KR20190111947A - Method and application of sludge petroleum degrading complex enzyme - Google Patents

Method and application of sludge petroleum degrading complex enzyme Download PDF

Info

Publication number
KR20190111947A
KR20190111947A KR1020197022007A KR20197022007A KR20190111947A KR 20190111947 A KR20190111947 A KR 20190111947A KR 1020197022007 A KR1020197022007 A KR 1020197022007A KR 20197022007 A KR20197022007 A KR 20197022007A KR 20190111947 A KR20190111947 A KR 20190111947A
Authority
KR
South Korea
Prior art keywords
petroleum
sludge
coli
fdh
dehydrogenase
Prior art date
Application number
KR1020197022007A
Other languages
Korean (ko)
Inventor
치앙 장
레이 지
지아닝 왕
시아오원 푸
티엔위엔 리
슈하이 궈
관홍 천
치 리
잉나 싱
Original Assignee
이콜로지 인스티튜트 산동 아카데미 오브 사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이콜로지 인스티튜트 산동 아카데미 오브 사이언스 filed Critical 이콜로지 인스티튜트 산동 아카데미 오브 사이언스
Publication of KR20190111947A publication Critical patent/KR20190111947A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/344Biological treatment of water, waste water, or sewage characterised by the microorganisms used for digestion of mineral oil
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01002Formate dehydrogenase (1.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/02Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a cytochrome as acceptor (1.2.2)
    • C12Y102/02001Formate dehydrogenase (cytochrome) (1.2.2.1)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil

Abstract

본 발명은 슬러지 석유 분해 복합 효소의 제조 방법 및 응용에 관한 것으로,제조 방법은 하기의 단계를 포함한다. (1) 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus) 균체에 대해 세포 파쇄를 진행하고, 원심분리하고 상청액을 취하여 석유 분해 효소액 21#을 제조한다. (2) 제조한 석유 분해 효소액 21#과 포름산탈수소효소(formate dehydrogenase)를 혼합하여 슬러지 석유 분해 복합 효소를 제조한다. 본 발명은 우선 아시네토박터 칼코아세티쿠스 유래 균의 석유 분해 효소계를 포름산탈수소효소와 비율에 따라 혼합한 후, 고농도의 석유 오염 슬러지 중의 석유 분해 및 복구를 처리하는 데 사용될 수 있음을 밝혀냈으며, 이는 규조토 등의 흡착제의 부동화를 진행할 필요가 없을 뿐만 아니라, 슬러지 내의 석유를 단시간에 저감할 수 있으며, 높은 효율의 석유 오염 처리 능력을 가지고, 생산 비용이 낮으며 활용 전망이 광범위하다.The present invention relates to a method and application of the sludge petroleum decomposition complex enzyme, the production method comprises the following steps. (1) Acinetobacter calcoaceticus cells are subjected to cell disruption, centrifugation and the supernatant taken to prepare petroleum dehydrogenase solution 21 #. (2) A sludge petroleum degrading enzyme is prepared by mixing the prepared petroleum dehydrogenase solution 21 # with formate dehydrogenase. The present invention first found that the petroleum degrading system of the acetobacter calcoaceticus-derived bacteria can be mixed with formic acid dehydrogenase and then used to treat petroleum decomposition and recovery in high concentrations of petroleum contaminated sludge. This not only does not need to passivate the adsorbents such as diatomaceous earth, but also can reduce the oil in the sludge in a short time, has a high efficiency of petroleum contamination treatment, low production cost and broad prospects for use.

Description

슬러지 석유 분해 복합 효소의 제조 방법 및 응용Method and application of sludge petroleum degrading complex enzyme

본 발명은 토양 처리 기술분야에 관한 것으로서, 더욱 상세하게는 슬러지 석유 분해 복합 효소의 제조 방법 및 응용에 관한 것이다.TECHNICAL FIELD The present invention relates to the field of soil treatment, and more particularly, to a method and application of sludge petroleum degrading complex enzyme.

석유 생산, 저장 및 운송, 정제 가공 및 사용 과정에서 사고, 비정상적인 작업 및 유지 보수 등으로 인해 석유 탄화수소의 유출과 배출이 발생할 수 있다. 예를 들어 유전 개발 과정 중의 유정 분출 사고, 송유관과 유류 저장조의 누출 사고, 유조차와 유조선의 누출 사고, 유정 왁스 제거 및 유전 지반의 설비 유지 보수, 정유 및 석유 화학공업 생산 장비의 유지 보수 등이 있다. 많은 양의 석유 탄화수소가 유출되기 때문에 가능한 회수해야 하지만 경우에 따라서는 회수가 어려우므로 최대한 회수한다고 해도 여전히 일부가 남아있어 환경(토양, 지상 및 지하수)을 오염시킬 수 있다. 석유가 토양에 들어가면 토양 구조를 파괴하고 토양 입자를 분산시켜 토양의 물 투과성을 떨어뜨린다. 그 풍부한 반응기가 무기 질소, 인과 결합하고 질화 작용과 탈인산화 작용을 제한하여 토양에서 유효한 인과 질소의 함량을 감소시킨다. 특히, 그 중의 다환 방향족 탄화수소류(PAHs)는 발암, 돌연변이, 기형 등의 활성과 먹이 사슬을 통해 동식물 체내에 단계적으로 축적되고 토양 내에 누적되기 때문에 더욱 해롭다. Accidents, abnormal operation and maintenance of oil production, storage and transportation, refining processing and use can result in the release and release of petroleum hydrocarbons. Examples include oil well ejection during oil field development, oil and oil tank leaks, oil and oil tanker leaks, oil well wax removal and oil field maintenance, oil refinery and petrochemical production equipment maintenance, etc. . Due to the large amount of petroleum hydrocarbons spilled, they should be recovered as much as possible, but in some cases recovery is difficult, so even with the greatest possible recovery, some remain and can pollute the environment (soil, ground and groundwater). When petroleum enters the soil, it destroys the soil structure and disperses the soil particles, reducing the water permeability of the soil. The rich reactor combines with inorganic nitrogen, phosphorus and limits nitrification and dephosphorylation, reducing the effective phosphorus and nitrogen content in the soil. In particular, polycyclic aromatic hydrocarbons (PAHs) are more harmful because they accumulate in plants and animals step by step and accumulate in soil through food chains and activities such as carcinogenesis, mutations, and malformations.

이러한 위험 중 슬러지 처리가 가장 어렵다. 슬러지는 석유 업스트림의 탐사 개발, 오일가스 수집 운송, 오수 처리, 탱크 바닥 청소 및 다운스트림의 석유 정제 과정에서 공정 설비, 인위 조작 등 원인으로 인해 대량의 석유 탄화수소가 함유된 오일, 진흙, 물 혼합물이 환경으로 누설되어 유성 슬러지가 생성된다. 유전에서 유성 슬러지는 유분 함량이 높고 중질유 성분이 높은 특징 등이 있는 가장 크고 범위가 넓은 오염원이다.Of these risks, sludge treatment is the most difficult. The sludge may contain oil, mud, and water mixtures containing large amounts of petroleum hydrocarbons due to processes such as exploration and development of upstream oil, oil and gas collection transportation, sewage treatment, tank bottom cleaning and downstream petroleum refining processes. Leakage into the environment produces oily sludge. Oily sludge in oilfields is the largest and broadest source of contamination with high oil content and high heavy oil content.

1980년대 이전에 석유 탄화수소로 오염된 토양의 처리는 물리적 및 화학적 방법, 즉 열처리 및 화학 침출에 국한되었다. 열처리 방법은 소각 또는 하소를 통해 토양 중 대부분의 유기 오염 물질을 정화할 수 있다. 그러나 동시에 토양 구조와 성분을 파괴하고 비용이 많이 들며 시행하기가 어렵다. 화학 침출 및 물 세척도 비교적 우수한 석유 제거 효과를 얻을 수 있다. 그러나 사용하는 화학 시약의 2차 오염 문제로 인해 그 적용이 제한적이다. 이론적으로, 유성 슬러지를 처리하는 최신 열분해 기술은 석유 감소량이 약 80%에 달하나 잔여 석유 함량은 여전히 높다. 슬러지는 수집, 처리 난이도가 높고 처리 공정이 복잡하며 위험 폐기물에 속하기 때문에 이에 대한 무해화 처리는 전 세계적으로 난제이며, 중국 각 유전의 경우 기본적으로 무해화와 자원화 처리의 사례가 없다. 환경 보호에 대한 국가적 관심이 높아짐에 따라 석유 회사는 환경오염 위험과 각종 비용을 효과적으로 절감하는 것이 시급하다.Prior to the 1980s, treatment of soils contaminated with petroleum hydrocarbons was limited to physical and chemical methods, namely heat treatment and chemical leaching. The heat treatment method can purify most organic pollutants in the soil through incineration or calcination. At the same time, however, the soil structure and components are destroyed, costly and difficult to implement. Chemical leaching and water washing can also yield relatively good petroleum removal effects. However, their application is limited due to secondary contamination of the chemical reagents used. Theoretically, the latest pyrolysis technology for treating oily sludge has an oil reduction of about 80% but the residual petroleum content is still high. Since sludge is difficult to collect and treat, complex to process and belong to dangerous wastes, the harmless treatment of this is a global challenge, and there is basically no case for harmless and resource treatment in each of China's oil fields. As national interest in environmental protection increases, it is urgent for oil companies to effectively reduce environmental pollution risks and costs.

1970년대 초, 송유오일 수송관과 오일 저장탱크의 기름 유출과 누출로 인해 토양이 석유에 오염되는 문제를 해결하기 위해, 미국 에소 리서치 앤드 엔지니어링(Esso Research and Engineering)은 청정한 생물학적 해결책을 찾기 시작해 효과적인 "박테리아 시딩 방법(bacteria-seeding method)"을 발견하여 석유에 오염된 토양을 생물학적으로 복원하는 데에 첫 걸음을 내디뎠다. 1980년대 이래 오염된 토양의 생물학적 복원 기술에 대한 사람들의 관심이 높아지면서 이 기술도 크게 발전했으며 점차 성숙 단계에 오르고 있다.In the early 1970s, to solve the problem of soil contamination by oil spills and leaks in oil pipelines and oil storage tanks, the US Esso Research and Engineering began looking for clean biological solutions and The discovery of the “bacteria-seeding method” took the first step in the biological restoration of petroleum-contaminated soil. Since the 1980s, people's interest in bioremediation techniques for contaminated soils has increased significantly, and this technology is gradually maturing.

현재, 세계 각국에서 모두 생물학적 방법을 사용하여 석유 오염을 복구하기 시작했다. 생물학적 복구는 생물의 생명 대사 활동을 이용해 토양 환경 내 유독유해 물질의 농도를 줄여 오염된 토양을 건강한 상태로 복구시키는 과정이다. 중국 특허 문헌 CN103484447A(출원번호 201310456751.X)는 석유 분해 효소 제제의 제조 방법과 응용에 관한 것으로서, 그 제조 방법은 다음과 같다. 즉, 석유를 분해하는 미생물에 대해 세포 파쇄를 진행하여 조효소액을 제조하고, 그 다음 조효소액과 운반체를 혼합 흡착한 후, 분리, 건조를 거쳐 석유 분해 효소 제제를 제조하고, 상기 석유를 분해하는 미생물은 아시네토박터 칼코아세티쿠스이고, 균종 기탁 번호는 CGMCC No.3915이고, 기탁 기관은 중국 미생물균종보존관리위원회 보통미생물센터이다. 상기 발명은 석유 분해 기능을 구비한 미생물의 효소계를 흡착제로 부동화시킨 후 석유로 오염된 토양을 분해하는 것으로서, 분해 효율이 미생물 분해 속도보다 30 내지 50배로 현저하게 향상되었으며 안정성은 조효소액에 비해 15 내지 20배 개선되었다. 상기 기술 방안은 비록 석유에 오염된 물, 토양 복구 과정에 응용할 수 있으나 그 응용되는 석유 농도가 최고 10g/L이며 실제 처리가 필요한 오염된 물과 토양 농도는 상기 농도보다 훨씬 높고 흡착제로 부동화시켜야 하므로 실제 응용 비용이 비교적 높아 활용 전망이 높지 않다. At present, countries around the world have started to recover from oil pollution using biological methods. Biological recovery is the process of restoring a contaminated soil to a healthy state by utilizing the biological metabolic activity of the organism to reduce the concentration of toxic substances in the soil environment. Chinese patent document CN103484447A (Application No. 201310456751.X) relates to the production method and application of petroleum dehydrogenase preparations, and the production method is as follows. In other words, the microorganisms that break down petroleum are subjected to cell disruption to prepare a crude enzyme solution, and then the adsorbed crude enzyme solution and the carrier are mixed and adsorbed. The microorganism is Acinetobacter Calcoaceticus, the species number is CGMCC No.3915, and the depositing institution is the Normal Microorganism Center of the China Microbial Species Preservation Management Committee. The present invention is to decompose soil contaminated with petroleum by immobilizing the enzyme system of the microorganism having a petroleum decomposition function with an adsorbent, the decomposition efficiency is significantly improved by 30 to 50 times the rate of microbial decomposition and the stability is 15 compared to the crude enzyme solution To 20-fold improvement. Although the above technique can be applied to petroleum contaminated water and soil recovery process, the applied petroleum concentration is up to 10g / L, and the contaminated water and soil concentration that need to be treated is much higher than the above concentration and must be immobilized with adsorbent. The actual application cost is relatively high, so the utilization prospect is not high.

본 발명의 목적은 슬러지 석유 분해 복합 효소의 제조 방법 및 응용을 제공함으로써 종래 기술의 단점을 극복하는 데에 있다.An object of the present invention is to overcome the disadvantages of the prior art by providing a method and application of the sludge petroleum degrading complex enzyme.

본 발명의 기술 방안은 하기와 같으며, 슬러지 석유 분해 복합 효소의 제조 방법은 하기의 단계를 포함한다.The technical solution of the present invention is as follows, and the method for producing the sludge petroleum degrading complex enzyme comprises the following steps.

(1) 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus) 균체에 대해 세포 파쇄를 진행하고, 원심분리하고 상청액을 취하여 석유 분해 효소액 21#을 제조한다.(1) Acinetobacter calcoaceticus cells are subjected to cell disruption, centrifugation and the supernatant taken to prepare petroleum dehydrogenase solution 21 # .

(2) 단계(1)에서 제조한 석유 분해 효소액 21#과 포름산탈수소효소(formate dehydrogenase)를 단백질의 질량비 1:(3 내지 5)의 비율에 따라 혼합하여 슬러지 석유 분해 복합 효소를 제조한다.(2) The petroleum dehydrogenase 21 # prepared in step (1) and formic acid dehydrogenase are mixed in a ratio of protein mass ratio 1: (3 to 5) to prepare a sludge petroleum degrading complex enzyme.

바람직하게는, 상기 단계(1)에서 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus)의 균종 기탁 번호는 CGMCC No.3915이다. 상기 균은 공지된 균주이며 균종 기탁에 관여하지 않는다.Preferably, the species number of Acinetobacter calcoaceticus in step (1) is CGMCC No. 3915. The bacterium is a known strain and does not participate in the species deposit.

바람직하게는, 상기 단계(1)에서 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus)의 균체는 하기 방법에 따라 배양하여 제조한다.Preferably, in step (1), the cells of Acinetobacter calcoaceticus ( Acinetobacter calcoaceticus ) is prepared by culturing according to the following method.

a. 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus)는 질량비 1% 내지 2%의 접종량에 따라 LB 배지에 옮기고 28 내지 32℃와 150 내지 180rpm 조건 하에서 14 내지 16시간 동안 배양하여 종자액을 제조한다.a. Acinetobacter calcoaceticus ( Acinetobacter calcoaceticus ) is transferred to LB medium according to the inoculation amount of 1% to 2% by mass ratio and incubated for 14 to 16 hours at 28 to 32 ℃ and 150 to 180 rpm conditions to prepare a seed solution.

b. 상기 단계 a에서 제조된 종자액은 질량비 4% 내지 5%의 접종량에 따라 LB 배지에 옮기고 28 내지 32℃와 150 내지 180rpm 조건 하에서 14 내지 16시간 동안 확대 배양하여 균액을 제조한다.b. Seed solution prepared in step a is transferred to LB medium according to the inoculation amount of 4% to 5% by mass ratio, and expanded to 14 to 16 hours under conditions of 28 to 32 ℃ and 150 to 180rpm to prepare a bacterial solution.

c. 상기 단계 b에서 제조된 균액을 원심분리하고 침전물을 수집하여 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus) 균체를 제조한다.c. Centrifugation of the microbial solution prepared in step b and the precipitates were collected to prepare Acinetobacter calcoaceticus cells.

바람직하게는, 상기 단계(1)의 세균 파쇄는 하기 단계를 포함한다.Preferably, the bacterial disruption of step (1) comprises the following steps.

아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus) 균체를 질량부피비 1:(15 내지 25)의 비율로 pH 7.5의 인산 완충액과 균일하게 혼합하며 단위는 g/ml이고; 320W의 초음파 조건 하에서 간헐적 초음파 처리 방식을 채택해 세포 파쇄를 17분간 진행하며, 매회 초음파 파쇄 시간은 2s이고, 간헐적 시간은 2s이다. Acinetobacter calcoaceticus cells are uniformly mixed with a phosphate buffer of pH 7.5 in a ratio of mass volume ratio 1: (15 to 25) and the unit is g / ml; Cell disruption is performed for 17 minutes using intermittent sonication under 320W of ultrasonic conditions. The ultrasonic disruption time is 2s and the intermittent time is 2s each time.

바람직하게는, 상기 단계(1)에서 원심분리 조건은 5000r/min으로 2분간 원심분리한다.Preferably, the centrifugation conditions in step (1) is centrifuged for 2 minutes at 5000 r / min.

바람직하게는, 상기 단계(2)에서 포름산탈수소효소는 포름산탈수소효소(CbFDH)이고, 아미노산 서열은 SEQ ID NO.1로 표시된다.Preferably, in step (2), the formic acid dehydrogenase is formic acid dehydrogenase (C b FDH), and the amino acid sequence is represented by SEQ ID NO.1.

바람직하게는, 상기 단계(2)에서 포름산탈수소효소(CbFDH)의 제조 방법은 하기와 같다.Preferably, the preparation method of formic acid dehydrogenase (C b FDH) in the step (2) is as follows.

(i) 유전자 조작 균주 대장균(E.coli BL21-fdh)을 만든다.(i) Genetically modified strain E. coli (E. coli BL21- fdh ) is made.

(ii) 상기 단계 (i)에서 제조된 유전자 조작 균주 대장균(E.coli BL21-fdh)을 질량 1% 내지 2%의 접종량으로 종자 배지에 옮기고, 28 내지 32℃, 150 내지 180rpm 조건 하에서 10 내지 12시간 동안 종자를 배양하여 대장균 종자액을 제조한다.(ii) the genetically modified strain E. coli (E. coli BL21- fdh ) prepared in step (i) was transferred to the seed medium at an inoculation amount of 1% to 2% by mass, and 10 to 28 ° C under conditions of 28 to 32 ° C and 150 to 180 rpm. E. coli seed solution is prepared by incubating the seeds for 12 hours.

(iii) 상기 단계 (ii)의 상기 대장균 종자액을 질량 4% 내지 5%의 접종량으로 발효 배지에 옮기고, 28 내지 32℃ 및 150 내지 180rpm 조건 하에서 16 내지 18시간 동안 배양하여 유전자 조작 균주 대장균(E.coli BL21-fdh) 균체를 수집하고, 세포 파쇄, 원심분리를 거쳐 상청액을 수집하여 포름산탈수소효소(CbFDH)를 제조한다.(iii) the E. coli seed solution of step (ii) was transferred to the fermentation medium at an inoculation amount of 4% to 5% by mass, and incubated for 16 to 18 hours under conditions of 28 to 32 ° C and 150 to 180 rpm. E. coli BL21- fdh ) cells are collected, and supernatant is collected by cell disruption and centrifugation to prepare formate dehydrogenase (C b FDH).

바람직하게는, 상기 단계 (i)에서 유전자 조작 균주 대장균(E.coli BL21-fdh)의 구축 방법은 하기와 같다.Preferably, the method for constructing the genetically modified strain E. coli (E. coli BL21- fdh ) in step (i) is as follows.

캔디다 보이디니(Candida boidinii) 유래의 포름산탈수소효소 유전자(fdh)를 확장시켜 대장균 발현 벡터(pET28a(+))에 연결시켜 fdh 유전자를 갖는 재조합 발현 벡터(pET28a(+)-fdh)를 구축하여 얻고, 숙주균 대장균(BL21(DE3))을 형질 전환하고, 형질전환체를 선별하여 포름산탈수소효소를 발현하는 재조합 대장균(E.coli BL21-fdh)를 얻는다.The formic acid dehydrogenase gene ( fdh ) derived from Candida boidinii was expanded and linked to an E. coli expression vector (pET28a (+)) to construct a recombinant expression vector (pET28a (+)- fdh ) having the fdh gene. The host bacterium Escherichia coli (BL21 (DE3)) is transformed, and the transformant is selected to obtain a recombinant Escherichia coli (E. coli BL21- fdh ) expressing formate dehydrogenase.

더 바람직하게는, 상기 단계 (ii)에서 상기 종자 배지 성분은,More preferably, in step (ii) the seed medium component is

펩톤 10g/L, 효모 추출물 5g/L, 염화나트륨(NaCl) 10g/L, 암피실린(ampicillin) 100㎍/mL이다.10 g / L peptone, 5 g / L yeast extract, 10 g / L sodium chloride (NaCl), and 100 μg / mL ampicillin.

더 바람직하게는, 상기 단계 (iii)에서 상기 발효 배지 성분은, More preferably, the fermentation medium component in step (iii),

펩톤 10g/L, 효모 추출물 5g/L, Na2HPO4 12H2O 9g/L, KH2PO4 6.8g/L, (NH4)2SO4 3.3g/L, 포도당 0.5g/L, 유당 2g/L, MgSO4 7H2O 0.5g/L, CaCl2 0.02g/L이고, 글리세롤은 부피%에 따라 0.5%로 계산한다.Peptone 10g / L, yeast extract 5g / L, Na 2 HPO 4 and 12H 2 O 9g / L, KH 2 PO 4 6.8g / L, (NH 4) 2 SO 4 3.3g / L, glucose 0.5g / L, lactose and 2g / L, MgSO 4 and 7H 2 O 0.5g / L, CaCl 2 0.02g / L, glycerol is calculated as 0.5% by volume%.

바람직하게는, 상기 단계 (iii)에서 상기 세포 파쇄 단계는 하기와 같다.Preferably, the cell disruption step in step (iii) is as follows.

유전자 조작 균주 대장균(E.coli BL21-fdh) 균체를 질량부피비 1:(15 내지 25)의 비율로 pH 7.5의 인산 완충액과 균일하게 혼합하며 단위는 g/ml이고; 195W의 초음파 조건 하에서 간헐적 초음파 처리 방식을 채택해 세포 파쇄를 6분간 진행하며, 매회 초음파 파쇄시간은 3s이고, 간헐적 시간은 5s이다.Genetically engineered strain E. coli BL21- fdh cells are uniformly mixed with a phosphate buffer of pH 7.5 in a ratio of mass volume ratio 1: (15 to 25) and the unit is g / ml; Cell disruption is performed for 6 minutes using intermittent sonication under 195W of ultrasonic conditions. The ultrasonic disruption time is 3s and the intermittent time is 5s each time.

바람직하게는, 상기 단계 (iii)에서 원심분리 조건은 3000r/min으로 2분간 원심분리한다. Preferably, the centrifugation conditions in step (iii) are centrifuged at 3000 r / min for 2 minutes.

바람직하게는, 상기 단계(2)에서 석유 분해 효소액 21#과 포름산탈수소효소의 혼합 질량비는 1:4이다.Preferably, the mixed mass ratio of the petroleum dehydrogenase 21 # and formic acid dehydrogenase in step (2) is 1: 4.

상기 제조 방법으로 획득한 슬러지 석유 분해 복합 효소.Sludge petroleum degrading complex enzyme obtained by the above production method.

상기 슬러지 석유 분해 복합 효소의 석유 오염 슬러지 복구에서의 응용.Application of the sludge petroleum degrading enzyme in petroleum contaminated sludge recovery.

상기 응용은 하기 단계를 포함한다.The application includes the following steps.

(I) 슬러지 석유 분해 복합 효소는 포름산나트륨 용액과 혼합하고, 단백질과 포름산나트륨에 질량비가 1:(4 내지 6)이고, 포름산나트륨 농도가 150 내지 180mmol/L인 슬러지 석유 분해 복합 효소 처리액을 제조한다.(I) The sludge petroleum decomposing enzyme is mixed with sodium formate solution, and the sludge petroleum decomposing enzyme treatment liquid having a mass ratio of 1: (4 to 6) and a sodium formate concentration of 150 to 180 mmol / L for protein and sodium formate. Manufacture.

(II) 상기 단계 (I)에서 제조된 슬러지 석유 분해 복합 효소 처리액은 질량부피비 1:(16 내지 24)의 비율로 혼합하며, 단위는 g/ml이고, 25 내지 35℃ 조건 하에서 6 내지 24시간 동안 교반 처리하면 된다.(II) The sludge petroleum degrading complex enzyme treatment liquid prepared in step (I) is mixed at a ratio of mass volume ratio 1: (16 to 24), and the unit is g / ml, and it is 6 to 24 under 25 to 35 ° C. What is necessary is just to agitate for time.

바람직하게는 상기 단계 (I)에서 단백질과 포름산나트륨의 질량비는 1:5이다.Preferably the mass ratio of protein and sodium formate in step (I) is 1: 5.

바람직하게는 상기 단계 (I)에서 상기 슬러지 석유 분해 복합 효소 처리액에서 포름산나트륨 농도는 167mmol/L이다.Preferably, the sodium formate concentration in the sludge petroleum decomposing complex treatment solution in step (I) is 167 mmol / L.

바람직하게는 상기 단계 (II)에서, 슬러지와 슬러지 석유 분해 복합 효소 처리액은 질량부피비 1:20의 비율로 혼합한다.Preferably, in step (II), the sludge and the sludge petroleum decomposing complex enzyme treatment solution are mixed in a ratio of mass volume ratio of 1:20.

본 발명의 유익한 효과는 하기와 같다.The beneficial effects of the present invention are as follows.

1. 본 발명은 우선 아시네토박터 칼코아세티쿠스 유래 균의 석유 분해 효소계를 포름산탈수소효소와 비율에 따라 혼합한 후, 고농도의 석유 오염 슬러지 중의 석유 분해 및 복구를 처리하는 데 사용될 수 있음을 밝혀냈으며, 이는 규조토 등의 흡착제의 부동화를 진행할 필요가 없을 뿐만 아니라, 슬러지 내의 석유를 단시간에 저감할 수 있으며, 높은 효율의 석유 오염 처리 능력을 가지고, 생산 비용이 낮으며 활용 전망이 광범위하다.1. The present invention first finds that the petroleum degrading system of acetobacter calcoaceticus-derived bacteria can be mixed with formic acid dehydrogenase and then used to treat petroleum decomposition and recovery in high concentration petroleum contaminated sludge. This eliminates the need for the passivation of adsorbents such as diatomaceous earth, and can reduce the oil in the sludge in a short time, has a high efficiency of petroleum pollution treatment, low production cost, and a wide range of utilization prospects.

2. 본 발명자는 포름산탈수소효소가 포름산탈수소효소(CbFDH)(아미노산 서열은 SEQ ID NO.1)인 경우, 석유 분해 효소계의 고농도 석유 오염 슬러지에 대한 복구 효율이 더욱 향상되며, 동시에 특정 배지로 재조합균을 배양하여 포름산탈수소효소(CbFDH)를 얻을 경우, 포름산탈수소효소(CbFDH)의 안정성 등 특성이 현저히 향상되는 것을 확인하였다.2. When the formate dehydrogenase is formic acid dehydrogenase (C b FDH) (amino acid sequence is SEQ ID NO.1), the present inventors further improve the recovery efficiency for high concentration petroleum contaminated sludge of petroleum dehydrogenase system, and at the same time, when a by culturing a recombinant bacterium obtained formate dehydrogenase (FDH C b), it was confirmed that the characteristics such as stability of the formate dehydrogenase (FDH C b) is remarkably improved.

이하에서는, 본 발명의 기술방안을 실시예를 통해 보다 상세히 설명하며 이는 본 발명의 보호범위를 한정하지 않는다.Hereinafter, the technical solutions of the present invention will be described in more detail with reference to examples, which do not limit the protection scope of the present invention.

생체재료 출처:Biomaterials Source:

아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus)는 중국 미생물균종보존관리위원회 보통미생물센터에서 구입하였으며, 균종 기탁 번호는 CGMCC No.3915이다. Acinetobacter calcoaceticus was purchased from the China Microbial Species Preservation Management Committee Ordinary Microbial Center, and the species number is CGMCC No.3915.

캔디다 보이디니(Candida boidinii)는 중국 미생물균종보존관리위원회 보통미생물센터에서 구입하였으며, 균종 기탁 번호는 CGMCC 2.2378이다. Candida boidinii was purchased from China's Microbial Species Preservation Control Committee Ordinary Microbial Center. The species number is CGMCC 2.2378.

플라스미드(pET28a(+))는 산둥워언바이오테크유한회사(山東沃恩生物科技有限公司)에서 구입하였다.Plasmid (pET28a (+)) was purchased from Shandong Biotech Co., Ltd. (山東 沃恩 生物 科技 有限公司).

대장균(BL21(DE3))은 일반 시중에서 판매하는 제품이다.Escherichia coli (BL21 (DE3)) is a commercially available product.

실시예Example 1 One

아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus) 균체는 하기 방법에 따라 배양하여 제조한다. Acinetobacter calcoaceticus cells are prepared by culturing according to the following method.

a. 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus)는 질량비 2%의 접종량에 따라 LB 배지에 옮기고 30℃, 160rpm 조건 하에서 15시간 동안 배양하여 종자액을 제조한다.a. Acinetobacter calcoaceticus ( Acinetobacter calcoaceticus ) is transferred to LB medium according to the inoculation amount of 2% by mass ratio and incubated for 15 hours at 30 ℃, 160rpm conditions to prepare a seed solution.

b. 상기 단계 a에서 제조된 종자액은 질량비 4% 내지 5%의 접종량에 따라 LB 배지에 옮기고 30℃, 160rpm 조건 하에서 15시간 동안 확대 배양하여 균액을 제조한다.b. Seed solution prepared in step a is transferred to LB medium according to the inoculation amount of 4% to 5% by mass ratio and expanded incubation for 15 hours at 30 ℃, 160rpm conditions to prepare a bacterial solution.

c. 상기 단계 b에서 제조된 균액은 원심분리하여 침전물을 수집하여 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus) 균체를 제조한다.c. The microbial solution prepared in step b is centrifuged to collect the precipitate to prepare Acinetobacter calcoaceticus cells.

실시예Example 2 2

포름산탈수소효소(CbFDH)의 제조 방법은 하기와 같다.The production method of formic acid dehydrogenase (C b FDH) is as follows.

(i) 유전자 조작 균주 대장균(E.coli BL21-fdh)을 만들며, 구축 방법은 다음과 같다. (i) Genetically modified strain E. coli (E. coli BL21- fdh ) is made, and the construction method is as follows.

즉, 캔디다 보이디니(Candida boidinii) 유래의 포름산탈수소효소 유전자(fdh)를 확장시켜 얻고, 유전자 서열은 예를 들어 SEQ ID NO.2로 표시되고, 업스트림 확장 프라이머 서열은 예를 들어 SEQ ID NO.3으로 표시되고, 확장 후의 포름산탈수소효소 유전자(fdh)를 대장균 발현 벡터(pET28a(+))에 연결하고, fdh 유전자를 갖는 재조합 발현 벡터(pET28a(+)-fdh)를 구축하여 얻고, 숙주균 대장균(BL21(DE3))을 형질 전환하고, 형질전환체를 선별하여 포름산탈수소효소를 발현하는 재조합 대장균(E.coli BL21-fdh)를 얻는다. 구체적인 단계 조건은 대장균 발현 벡터(pET28a(+))의 사용 설명서를 참고한다.That is, Candida seen dini (Candida boidinii) gained by expanding the formate dehydrogenase gene (fdh) of origin, the gene sequence, for example, is represented by SEQ ID NO.2, the upstream extension primer sequence contains SEQ ID NO. G. The formic acid dehydrogenase gene ( fdh ) after expansion was linked to the E. coli expression vector (pET28a (+)), and the recombinant expression vector (pET28a (+)- fdh ) having the fdh gene was constructed and obtained. Escherichia coli (BL21 (DE3)) is transformed, and transformants are selected to obtain recombinant E. coli (E. coli BL21- fdh ) expressing formate dehydrogenase. Refer to the instructions for use of the E. coli expression vector (pET28a (+)) for specific step conditions.

(ii) 상기 단계 (i)에서 제조된 유전자 조작 균주 대장균(E.coli BL21-fdh)을 질량 2%의 접종량으로 종자 배지에 옮기고, 30℃, 160rpm 조건 하에서 12시간 동안 종자를 배양하여 대장균 종자액을 제조한다.(ii) E. coli BL21- fdh , the genetically modified strain E. coli BL21- fdh prepared in step (i) was transferred to the seed medium at an inoculation amount of 2% by mass, and the seeds were incubated for 12 hours at 30 ° C. and 160 rpm. Prepare a liquid.

상기 종자 배지 성분은, The seed medium component,

펩톤 10g/L, 효모 추출물 5g/L, 염화나트륨(NaCl) 10g/L, 암피실린(ampicillin) 100㎍/mL이다.10 g / L peptone, 5 g / L yeast extract, 10 g / L sodium chloride (NaCl), and 100 μg / mL ampicillin.

(iii) 상기 단계 (ii)의 상기 대장균 종자액을 질량 4%의 접종량으로 발효 배지에 옮기고, 30℃ 및 160rpm 조건 하에서 16시간 동안 배양하여 유전자 조작 균주 대장균(E.coli BL21-fdh) 균체를 수집하고, 세포 파쇄를 거쳐 3000r/min으로 2분간 원심분리하고 상청액을 수집하여 포름산탈수소효소(CbFDH)를 제조한다. 검출을 거치며 아미노산 서열은 예를 들어 SEQ ID NO.1로 표시된다.(iii) transfer the E. coli seed solution of step (ii) to the fermentation medium at an inoculation amount of 4% by mass, and incubate for 16 hours at 30 ° C. and 160 rpm to obtain E. coli BL21- fdh cells. Collected, centrifuged at 3000 r / min for 2 minutes through cell disruption, and the supernatant collected to prepare formic acid dehydrogenase (C b FDH). Upon detection, the amino acid sequence is represented, for example, by SEQ ID NO.1.

상기 발효 배지 성분은,The fermentation medium component,

펩톤 10g/L, 효모 추출물 5g/L, Na2HPO4 12H2O 9g/L, KH2PO4 6.8g/L, (NH4)2SO4 3.3g/L, 포도당 0.5g/L, 유당 2g/L, MgSO4 7H2O 0.5g/L, CaCl2 0.02g/L이고, 글리세롤은 부피%에 따라 0.5%로 계산한다.Peptone 10g / L, yeast extract 5g / L, Na 2 HPO 4 and 12H 2 O 9g / L, KH 2 PO 4 6.8g / L, (NH 4) 2 SO 4 3.3g / L, glucose 0.5g / L, lactose and 2g / L, MgSO 4 and 7H 2 O 0.5g / L, CaCl 2 0.02g / L, glycerol is calculated as 0.5% by volume%.

상기 세포 파쇄 단계는 하기와 같다.The cell disruption step is as follows.

유전자 조작 균주 대장균(E.coli BL21-fdh) 균체를 질량부피비 1:20의 비율로 pH 7.5의 인산 완충액과 균일하게 혼합하며, 단위는 g/ml이고; 195W의 초음파 조건 하에서 간헐적 초음파 처리 방식을 채택해 세포 파쇄를 6분간 진행하며, 매회 초음파 파쇄시간은 3s이고, 간헐적 시간은 5s이다.Genetically engineered strain E. coli BL21- fdh cells are uniformly mixed with a phosphate buffer of pH 7.5 in a ratio of mass volume ratio of 1:20 and the unit is g / ml; Cell disruption is performed for 6 minutes using intermittent sonication under 195W of ultrasonic conditions. The ultrasonic disruption time is 3s and the intermittent time is 5s each time.

실시예Example 3 3

슬러지 석유 분해 복합 효소의 제조 방법은 하기의 단계를 포함한다.The method for producing the sludge petroleum degrading complex enzyme includes the following steps.

(1) 실시예 1에서 제조된 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus) 균체에 대해 세포 파쇄를 진행하고, 5000r/min으로 2분간 원심분리하고 상청액을 취하여 석유 분해 효소액 21#을 제조한다.(1) Acinetobacter calcoaceticus cells prepared in Example 1 were subjected to cell disruption, centrifuged at 5000 r / min for 2 minutes, the supernatant was taken, and petroleum dehydrogenase solution 21 # was prepared.

상기 세포 파쇄 단계는 하기와 같다.The cell disruption step is as follows.

아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus) 균체를 질량부피비 1:20의 비율로 pH 7.5의 인산 완충액과 균일하게 혼합하며, 단위는 g/ml이고; 320W의 초음파 조건 하에서 간헐적 초음파 처리 방식을 채택해 세포 파쇄를 17분간 진행하며, 매회 초음파 파쇄시간은 2s이고, 간헐적 시간은 2s이다. Acinetobacter calcoaceticus cells are uniformly mixed with a phosphate buffer of pH 7.5 at a mass volume ratio of 1:20, and the unit is g / ml; Cell disruption is performed for 17 minutes using intermittent sonication under 320W of ultrasonic conditions. The ultrasonic disruption time is 2s and the intermittent time is 2s each time.

(2) 단계(1)에서 제조한 석유 분해 효소액 21#과 포름산탈수소효소를 단백질의 질량비 1:4의 비율에 따라 혼합하여 슬러지 석유 분해 복합 효소를 제조한다.(2) The petroleum dehydrogenase 21 # prepared in step (1) and formic acid dehydrogenase were mixed according to the ratio of the protein by mass ratio 1: 4 to prepare a sludge petroleum degrading complex enzyme.

실시예Example 4 4

실시예 3의 슬러지 석유 분해 복합 효소의 제조 방법과 다른 점은 포름산탈수소효소 제조 과정 중에 채택하는 발효 배지이며, 그 성분은 하기와 같다.The difference from the manufacturing method of the sludge petroleum decomposing complex enzyme of Example 3 is a fermentation medium employ | adopted during the process of manufacturing a formate dehydrogenase, The component is as follows.

LB 액체 배지(펩톤 10g/L, 효모 추출물 5g/L, 염화나트륨(NaCl) 10g/L)를 2 내지 3시간 배양한 후 IPTG 용액을 0.5mmol/L의 최종 농도로 첨가하여 유도를 진행했다.Induction was performed by incubating LB liquid medium (10 g / L of peptone, 5 g / L of yeast extract, 10 g / L of sodium chloride (NaCl)) for 2 to 3 hours, and then adding IPTG solution to a final concentration of 0.5 mmol / L.

실시예Example 5 5

실시예 3의 슬러지 석유 분해 복합 효소의 제조 방법과 다른 점은 석유 분해 효소액 21#과 포름산탈수소효소의 단백질의 질량비가 1:3인 것이다.The difference from the method for producing the sludge petroleum degrading complex enzyme of Example 3 is that the mass ratio of the protein of petroleum dehydrogenase 21 # and formic acid dehydrogenase is 1: 3.

실시예Example 6 6

실시예 3의 슬러지 석유 분해 복합 효소의 제조 방법과 다른 점은 석유 분해 효소액 21#과 포름산탈수소효소의 단백질의 질량비가 1:5인 것이다.The difference from the method for producing the sludge petroleum degrading complex enzyme of Example 3 is that the mass ratio of the protein of petroleum dehydrogenase 21 # and formic acid dehydrogenase is 1: 5.

비교예Comparative example 1 One

실시예 3의 슬러지 석유 분해 복합 효소의 제조 방법과 다른 점은 석유 분해 효소액 21#과 포름산탈수소효소의 단백질의 질량비가 2:3인 것이다.The difference from the manufacturing method of the sludge petroleum decomposing complex enzyme of Example 3 is that the mass ratio of the protein of petroleum dehydrogenase 21 # and formate dehydrogenase is 2: 3.

비교예Comparative example 2 2

실시예 3의 슬러지 석유 분해 복합 효소의 제조 방법과 다른 점은 석유 분해 효소액 21#과 포름산탈수소효소의 단백질의 질량비가 1:1인 것이다.The difference from the method for producing the sludge petroleum decomposing enzyme of Example 3 is that the mass ratio of the protein of the petroleum dehydrogenase 21 # and the formic acid dehydrogenase is 1: 1.

비교예Comparative example 3 3

실시예 3의 슬러지 석유 분해 복합 효소의 제조 방법과 다른 점은 석유 분해 효소액 21#과 포름산탈수소효소의 단백질의 질량비가 2:1인 것이다.The difference from the manufacturing method of the sludge petroleum decomposing enzyme of Example 3 is that the mass ratio of the protein of petroleum dehydrogenase 21 # and formate dehydrogenase is 2: 1.

비교예Comparative example 4 4

효소 제제는 중국 특허 문헌 CN103484447A(출원번호 201310456751.X)의 실시예 3에 기재된 바와 같이 제조하였다.Enzyme preparations were prepared as described in Example 3 of Chinese Patent Document CN103484447A (Application No. 201310456751.X).

실험예Experimental Example 1 석유 분해율 실험 1 Petroleum Degradation Rate Experiment

오일 함량 10%의 슬러지 2g(석유 함량 200mg)을 정확하게 측정하여 건조 삼각 플라스크에 넣고 각각 실시예 1, 실시예 4 내지 6 및 비교예 1 내지 4에 따라 제조된 효소 제제 20ml를 포름산나트륨과 혼합하고, 효소 제제 중의 단백질과 포름산나트륨의 질량비는 1:5이고, dH2O를 이용해 40mL까지 보충하여 슬러지 석유 분해 복합 효소 처리액을 제조하였다. 이때 포름산나트륨 용액의 농도는 모두 167mmol/L이며 각각 실험군 1 내지 8로 표기하고 동시에 40mL의 dH2O를 취하여 CK군으로 삼는다.Accurately measure 2 g of oil 10% sludge (petroleum content 200 mg), place it in a dry Erlenmeyer flask and mix 20 ml of the enzyme preparation prepared according to Examples 1, 4-6 and Comparative Examples 1-4, respectively with sodium formate. The mass ratio of protein and sodium formate in the enzyme preparation was 1: 5, and the sludge petroleum decomposing complex treatment solution was prepared by supplementing up to 40 mL with dH 2 O. At this time, the concentration of the sodium formate solution is all 167mmol / L and each of the experimental groups 1 to 8 and at the same time take 40mL of dH 2 O to CK group.

실험군 1 내지 8을 30℃, 150rpm 조건 하에서 12시간 동안 CK군과 효소 분해 반응시키고, 디클로로메탄을 첨가하여 반응을 종결시켰다. 중량법을 채택해 슬러지 석유 분해율을 측정하였으며 구체적인 단계는 하기와 같다.The experimental groups 1 to 8 were enzymatically decomposed with the CK group for 12 hours at 30 ° C. and 150 rpm, and the reaction was terminated by adding dichloromethane. The sludge petroleum decomposition rate was measured using the gravimetric method and the specific steps are as follows.

슬러지의 효소 분해계에 디클로로메탄 40mL를 넣고, 충분히 섞은 다음 전부를 분액 깔대기로 옮겨서 염화나트륨 10 내지 20g을 넣고, 15mL 디클로로메탄을 이용해 효소 분해 반응용기를 세척하여 분액 깔대기에 옮기며, 3분 동안 충분히 진탕시켜, 분층을 방치시키고, 수상(water phase)을 원래의 삼각 플라스크에 넣고, 유기상(organic phase)을 100 ml 원추형 플라스크로 옮겼다. 디클로로메탄을 이용해 효소 분해 슬러지 샘플을 2회 반복 추출하며 매회 15 ml의 양을 이용하고, 추출액을 원추형 플라스크 내에서 3회 합친다. 디클로로메탄 추출액에 적절한 양의 무수 황산나트륨을 첨가하고(더이상 덩어리가 생기지 않을 때까지) 뚜껑을 덮은 후 탈수를 위해 0.5시간 이상 방치한다. 미리 디클로로메탄으로 세정한 정성 여과지를 사용하여 여과하고, 여과액을 100 ml 원추형 플라스크 내에 수집하였다. 디클로로메탄을 이용해 효소 분해 슬러지 샘플을 2회 반복 추출하며 매회 15 ml의 양을 사용하고, 추출액을 원추형 플라스크 내에서 3회 합친다. 회전식 증발 장치를 사용하여 디클로로메탄을 증류시키고 자연 건조한 후 무게를 측정하여 석유 분해율을 계산하였다.Add 40 mL of dichloromethane to the sludge enzymatic digestion system, mix thoroughly, transfer all to a separatory funnel, add 10 to 20 g of sodium chloride, wash the enzyme digestion reaction vessel with 15 mL dichloromethane, transfer to a separatory funnel, and shake thoroughly for 3 minutes. The layers were left to stand, the water phase was placed in the original Erlenmeyer flask and the organic phase was transferred to a 100 ml conical flask. Samples of enzyme digestion sludge are extracted twice with dichloromethane, using an amount of 15 ml each time, and the extracts are combined three times in a conical flask. Appropriate amount of anhydrous sodium sulfate is added to the dichloromethane extract (until no more lumps are formed), capped and allowed to stand for at least 0.5 hours for dehydration. Filtration was carried out using qualitative filter paper previously washed with dichloromethane, and the filtrate was collected in a 100 ml conical flask. Samples of enzymatic sludge sludge extraction are repeated twice with dichloromethane, using an amount of 15 ml each time, and the extracts are combined three times in a conical flask. Dichloromethane was distilled using a rotary evaporator, naturally dried and weighed to calculate the petroleum decomposition rate.

분해율(%) = (대조군 오일 중량-분해 효소 실험군 오일 중량) ×100% / 대조군 오일 중량% Degradation = (control oil weight-lyase enzyme weight) x 100% / control oil weight

검출을 거친, 각기 다른 실험군의 관련 실험 결과는 하기 표 1과 같다.The relevant experimental results of the different experimental groups that have been detected are shown in Table 1 below.

표 1 각기 다른 21# 석유 분해 효소/CbFDH 배합비 조건 하에서 슬러지의 석유 분해율Table 1 Petroleum degradation rates of sludge under different 21 # petroleum dehydrogenase / Cb FDH blending conditions

Figure pct00001
Figure pct00001

데이터 분석Data analysis

상기 데이터에서 알 수 있듯이, 실험군 1 내지 4(실시예 1, 실시예 4 내지 6)의 석유 분해율이 실험군 5 내지 7(비교예 1 내지 3)보다 현저하게 높기 때문에, 이로부터 석유 분해 효소와 포름산탈수소효소 양자의 비례 관계는 석유 분해율에 현저한 영향을 미친다는 것을 알 수 있다. 실험군 1 내지 4(실시예 1, 실시예 4 내지 6)와 실험군 8(비교예 4)의 데이터에서 알 수 있듯이, 본 발명의 복합 효소 제제는 종래의 공지된 효소 제제에 비하여 오일 함량이 높은 슬러지를 분해할 때 더욱 현저한 분해 효과를 나타낸다.As can be seen from the above data, since the petroleum decomposition rate of Experimental Groups 1 to 4 (Examples 1 and 4 to 6) is significantly higher than Experimental Groups 5 to 7 (Comparative Examples 1 to 3), petroleum decomposing enzymes and formic acid from the It can be seen that the proportional relationship between both dehydrogenases has a significant effect on the rate of petroleum decomposition. As can be seen from the data of Experimental Groups 1 to 4 (Example 1, Examples 4 to 6) and Experimental Group 8 (Comparative Example 4), the complex enzyme formulation of the present invention has a higher oil content than conventionally known enzyme formulations. Decomposes more pronounced decomposition effect.

실험예Experimental Example 2: 효소 제제 안정성 실험 2: Enzyme Formulation Stability Experiment

실험 과정은 실험예 1과 같으며, 다른 점은 슬러지 석유 분해 복합 효소 처리액을 제조한 후 실온에서 5일간 보존한 후 후속적인 슬러지 분해 실험을 진행한다는 것이다. 검출을 거친 석유 분해율은 하기 표 2와 같다.Experimental procedure is the same as in Experimental Example 1, the difference is that after the sludge petroleum decomposition complex enzyme treatment solution is prepared and stored for 5 days at room temperature, subsequent sludge decomposition experiments are carried out. Detected petroleum decomposition rate is shown in Table 2 below.

표 2 슬러지 석유 분해 복합 효소 처리액을 실온에서 5일 보존한 후의 석유 분해율Table 2 Petroleum decomposition rate after sludge petroleum decomposition complex enzyme treatment solution is stored at room temperature for 5 days

Figure pct00002
Figure pct00002

데이터 분석Data analysis

상기 데이터에서 알 수 있듯이, 실험군 1, 실험군 3 및 실험군 4(실시예 1, 실시예 5 및 실시예 6)의 석유 분해율은 표 1 중 대응하는 실험 데이터와 크게 변하지 않았지만, 실험군 2(실시예 4)는 포름산탈수효소 제조 시 채택한 배지가 달라 효소 제제가 분해 활성을 잃어버렸는데, 여기에서 알 수 있듯이 본 발명에 기재된 발효 배지는 포름산탈수효소의 안정성을 제공하는 효과가 있다.As can be seen from the above data, the petroleum decomposition rates of Experimental Group 1, Experimental Group 3 and Experimental Group 4 (Examples 1, 5 and 6) did not change significantly with the corresponding experimental data in Table 1, but Experimental Group 2 (Example 4). ) Is different from the medium used for the preparation of formic acid dehydratase, the enzyme preparation lost the degradation activity, as can be seen here, the fermentation medium described in the present invention has the effect of providing stability of formic acid dehydratase.

Figure pct00003
Figure pct00003

Figure pct00004
Figure pct00004

Figure pct00005
Figure pct00005

SEQUENCE LISTING <110> ECOLOGY INSTITUTE SHANDONG ACADEMY OF SCIENCES <120> PREPARATION METHOD AND APPLICATION OF SLUDGE PETROLEUM DEGRADING COMPLEX ENZYME <160> 4 <170> PatentIn version 3.5 <210> 1 <211> 364 <212> PRT <213> Candida boidinii <400> 1 Met Lys Ile Val Leu Val Leu Tyr Asp Ala Gly Lys His Ala Ala Asp 1 5 10 15 Glu Glu Lys Leu Tyr Gly Cys Thr Glu Asn Lys Leu Gly Ile Ala Asn 20 25 30 Trp Leu Lys Asp Gln Gly His Glu Leu Ile Thr Thr Ser Asp Lys Glu 35 40 45 Gly Gly Asn Ser Val Leu Asp Gln His Ile Pro Asp Ala Asp Ile Ile 50 55 60 Ile Thr Thr Pro Phe His Pro Ala Tyr Ile Thr Lys Glu Arg Ile Asp 65 70 75 80 Lys Ala Lys Lys Leu Lys Leu Val Val Val Ala Gly Val Gly Ser Asp 85 90 95 His Ile Asp Leu Asp Tyr Ile Asn Gln Thr Gly Lys Lys Ile Ser Val 100 105 110 Leu Glu Val Thr Gly Ser Asn Val Val Ser Val Ala Glu His Val Val 115 120 125 Met Thr Met Leu Val Leu Val Arg Asn Phe Val Pro Ala His Glu Gln 130 135 140 Ile Ile Asn His Asp Trp Glu Val Ala Ala Ile Ala Lys Asp Ala Tyr 145 150 155 160 Asp Ile Glu Gly Lys Thr Ile Ala Thr Ile Gly Ala Gly Arg Ile Gly 165 170 175 Tyr Arg Val Leu Glu Arg Leu Val Pro Phe Asn Pro Lys Glu Leu Leu 180 185 190 Tyr Tyr Asp Tyr Gln Ala Leu Pro Lys Asp Ala Glu Glu Lys Val Gly 195 200 205 Ala Arg Arg Val Glu Asn Ile Glu Glu Leu Val Ala Gln Ala Asp Ile 210 215 220 Val Thr Val Asn Ala Pro Leu His Ala Gly Thr Lys Gly Leu Ile Asn 225 230 235 240 Lys Glu Leu Leu Ser Lys Phe Lys Lys Gly Ala Trp Leu Val Asn Thr 245 250 255 Ala Arg Gly Ala Ile Cys Val Ala Glu Asp Val Ala Ala Ala Leu Glu 260 265 270 Ser Gly Gln Leu Arg Gly Tyr Gly Gly Asp Val Trp Phe Pro Gln Pro 275 280 285 Ala Pro Lys Asp His Pro Trp Arg Asp Met Arg Asn Lys Tyr Gly Ala 290 295 300 Gly Asn Ala Met Thr Pro His Tyr Ser Gly Thr Thr Leu Asp Ala Gln 305 310 315 320 Thr Arg Tyr Ala Gln Gly Thr Lys Asn Ile Leu Glu Ser Phe Phe Thr 325 330 335 Gly Lys Phe Asp Tyr Arg Pro Gln Asp Ile Ile Leu Leu Asn Gly Glu 340 345 350 Tyr Val Thr Lys Ala Tyr Gly Lys His Asp Lys Lys 355 360 <210> 2 <211> 1095 <212> DNA <213> Candida boidinii <400> 2 atgaagatcg ttttagtctt atatgatgct ggtaaacacg ctgccgatga agaaaaatta 60 tacggttgta ctgaaaacaa attaggtatt gccaattggt tgaaagatca aggacatgaa 120 ttaatcacca cgtctgataa agaaggcgga aacagtgtgt tggatcaaca tataccagat 180 gccgatatta tcattacaac tcctttccat cctgcttata tcactaagga aagaatcgac 240 aaggctaaaa aattgaaatt agttgttgtc gctggtgtcg gttctgatca tattgatttg 300 gattatatca accaaaccgg taagaaaatc tccgttttgg aagttaccgg ttctaatgtt 360 gtctctgttg cagaacacgt tgtcatgacc atgcttgtct tggttagaaa ttttgttcca 420 gctcacgaac aaatcattaa ccacgattgg gaggttgctg ctatcgctaa ggatgcttac 480 gatatcgaag gtaaaactat cgccaccatt ggtgccggta gaattggtta cagagtcttg 540 gaaagattag tcccattcaa tcctaaagaa ttattatact acgattatca agctttacca 600 aaagatgctg aagaaaaagt tggtgctaga agggttgaaa atattgaaga attggttgcc 660 caagctgata tagttacagt taatgctcca ttacacgctg gtacaaaagg tttaattaac 720 aaggaattat tgtctaaatt caagaaaggt gcttggttag tcaatactgc aagaggtgcc 780 atttgtgttg ccgaagatgt tgctgcagct ttagaatctg gtcaattaag aggttatggt 840 ggtgatgttt ggttcccaca accagctcca aaagatcacc catggagaga tatgagaaac 900 aaatatggtg ctggtaacgc catgactcct cattactctg gtactacttt agatgctcaa 960 actagatacg ctcaaggtac taaaaatatc ttggagtcat tctttactgg taagtttgat 1020 tacagaccac aagatatcat cttattaaac ggtgaatacg ttaccaaagc ttacggtaaa 1080 cacgataaga aataa 1095 <210> 3 <211> 33 <212> DNA <213> Artificial Sequence <400> 3 ccggatccat gaagatygty ttagtyytwt atg 33 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <400> 4 ccgtcgactt atttcttatc gtgtttaccg 30                          SEQUENCE LISTING <110> ECOLOGY INSTITUTE SHANDONG ACADEMY OF SCIENCES   <120> PREPARATION METHOD AND APPLICATION OF SLUDGE PETROLEUM DEGRADING COMPLEX ENZYME <160> 4 <170> PatentIn version 3.5 <210> 1 <211> 364 <212> PRT Candida boidinii <400> 1 Met Lys Ile Val Leu Val Leu Tyr Asp Ala Gly Lys His Ala Ala Asp 1 5 10 15 Glu Glu Lys Leu Tyr Gly Cys Thr Glu Asn Lys Leu Gly Ile Ala Asn             20 25 30 Trp Leu Lys Asp Gln Gly His Glu Leu Ile Thr Thr Ser Asp Lys Glu         35 40 45 Gly Gly Asn Ser Val Leu Asp Gln His Ile Pro Asp Ala Asp Ile Ile     50 55 60 Ile Thr Thr Pro Phe His Pro Ala Tyr Ile Thr Lys Glu Arg Ile Asp 65 70 75 80 Lys Ala Lys Lys Leu Lys Leu Val Val Val Ala Gly Val Gly Ser Asp                 85 90 95 His Ile Asp Leu Asp Tyr Ile Asn Gln Thr Gly Lys Lys Ile Ser Val             100 105 110 Leu Glu Val Thr Gly Ser Asn Val Val Ser Val Ala Glu His Val Val         115 120 125 Met Thr Met Leu Val Leu Val Arg Asn Phe Val Pro Ala His Glu Gln     130 135 140 Ile Ile Asn His Asp Trp Glu Val Ala Ala Ile Ala Lys Asp Ala Tyr 145 150 155 160 Asp Ile Glu Gly Lys Thr Ile Ala Thr Ile Gly Ala Gly Arg Ile Gly                 165 170 175 Tyr Arg Val Leu Glu Arg Leu Val Pro Phe Asn Pro Lys Glu Leu Leu             180 185 190 Tyr Tyr Asp Tyr Gln Ala Leu Pro Lys Asp Ala Glu Glu Lys Val Gly         195 200 205 Ala Arg Arg Val Glu Asn Ile Glu Glu Leu Val Ala Gln Ala Asp Ile     210 215 220 Val Thr Val Asn Ala Pro Leu His Ala Gly Thr Lys Gly Leu Ile Asn 225 230 235 240 Lys Glu Leu Leu Ser Lys Phe Lys Lys Gly Ala Trp Leu Val Asn Thr                 245 250 255 Ala Arg Gly Ala Ile Cys Val Ala Glu Asp Val Ala Ala Ala Leu Glu             260 265 270 Ser Gly Gln Leu Arg Gly Tyr Gly Gly Asp Val Trp Phe Pro Gln Pro         275 280 285 Ala Pro Lys Asp His Pro Trp Arg Asp Met Arg Asn Lys Tyr Gly Ala     290 295 300 Gly Asn Ala Met Thr Pro His Tyr Ser Gly Thr Thr Leu Asp Ala Gln 305 310 315 320 Thr Arg Tyr Ala Gln Gly Thr Lys Asn Ile Leu Glu Ser Phe Phe Thr                 325 330 335 Gly Lys Phe Asp Tyr Arg Pro Gln Asp Ile Ile Leu Leu Asn Gly Glu             340 345 350 Tyr Val Thr Lys Ala Tyr Gly Lys His Asp Lys Lys         355 360 <210> 2 <211> 1095 <212> DNA Candida boidinii <400> 2 atgaagatcg ttttagtctt atatgatgct ggtaaacacg ctgccgatga agaaaaatta 60 tacggttgta ctgaaaacaa attaggtatt gccaattggt tgaaagatca aggacatgaa 120 ttaatcacca cgtctgataa agaaggcgga aacagtgtgt tggatcaaca tataccagat 180 gccgatatta tcattacaac tcctttccat cctgcttata tcactaagga aagaatcgac 240 aaggctaaaa aattgaaatt agttgttgtc gctggtgtcg gttctgatca tattgatttg 300 gattatatca accaaaccgg taagaaaatc tccgttttgg aagttaccgg ttctaatgtt 360 gtctctgttg cagaacacgt tgtcatgacc atgcttgtct tggttagaaa ttttgttcca 420 gctcacgaac aaatcattaa ccacgattgg gaggttgctg ctatcgctaa ggatgcttac 480 gatatcgaag gtaaaactat cgccaccatt ggtgccggta gaattggtta cagagtcttg 540 gaaagattag tcccattcaa tcctaaagaa ttattatact acgattatca agctttacca 600 aaagatgctg aagaaaaagt tggtgctaga agggttgaaa atattgaaga attggttgcc 660 caagctgata tagttacagt taatgctcca ttacacgctg gtacaaaagg tttaattaac 720 aaggaattat tgtctaaatt caagaaaggt gcttggttag tcaatactgc aagaggtgcc 780 atttgtgttg ccgaagatgt tgctgcagct ttagaatctg gtcaattaag aggttatggt 840 ggtgatgttt ggttcccaca accagctcca aaagatcacc catggagaga tatgagaaac 900 aaatatggtg ctggtaacgc catgactcct cattactctg gtactacttt agatgctcaa 960 actagatacg ctcaaggtac taaaaatatc ttggagtcat tctttactgg taagtttgat 1020 tacagaccac aagatatcat cttattaaac ggtgaatacg ttaccaaagc ttacggtaaa 1080 cacgataaga aataa 1095 <210> 3 <211> 33 <212> DNA <213> Artificial Sequence <400> 3 ccggatccat gaagatygty ttagtyytwt atg 33 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <400> 4 ccgtcgactt atttcttatc gtgtttaccg 30

Claims (10)

슬러지 석유 분해 복합 효소의 제조 방법에 있어서,
하기의 단계:
(1) 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus) 균체에 대해 세포 파쇄를 진행하고, 원심분리하고, 상청액을 취하여 석유 분해 효소액 21#을 제조하는 단계;
(2) 단계(1)에서 제조한 석유 분해 효소액 21#과 포름산탈수소효소를 단백질의 질량비 1:(3 내지 5)의 비율에 따라 혼합하여 슬러지 석유 분해 복합 효소를 제조하는 단계;
를 포함하는 것을 특징으로 하는 슬러지 석유 분해 복합 효소의 제조 방법.
In the manufacturing method of sludge petroleum decomposing enzyme,
Steps below:
(1) proceeding cell disruption to Acinetobacter calcoaceticus cells, centrifugation, and taking the supernatant to prepare petroleum dehydrogenase solution 21 # ;
(2) mixing the petroleum dehydrogenase 21 # prepared in step (1) with formic acid dehydrogenase according to a ratio of the protein by mass ratio 1: (3 to 5) to prepare a sludge petroleum degrading complex enzyme;
Method for producing a sludge petroleum decomposing complex comprising a.
제1항에 있어서,
상기 단계(1)에서, 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus)의 균종 기탁 번호는 CGMCC No.3915인 것을 특징으로 하는 슬러지 석유 분해 복합 효소의 제조 방법.
The method of claim 1,
In the step (1), the species number of Acinetobacter calcoaceticus ( Acinetobacter calcoaceticus ) is CGMCC No. 3915, the method for producing a sludge petroleum degrading complex enzyme.
제1항에 있어서,
상기 단계(1)에서, 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus)의 균체는 하기 방법에 따라 배양하여 제조하는데,
a. 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus)는 질량비 1% 내지 2%의 접종량에 따라 LB 배지에 옮기고 28 내지 32℃와 150 내지 180rpm 조건 하에서 14 내지 16시간 동안 배양하여 종자액을 제조하고;
b. 상기 단계 a에서 제조된 종자액은 질량비 4% 내지 5%의 접종량에 따라 LB 배지에 옮기고 28 내지 32℃와 150 내지 180rpm 조건 하에서 14 내지 16시간 동안 확대 배양하여 균액을 제조하고;
c. 상기 단계 b에서 제조된 균액을 원심분리하고 침전물을 수집하여 아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus) 균체를 제조하고;
바람직하게는, 상기 단계(1)의 세균 파쇄는,
아시네토박터 칼코아세티쿠스(Acinetobacter calcoaceticus) 균체를 질량부피비 1:(15 내지 25)의 비율로 pH 7.5의 인산 완충액과 균일하게 혼합하며 단위는 g/ml이고; 320W의 초음파 조건 하에서 간헐적 초음파 처리 방식을 채택해 세포 파쇄를 17분간 진행하며, 매회 초음파 파쇄 시간은 2s이고, 간헐적 시간은 2s인 단계이고;
바람직하게는, 상기 단계(1)에서, 원심분리 조건은 5000r/min으로 2분간 원심분리하는 것을 특징으로 하는 슬러지 석유 분해 복합 효소의 제조 방법.
The method of claim 1,
In the step (1), the cells of Acinetobacter calcoaceticus ( Acinetobacter calcoaceticus ) is prepared by culturing according to the following method,
a. Acinetobacter calcoaceticus ( Acinetobacter calcoaceticus ) was transferred to LB medium according to the inoculation amount of 1% to 2% by mass ratio and incubated for 14 to 16 hours under conditions of 28 to 32 ° C and 150 to 180 rpm to prepare a seed solution;
b. The seed solution prepared in step a was transferred to LB medium according to the inoculation amount of 4% to 5% by mass ratio and expanded incubated for 14 to 16 hours under conditions of 28 to 32 ° C. and 150 to 180 rpm;
c. Centrifuging the microbial solution prepared in step b and collecting a precipitate to prepare Acinetobacter calcoaceticus cells;
Preferably, the bacterial disruption of step (1),
Acinetobacter calcoaceticus cells are uniformly mixed with a phosphate buffer of pH 7.5 in a ratio of mass volume ratio 1: (15 to 25) and the unit is g / ml; Cell disruption is carried out for 17 minutes by adopting the intermittent ultrasonic treatment method under the ultrasonic conditions of 320W, each time the ultrasonic disruption time is 2s, and the intermittent time is 2s;
Preferably, in the step (1), the centrifugation conditions are sludge petroleum decomposing enzyme, characterized in that the centrifugation for 2 minutes at 5000r / min.
제1항에 있어서,
상기 단계(2)에서, 포름산탈수소효소는 포름산탈수소효소(CbFDH)이고, 아미노산 서열은 SEQ ID NO.1로 표시되며;
바람직하게는, 상기 단계(2)에서, 포름산탈수소효소(CbFDH)의 제조 방법은,
(i) 유전자 조작 균주 대장균(E.coli BL21-fdh)을 만들고;
(ii) 상기 단계 (i)에서 제조된 유전자 조작 균주 대장균(E.coli BL21-fdh)을 질량 1% 내지 2%의 접종량으로 종자 배지에 옮기고, 28 내지 32℃, 150 내지 180rpm 조건 하에서 10 내지 12시간 동안 종자를 배양하여 대장균 종자액을 제조하고;
(iii) 상기 단계 (ii)의 상기 대장균 종자액을 질량 4% 내지 5%의 접종량으로 발효 배지에 옮기고, 28 내지 32℃ 및 150 내지 180rpm 조건 하에서 16 내지 18시간 동안 배양하여 유전자 조작 균주 대장균(E.coli BL21-fdh) 균체를 수집하고, 세포 파쇄, 원심분리를 거쳐 상청액을 수집하여 포름산탈수소효소(CbFDH)를 제조하는 것을 특징으로 하는 슬러지 석유 분해 복합 효소의 제조 방법.
The method of claim 1,
In step (2), the formic acid dehydrogenase is formic acid dehydrogenase (C b FDH) and the amino acid sequence is represented by SEQ ID NO.1;
Preferably, in the step (2), the production method of formic acid dehydrogenase (C b FDH),
(i) to create a genetically engineered strain E. coli (E. coli BL21- fdh );
(ii) the genetically modified strain E. coli (E. coli BL21- fdh ) prepared in step (i) was transferred to the seed medium at an inoculation amount of 1% to 2% by mass, and 10 to 28 ° C under conditions of 28 to 32 ° C and 150 to 180 rpm. E. coli seed solution was prepared by culturing seeds for 12 hours;
(iii) the E. coli seed solution of step (ii) was transferred to the fermentation medium at an inoculation amount of 4% to 5% by mass, and incubated for 16 to 18 hours under conditions of 28 to 32 ° C and 150 to 180 rpm. E. coli BL21- fdh ) cells are collected, and the supernatant is collected through cell disruption and centrifugation to prepare formic acid dehydrogenase (C b FDH).
제4항에 있어서,
상기 단계 (i)에서, 유전자 조작 균주 대장균(E.coli BL21-fdh)의 구축 방법은,
캔디다 보이디니(Candida boidinii) 유래의 포름산탈수소효소 유전자(fdh)를 확장시켜 대장균 발현 벡터(pET28a(+))에 연결시켜 fdh 유전자를 갖는 재조합 발현 벡터(pET28a(+)-fdh)를 구축하여 얻고, 숙주균 대장균(BL21(DE3))을 형질 전환하고, 형질전환체를 선별하여 포름산탈수소효소를 발현하는 재조합 대장균(E.coli BL21-fdh)를 얻는 것이고;
더 바람직하게는, 상기 단계 (ii)에서, 상기 종자 배지 성분은,
펩톤 10g/L, 효모 추출물 5g/L, 염화나트륨(NaCl) 10g/L, 암피실린(ampicillin) 100㎍/mL이고;
더 바람직하게는, 상기 단계 (iii)에서 상기 발효 배지 성분은,
펩톤 10g/L, 효모 추출물 5g/L, Na2HPO4 12H2O 9g/L, KH2PO4 6.8g/L, (NH4)2SO4 3.3g/L, 포도당 0.5g/L, 유당 2g/L, MgSO4 7H2O 0.5g/L, CaCl2 0.02g/L이고, 글리세롤은 부피%에 따라 0.5%로 계산하고;
더 바람직하게는, 상기 단계 (iii)에서, 상기 세포 파쇄 단계는,
유전자 조작 균주 대장균(E.coli BL21-fdh) 균체를 질량부피비 1:(15 내지 25)의 비율로 pH 7.5의 인산 완충액과 균일하게 혼합하며 단위는 g/ml이고; 195W의 초음파 조건 하에서 간헐적 초음파 처리 방식을 채택해 세포 파쇄를 6분간 진행하며, 매회 초음파 파쇄시간은 3s이고, 간헐적 시간은 5s이고;
더 바람직하게는, 상기 단계 (iii)에서, 원심분리 조건은 3000r/min으로 2분간 원심분리하는 것을 특징으로 하는 슬러지 석유 분해 복합 효소의 제조 방법.
The method of claim 4, wherein
In the step (i), the construction method of the genetically modified strain E. coli (E. coli BL21- fdh ),
The formic acid dehydrogenase gene ( fdh ) derived from Candida boidinii was expanded and linked to an E. coli expression vector (pET28a (+)) to construct a recombinant expression vector (pET28a (+)- fdh ) having the fdh gene. Transforming the host bacterium Escherichia coli (BL21 (DE3)) and selecting the transformants to obtain recombinant E. coli (E. coli BL21- fdh ) expressing formate dehydrogenase;
More preferably, in step (ii), the seed medium component is
10 g / L peptone, 5 g / L yeast extract, 10 g / L sodium chloride (NaCl), 100 μg / mL ampicillin;
More preferably, the fermentation medium component in step (iii),
Peptone 10g / L, yeast extract 5g / L, Na 2 HPO 4 and 12H 2 O 9g / L, KH 2 PO 4 6.8g / L, (NH 4) 2 SO 4 3.3g / L, glucose 0.5g / L, lactose and 2g / L, MgSO 4 and 7H 2 O 0.5g / L, CaCl 2 0.02g / L, glycerol and 0.5% calculated in accordance with the volume%;
More preferably, in step (iii), the cell disruption step,
Genetically engineered strain E. coli BL21- fdh cells are uniformly mixed with a phosphate buffer of pH 7.5 in a ratio of mass volume ratio 1: (15 to 25) and the unit is g / ml; Cell disruption was carried out for 6 minutes using an intermittent sonication method under 195 W of ultrasonic conditions, each time an ultrasonic disruption time was 3s, and the intermittent time was 5s;
More preferably, in the step (iii), the centrifugation conditions are sludge petroleum decomposing complex enzyme, characterized in that the centrifugation for 2 minutes at 3000r / min.
제1항에 있어서,
상기 단계(2)에서, 석유 분해 효소액 21#과 포름산탈수소효소의 혼합 질량비는 1:4인 것을 특징으로 하는 슬러지 석유 분해 복합 효소의 제조 방법.
The method of claim 1,
In the step (2), the mass ratio of the petroleum dehydrogenase 21 # and formic acid dehydrogenase is 1: 4, characterized in that the sludge petroleum decomposing enzyme.
청구항 1의 제조 방법으로 획득한 슬러지 석유 분해 복합 효소.Sludge petroleum degrading enzyme obtained by the method of claim 1. 청구항 7의 슬러지 석유 분해 복합 효소의 석유 오염 슬러지 복구에서의 응용.Application of the sludge petroleum decomposition complex enzyme of claim 7 in petroleum contaminated sludge recovery. 제8항에 있어서,
상기 응용은 하기 단계:
(I) 슬러지 석유 분해 복합 효소는 포름산나트륨 용액과 혼합하고, 단백질과 포름산나트륨에 질량비가 1:(4 내지 6)이고, 포름산나트륨 농도가 150 내지 180mmol/L인 슬러지 석유 분해 복합 효소 처리액을 제조하는 단계;
(II) 상기 단계 (I)에서 제조된 슬러지 석유 분해 복합 효소 처리액은 질량부피비 1:(16 내지 24)의 비율로 혼합하며, 단위는 g/ml이고, 25 내지 35℃ 조건 하에서 6 내지 24시간 동안 교반 처리하는 단계;
를 포함하는 것을 특징으로 하는 슬러지 석유 분해 복합 효소의 석유 오염 슬러지 복구에서의 응용.
The method of claim 8,
The application involves the following steps:
(I) The sludge petroleum decomposing enzyme is mixed with sodium formate solution, and the sludge petroleum decomposing enzyme treatment liquid having a mass ratio of 1: (4 to 6) and a sodium formate concentration of 150 to 180 mmol / L for protein and sodium formate. Manufacturing step;
(II) The sludge petroleum degrading complex enzyme treatment liquid prepared in step (I) is mixed at a ratio of mass volume ratio 1: (16 to 24), and the unit is g / ml, and it is 6 to 24 under 25 to 35 ° C. Stirring for time;
Application of petroleum contaminated sludge recovery of sludge petroleum decomposition complex enzyme comprising a.
제9항에 있어서,
상기 단계 (I)에서, 단백질과 포름산나트륨의 질량비는 1:5이고;
바람직하게는, 상기 단계 (I)에서, 상기 슬러지 석유 분해 복합 효소 처리액에서, 포름산나트륨 농도는 167mmol/L이고;
바람직하게는, 상기 단계 (II)에서, 슬러지와 슬러지 석유 분해 복합 효소 처리액은 질량부피비 1:20의 비율로 혼합하는 것을 특징으로 하는 슬러지 석유 분해 복합 효소의 석유 오염 슬러지 복구에서의 응용.
The method of claim 9,
In step (I), the mass ratio of protein and sodium formate is 1: 5;
Preferably, in the step (I), in the sludge petroleum decomposition complex enzyme treatment solution, the sodium formate concentration is 167 mmol / L;
Preferably, in the step (II), the sludge and sludge petroleum decomposing complex enzyme treatment liquid is mixed in a ratio of mass volume ratio 1:20, the application of sludge petroleum decomposing enzyme in petroleum contaminated sludge recovery.
KR1020197022007A 2018-03-22 2019-03-04 Method and application of sludge petroleum degrading complex enzyme KR20190111947A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810237841.2 2018-03-22
CN201810237841.2A CN108486006B (en) 2018-03-22 2018-03-22 A kind of preparation method and application of greasy filth oil degradation complex enzyme
PCT/CN2019/076792 WO2019179303A1 (en) 2018-03-22 2019-03-04 Preparation method and application of oil sludge petroleum degradation composite enzyme

Publications (1)

Publication Number Publication Date
KR20190111947A true KR20190111947A (en) 2019-10-02

Family

ID=63319245

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197022007A KR20190111947A (en) 2018-03-22 2019-03-04 Method and application of sludge petroleum degrading complex enzyme

Country Status (3)

Country Link
KR (1) KR20190111947A (en)
CN (1) CN108486006B (en)
WO (1) WO2019179303A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210049776A (en) * 2019-10-21 2021-05-06 톈진 유니버시티 High-efficiency petroleum-decomposing bacteria TDYN1T and its applications

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486006B (en) * 2018-03-22 2019-04-05 山东省科学院生态研究所 A kind of preparation method and application of greasy filth oil degradation complex enzyme
CN110564635B (en) * 2019-03-01 2020-05-12 山东省科学院生态研究所(山东省科学院中日友好生物技术研究中心) Providencia rettgeri L1 for efficiently degrading petroleum and application thereof
CN111454935A (en) * 2020-04-25 2020-07-28 北京博泰至淳生物科技有限公司 Immobilized enzyme for sewage denitrification and preparation method and application thereof
CN112592012A (en) * 2020-11-23 2021-04-02 陕西欧菲德环保科技有限公司 Water washing and degradation treatment process for oily sludge
CN112795525A (en) * 2021-03-25 2021-05-14 辽宁大学 Acinetobacter calcoaceticus culture medium and application thereof in degradation of bisphenol A

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914470B (en) * 2010-07-22 2012-02-01 山东省科学院生物研究所 Acinetobacter calcoaceticus and culture method and application thereof
CN103484447B (en) * 2013-09-29 2015-09-16 山东省科学院生物研究所 A kind of preparation method of oil degradation zymin and application
CN107299074B (en) * 2017-08-30 2020-06-16 山东省科学院生态研究所 Construction method and application of formate dehydrogenase engineering strain
CN108486006B (en) * 2018-03-22 2019-04-05 山东省科学院生态研究所 A kind of preparation method and application of greasy filth oil degradation complex enzyme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210049776A (en) * 2019-10-21 2021-05-06 톈진 유니버시티 High-efficiency petroleum-decomposing bacteria TDYN1T and its applications

Also Published As

Publication number Publication date
WO2019179303A1 (en) 2019-09-26
CN108486006B (en) 2019-04-05
AU2019208247A1 (en) 2019-10-10
CN108486006A (en) 2018-09-04

Similar Documents

Publication Publication Date Title
KR20190111947A (en) Method and application of sludge petroleum degrading complex enzyme
Wang et al. Bioremediation of crude oil‐contaminated soil by hydrocarbon‐degrading microorganisms immobilized on humic acid‐modified biofuel ash
CN106434470B (en) A kind of polycyclic aromatic hydrocarbon-degrading bacteria and its application
CN103215204B (en) Arthrobacter strain highly effectively degrading phenanthrene, and application thereof
CN103436464A (en) Low temperature-resistant petroleum-degrading bacillus sp. strain, culture method and application thereof
CN101486980A (en) Solid microbial preparation for petroleum pollutant and oil product degradation, preparation and use
CN106497810B (en) A kind of method of germ oligotrophy unit cell, the microbial inoculum containing the bacterium and its application and diesel oil of degrading
Song et al. Biodegradation of hydrolyzed polyacrylamide by a Bacillus megaterium strain SZK-5: Functional enzymes and antioxidant defense mechanism
CN111748483A (en) Bacillus for degrading petroleum hydrocarbon and application thereof
Mikolasch et al. From oil spills to barley growth–oil‐degrading soil bacteria and their promoting effects
CN104745506A (en) Petroleum hydrocarbon degrading bacteria and application thereof
CN111647528A (en) Petroleum degrading bacterium with phosphate solubilizing effect and culture method and application thereof
Ding et al. Study on community structure of microbial consortium for the degradation of viscose fiber wastewater
CN107254421B (en) Biological agent for repairing oil-containing soil, repairing method and application
CN112608863B (en) Pandora pandora pnomenusa S2-2 strain and application thereof
Liu et al. Microbial remediation of crude oil in saline conditions by oil-degrading bacterium Priestia megaterium FDU301
Zhao et al. Isolation, identification, and characterization of an organophosphorous pesticide degrading bacterium, Enterobacter ludwigii M2
Shi et al. Effects of biochar immobilized microorganisms on the enzyme activity and remediation of petroleum hydrocarbon in contaminated soil
CN101691552B (en) Bacterial strain capable of degrading petroleum hydrocarbon and application thereof
CN111575206B (en) Multifunctional petroleum degrading bacterium and culture method and application thereof
CN109536419A (en) One plant promotes the non-decarboxylation of Zero-valent Iron degradation soil Polychlorinated biphenyls to strangle kirschner bacterium and its application
CN115125158B (en) Bacterial strain and microbial inoculum for degrading petroleum hydrocarbon and application thereof
Yuliani et al. Dioxygenase gene of PAHs degrading Bacillus strains isolated from marine Indonesian environment and its biosurfactant production ability
KR102628960B1 (en) Novel Pseudomonas sp. strain having nitrous oxide-reducing ability, and uses thereof
CN112094773B (en) Strain for treating ternary combination flooding produced water, multifunctional microbial agent, culture method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination