KR20190105493A - A method for synthesis of benzene sulfonate derivatives - Google Patents

A method for synthesis of benzene sulfonate derivatives Download PDF

Info

Publication number
KR20190105493A
KR20190105493A KR1020187023257A KR20187023257A KR20190105493A KR 20190105493 A KR20190105493 A KR 20190105493A KR 1020187023257 A KR1020187023257 A KR 1020187023257A KR 20187023257 A KR20187023257 A KR 20187023257A KR 20190105493 A KR20190105493 A KR 20190105493A
Authority
KR
South Korea
Prior art keywords
benzene sulfonate
ethylene glycol
derivative
drop
benzene
Prior art date
Application number
KR1020187023257A
Other languages
Korean (ko)
Other versions
KR102144626B1 (en
Inventor
카이치아오 얀
펭 리우
롱슈에 호우
Original Assignee
스자좡 에스에이엔 타이 케미컬 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스자좡 에스에이엔 타이 케미컬 컴퍼니 리미티드 filed Critical 스자좡 에스에이엔 타이 케미컬 컴퍼니 리미티드
Publication of KR20190105493A publication Critical patent/KR20190105493A/en
Application granted granted Critical
Publication of KR102144626B1 publication Critical patent/KR102144626B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/28Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reaction of hydroxy compounds with sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/42Separation; Purification; Stabilisation; Use of additives
    • C07C303/44Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/72Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/73Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

벤젤설폰산염의 유도체 합성방법은 화합물의 합성 영역에 속한다.

Figure pct00019
을 원료로, 에틸렌글리콜 혹은 R2-OH 과 반응하여
Figure pct00020
또는
Figure pct00021
가 생겨난다. 그 중 R1는 알킬기, H 또는 F에서 선택하고, R2는 알릴기, 프로파르길 혹은 벤젠에서 선택한다. 구체적인 방법으로는 에틸렌글리콜 또는 R2-OH를 디클로로메탄과 함께 반응기에 넣고 휘저으며 유기 염기를 넣어준다, 그리고 온도를 15℃ 이하로 낮추어
Figure pct00022
를 한 방울씩 떨어트린다. 그 후엔 상온에서 다시 0.5-1시간 정도 저어주고 열을 가해 1-2시간 환류반응을 해준다. 반응 후 빙해처리하여 분층하고, 건조 농축하여 벤젠설폰산염의 유도체 물질을 얻는다. 이러한 발명 합성방법은 간단할 뿐만 아니라 반응 과정이 느리고 안정적이며 수율도 높고 제품의 순도 또한 높다.The method for synthesizing derivatives of benzelsulfonate belongs to the synthetic domain of the compound.
Figure pct00019
As a raw material, reacted with ethylene glycol or R 2 -OH
Figure pct00020
or
Figure pct00021
Occurs. R 1 is selected from an alkyl group, H or F, and R 2 is selected from an allyl group, propargyl or benzene. Specifically, ethylene glycol or R 2 -OH is added to the reactor together with dichloromethane, agitated, and an organic base is added. Lowered below 15 ℃
Figure pct00022
Drop one drop. After that, stir at room temperature again for 0.5-1 hour and heat to reflux for 1-2 hours. After the reaction, the mixture was separated by ice treatment, and concentrated to dryness to obtain a derivative material of benzenesulfonate. The synthesis method of the present invention is not only simple, but also the reaction process is slow and stable, high yield and high purity of the product.

Description

벤젠설폰산염 유도체의 합성 방법{A method for synthesis of benzene sulfonate derivatives}A method for synthesis of benzene sulfonate derivatives}

본 발명은 화합물 합성 방법에 관한 것으로서, 구체적으로는 벤젠설폰산염의 합성방법에 관한 것으로서, 본 발명인 합성방법은 간단할 뿐만 아니라 반응 과정이 느리고 안정적이며 수율도 높고 제품의 순도 또한 높다.The present invention relates to a method for synthesizing a compound, and more particularly, to a method for synthesizing benzene sulfonate. The method of synthesis of the present invention is not only simple, but also the reaction process is slow and stable, high yield and high purity of the product.

우리나라의 전자 정보 산업이 발전하면서 화학 전원에 대한 수요가 많아지고 있고 성능에 대한 요구 또한 점점 높아지고 있다. 리튬배터리는 다른 화학 전원에 비해 부피가 작고 안전하고 가벼우며 비에너지와 전압이 높고, 수명이 길고 오염이 없다는 장점을 가지고 있다. 현재 리튬배터리는 이미 핸드폰, 태블릿, 노트북, 마이크로카메라, 디지털카메라 등 휴대용 전자기기의 주요 전원이다. 리튬배터리의 기초 연구와 응용 개발은 최근 몇 년 동안의 이슈 중 하나이다. 리튬배터리는 양극, 음극, 전해액과 분리막을 포함하고 있지만 배터리의 충전, 방전과정에서 많은 열량을 내보내기 때문에 배터리의 성능이 떨어진다. 현재 사용중인 전해액 첨가물은 고온상태에서 전지의 성능이 떨어지고, 배터리를 손상시킨다. 첨가물을 첨가하지 않은 배터리를 고온상태에서 50주를 사용한 결과 용량이 심각하게 줄어들었고, 이러한 단점을 보완하기 위해 출원인은 일종의 고온 상태에서 전지의 성능을 향상시키는 전해액 첨가물 연구에 주력하고 있다.As the electronic information industry in Korea develops, the demand for chemical power is increasing and the demand for performance is also increasing. Lithium batteries have the advantages of smaller volume, safer and lighter, high specific energy and voltage, long life and no pollution compared to other chemical power sources. Lithium batteries are already the main power source for portable electronic devices such as mobile phones, tablets, laptops, micro cameras and digital cameras. Basic research and application development of lithium batteries are one of the issues in recent years. Lithium batteries contain a positive electrode, a negative electrode, an electrolyte, and a separator. However, lithium batteries emit a large amount of heat during the charging and discharging process. Current electrolyte additives degrade the battery at high temperatures and damage the battery. The capacity of the battery without additives was significantly reduced as a result of using 50 weeks at a high temperature, and to compensate for this disadvantage, the applicant is focusing on the research of electrolyte additives to improve the performance of the battery at a high temperature.

벤젠설폰산염 유도체는 유기합성에 중요한 중간체로 많이 응용되고 있다. 우리는 연구중에 이 물질이 전지 전해액에 응용이 가능하다는 것을 발견했지만 그 합성 방법이 복잡하여 현재 전지 전해액 요구에 맞는 제조 방법이 없다.Benzenesulfonate derivatives have many applications as important intermediates in organic synthesis. We found that this material could be applied to battery electrolytes during our research, but the synthesis method is complex and there is no manufacturing method that meets current battery electrolyte requirements.

대한민국 특허출원공개번호 제10-2001-0087388호Korean Patent Application Publication No. 10-2001-0087388

본 발명의 목적은 전지 전해액 요구 조건에 맞게 벤젤설폰산염 유도체를 합성 제조하는 방법을 제공하는 것이다. It is an object of the present invention to provide a process for the synthesis and preparation of benzelsulfonate derivatives in accordance with battery electrolyte requirements.

본 발명의 실현 목적으로 채용한 기술 방법은:Technical methods employed for the purpose of realizing the present invention are:

벤젤셀폰산염 유도체 합성방법:Method for synthesizing bezelselfonate derivatives:

Figure pct00001
을 원료로, 에틸렌글리콜 혹은 R2-OH 과 반응하여,
Figure pct00001
Is reacted with ethylene glycol or R 2 -OH as a raw material,

Figure pct00002
또는
Figure pct00003
이 생성된다.
Figure pct00002
or
Figure pct00003
Is generated.

그 중 R1는 알킬기, H 또는 F에서 선택하고, R2는 알릴기, 프로파르길 또는 벤젠에서 선택한다. 구체적인 방법으로는 에틸렌글리콜 혹은 R2-OH를 디클로로메탄과 함께 반응기에 넣고 휘저으며 유기 염기를 넣어준다, 유기 염기의 첨가량은 원료 질량의 1-5%이다. 그 후에 온도를 15℃ 이하로 낮추어

Figure pct00004
를 한 방울씩 떨어트린다. 그리고는 상온에서 다시 0.5-1시간 정도 저어주고 열을 가해 1-2시간 환류반응을 해준다. 반응 후 5-10배의 얼음물로 빙해처리하여 분층하고, 건조 농축하여 벤젠설폰산염의 유도체 물질을 얻어낸다. Among them, R1 is selected from alkyl, H or F and, R 2 is selected from allyl, propargyl, or benzene. As a specific method, ethylene glycol or R 2 -OH is added to the reactor together with dichloromethane, stirred and an organic base is added. The amount of the organic base added is 1-5% of the mass of the raw material. After that, lower the temperature below 15
Figure pct00004
Drop one drop. Then stir at room temperature again for 0.5-1 hour and heat to reflux for 1-2 hours. After the reaction, the mixture was ice-cold treated with 5-10 times of ice water, partitioned, and concentrated to dryness to obtain a derivative material of benzenesulfonate.

상기 유기 염기는 트리에틸아민 혹은 피리딘이다.The organic base is triethylamine or pyridine.

에틸렌글리콜을 사용할 때

Figure pct00005
와 에틸렌글리콜의 분자비는 (2-2.4):1이고, R2-OH를 사용할 때,
Figure pct00006
와 R2-OH의 분자비는 (1-1.3) :1이다.When using ethylene glycol
Figure pct00005
And the molecular ratio of ethylene glycol is (2-2.4): 1, and when using R 2 -OH,
Figure pct00006
And the molecular ratio of R 2 —OH are (1-1.3): 1.

얻은 벤젠설폰산염 유도체를 다시 결정(예를 들어 DMC)하여 벤젠셀폰산염 유도체의 순정품을 얻어낸다.The obtained benzene sulfonate derivative is again crystallized (for example, DMC) to obtain a pure product of the benzene sulphonate derivative.

본 발명의 유익한 효과는:The beneficial effects of the present invention are:

본 발명의 합성방법은 간단하고 효율적이며, 공업화 생산에 적합하고 수율 90% 이상, 순도 99.9% 이상에 달한다. 공정 파라미터의 제어, 공정 순서의 배합, 삼단 온도 조절 방식의 처리와 자재의 선택으로 제조한 벤젠설폰산염 유도체는 수분량 ≤50ppm 산가 ≤50ppm으로, 후에 전지의 고온, 저온환경하에 안정성 상향을 위한 기초를 다졌다.The synthesis method of the present invention is simple and efficient, suitable for industrial production, reaching a yield of 90% or more and a purity of 99.9% or more. Benzene sulfonate derivatives prepared by control of process parameters, formulation of process sequence, treatment of three-stage temperature control method and selection of materials have moisture content ≤50ppm acid value ≤50ppm, which is the basis for improving stability under high temperature and low temperature environment of battery. Chopped

도 1은 1-페닐기벤젠설폰산염의 HNMR 도면이다.
도 2는 1-페닐기벤젠설폰산염의 CNMR도면이다.
도 3은 알릴벤젠설폰산의 HNMR도면이다.
도 4는 알릴벤젠설폰산의 CNMR도면이다.
도 5는 에틸렌글리콜다이벤젠설폰산염의 HNMR도면이다.
도 6은 에틸렌글리콜다이벤젠설폰산염의 CNMR도면이다.
1 is an HNMR diagram of 1-phenyl group benzene sulfonate.
2 is a CNMR diagram of 1-phenyl group benzene sulfonate.
3 is an HNMR diagram of allylbenzenesulfonic acid.
4 is a CNMR diagram of allylbenzenesulfonic acid.
5 is an HNMR diagram of ethylene glycol dibenzene sulfonate.
6 is a CNMR diagram of ethylene glycol dibenzene sulfonate.

이하 구체적 실시예를 기반으로 본 발병에 관하여 상세히 설명한다.Hereinafter, the disease will be described in detail with reference to specific examples.

1, 구체적 실시예1, specific examples

실시예1Example 1

각각 1.0mol 페놀과 500ml 다이클로로메테인을 반응기에 넣고 저으면서 트리에탈아민을 넣어주고 온도를 낮춘다. 15℃ 이하가 되면 벤젠설폰일 클로라이드 1.1mol를 한 방울씩 떨어트린다, 그 후 상온에서 1h 저어주고 다시 온도를 높여 2h동안 환류반응을 한다. 기상 검사 완전 반응 후에는 빙해처리하여 분층하고 건조 농축하여 얻은 조제품으로 순정품 222.3g을 얻어내며 상품의 수율은 95%이다. 검사 결과 제품의 순도는 99.93%이고 수분량은 30ppm, 산가34ppm, 밀도 1.277g/cm3, 비등점 375.4℃ 760mmHg으로 1HNMR 도면은 도 1, 13CNMR 도면은 도 2와 같다.Add 1.0 mol phenol and 500 ml dichloromethane to the reactor, stir, add triethanalamine and lower the temperature. When the temperature is 15 ° C. or less, 1.1 mol of benzenesulfonyl chloride is dropped by one drop. Then, the mixture is stirred at room temperature for 1 h and then raised again to reflux for 2 h. After the complete reaction of the gas phase test, the crude product obtained by distillation, partitioning, and drying to obtain 222.3g of pure product is 95%. As a result of the test, the purity of the product is 99.93%, the moisture content is 30ppm, the acid value 34ppm, the density 1.277g / cm 3 , the boiling point 375.4 ° C. 760mmHg, and the 1HNMR diagram is shown in FIGS.

합성 경로는:The synthetic route is:

Figure pct00007
Figure pct00007

실시예2Example 2

각각 1.0mol 페놀과 500ml 다이클로로메테인을 반응기에 넣고 저으면서 피리딘을 넣어주고 온도를 낮춘다. 15℃ 이하가 되면 벤젠설폰일 클로라이드 2.1mol를 한방울씩 떨어트린다, 그 후 상온에서 1h 저어주고 다시 온도를 높여 2h동안 환류반응을 한다. 기상 검사 완전 반응 후에는 빙해처리하여 분층하고 건조 농축하여 얻은 조제품으로 순정품 189.3g을 얻어내며 상품의 수율은 95.5%이다. 검사 결과 제품의 순도는 99.95%이고 수분량은 30ppm, 산가 40ppm으로 1HNMR 도면은 도 3, 13CNMR도면은 도 4와 같다.Add 1.0 mol phenol and 500 ml dichloromethane to the reactor, add pyridine while stirring and lower the temperature. When the temperature is 15 ° C. or lower, 2.1 mol of benzenesulfonyl chloride is dropped one by one. After that, the mixture is stirred at room temperature for 1 h and then heated to reflux for 2 h. After complete reaction of gas phase inspection, the crude product obtained by distillation, partitioning and drying concentrated to obtain 189.3g of pure product, yield of 95.5%. As a result of the test, the purity of the product is 99.95%, the moisture content is 30ppm, the acid value is 40ppm, and the 1HNMR drawings are shown in FIGS. 3 and 13CNMR drawings, respectively.

합성 경로는:The synthetic route is:

Figure pct00008
Figure pct00008

실시예3Example 3

각각 1.0mol 프로파질 알코올과 500ml 다이클로로메테인을 반응기에 넣고 저으면서 트리에탈아민을 넣어주고 온도를 낮춘다. 15℃ 이하가 되면 벤젠설폰일 클로라이드 2.1mol를 한 방울씩 떨어트린다. 그 후 상온에서 1h 저어주고 다시 온도를 높여 2h 동안 환류반응을 한다. 기상 검사 완전 반응 후에는 빙해처리하여 분층하고 건조 농축하여 얻은 조제품으로 순정품 187.77g을 얻어내며 상품의 수율은 95.8%이다. 검사 결과 제품의 순도는 99.93%이고 수분량은 28ppm, 산가 36ppm, 밀도 1.244g/cm3이다.Add 1.0 mol propazyl alcohol and 500 ml dichloromethane into the reactor, add triethanalamine while stirring and lower the temperature. When the temperature is 15 ° C. or lower, 2.1 mol of benzenesulfonyl chloride is dropped by drop. Then, stir at room temperature for 1 h and raise the temperature again to reflux for 2 h. After the complete gas phase test, the crude product obtained by distillation, partitioning, and drying to obtain 187.77g of pure product was obtained, yield of 95.8%. The purity of the product is 99.93%, and the test results the water content is 28ppm, 36ppm acid value, density 1.244g / cm 3.

합성 경로는:The synthetic route is:

Figure pct00009
Figure pct00009

실시예4Example 4

각각 1.0mol 에틸렌글리콜과 500ml 다이클로로메테인을 반응기에 넣고 저으면서 피리딘을 넣어주고 온도를 낮춘다. 15℃ 이하가 되면 벤젠설폰일 클로라이드 2.1mol를 한 방울씩 떨어트린다, 그 후 상온에서 1h 저어주고 다시 온도를 높여 2h동안 환류반응을 한다. 기상 검사 완전 반응 후에는 빙해처리하여 분층하고 건조 농축하여 얻은 조제품으로 순정품을 얻어내며 상품의 수율은 94.3%이다. 검사 결과 제품의 순도는 99.91%이고 수분량은 26ppm, 산가 35ppm, 밀도 1.387g/cm3, 비등점516.1℃760mmHg으로 1HNMR도면은 도 5, 13CNMR도면은 도 6과 같다.Put 1.0 mol ethylene glycol and 500 ml dichloromethane into the reactor, add pyridine while stirring and lower the temperature. When the temperature is 15 ° C. or lower, 2.1 mol of benzenesulfonyl chloride is dropped one by one. After that, the mixture is stirred at room temperature for 1 h and then heated to reflux for 2 h. After complete reaction of the weather test, the crude product is obtained by distillation, partitioning, drying and concentration to obtain the pure product, and the yield is 94.3%. As a result of the test, the purity of the product is 99.91%, the moisture content is 26ppm, the acid value is 35ppm, the density is 1.387g / cm 3 , the boiling point is 516.1 ° C. 760mmHg, and the 1HNMR drawings are shown in FIGS.

합성 경로는:The synthetic route is:

Figure pct00010
Figure pct00010

실시예5Example 5

각각 1.0mol 에틸렌글리콜과 500ml 다이틀로로메테인을 반응기에 넣고 저으면서 트리에탈아민을 넣어주고 온도를 낮춘다. 15℃ 이하가 되면 2,4,6-트리메틸 벤젠설폰일 클로라이드 2.1mol를 한 방울씩 떨어트린다, 그 후 상온에서 1h 저어주고 다시 온도를 높여 2h 동안 환류반응을 한다. 기상 검사 완전 반응 후에는 빙해처리하여 분층하고 건조 농축하여 얻은 조제품으로 순정품(CAS제128584-68-9호)을 얻어내며 상품의 수율은 94.6%이다. 검사 결과 제품의 순도는 99.9%이고 수분량은 38ppm, 산 가45ppm, 밀도1.239g/cm3, 비등점588.8℃760mmHg이다.Put 1.0 mol ethylene glycol and 500 ml ditrolomethane into the reactor, stir, add triethanalamine and lower the temperature. When the temperature is 15 ° C. or lower, 2.1 mol of 2,4,6-trimethyl benzenesulfonyl chloride is dropped by one drop. Then, the mixture is stirred at room temperature for 1 h and then heated to reflux for 2 h. After the complete gas phase inspection, the crude product (CAS No. 128584-68-9) is obtained as a crude product obtained by distillation, partitioning, and drying. The yield of the product is 94.6%. The result of the test is 99.9% purity, 38ppm moisture content, 45ppm acid value, density 1.239g / cm 3 , boiling point 588.8 ℃ 760mmHg.

합성 루트는 The synthetic route is

Figure pct00011
Figure pct00011

실시예6Example 6

각각 1.0mol 에틸렌글리콜과 500ml 다이클로로메테인을 반응기에 넣고 저으면서 피리딘을 넣어주고 온도를 낮춘다. 15℃ 이하가 되면 2,4,6-트리 플루오르 벤젠설폰일 클로라이드 2.1mol를 한 방울씩 떨어트린다, 그 후 상온에서 1h 저어주고 다시 온도를 높여 2h동안 환류반응을 한다. 기상 검사 완전 반응 후에는 빙해처리하여 분층하고 건조 농축하여 얻은 조제품으로 순정품을 얻어내며 상품의 수율은 93.8%이다. 검사 결과 제품의 순도는 99.94%이고 수분량은 35ppm, 산가 42ppm이다.Put 1.0 mol ethylene glycol and 500 ml dichloromethane into the reactor, add pyridine while stirring and lower the temperature. When the temperature is 15 ° C. or lower, 2.1 mol of 2,4,6-trifluorobenzenesulfonyl chloride is dropped by one drop. Then, the mixture is stirred at room temperature for 1 h and then heated to reflux for 2 h. After complete reaction of the weather test, the crude product is obtained from the crude product obtained by distillation, partitioning and drying, and the yield is 93.8%. The result of the test is 99.94% purity, 35ppm moisture content and 42ppm acid value.

합성 루트는:The synthetic route is:

Figure pct00012
Figure pct00012

2, 응용 실험2, applied experiment

1、본 발명 벤젠설폰산염 유도체 전해액의 1%중량을 첨가한 리튬 배터리와 첨가하지 않은 리튬배터리를 비교하고, 현재 사용중인 벤젠설폰산염 유도체를 첨가한 리튬배터리를 65℃에서 순환한 후를 비교했을 때, 실시예1에서 얻은 물질을 예로 그 중 본 발명 벤젠설폰산염 유도체의 순도는 99.93%, 수분량은 30ppm, 산가 34ppm이고; 현재 사용중인 벤젠설폰산염 유도체 비교예2의 순도는 95%, 산가 150ppm, 수분량 138ppm으로 그 결과는 아래 표1과 같다. 1 、 Compared lithium battery with 1% weight of benzenesulfonate derivative electrolytic solution of the present invention and lithium battery without addition, and after circulating lithium battery with benzenesulfonate derivative in use at 65 ℃ When the material obtained in Example 1 is taken as an example, the purity of the benzenesulfonate derivative of the present invention is 99.93%, the moisture content is 30ppm, and the acid value is 34ppm; The purity of the currently used benzene sulfonate derivative Comparative Example 2 is 95%, acid value 150ppm, moisture content 138ppm and the results are shown in Table 1 below.

항목Item 순환 300회 후
용량보존율%
After 300 cycles
Capacity retention rate%
순환 400회 후
용량보존율%
After 400 cycles
Capacity retention rate%
순환 500회 후
용량보존율%
After 500 cycles
Capacity retention rate%
본 발명을 추가한
리튬배터리
Adding the present invention
Lithium battery
9595 8383 7878
공백 비교예Blank Comparative Example 7575 2323 1010 종래 비교예1Conventional Comparative Example 1 8585 7373 3636 종래 비교예2Conventional Comparative Example 2 8080 5151 2424

표1과 같이, 본 발명 벤젠설폰산염 유도체는 배터리의 고온 순환 성능 향상이 가능하다.As shown in Table 1, the benzenesulfonate derivative of the present invention can improve the high temperature circulation performance of the battery.

2、배터리의 고온 저장 성능 평가: 60℃/30D와 85℃/7D저장 성능 테스트로, 아래 표2는 표준 수동 충전, 방전 후 60℃ 환경에서 30일간 보관한 배터리와, 85℃ 환경에서 7일간 보관한 배터리의 용량 유지율과 회복률에 대한 측정결과이다.2 、 High temperature storage performance evaluation of battery: 60 ℃ / 30D and 85 ℃ / 7D storage performance test, Table 2 below shows the battery stored at 60 ℃ for 30 days after standard manual charging and discharging, and for 7 days at 85 ℃. This is a measurement result of capacity retention rate and recovery rate of stored battery.

항목
Item
60℃/30D60 ℃ / 30D 85℃/7D85 ℃ / 7D
용량 보존율%Capacity retention rate% 용량 회복율%Capacity recovery rate% 용량 보존율%Capacity retention rate% 용량 회복율%Capacity recovery rate% 본 발명을 추가한
리튬배터리
Adding the present invention
Lithium battery
91.491.4 93.693.6 89.789.7 91.291.2
공백 비교예Blank Comparative Example 74.374.3 76.476.4 73.573.5 76.176.1 종래 비교예1Conventional Comparative Example 1 80.680.6 82.482.4 79.179.1 80.780.7 종래 비교예2Conventional Comparative Example 2 78.278.2 80.680.6 74.874.8 75.975.9

표2와 같이, 본 발명 벤젠설폰산염 유도체은 배터리의 고온 저장 성능 향상이 가능하다.As shown in Table 2, the benzenesulfonate derivative of the present invention can improve the high temperature storage performance of the battery.

3、배터리의 저온 저장 성능 평가: 아래 표3은 각각 -30℃ 또는 -40℃로 조절한 저온상자에 240min동안 보관한 배터리의 용량 유지율에 대한 결과이다.3, Low temperature storage performance evaluation of the battery: Table 3 below is the results of the capacity retention rate of the battery stored for 240min in a cold box adjusted to -30 ℃ or -40 ℃, respectively.

항목
Item
-30℃-30 ℃ -40℃-40 ℃
용량 보존율%Capacity retention rate% 용량 보존율%Capacity retention rate% 본 발명을 추가한
리튬배터리
Adding the present invention
Lithium battery
90.190.1 80.380.3
공백 비교예Blank Comparative Example 60.560.5 51.651.6 종래 비교예1Conventional Comparative Example 1 78.878.8 68.668.6 종래 비교예2Conventional Comparative Example 2 72.472.4 60.560.5

표3과 같이 본 발명 벤젠설폰산염 유도체는 배터리의 저온 저장 성능 향상이 가능하다. 위에서 서술한 테스트들은 모두 실행 실시예1을 예로. 기타 벤젠설폰산염 유도체의 성능은 대부분 위에서 말한 성능과 같았고, 성능의 오차범위는 2-4% 내외이다. 이는 즉 벤젠설폰산염 유도체의 순도, 산가와 수분량이 배터리로 사용될 시 배터리의 성능에 결정적인 영향을 준다는 것이다. 동시에 표2와 표3은 본 발명 벤젠설폰산염 유도체가 배터리의 안전성과 사용 수명을 향상시켰음을 간접적으로 입증했다. As shown in Table 3, the benzenesulfonate derivative of the present invention can improve the low temperature storage performance of the battery. The tests described above all run Example 1 as an example. The performance of other benzenesulfonate derivatives was mostly the same as the above performance, and the error range of performance was about 2-4%. This means that the purity, acid value and moisture content of the benzenesulfonate derivatives will have a decisive influence on the performance of the battery when used as a battery. At the same time, Table 2 and Table 3 indirectly proved that the benzenesulfonate derivative of the present invention improved the safety and service life of the battery.

Claims (4)

벤젠설폰산염 유도체의 합성방법으로서,
Figure pct00013
을 원료로, 에틸렌글리콜 또는 R2-OH과 반응하여,
Figure pct00014
또는
Figure pct00015
을 생성하며,
이 중 R1는 알킬기, H 또는 F에서 선택한 것이고, R2는 알릴기, 프로파르길 또는 벤젠에서 선택한 것이며,
합성방법으로는 디클로로메탄과 함께 반응기에 넣고 휘저으며 유기 염기를 넣어주며, 그리고 온도를 15℃ 이하로 낮추어
Figure pct00016
를 한 방울씩 떨어뜨리고, 그 후엔 상온에서 다시 0.5-1 시간 정도 저어주고 열을 가해 1-2시간 환류반응을 해주며, 반응 후 빙해처리하여 분층하고, 건조 농축하여 벤젠설폰산염의 유도체 물질을 얻으며,
상기 합성방법은 간단할 뿐만 아니라 반응 과정이 느리고 안정적이며 수율도 높고 제품의 순도 또한 높은 것을 특징으로 하는 벤젠설폰산염 유도체의 합성방법.
As a method for synthesizing a benzene sulfonate derivative,
Figure pct00013
As a raw material, ethylene glycol or R 2 -OH In response,
Figure pct00014
or
Figure pct00015
Creates a,
Wherein R 1 is selected from alkyl group, H or F, R 2 is selected from allyl group, propargyl or benzene,
In the synthesis method, dichloromethane is added to the reactor, agitated, an organic base is added, and the temperature is lowered to 15 ° C or lower.
Figure pct00016
Drop by drop, and then stir at room temperature again for 0.5-1 hour and heat to reflux for 1-2 hours.After reaction, separate the mixture by glaciation, dry and concentrate to obtain derivative material of benzenesulfonate. Gained,
The synthesis method is simple, but also a slow and stable reaction process, high yield and high purity of the product, the synthesis method of benzene sulfonate derivatives, characterized in that.
제1항에 있어서,
상기 유기 염기는 트리에틸아민 또는 피리딘인 것을 특징으로 하는 벤젠설폰산염 유도체의 합성방법.
The method of claim 1,
The organic base is a method of synthesizing a benzene sulfonate derivative, characterized in that triethylamine or pyridine.
제1항에 있어서,
상기 에틸렌글리콜을 사용할 때,
Figure pct00017
와 에틸렌글리콜의 분자비는 (2-2.3):1이며,
상기 R2-OH를 사용할 때,
Figure pct00018
와 R2-OH의 분자비는 (1-1.3):1 인 것을 특징으로 하는 벤젠설폰산염 유도체의 합성 방법.
The method of claim 1,
When using the ethylene glycol,
Figure pct00017
And the molecular ratio of ethylene glycol is (2-2.3): 1,
remind When using R 2 -OH,
Figure pct00018
And a molecular ratio of R2-OH is (1-1.3): 1.
제1항에 있어서,
상기 벤젠설폰산염 유도체를 다시 결정하여 벤젠성폰산염 유도체의 순정품을 얻어내는 것을 특징으로 하는 벤젠설폰산염 유도체의 합성 방법.
The method of claim 1,
A method for synthesizing a benzene sulfonate derivative, wherein the benzene sulfonate derivative is recrystallized to obtain a pure product of the benzene phonate derivative.
KR1020187023257A 2017-11-14 2018-04-26 A method for synthesis of benzene sulfonate derivatives KR102144626B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201711123956.0A CN107840812A (en) 2017-11-14 2017-11-14 The synthetic method of tosylate derivative
CN2017111239560 2017-11-14
PCT/CN2018/084559 WO2019095636A1 (en) 2017-11-14 2018-04-26 Method for synthesizing benzenesulfonate derivative

Publications (2)

Publication Number Publication Date
KR20190105493A true KR20190105493A (en) 2019-09-17
KR102144626B1 KR102144626B1 (en) 2020-08-28

Family

ID=61678903

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187023257A KR102144626B1 (en) 2017-11-14 2018-04-26 A method for synthesis of benzene sulfonate derivatives

Country Status (4)

Country Link
JP (1) JP2021502950A (en)
KR (1) KR102144626B1 (en)
CN (1) CN107840812A (en)
WO (1) WO2019095636A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107840812A (en) * 2017-11-14 2018-03-27 石家庄圣泰化工有限公司 The synthetic method of tosylate derivative
CN109004279A (en) * 2018-07-18 2018-12-14 石家庄圣泰化工有限公司 Application of the cyclic silicate ester compounds in battery electrolyte
CN109456235A (en) * 2018-12-17 2019-03-12 苏州华道生物药业股份有限公司 A kind of green synthesis method of benzene sulfonic acid alkynes propyl ester
CN113851711B (en) * 2020-06-28 2023-06-30 深圳市研一新材料有限责任公司 Battery electrolyte and preparation method of benzenesulfonate compound therein
CN112939820A (en) * 2021-02-26 2021-06-11 石家庄圣泰化工有限公司 Synthetic method of benzene sulfonate derivative
CN114409574A (en) * 2021-12-14 2022-04-29 寿光诺盟化工有限公司 Preparation method of allyl benzenesulfonate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010087388A (en) 1998-11-13 2001-09-15 나까니시 히로유끼 Benzenesulfonic acid derivative compounds, process for producing the same, and use thereof
CN106631911A (en) * 2016-12-25 2017-05-10 西北大学 Method for synthesizing cis-tritosylate
CN107840812A (en) * 2017-11-14 2018-03-27 石家庄圣泰化工有限公司 The synthetic method of tosylate derivative

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122455A (en) * 1982-12-29 1984-07-14 Nippon Synthetic Chem Ind Co Ltd:The Preparation of p-toluenesulfonic acid (meth)allyl ester
JPH0336086A (en) * 1989-07-04 1991-02-15 Nippon Kayaku Co Ltd Thermal recording material
US5340489A (en) * 1992-06-05 1994-08-23 The Dow Chemical Company Aryl arenesulfonates and a method of lubrication using the aryl arenesulfonates
US5284944A (en) * 1992-06-30 1994-02-08 Lever Brothers Company, Division Of Conopco, Inc. Improved synthesis of 1,4,7-triazacyclononane
JP3445515B2 (en) * 1999-01-29 2003-09-08 陽 田辺 Method for sulfonylation of alcohol
JP5125379B2 (en) * 2007-10-04 2013-01-23 宇部興産株式会社 Electrolytic solution for lithium secondary battery containing benzenesulfonic acid ester, and lithium secondary battery using the same
JP2011238373A (en) * 2010-05-06 2011-11-24 Sony Corp Secondary battery, electrolytic solution for secondary battery, electric tool, electric vehicle, and power storage system
CN102226281B (en) * 2011-06-14 2013-04-24 北京科技大学 Non-aldehyde acidification corrosion inhibitor and preparation method thereof
CN103936789B (en) * 2014-04-25 2017-01-04 上海交通大学 Season Sulfonates fire retardant and synthetic method and purposes
CN106588705B (en) * 2016-12-11 2018-02-27 盐城市胜达化工有限公司 A kind of technique by nano solid base catalyst synthesizing glycol DAADBSA ester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010087388A (en) 1998-11-13 2001-09-15 나까니시 히로유끼 Benzenesulfonic acid derivative compounds, process for producing the same, and use thereof
CN106631911A (en) * 2016-12-25 2017-05-10 西北大学 Method for synthesizing cis-tritosylate
CN107840812A (en) * 2017-11-14 2018-03-27 石家庄圣泰化工有限公司 The synthetic method of tosylate derivative

Also Published As

Publication number Publication date
JP2021502950A (en) 2021-02-04
KR102144626B1 (en) 2020-08-28
CN107840812A (en) 2018-03-27
WO2019095636A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
KR20190105493A (en) A method for synthesis of benzene sulfonate derivatives
KR101695072B1 (en) Method for preparing pentacyclic anion salt
JP4258656B2 (en) Room temperature molten salt, its production method and its use
KR101826496B1 (en) Novel triazine compound, all-solid-state polymer electrolyte composition and use thereof
TWI716442B (en) Electrolyte composition, secondary battery and method of using secondary battery
CN107098882B (en) A kind of synthetic method of methane-disulfonic acid methylene ester
KR101982602B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content (1)
JP4945784B2 (en) Electrode active material containing indolocarbazole derivative
CN111763200A (en) Cyclic carbonic acid vinyl sulfate ester as lithium ion battery electrolyte additive and preparation method thereof
CA2337926A1 (en) Lithium fluoroalkylphosphates and their use as electrolyte salts
KR102212995B1 (en) Preparation method and application of high-purity and proportional-mixed lithium salt
Medabalmi et al. Introduction of carbonyl groups: an approach to enhance electrochemical performance of conjugated dicarboxylate for Li-ion batteries
JP2024026195A (en) ADDITIVES FOR ELECTROLYTES IN Li-ION BATTERIES
CN111349058A (en) Synthesis method of 1, 4-bis (methylsulfonyl) piperazine
KR102007476B1 (en) New purification method of bis(fluorosulfonyl)imide lithium salt)
KR102440653B1 (en) Additives composition for electrolyte of lithium secondary battery and manufacturing method thereof
WO2019095245A1 (en) Method for synthesizing methylene disulfonate compound
CN109293532B (en) Method for preparing pentafluorophenyl methanesulfonate at low cost
JP2008251394A (en) ELECTRODE ACTIVE MATERIAL FORMED OF INDOLO[3, 2-b]CARBAZOLE/POLYAMIDE COMPOUND, AND ITS MANUFACTURING METHOD
JP6046257B2 (en) Method for producing trifluoromethyl group-containing cyclic carbonate
CN111349030A (en) Synthesis method of bis [ (trifluoromethyl) sulfonyl ] methane
CN108947874A (en) A kind of preparation method of methane sulfonic acid pentafluorophenyl group ester
CN111349023A (en) Synthesis method of methane disulfonyl fluoride
KR102216570B1 (en) Solvent for solid electrolytes synthesis including onium composite and solid electrolytes synthesis method using the same
CN112574168B (en) Preparation method of ethylene-based ethylene sulfite

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right