함할 수 있다.
본 실시예에서, 디스플레이 모듈(165)은 상측 방향으로 화상을 출력한다. 디스플레이 모듈(165)은 케이스(112)의 상측부에 배치된다. 일 예로, 디스플레이 모듈(165)은 액정 표시(LCD: Thin film transistor liquid-crystal display)패널을 포함할 수 있다. 그 밖에도, 디스플레이 모듈(165)은, 플라스마 디스플레이 패널(plasma display panel)또는 유기 발광 디스플레이 패널(organic light emitting diode display panel) 등의 다양한 디스플레이 패널을 이용하여, 구현될 수 있다.
이동 로봇(100)은 각종 정보를 저장하는 저장부(166)를 포함한다. 저장부(166)는 이동 로봇(100)의 제어에 필요한 각종 정보들을 기록하는 것으로, 휘발성 또는 비휘발성 기록 매체를 포함할 수 있다. 저장부(166)는 입력부(164)로부터 입력되거나 통신부(167) 수신한 정보를 저장할 수 있다. 저장부(166)는 이동 로봇(100)의 제어를 위한 프로그램이 저장할 수 있다.
이동 로봇(100)은 외부의 기기(단말기 등), 서버, 공유기 등과 통신하기 위한 통신부(167)를 포함할 수 있다. 예를 들어, 통신부(167)는 IEEE 802.11 WLAN, IEEE 802.15 WPAN, UWB, Wi-Fi, Zigbee, Z-wave, Blue-Tooth 등과 같은 무선 통신 기술로 무선 통신하게 구현될 수 있다. 통신부는 통신하고자 하는 다른 장치 또는 서버의 통신 방식이 무엇인지에 따라 달라질 수 있다.
이동 로봇(100)은 이동 로봇(100)의 상태나 이동 로봇(100)외부의 환경과 관련된 정보를 감지하는 센싱부(170)를 포함한다. 센싱부(170)는, 원격 신호 감지부(171), 장애물 감지부(172), 레인 감지부(173), 케이스 유동 센서(174), 범퍼 센서(175), 방위각 센서(176), 경계 신호 감지부(177), GPS 감지부(178) 및 낭떠러지 감지부(179) 중 적어도 하나를 포함할 수 있다.
원격 신호 감지부(171)는 외부의 원격 신호를 수신한다. 외부의 리모트 컨트롤러에 의한 원격 신호가 송신되면, 원격 신호 감지부(171)가 원격 신호를 수신할 수 있다. 예를 들어, 원격 신호는 적외선 신호일 수 있다. 원격 신호 감지부(171)에 의해 수신된 신호는 제어부(190)에 의해 처리될 수 있다.
복수의 원격 신호 감지부(171)가 구비될 수 있다. 복수의 원격 신호 감지부(171)는, 바디(110)의 전방부에 배치된 제1원격 신호 감지부(171a)와, 바디(110)의 후방부에 배치된 제2원격 신호 감지부(171b)를 포함할 수 있다. 제1원격 신호 감지부(171a)는 전방으로부터 송신되는 원격 신호를 수신한다. 제2원격 신호 감지부(171b)는 후방으로부터 송신되는 원격 신호를 수신한다.
장애물 감지부(172)는 이동 로봇(100)의 주변의 장애물을 감지한다. 장애물 감지부(172)는 전방의 장애물을 감지할 수 있다. 복수의 장애물 감지부(172a, 172b, 172c)가 구비될 수 있다. 장애물 감지부(172)는 바디(110)의 전방면에 배치된다. 장애물 감지부(172)는 프레임(111)보다 상측에 배치된다. 장애물 감지부(172)는, 적외선 센서, 초음파 센서, RF 센서, 지자기 센서, PSD(Position Sensitive Device) 센서 등을 포함할 수 있다.
레인 감지부(173)는 이동 로봇(100)이 놓여진 환경에서 비가 올 경우, 비(rain)를 감지한다. 레인 감지부(173)는 케이스(112)에 배치될 수 있다.
케이스 유동 센서(174)는 케이스 연결부의 유동을 감지한다. 프레임(111)에 대해 케이스(112)가 상측으로 들어올려지면, 케이스연결부가 상측으로 유동하게 되고, 케이스 유동 센서(174)가 케이스(112)의 들어올려짐을 감지하게 된다. 케이스 유동 센서(174)가 케이스(112)의 들어올려짐을 감지하면, 제어부(190)는 블레이드(131)의 동작을 정지시키도록 제어할 수 있다. 예를 들어, 사용자가 케이스(112)를 들어올리거나 상당한 크기의 하부 장애물이 케이스(112)를 들어올리는 상황 발생시, 케이스 유동 센서(174)가 이를 감지할 수 있다.
범퍼 센서(175)는 유동 고정부의 회전을 감지할 수 있다. 예를 들어, 유동 고정부의 하부의 일측에 자석을 배치하고, 프레임(111)에 자석의 자기장의 변화를 감지하는 센서를 배치할 수 있다. 유동 고정부가 회전시 센서가 자석의 자기장 변화를 감지함으로써, 유동 고정부의 회전을 감지하는 범퍼 센서(175)가 구현될 수 있다. 범퍼(112b)가 외부의 장애물에 충돌하면, 범퍼(112b)와 일체로 유동 고정부가 회전한다. 범퍼 센서(175)가 유동 고정부의 회전을 감지함으로써, 범퍼(112b)의 충격을 감지할 수 있다.
방위각 센서(AHRS)(176)는 자이로(gyro) 센싱 기능을 구비할 수 있다. 방위각 센서(176)은 가속도 센싱 기능을 더 구비할 수 있다. 방위각 센서(176)는 자기장 센싱 기능을 더 구비할 수 있다.
방위각 센서(176)는 자이로(Gyro) 센싱을 수행하는 자이로 센싱 모듈(176a)를 포함할 수 있다. 자이로 센싱 모듈(176a)은 바디(110)의 수평의 회전 속도를 감지할 수 있다. 자이로 센싱 모듈(176a)은 바디(110)의 수평면에 대한 기울임 속도를 감지할 수 있다.
자이로 센싱 모듈(176a)는 서로 직교하는 공간 좌표계의 3개의 축에 대한 자이로(Gyro) 센싱 기능을 구비할 수 있다. 자이로 센싱 모듈(176a)에서 수집된 정보는 롤(Roll), 피치(Pitch) 및 요(Yaw) 정보일 수 있다. 처리 모듈은, 롤링(roll), 피칭(pitch), 요(yaw) 각속도를 적분하여 이동 로봇(100)의 방향각의 산출이 가능하다.
방위각 센서(176)는 가속도 센싱을 수행하는 가속도 센싱 모듈(176b)을 포함할 수 있다. 가속도 센싱 모듈(176b)는 서로 직교하는 공간 좌표계의 3개의 축에 대한 가속도 센싱 기능을 구비할 수 있다. 소정의 처리 모듈이 가속도를 적분함으로써 속도를 산출하고, 속도를 적분함으로써 이동 거리를 산출할 수 있다.
방위각 센서(176)는 자기장 센싱을 수행하는 자기장 센싱 모듈(176c)을 포함할 수 있다. 자기장 센싱 모듈(176c)은 서로 직교하는 공간 좌표계의 3개의 축에 대한 자기장 센싱 기능을 구비할 수 있다. 자기장 센싱 모듈(176c)은 지구의 자기장을 감지할 수 있다.
경계 신호 감지부(177)는 경계 와이어(290)의 경계 신호 또는/및 기준 와이어(270)의 도킹 위치 신호를 감지한다.
경계 신호 감지부(177)는 바디(110)의 전방부에 배치될 수 있다. 이를 통해, 이동 로봇(100)의 주된 주행 방향인 전방으로 이동하면서, 주행 영역의 경계를 조기에 감지할 수 있다. 경계 신호 감지부(177)는 범퍼(112b)의 내측 공간에 배치될 수 있다.
경계 신호 감지부(177)는 좌우로 이격되어 배치되는 제1 경계 신호 감지부(177a) 및 제2 경계 신호 감지부(177b)를 포함할 수 있다. 제1 경계 신호 감지부(177a) 및 제2 경계 신호 감지부(177b)는 바디(110)의 전방부에 배치될 수 있다.
예를 들면, 경계 신호 감지부(177)는 자기장 센서를 포함한다. 경계 신호 감지부(177)는, 자기장의 변화를 감지하도록 코일을 이용하여 구현될 수 있다. 경계 신호 감지부(177)는 적어도 수평 방향의 자기장을 감지할 수 있다. 경계 신호 감지부(177)는 공간상 서로 직교하는 3개의 축에 대한 자기장을 감지할 수 있다.
구체적으로, 제1 경계 신호 감지부(177a)는 제2 경계 신호 감지부(177b)와 직교되는 방향의 자기장 신호를 감지할 수 있다. 제1 경계 신호 감지부(177a) 및 제2 경계 신호 감지부(177b)는 서로 직교되는 방향의 자기장 신호를 감지하고, 감지된 자기장 신호 값을 조합하여서, 공간상 서로 직교하는 3개 축에 대한 자기장을 감지할 수 있다.
경계 신호 감지부(177)는 공간상 서로 직교하는 3개 축에 대한 자기장을 감지하게 되면, 3개 축에 대한 합 벡터 값으로 자기장의 방향을 결정하고, 이러한 자기장의 방향이 수평 방향에 가까우면 도킹 위치 신호 인식하고, 수직 방향에 가까우면 경계 신호로 인식할 수 있다.
또한, 경계 신호 감지부(177)는 분할되어 있는 복수의 주행 영역이 존재하는 경우, 인접 경계 신호와 복수의 주행 영역의 경계 신호를 자기장의 세기 차이로 구별하고, 인접 경계 신호와 도킹 위치 신호를 자기장의 방향 차이로 구별할 수 있다.
다른 예로, 경계 신호 감지부(177)는 분할되어 있는 복수의 주행 영역이 존재하는 경우, 인접 경계 신호와 복수의 주행 영역의 경계 신호를 자기장 분포의 차이로 구별할 수 있다. 구체적으로, 경계 신호 감지부(177)는 평면 좌표 상의 기설정된 거리 이내에서 자기장의 세기가 복수 개의 피크를 가지는 것을 감지하여 인접 경계 신호로 인지할 수 있다.
GPS 감지부(178)는 GPS(Global Positioning System) 신호를 감지하기 위해 구비될 수 있다. GPS 감지부(178)는 PCB를 이용하여 구현될 수 있다.
낭떠러지 감지부(179)는 주행면에 낭떠러지의 존재 여부를 감지한다. 낭떠러지 감지부(179)는 바디(110)의 전방부에 배치되어, 이동 로봇(100)의 전방에 낭떠러지 유무를 감지할 수 있다.
센싱부(170)은 제1 개폐부(117) 및 제2 개폐부(118) 중 적어도 하나의 개폐 여부를 감지하는 개폐 감지부(미도시)를 포함할 수 있다. 개폐 감지부는 케이스(112)에 배치될 수 있다.
이동 로봇(100)은 자율 주행을 제어하는 제어부(190)를 포함한다. 제어부(190)는 센싱부(170)의 신호를 처리할 수 있다. 제어부(190)는 입력부(164)의 신호를 처리할 수 있다.
제어부(190)는 제1 구동 모터(123(L))및 제2 구동 모터(123(R))의 구동을 제어할 수 있다. 제어부(190)는 블레이드 모터(132)의 구동을 제어할 수 있다. 제어부(190)는 출력부(165)의 출력을 제어할 수 있다.
제어부(190)는 바디(110)의 내부 공간에 배치되는 메인 보드(미도시)를 포함한다. 메인 보드는 PCB를 의미한다.
제어부(190)는 이동 로봇(100)의 자율 주행을 제어할 수 있다. 제어부(190)는 입력부(164)로부터 수신한 신호를 근거로 하여 주행부(120)의 구동을 제어할 수 있다. 제어부(190)는 센싱부(170)로부터 수신한 신호를 근거로 하여 주행부(120)의 구동을 제어할 수 있다.
또한, 제어부(190)는 경계 신호 감지부(177)의 신호를 처리할 수 있다. 구체적으로, 제어부(190)는 경계 신호 감지부(177)를 통한 경계 신호를 분석함으로써 현재 위치를 파악하고, 주행 패턴에 따라 주행부(120)의 구동을 제어할 수 있다.
이때, 제어부(190)는 지그재그 모드의 주행 패턴에 따라 주행부(120)를 제어할 수 있다.
이하에서는 도 9를 참고하여 제어부(190)의 제어에 따른 지그재그 모드의 주행을 설명한다.
도 9는 본 발명의 일 실시예에 따른 이동 로봇(100) 시스템을 도시한 도면이다.
도 9를 참조하면, 본 발명의 이동 로봇(100) 시스템은 하나의 주행 영역(Zd)을 정의하는 경계 와이어(290)가 배치되어 있으며, 주행 영역(Zd) 내부를 주행하는 이동 로봇(100)을 포함할 수 있다. 또한, 본 발명의 이동 로봇(100) 시스템은 이동 로봇(100)이 도킹되어 충전되는 도킹 기기(200)를 더 포함할 수 있다.
이때, 도 9에서는 하나의 주행 영역(Zd)을 일 예로 도시하였으나 이에 한정되는 것은 아니고, 복수의 주행 영역(Zd)이 형성될 수 있다.
제어부(190)는 하나의 주행 영역(Zd)을 소정의 패턴으로 주행하는 패턴 주행 모드를 수행할 수 있다. 소정의 패턴 경로(Sr, Sv)를 따라 상기 바디(110)를 이동시키기 위한 소정의 패턴 주행 모드가 기설정된다. 상기 패턴 주행 모드는, 적어도 주행부(120)를 구동시키는 소정의 알고리즘을 포함한다. 상기 패턴 주행 모드는, 센싱부(170)의 감지 신호에 따라 주행부(120)를 구동시키는 알고리즘을 포함할 수 있다.
구체적으로, 도 9에서 이동 로봇(100)은 주행 영역(Zd) 내에서 도킹 기기(200)가 배치되는 위치를 시작점으로 지그재그 모드로 주행할 수 있다. 즉, 이동 로봇(100)은 시작점에서 후방(R)으로 장축(Sr)을 따라 주행한다. 이때, 경계 와이어(290)로부터의 경계 신호를 수신하여, 모서리 영역이 판단되면, 잔여 영역이 존재하는 방향, 도 9에서는 오른쪽으로 회전하여 단축(Sv)을 따라 주행한다.
이때, 회전하는 각도(θ)는 120 도 내지 60도 사이의 각도일 수 있으며, 바람직하게는 대략적으로 90도를 충족할 수 있다. 또한, 오른쪽으로 회전 시에 소정의 곡률을 갖도록 회전이 가능하다.
다음으로, 단축(Sv)을 따라 주행이 종료되면, 다시 경계 와이어(290)로부터의 신호에 따라 오른쪽으로 회전하여 장축(Sr)을 따라 주행한다.
이때의 장축(Sr)을 따라 주행하는 것을 전방(F)으로 이동하는 것으로서 이와 같이 장축(Sr)과 단축(Sv)을 번갈아 가며 하나의 주행 영역(Zd) 내를 지그재그 모드로서 주행하며 잔디 깎기를 수행한다. 따라서, 하나의 주행 영역(Zd) 내를 주행하기 위한 복수의 장축(Sr) 및 복수의 단축(Sv)이 목표 패턴으로 설계될 수 있으며, 복수의 장축(Sr)은 서로 평행할 수 있다.
이때, 지그재그 모드로 주행 영역(Zd)의 잔디 깎기를 수행하는 중 모서리 영역에 도달했을 때, 경계 와이어(290)로부터의 경계 신호에 따라 더 이상 주행 방향을 따라 오른쪽으로 주행할 영역이 존재하지 않는다고 판단되면, 호밍 모드에 따라 도킹 기기(200)를 향해 주행을 진행하고 1회차 주행이 완료된다.
이와 같이 하나의 주행 영역(Zd)이 형성되면, 장축(Sr)과 단축(Sv)의 길이를 설정하고, 설정된 장축(Sr)과 단축(Sv)을 따라 지그재그 모드로 주행하여 이동 로봇(100)인 잔디 깎기 로봇은, 블레이드(131)를 회전시키면서 상기 패턴 주행 모드에 따라 이동하여, 주행 영역(Zd) 내의 잔디를 균일하게 깎을 수 있다.
이러한 주행 영역(Zd)을 패턴 주행 모드로 주행을 완료하는 것을 복수회에 걸쳐 진행함으로써 각 주행 시마다 1 내지 2 mm 정도의 길이로 잔디 깎기를 진행할 수 있다. 따라서, 복수회에 걸쳐 잔디를 깎게 되므로 주행 영역(Zd)과 미주행 영역(Zd) 사이의 가시적인 차이에 의한 사용자의 불쾌감을 줄일 수 있다.
이때, 제어부(190)는 각 주행 시마다 패턴 주행 모드의 각도를 변경하도록 주행부(120)의 주행 방향을 제어할 수 있다.
이하에서는 복수회에 걸쳐 주행 영역(Zd)을 주행하는 것에 대하여, 제1 패턴 주행 모드, 제2 패턴 주행 모드…제n 패턴 주행 모드로 정의한다.
또한, 주행 영역(Zd)에서 임의의 기준선(Ss)를 설정하여 상기 기준선(Ss)에 대하여 방향을 제어할 수 있다.
제어부(190)는 제1 패턴 주행 모드에서 주행 패턴의 장축(Sr)을 기준선(Ss)에 대하여 시계 방향으로 제1 각도(θ1)로 설정하여 주행을 시작한다. 일 예로 도 9와 같이 제1 패턴 주행 모드에서는 주행 패턴의 장축(Sr)을 기준선(Ss)에 대하여 0도로 설정하여 기준선(Ss)과 평행하도록 주행할 수 있다.
이와 같이 장축(Sr)의 주행 각도가 설정되면, 주행부(120)는 제어부(190)의 제어에 따라 설정된 각도로 주행을 진행한다.
제어부(190)는 제1 패턴 주행 모드에서 주행 영역(Zd)의 종점(nt)까지 주행이 완료되면, 제2 패턴 주행 모드를 연속하여 진행할 수 있다. 이때 제어부(190)는 제1 패턴 주행 모드에서의 장축(Sr)의 각도를 변경하여 변경된 주행 각도로 제2 패턴 주행 모드를 설정할 수 있다. 주행부(120)는 새롭게 설정된 주행 각도로 제2 패턴 주행 모드에서 주행을 진행한다.
이와 같이 제어부(190)는 각 회차의 패턴 주행 모드에서 주행 패턴의 장축(Sr)의 각도를 기준선(Ss)에 대하여 서로 다르게 변경하여 미주행 영역(Zd)을 최소화할 수 있다.
이와 같은 제어부(190)의 주행 방향 제어에 대하여 구체적으로 설명한다.
도 10은 이동 로봇(100)의 하나의 주행 각도 제어 방법을 도시한 순서도이고, 도 11a 내지 도 11b는 제1 실시예에 따른 각도 변환을 나타내는 상태도이며, 도 12a 내지 도 12c는 제2 실시예에 따른 각도 변환을 나타내는 상태도이다.
먼저, 주행이 시작되면 제어부(190)는 주행 영역(Zd)의 기준선(Ss)을 설정하고, 기준선(Ss)에 대하여 주행 패턴의 장축(Sr)의 각도(θ1)를 세팅하고 제1 패턴 주행 모드를 시작한다(S100).
제어부(190)의 세팅에 따라 주행부(120)는 기준선(Ss)에 대하여 해당 주행 각도(θ1)로 기울어진 장축(Sr)으로 이동하여 도 10a 와 같이 제1 패턴 주행 모드를 진행한다.
이때, 단축(Sv)의 각도는 세팅된 장축(Sr)과 관계없이 상기 기준선(Ss)에 대하여 고정된 각도로 유지될 수 있으나, 이와 달리 단축(Sv)의 방향은 세팅된 장축(Sr)의 주행 각도만큼 변경될 수 있다.
이와 같이, 제1 패턴 주행 모드에서 세팅된 주행 각도(θ1)에 따라 종점(nt)까지 패턴 주행이 완료되면(S110), 제어부(190)는 연속하여 제2 패턴 주행 모드를 세팅한다(S120).
즉, 제어부(190)는 이전 패턴 주행 모드에서의 각도(θ1), 즉 제1 패턴 주행 모드에서의 각도(θ1)와 서로 다른 각도(θ2)로 현재 패턴 주행 모드, 즉 제2 패턴 주행 모드의 주행 각도(θ2)를 세팅한다.
일 예로, 도 10b와 같이 제1 패턴 주행 모드의 주행 각도(θ1)에 대하여 반대 방향으로 동일한 크기만큼 기울어지도록 제2 패턴 주행 모드의 주행 각도(-θ1)를 세팅할 수 있다.
즉, 제1 패턴 주행 모드와 제2 패턴 주행 모드에서의 각 주행 각도(θ1, -θ1)가 기준선(Ss)에 대하여 양의 방향/음의 방향으로 기울어지도록 설정하여 제1 패턴 주행 모드에서 미주행한 영역에 대하여 주행이 진행될 수 있다(S130).
이러한 제1 패턴 주행 모드와 제2 패턴 주행 모드의 각도의 크기는 1 내지 90도일 수 있으며, 일 예로 ±10도, 바람직하게는 ±5도일 수 있다.
이와 같이, 제3 및 제4 패턴 주행 모드가 반복적으로 진행되면서, 기준선(Ss)에 대하여 장축(Sr)이 양의 방향/음의 방향으로 동일한 크기의 각도로 기울어지도록 설정을 반복할 수 있다.
이러한 패턴 주행 모드가 마지막 패턴 주행 모드까지 진행 완료되면(S140), 제어부(190)는 주행부(120)의 주행을 완료하고 호밍모드로 전환하여 도킹 기기(200)로 호밍을 진행한다.
다음으로, 제어부(190)는 n회까지의 패턴 주행 모드에 대한 주행 기록을 저장부(190)에 기록하여 다음 이동 로봇(100)의 주행 시 로 데이터(raw data)로 활용할 수 있다(S150).
한편, 제어부(190)는 도 12a 및 도 12b와 같이 주행 각도를 설정할 수도 있다.
즉, 도 12a를 참고하면, 제어부(190)는 제1 패턴 주행 모드에서 주행 각도를 기준선(Ss)에 대하여 장축(Sr)을 양의 방향으로 제1 각도(θ1)만큼 기울여서 세팅할 수 있다.
단축(Sv)과 장축(Sr)의 각도(θv)는 고정되거나, 앞서 설명한 바와 같이 제1 각도(θ1)만큼 더 변경될 수 있다.
이때, 제2 패턴 주행 모드에서는 도 12b와 같이 주행 각도를 기준선(Ss)에 대하여 장축(Sr)을 양의 방향으로 제2 각도(θ2)만큼 기울도록 세팅할 수 있다.
제2 각도(θ2)는 기준선(Ss)으로부터 제1 각도(θ1)와 동일한 양의 방향으로 기울어진 각도로서, 제1 각도(θ1)보다 큰 각도일 수 있다.
이러한 각도는 최소 1도에서 최대 90도 사이일 수 있으며, 일 예로 제1 각도(θ1)가 15도, 제2 각도(θ2)가 30도 일 수 있다.
다음으로, 제어부(190)는 도 12c와 같이 제3 주행 패턴 모드에서 기준선(Ss)에 대한 장축(Sr)의 각도를 제3 각도(θ3)로 설정할 수 있다. 이때, 제3 각도(θ3)는 제2각도(θ2)보다 큰 각도로서, 제1 각도(θ1)가 15도, 제2 각도(θ2)가 30도인 경우, 제3 각도(θ3)는 45도일 수 있다.
이와 같이 각 주행 패턴 모드에 따라 소정 각도만큼 시프트함으로써 이전 주행 패턴 모드에서 미주행 영역을 현재 주행 패턴 모드에서 주행할 수 있다.
이때, 본 실시예에서는 시프트되는 각도를 15도로 설명하였으나 이에 한정되는 것은 아니다.
또한, 이에 한정되지 않고, 이전 주행 패턴 모드의 주행 각도와 다른 각도를 랜덤하게 설정하는 방식으로도 진행 가능하다.
그리고, 제어부(190)가 n-1회차 주행 패턴 모드까지의 주행 각도 중 가장 작은 횟수로 주행된 영역을 주행하도록 n회차 주행 패턴 모드의 주행 각도가 설정될 수 있다.
이와 같이 마지막 주행 패턴 모드의 주행 시에 이전 주행 패턴 모드까지의 주행 면적을 합산하여 소정 횟수(임계 횟수) 미만으로 주행된 영역을 분석하고, 이러한 저 주행 영역을 주행하도록 마지막 주행 패턴 모드에서의 주행 각도를 설정함으로써 잔디 깎기 로봇이 균일하게 전체 주행 면적에 대한 잔디 깍기 작업을 수행할 수 있으며, 주행 영역 사이의 오차를 줄일 수 있다.
이하에서는, 다른 실시예에 따른 이동 로봇(100)의 제어부(190)의 주행 각도 제어 방법을 설명한다.
도 13은 이동 로봇(100)의 다른 주행 각도 제어 방법을 도시한 순서도이고, 도 14a 및 도 14b는 도 13에 따른 각도 변환을 나타내는 상태도이다.
본 발명의 다른 실시예에 따른 이동 로봇(100) 시스템은 도 13과 같이 이동 로봇(100)과 송수신하는 사용자 단말(400)을 포함한다.
사용자 단말(400)은 통신 시스템을 통하여 이동 로봇(100)과 정보를 송수신하고, 이동 로봇(100)에 제어 신호를 전송할 수 있는 다양한 종류의 이동통신 단말(400)일 수 있다.
일 예로 사용자 단말(400)은 소정 크기의 디스플레이 장치를 포함하는 이동통신 단말(400)로서, 스마트폰, 모바일폰, 탭, 노트북, 및 데스크 탑 등의 기기일 수 있다.
이러한 사용자 단말(400)은 이동 로봇(100)의 동작, 구체적으로 잔디 깎기 작업에 대한 제어 신호를 직접 이동 로봇(100)으로 전송하고, 이동 로봇(100)은 상기 제어 신호에 따라 해당 주행 각도를 설정하여 주행을 진행할 수 있다.
또한, 사용자 단말(400)은 이동 로봇(100)에 대한 작업 정보를 수신하고, 이에 대한 알람 등을 수신할 수 있는 이동 로봇 제어 어플리케이션을 다운로드 하여 실행할 수 있다.
사용자 단말(400)은 상기 이동 로봇(100) 제어 어플리케이션을 실행하여 이동 로봇(100)으로부터 전송되는 정보 및 알림을 수신 및 확인 가능하며, 이러한 어플리케이션을 통해 제어 신호를 전송할 수 있다.
또한, 사용자 단말(400)은 상기 이동 로봇(100)에 대한 정보를 SMS 또는 모바일 메신저 등을 통해 수신할 수 있으며, 이동 로봇(100)에 대한 제어 신호 역시 모바일 메신저를 통해 제어 신호를 전송할 수 있다.
이하에서는 사용자 단말(400)에 이동 로봇(100) 제어 어플리케이션이 다운로드 되어 설치되어 있는 것을 전제로 설명한다.
먼저, 사용자 단말(400)이 이동 로봇(100) 제어 어플리케이션을 다운로드하여 설치하면(S200), 사용자는 해당 이동 로봇(100)을 어플리케이션에 등록할 수 있다.
이동 로봇(100)의 통신부는 사용자 단말(400)로부터 어플리케이션을 통해 잔디 깎기 진행을 위한 주행 시작 명령 신호를 수신한다(S210).
사용자 단말(400)은 특정 시간, 특정 요일에 대한 주행 예약을 통해 이와 같은 주행 시작 명령 신호를 발송할 수 있으며, 임의의 시간에 해당 잔디 깎기 진행을 지시하는 주행 시작 명령 신호를 직접 전송할 수 있다.
이동 로봇(100)의 제어부(190)는 상기 주행 시작 명령 신호를 수신하면, 해당 주행 영역(Zd)에 대한 맵 정보를 수립한다(S220). 즉, 이동 로봇(100)은 기 저장되어 있는 주행 영역(Zd)에 대한 맵 정보 및 이전 주행에서 수득한 주행 영역(Zd)에 대한 맵 정보, 잔디 깎기 일정 등을 수득하고, 이를 바탕으로 현재 주행 영역(Zd)에 대한 맵 정보를 사용자 단말(400)에 전송한다(S230).
상기 맵 정보는 도 14a와 같은 주행 영역(Zd)에 대한 시각적인 정보를 포함할 수 있다.
도 14a를 참고하면, 주행 영역(Zd)에 대하여 경계 영역이 표현될 수 있으며, 그 외에 주행 영역(Zd)이 정의되는 공간의 구조물에 대하여 함께 도시될 수 있다.
즉, 주행 영역(Zd)과 경계되는 실내공간, 대문, 화단, 기타 주행 영역(Zd) 주위 구조물 등을 도시할 수 있으며, 이러한 구조물에서 문 또는 창문을 특히 구체적으로 나타낼 수 있다.
도 14a 에서는 주행 영역(Zd)에 대하여 실내 공간(310)의 창문(311)과 대문(300)이 서로 마주보고 있는 형상을 도시한 것으로, 이와 같이 창문(311)과 대문(300) 사이를 가로지르는 시각 기준선(Sb)을 별도로 표시한다.
이러한 시각 기준선(Sb)은 주행 영역(Zd) 상의 기준선(Ss)과 상이한 각도로 설정될 수 있다.
도 14a에서와 같이 제1 주행 패턴 모드에서 기준선(Ss)과 평행한 주행 각도가 사용자 단말(400)에 디폴트로 제공될 수 있다.
사용자 단말(400)은 수신된 주행 맵에서 이동 로봇(100)의 주행 패턴과 관련하여 주행 각도를 설정할 수 있다(S240).
즉, 사용자 단말(400)은 해당 주행 각도를 변경하면서 변경된 각도로 주행 패턴을 시뮬레이션해 볼 수 있다.
이와 같이 사용자 단말(400)을 통해 특정 주행 각도가 선택되면, 이동 로봇(100)은 사용자 단말(400)로부터 주행 각도 설정 요청 신호를 수신한다(S250).
제어부(190)는 수신된 주행 각도 설정 요청 신호의 주행 각도에 따라 주행부(120)의 주행 각도를 변경한다(S260).
이러한 주행 각도(θ0)는 도 14b와 같이 시각 기준선(Ss)에 평행한 각도로 설정될 수 있다.
즉, 사용자 단말(400)을 가지는 사용자가 주로 생활하는 실내 영역에서 창을 통해 주행 영역(Zd)을 바라보았을 때, 이동 로봇(100)이 균일한 패턴으로 잔디 깎는 작업을 수행하는 것으로 보여질 수 있는 각도인 시각 기준선(Ss)에 평행하게 장축(Sr)을 설정할 수 있다.
이와 같이 장축(Sr)이 설정되는 경우, 이동 로봇(100)이 작업하는 지그재그 모드가 실내 공간에서 창을 통해 바라볼 때 대문을 향해 일정한 방향으로 주행을 진행하는 것으로 보여질 수 있다.
따라서, 이동 로봇(100)이 사용자의 시야에서 규칙적으로 이동하는 것으로 보여짐으로써 사용자의 불쾌감을 줄일 수 있다.
다음으로, 이동 로봇(100)의 제어부(190)는 설정된 주행 각도로 주행부(120)를 세팅하고 제1 패턴 주행 모드를 진행한다(S270).
이와 같이 제1 패턴 주행 모드가 진행되어 종점까지 이동 로봇(100)이 진행하면, 제어부(190)는 사용자 단말(400)로 주행 완료 정보를 전송한다(S280). 이때, 제어부(190)는 다음 주행 각도 설정 요청을 함께 요청할 수 있다(S281).
사용자 단말(400)은 제1 패턴 주행 모드의 주행 완료 및 다음 패턴 주행 모드에 대한 주행 각도 설정 요청을 수신하고, 어플리케이션을 통해 각도를 새로 설정할 수 있다(S283).
사용자 단말(400)로부터 다음 패턴 주행 모드에 대한 주행 각도 설정 요청 신호가 수신되면(S284), 제어부(190)는 설정된 주행 각도로 패턴 주행을 진행하고, 이와 같은 동작이 반복적으로 진행된다(S290).
이때, 이번 패턴 주행 모드가 마지막 패턴 주행 모드인지 판단하여(S300), 마지막 패턴 주행 모드인 경우, 제어부(190)는 사용자 단말(400)로 주행 결과를 전송한다(S301).
이때, 주행 결과로는 복수회에 진행된 패턴 주행 모드 실행에 따라 각 영역의 깎여진 잔디 높이에 대한 통계 정보를 포함할 수 있다.
제어부(190)는 이와 같은 주행 결과를 저장부(190)에 저장하여 다음 주행에 로 데이터로 사용할 수 있다(S310).
이와 같이, 이동 로봇(100)은 사용자 단말(400)로부터 특정 주행 각도에 대한 설정 신호를 수신하고, 해당 각도로 세팅하여 주행을 진행할 수 있다.
100: 이동 로봇 110: 바디
120: 주행부 130: 작업부
170: 센싱부 190: 제어부
200: 도킹 기기 290: 경계 와이어
400: 사용자 단말

Claims (19)

  1. 외관을 형성하는 바디;
    상기 바디를 이동시키는 주행부;
    주행 영역의 경계 영역에서 발생하는 경계 신호를 감지하는 경계 신호 감지부; 및
    상기 주행부가 상기 주행 영역을 복수회에 걸쳐 패턴 주행 하도록 제어하고, 제1 패턴 주행 시의 주행 각도와 제2 패턴 주행 시의 주행 각도가 서로 상이하도록 제어하는 제어부를 포함하는 이동 로봇.
  2. 제1항에 있어서,
    상기 제어부는 장축과 단축을 번갈아 주행하는 지그재그 모드의 패턴 주행을 수행하도록 상기 주행부를 제어하는 것을 특징으로 하는, 이동 로봇.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 주행 영역의 기준선에 대하여 상기 장축의 각도를 상기 주행 각도로 정의하고, 상기 제1 패턴 주행과 상기 제2 패턴 주행의 각도가 서로 상이한 것을 특징으로 하는, 이동 로봇.
  4. 제3항에 있어서,
    상기 제어부는,
    상기 제1 패턴 주행과 상기 제2 패턴 주행의 상기 주행 각도가 상기 기준선에 대하여 서로 다른 방향으로 동일한 크기의 각도만큼 시프트되어 있는 것을 특징으로 하는, 이동 로봇.
  5. 제4항에 있어서,
    상기 제어부는,
    시프트되어 있는 상기 주행 각도의 크기는 1도 내지 90도 사이의 값인 것을 특징으로 하는, 이동 로봇.
  6. 제5항에 있어서,
    상기 제어부는,
    상기 주행 각도의 크기는 1도 내지 10도 사이의 값인 것을 특징으로 하는, 이동 로봇.
  7. 제3항에 있어서,
    상기 주행 각도는 상기 복수회의 상기 패턴 주행에 따라 동일한 크기만큼 증가하도록 시프트되는 것을 특징으로 하는, 이동 로봇.
  8. 제7항에 있어서,
    상기 제어부는
    상기 주행 각도를 상기 패턴 주행에 따라 15도씩 시프트하는 것을 특징으로 하는, 이동 로봇.
  9. 제3항에 있어서,
    상기 제어부는
    새로운 장축의 상기 주행 각도에 따라 상기 단축과 상기 장축의 각도를 세팅하는 것을 특징으로 하는, 이동 로봇.
  10. 제3항에 있어서,
    상기 제어부는
    상기 주행 영역 외의 구조물에 대한 정보에 따라 상기 주행 각도를 설정하는 것을 특징으로 하는, 이동 로봇.
  11. 제10항에 있어서,
    상기 제어부는 내부 공간의 창문 및 대문의 방향에 따라 상기 주행 각도를 설정하는 것을 특징으로 하는, 이동 로봇.
  12. 제3항에 있어서,
    상기 제어부는
    마지막 패턴 주행 시 이전 패턴 주행까지의 주행 면적 중 임계 횟수 이하로 주행된 영역을 주행하도록 주행 각도를 설정하는 것을 특징으로 하는, 이동 로봇.
  13. 주행 영역을 정의하는 경계 와이어;
    외관을 형성하는 바디, 상기 바디를 이동시키는 주행부, 주행 영역의 경계 영역에서 발생하는 경계 신호를 감지하는 경계 신호 감지부, 및 상기 주행부가 상기 주행 영역을 복수회에 걸쳐 패턴 주행 하도록 제어하고, 제1 패턴 주행 시의 주행 각도와 제2 패턴 주행 시의 주행 각도가 서로 상이하도록 제어하는 제어부를 포함하는 이동 로봇; 및
    상기 이동 로봇으로 상기 주행 각도에 대한 정보를 전송하는 사용자 단말
    을 포함하는 이동 로봇 시스템.
  14. 제13항에 있어서,
    상기 제어부는 장축과 단축을 번갈아 주행하는 지그재그 모드의 패턴 주행을 수행하도록 상기 주행부를 제어하는 것을 특징으로 하는, 이동 로봇 시스템.
  15. 제14항에 있어서,
    상기 사용자 단말은 상기 이동 로봇에 대한 어플리케이션이 저장되어 있는 것을 특징으로 하는, 이동 로봇 시스템.
  16. 제14항에 있어서,
    상기 제어부는,
    상기 사용자 단말로 상기 주행 영역에 대한 맵 정보를 전송하는 것을 특징으로 하는, 이동 로봇 시스템.
  17. 제16항에 있어서,
    상기 맵 정보는 상기 주행 영역 이외의 구조물 정보를 시각적으로 나타내는 것을 특징으로 하는, 이동 로봇 시스템.
  18. 제15항에 있어서,
    상기 이동 로봇이 도킹되어 충전되는 도킹 기기를 더 포함하고,
    상기 경계 영역의 일단은 상기 도킹 기기에 인접하게 배치되는 것을 특징으로 하는, 이동 로봇 시스템.
  19. 제18항에 있어서,
    상기 도킹 기기는,
    전원과 연결되는 제1 와이어 단자와, 제2 와이어 단자를 더 포함하고,
    상기 경계 와이어의 일단은 상기 제1 와이어 단자에 연결되고, 상기 경계 와이어의 타단은 상기 제2 와이어 단자에 연결되는 것을 특징으로 하는, 이동 로봇 시스템.
KR1020190040039A 2018-04-06 2019-04-05 이동 로봇과 이동 로봇 시스템 KR20190123678A (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2019248258A AU2019248258A1 (en) 2018-04-06 2019-04-05 Mobile robot and mobile robot system
US17/045,552 US11630462B2 (en) 2018-04-06 2019-04-05 Moving robot and moving robot system
KR1020190040039A KR20190123678A (ko) 2018-04-06 2019-04-05 이동 로봇과 이동 로봇 시스템
PCT/KR2019/004058 WO2019194632A1 (ko) 2018-04-06 2019-04-05 이동 로봇과 이동 로봇 시스템
EP19781299.3A EP3778148B1 (en) 2018-04-06 2019-04-05 Mobile robot and mobile robot system
KR1020210083200A KR102489617B1 (ko) 2018-04-06 2021-06-25 이동 로봇과 이동 로봇 시스템

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862653567P 2018-04-06 2018-04-06
US62/653,567 2018-04-06
KR1020190040039A KR20190123678A (ko) 2018-04-06 2019-04-05 이동 로봇과 이동 로봇 시스템

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210083200A Division KR102489617B1 (ko) 2018-04-06 2021-06-25 이동 로봇과 이동 로봇 시스템

Publications (1)

Publication Number Publication Date
KR20190123678A true KR20190123678A (ko) 2019-11-01

Family

ID=68100890

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190040039A KR20190123678A (ko) 2018-04-06 2019-04-05 이동 로봇과 이동 로봇 시스템
KR1020210083200A KR102489617B1 (ko) 2018-04-06 2021-06-25 이동 로봇과 이동 로봇 시스템

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210083200A KR102489617B1 (ko) 2018-04-06 2021-06-25 이동 로봇과 이동 로봇 시스템

Country Status (5)

Country Link
US (1) US11630462B2 (ko)
EP (1) EP3778148B1 (ko)
KR (2) KR20190123678A (ko)
AU (1) AU2019248258A1 (ko)
WO (1) WO2019194632A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110915409A (zh) * 2019-11-15 2020-03-27 江苏若博机器人科技有限公司 一种单核四轮驱动的割草机器人及其控制方法
WO2021182855A1 (ko) * 2020-03-10 2021-09-16 엘지전자 주식회사 이동 로봇

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11951977B1 (en) 2019-09-23 2024-04-09 Renu Robotics Corp. Autonomous vehicle panel and post detection
KR20210040613A (ko) 2019-10-04 2021-04-14 삼성전자주식회사 전자 장치 및 그의 제어 방법
CN112612278A (zh) * 2020-12-24 2021-04-06 格力博(江苏)股份有限公司 一种采集位置信息的方法、位置采集装置以及割草机
US20220197295A1 (en) * 2020-12-22 2022-06-23 Globe (jiangsu) Co., Ltd. Robotic mower, and control method thereof
WO2022143507A1 (en) * 2020-12-30 2022-07-07 Globe (jiangsu) Co., Ltd. Method, system, computer program and computer program product for controlling a robotic garden tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125508A (ko) 2014-04-30 2015-11-09 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
US20170344012A1 (en) 2014-12-11 2017-11-30 Husqvarna Ab Navigation for a robotic working tool

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL124413A (en) * 1998-05-11 2001-05-20 Friendly Robotics Ltd System and method for area coverage with an autonomous robot
US6934615B2 (en) * 2003-03-31 2005-08-23 Deere & Company Method and system for determining an efficient vehicle path
US8239083B2 (en) * 2006-01-18 2012-08-07 I-Guide Robotics, Inc. Robotic vehicle controller
KR101281512B1 (ko) * 2007-04-06 2013-07-03 삼성전자주식회사 로봇청소기 및 그 제어방법
KR100963780B1 (ko) * 2008-03-31 2010-06-14 엘지전자 주식회사 로봇 청소기의 제어방법
US8961695B2 (en) 2008-04-24 2015-02-24 Irobot Corporation Mobile robot for cleaning
KR101484941B1 (ko) * 2009-06-12 2015-01-23 삼성전자주식회사 로봇청소기 및 그 제어방법
CN101923351B (zh) * 2009-06-12 2015-03-04 三星电子株式会社 机器人清洁器及其控制方法
US8352113B2 (en) * 2010-07-28 2013-01-08 Deere & Company Robotic mower boundary coverage system
US20120290165A1 (en) 2011-05-09 2012-11-15 Chien Ouyang Flexible Robotic Mower
TWI434738B (zh) * 2011-08-09 2014-04-21 Chi Mou Chao 清潔機及其路徑控制方法
KR101954144B1 (ko) * 2012-06-08 2019-03-05 엘지전자 주식회사 로봇 청소기와, 이의 제어 방법, 및 이를 포함한 로봇 청소 시스템
KR102015315B1 (ko) * 2012-10-09 2019-10-21 삼성전자주식회사 청소 로봇 및 그 제어 방법
US9788481B2 (en) * 2014-10-28 2017-10-17 Deere & Company Robotic mower navigation system
KR102430445B1 (ko) 2015-04-28 2022-08-08 엘지전자 주식회사 이동 로봇 및 그 제어방법
US10353399B2 (en) * 2017-07-21 2019-07-16 AI Incorporated Polymorphic path planning for robotic devices
WO2019187122A1 (ja) * 2018-03-30 2019-10-03 本田技研工業株式会社 自律走行作業機、及び制御システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125508A (ko) 2014-04-30 2015-11-09 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
US20170344012A1 (en) 2014-12-11 2017-11-30 Husqvarna Ab Navigation for a robotic working tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110915409A (zh) * 2019-11-15 2020-03-27 江苏若博机器人科技有限公司 一种单核四轮驱动的割草机器人及其控制方法
WO2021182855A1 (ko) * 2020-03-10 2021-09-16 엘지전자 주식회사 이동 로봇

Also Published As

Publication number Publication date
EP3778148A1 (en) 2021-02-17
KR20210082418A (ko) 2021-07-05
AU2019248258A1 (en) 2020-11-26
EP3778148A4 (en) 2021-11-03
EP3778148B1 (en) 2023-08-09
WO2019194632A1 (ko) 2019-10-10
US11630462B2 (en) 2023-04-18
KR102489617B1 (ko) 2023-01-17
US20210157327A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
KR102489617B1 (ko) 이동 로봇과 이동 로봇 시스템
KR102272676B1 (ko) 이동 로봇과 이동 로봇 시스템
EP3533311B1 (en) Moving robot system
US11169542B2 (en) Moving robot
KR102306030B1 (ko) 이동로봇과 이동로봇의 제어방법
KR20210084392A (ko) 이동로봇과 이동로봇의 제어방법
KR102489615B1 (ko) 이동로봇과 이동로봇 시스템
KR102489618B1 (ko) 이동 로봇과 이동 로봇 시스템
KR102489616B1 (ko) 이동 로봇과 이동 로봇 시스템
KR20190109609A (ko) 이동로봇과 도킹기기 이들을 포함하는 이동로봇 시스템
KR20220025606A (ko) 이동 로봇 및 그 제어방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2021101001622; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20210625

Effective date: 20220331