KR20190104009A - 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스 - Google Patents

차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스 Download PDF

Info

Publication number
KR20190104009A
KR20190104009A KR1020190099961A KR20190099961A KR20190104009A KR 20190104009 A KR20190104009 A KR 20190104009A KR 1020190099961 A KR1020190099961 A KR 1020190099961A KR 20190099961 A KR20190099961 A KR 20190099961A KR 20190104009 A KR20190104009 A KR 20190104009A
Authority
KR
South Korea
Prior art keywords
vehicle
driver
information
data
processor
Prior art date
Application number
KR1020190099961A
Other languages
English (en)
Inventor
홍승범
김범오
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20190104009A publication Critical patent/KR20190104009A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • A61B5/0476
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • B60K28/06Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • B60K35/22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q3/00Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors
    • B60Q3/60Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W50/16Tactile feedback to the driver, e.g. vibration or force feedback to the driver on the steering wheel or the accelerator pedal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0016Planning or execution of driving tasks specially adapted for safety of the vehicle or its occupants
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/60Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/59Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
    • G06V20/597Recognising the driver's state or behaviour, e.g. attention or drowsiness
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4809Sleep detection, i.e. determining whether a subject is asleep or not
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/90Details or parts not otherwise provided for
    • B60N2002/981Warning systems, e.g. the seat or seat parts vibrates to warn the passenger when facing a danger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • B60W2040/0827Inactivity or incapacity of driver due to sleepiness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0872Driver physiology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0005Processor details or data handling, e.g. memory registers or chip architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/42Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/221Physiology, e.g. weight, heartbeat, health or special needs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/229Attention level, e.g. attentive to driving, reading or sleeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/55External transmission of data to or from the vehicle using telemetry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2756/00Output or target parameters relating to data
    • B60W2756/10Involving external transmission of data to or from the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/06Alarms for ensuring the safety of persons indicating a condition of sleep, e.g. anti-dozing alarms

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Psychiatry (AREA)
  • Dermatology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Social Psychology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Psychology (AREA)

Abstract

차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스를 개시한다. 본 발명의 일 실시예에 따른 차량 제어 방법은, 차량 내의 운전자와 관련된 상태 정보를 획득하고, 운전자와 관련된 상태 정보에 기반하여 집중도 관련 정보를 생성하고, 집중도 관련 정보에 기반하여 졸음 방지 관련 정보를 출력함으로써, 운전자의 집중력이 낮아지는 것을 방지할 수 있고, 운전자의 집중도가 현저히 낮아진 상태를 미리 파악하고 집중도를 다시 높여주는 졸음 방지 관련 정보를 제공하여, 주행 중에 운전자의 집중력 저하 등 부주의로 인한 사고 발생을 미연에 방지할 수 있다.
본 발명의 차량, 사용자 단말기 및 서버 중 하나 이상이 인공 지능(Artificail Intelligenfce) 모듈, 로봇, 증강 현실(Augmented Reality, AR) 장치, 가상 현실(virtual reality, VR) 장치, 5G 서비스와 관련된 장치 등과 연계될 수 있다.

Description

차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스{METHOD FOR CONTROLLING VEHICLE AND INTELLIGENT COMPUTING DEVICE THEREOF}
본 발명은 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스에 관한 것으로서, 보다 구체적으로는 운전자의 상태 정보를 반영하는 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스에 관한 것이다.
자동차는 사용되는 원동기의 종류에 따라, 내연기관(internal combustion engine) 자동차, 외연기관(external combustion engine) 자동차, 가스터빈(gas turbine) 자동차 또는 전기자동차(electric vehicle) 등으로 분류될 수 있다.
자율주행자동차(Autonomous Vehicle)란, 운전자 또는 승객의 조작 없이 자동차 스스로 운행이 가능한 자동차를 말하며, 자율주행시스템(Automated Vehicle & Highway Systems)은 이러한 자율주행자동차가 스스로 운행될 수 있도록 모니터링하고 제어하는 시스템을 말한다.
차량은 탑승한 사용자를 원하는 방향으로 이동시키는 교통수단의 하나로서 대표적으로 자동차를 예로 들 수 있다. 이러한 차량은 사용자에게 이동의 편의성을 제공하는 대신에 주행 중 전방 및 후방을 주의 깊게 주시하여야 한다. 여기서, 전방 및 후방은 차량 주의에 접근하거나 위치한 물체 즉, 사람, 차량 및 장애물 등의 주행 방해 요소를 의미할 수 있다.
한편, 종래에는 운전자가 자신의 부주의 상태 또는 졸음 상태 등 집중력 저하 상태를 벗어나기 위해, 운전자가 직접 졸음 방지 버튼을 정기적으로 누르거나, 운전자가 직접 창문을 열어 실내 공기를 환기시키는 등, 운전자가 직접 자신의 집중력을 올리기 위한 행동을 취해야 했다.
다만, 집중력이 현저히 낮아진 운전자가 직접 집중력을 높이기 위한 행동을 취하기는 어려운 것이 실정이며, 차량 자체에서 운전자의 집중력을 높이기 위한 기술은 부족한 것이 현실이다.
본 발명은 전술한 필요성 및/또는 문제점을 해결하는 것을 목적으로 한다.
또한, 본 발명은, 운전자의 낮아진 집중력을 높이기 위한 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스를 구현하는 것을 목적으로 한다.
본 발명의 일 양상에 따른 차량 제어 방법은, 차량 내의 운전자와 관련된 상태 정보를 획득하는 단계; 및 상기 운전자와 관련된 상태 정보에 기반하여 졸음 방지 관련 정보를 출력하는 단계;를 포함하되, 상기 졸음 방지 관련 정보를 출력하는 단계는, 상기 운전자와 관련된 상태 정보를 분석하여 상기 운전자의 집중도 관련 정보를 생성하는 단계, 및 상기 집중도 관련 정보에 기반하여 상기 졸음 방지 관련 정보를 출력하는 단계를 포함하는 것을 특징으로 한다.
상기 운전자와 관련된 상태 정보를 획득하는 단계는, 상기 운전자의 뇌파 신호를 검출하는 것을 특징으로 할 수 있다.
상기 운전자와 관련된 상태 정보를 획득하는 단계는, 상기 운전자를 촬영하는 것을 특징으로 하며, 상기 운전자의 집중도 관련 정보를 생성하는 단계는, 상기 촬영된 운전자의 행동 정보에 기반하여 상기 집중도 관련 정보를 생성하는 것을 특징으로 할 수 있다.
상기 졸음 방지 관련 정보를 출력하는 단계는, 상기 차량의 조명을 통해 미리 설정된 파장의 광을 출력하는 것을 특징으로 할 수 있다.
상기 졸음 방지 관련 정보를 출력하는 단계는, 상기 차량의 시트를 통해 진동을 출력하는 것을 특징으로 할 수 있다.
상기 졸음 방지 관련 정보를 출력하는 단계는, 상기 차량의 디스플레이를 통해 미리 설정된 휴식 공간으로의 길 안내 정보를 출력하는 것을 특징으로 할 수 있다.
상기 차량의 내부에 구비된 적어도 하나의 센서로부터 획득되는 상기 운전자의 상태 정보의 전송을 스케줄링하기 위해 사용되는 DCI(Downlink Control Information)을 네트워크로부터 수신하는 단계;를 더 포함하고, 상기 운전자의 상태 정보는, 상기 DCI에 기초하여 상기 네트워크로 전송될 수 있다.
SSB(Synchronization signal block)에 기초하여 상기 네트워크와 초기 접속 절차를 수행하는 단계;를 더 포함하고, 상기 운전자의 상태 정보는 PUSCH를 통해 상기 네트워크로 전송되며, 상기 SSB와 상기 PUSCH의 DM-RS는 QCL type D에 대해 QCL되어 있는 것을 특징으로 할 수 있다.
상기 운전자의 상태 정보를 상기 네트워크에 포함된 AI 프로세서로 전송하는 단계; 상기 AI 프로세서로부터 AI 프로세싱된 정보를 수신하는 단계;를 더 포함하고, 상기 AI 프로세싱된 정보는, 상기 운전자의 집중도를 집중도가 낮은 상태(Low), 집중도가 보통인 상태(Medium) 또는 집중도가 높은 상태(High) 중 어느 하나로 판단한 정보인 것을 특징으로 할 수 있다.
본 발명의 다른 양상에 따른 차량을 제어하는 지능형 컴퓨팅 디바이스는, 상기 차량의 내부에 구비된 카메라; 센싱부; 프로세서; 및 상기 프로세서에 의해 실행 가능한 명령어를 포함하는 메모리;를 포함하고, 상기 명령어는, 차량 내의 운전자와 관련된 상태 정보를 획득하고, 상기 운전자와 관련된 상태 정보에 기반하여 졸음 방지 관련 정보를 출력하도록 하되, 상기 졸음 방지 관련 정보를 출력함에 있어서, 상기 운전자와 관련된 상태 정보를 분석하여 상기 운전자의 집중도 관련 정보를 생성하고, 상기 집중도 관련 정보에 기반하여 상기 졸음 방지 관련 정보를 출력하도록 하는 것을 특징으로 차량을 제어한다.
상기 프로세서는, 상기 운전자의 뇌파 신호를 검출하도록 하는 것을 특징으로 할 수 있다.
상기 프로세서는, 상기 운전자를 촬영하는 것을 특징으로 하며, 상기 촬영된 운전자의 행동 정보에 기반하여 상기 집중도 관련 정보를 생성하는 것을 특징으로 할 수 있다.
상기 프로세서는, 상기 차량의 조명을 통해 미리 설정된 파장의 광을 출력하는 것을 특징으로 할 수 있다.
상기 프로세서는,상기 차량의 시트를 통해 진동을 출력하는 것을 특징으로 할 수 있다.
상기 프로세서는, 상기 차량의 디스플레이를 통해 미리 설정된 휴식 공간으로의 길 안내 정보를 출력하는 것을 특징으로 할 수 있다.
상기 프로세서는, 상기 차량의 내부에 구비된 적어도 하나의 센서로부터 획득되는 상기 운전자의 상태 정보의 전송을 스케줄링하기 위해 사용되는 DCI(Downlink Control Information)을 네트워크로부터 수신하고, 상기 운전자의 상태 정보는, 상기 DCI에 기초하여 상기 네트워크로 전송되는 것을 특징으로 할 수 있다.
상기 프로세서는, SSB(Synchronization signal block)에 기초하여 상기 네트워크와 초기 접속 절차를 수행하고, 상기 운전자의 상태 정보는 PUSCH를 통해 상기 네트워크로 전송되며, 상기 SSB와 상기 PUSCH의 DM-RS는 QCL type D에 대해 QCL되어 있는 것을 특징으로 할 수 있다.
상기 프로세서는, 상기 운전자의 상태 정보를 상기 네트워크에 포함된 AI 프로세서로 전송하도록 통신부를 제어하고, 상기 AI 프로세서로부터 AI 프로세싱된 정보를 수신하도록 상기 통신부를 제어하며, 상기 AI 프로세싱된 정보는, 상기 운전자의 집중도를 집중도가 낮은 상태(Low), 집중도가 보통인 상태(Medium) 또는 집중도가 높은 상태(High) 중 어느 하나로 판단한 정보인 것을 특징으로 할 수 있다.
본 발명에 따른 차량 제어 방법, 차량 및 차량을 제어하는 지능형 컴퓨팅 디바이스의 효과에 대해 설명하면 다음과 같다.
본 발명은, 주행 중 운전자의 상태를 지속적으로 모니터링하고, 모니터링 결과에 기반하여 운전자의 집중력을 높여주는 인터페이스를 제공함으로써, 운전자의 집중력이 낮아지는 것을 방지할 수 있다.
또한, 본 발명은, 운전자의 상태 정보를 차량에 구비된 카메라 또는 헤어 밴드를 통해 검출하고 운전자의 집중도 레벨을 정확하게 판단함으로써, 운전자의 집중도가 현저히 낮아진 상태를 미리 파악하고 집중도를 다시 높여주는 졸음 방지 관련 정보를 제공하여, 주행 중에 운전자의 집중력 저하 등 부주의로 인한 사고 발생을 미연에 방지할 수 있다.
도 1은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 2는 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸 도이다.
도 3은 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 기본 동작의 일 예를 나타낸다.
도 4는 5G 통신을 이용한 차량 대 차량 간의 기본 동작의 일 예를 예시한다.
도 5는 본 발명의 실시예에 따른 차량을 도시한 도면이다.
도 6은 본 발명의 실시예에 따른 차량의 제어 블럭도이다.
도 7은 본 발명의 실시예에 따른 자율 주행 장치의 제어 블럭도이다.
도 8은 본 발명의 실시예에 따른 자율 주행 차량의 신호 흐름도이다.
도 9는 본 발명의 실시예에 따른 차량의 내부를 도시한 도면이다.
도 10은 본 발명의 실시예에 따른 차량용 캐빈 시스템을 설명하는데 참조되는 블럭도이다.
도 11은 본 발명의 실시예에 따라 사용자의 이용 시나리오를 설명하는데 참조되는 도면이다.
도 12 내지 도 14는 본 발명의 일 실시예에 따른 뇌파 검출 장치를 도시한다.
도 15는 본 발명의 일 실시예에 따른 AI 장치의 블록도이다.
도 16은 본 발명의 실시예에 따른 자율 주행 차량과 AI 장치가 연계된 시스템을 설명하기 위한 도면이다.
도 17은 본 발명의 일 실시예에 따른 차량 제어 방법을 나타낸 흐름도이다.
도 18은 본 발명의 일 실시예에서 운전자의 상태 정보를 획득하는 예를 도시한다.
도 19는 본 발명의 일 실시예에 따라 졸음 방지 관련 정보를 출력하는 예를 도시한다.
도 20은 본 발명의 일 실시예에 따른 졸음 방지 관련 정보를 출력하는 다른 예를 도시한다.
도 21은 본 발명의 일 실시예에 따른 졸음 방지 관련 정보를 출력하는 또 다른 예를 도시한다.
도 22는 본 발명의 일 실시예에 따른 졸음 방지 관련 정보를 출력하는 또 다른 예를 도시한다.
도 23은 본 발명의 일 실시예에 따른 졸음 방지 관련 정보를 출력하는 또 다른 예를 도시한다.
도 24는 본 발명의 일 실시예에서 운전자의 집중도 레벨을 판단하는 예를 설명하기 위한 도면이다.
도 25는 눈움직임에 따른 뇌파 변화의 일 예를 나타낸다.
도 26은 좌/우 뇌파 정보와 눈움직임 신호를 모두 포함한 뇌파 모델링의 일 예를 나타낸다.
도 27은 본 발명의 일 실시예에서 졸음 상태를 판단하는 다른 예를 설명하기 위한 도면이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
A. UE 및 5G 네트워크 블록도 예시
도 1은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 1을 참조하면, 자율 주행 장치를 포함하는 장치(자율 주행 장치)를 제1 통신 장치로 정의(도 1의 910)하고, 프로세서(911)가 자율 주행 상세 동작을 수행할 수 있다.
자율 주행 장치와 통신하는 다른 차량을 포함하는 5G 네트워크를 제2 통신 장치로 정의(도 1의 920)하고, 프로세서(921)가 자율 주행 상세 동작을 수행할 수 있다.
5G 네트워크가 제 1 통신 장치로, 자율 주행 장치가 제 2 통신 장치로 표현될 수도 있다.
예를 들어, 상기 제 1 통신 장치 또는 상기 제 2 통신 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 자율 주행 장치 등일 수 있다.
예를 들어, 단말 또는 UE(User Equipment)는 차량(vehicle), 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR, AR 또는 MR을 구현하기 위해 사용될 수 있다. 도 1을 참고하면, 제 1 통신 장치(910)와 제 2 통신 장치(920)은 프로세서(processor, 911,921), 메모리(memory, 914,924), 하나 이상의 Tx/Rx RF 모듈(radio frequency module, 915,925), Tx 프로세서(912,922), Rx 프로세서(913,923), 안테나(916,926)를 포함한다. Tx/Rx 모듈은 트랜시버라고도 한다. 각각의 Tx/Rx 모듈(915)는 각각의 안테나(926)을 통해 신호를 전송한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다. 보다 구체적으로, DL(제 1 통신 장치에서 제 2 통신 장치로의 통신)에서, 전송(TX) 프로세서(912)는 L1 계층(즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 수신(RX) 프로세서는 L1(즉, 물리 계층)의 다양한 신호 프로세싱 기능을 구현한다.
UL(제 2 통신 장치에서 제 1 통신 장치로의 통신)은 제 2 통신 장치(920)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 제 1 통신 장치(910)에서 처리된다. 각각의 Tx/Rx 모듈(925)는 각각의 안테나(926)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(923)에 제공한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.
B. 무선 통신 시스템에서 신호 송/수신 방법
도 2는 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸 도이다.
도 2를 참고하면, UE는 전원이 켜지거나 새로이 셀에 진입한 경우 BS와 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 작업을 수행한다(S201). 이를 위해, UE는 BS로부터 1차 동기 채널(primary synchronization channel, P-SCH) 및 2차 동기 채널(secondary synchronization channel, S-SCH)을 수신하여 BS와 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. LTE 시스템과 NR 시스템에서 P-SCH와 S-SCH는 각각 1차 동기 신호(primary synchronization signal, PSS)와 2차 동기 신호(secondary synchronization signal, SSS)로 불린다. 초기 셀 탐색 후, UE는 BS로부터 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 수신하여 셀 내 브로드캐스트 정보를 획득할 수 있다. 한편, UE는 초기 셀 탐색 단계에서 하향링크 참조 신호(downlink reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다. 초기 셀 탐색을 마친 UE는 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(physical downlink shared Channel, PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, BS에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 UE는 BS에 대해 임의 접속 과정(random access procedure, RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, UE는 물리 임의 접속 채널(physical random access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로서 전송하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 임의 접속 응답(random access response, RAR) 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 과정(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 과정을 수행한 UE는 이후 일반적인 상향링크/하향링크 신호 전송 과정으로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(physical uplink shared Channel, PUSCH)/물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 전송(S208)을 수행할 수 있다. 특히 UE는 PDCCH를 통하여 하향링크 제어 정보(downlink control information, DCI)를 수신한다. UE는 해당 탐색 공간 설정(configuration)들에 따라 서빙 셀 상의 하나 이상의 제어 요소 세트(control element set, CORESET)들에 설정된 모니터링 기회(occasion)들에서 PDCCH 후보(candidate)들의 세트를 모니터링한다. UE가 모니터할 PDCCH 후보들의 세트는 탐색 공간 세트들의 면에서 정의되며, 탐색 공간 세트는 공통 탐색 공간 세트 또는 UE-특정 탐색 공간 세트일 수 있다. CORESET은 1~3개 OFDM 심볼들의 시간 지속기간을 갖는 (물리) 자원 블록들의 세트로 구성된다. 네트워크는 UE가 복수의 CORESET들을 갖도록 설정할 수 있다. UE는 하나 이상의 탐색 공간 세트들 내 PDCCH 후보들을 모니터링한다. 여기서 모니터링이라 함은 탐색 공간 내 PDCCH 후보(들)에 대한 디코딩 시도하는 것을 의미한다. UE가 탐색 공간 내 PDCCH 후보들 중 하나에 대한 디코딩에 성공하면, 상기 UE는 해당 PDCCH 후보에서 PDCCH를 검출했다고 판단하고, 상기 검출된 PDCCH 내 DCI를 기반으로 PDSCH 수신 혹은 PUSCH 전송을 수행한다. PDCCH는 PDSCH 상의 DL 전송들 및 PUSCH 상의 UL 전송들을 스케줄링하는 데 사용될 수 있다. 여기서 PDCCH 상의 DCI는 하향링크 공유 채널과 관련된, 변조(modulation) 및 코딩 포맷과 자원 할당(resource allocation) 정보를 적어도 포함하는 하향링크 배정(assignment)(즉, downlink grant; DL grant), 또는 상향링크 공유 채널과 관련된, 변조 및 코딩 포맷과 자원 할당 정보를 포함하는 상향링크 그랜트(uplink grant; UL grant)를 포함한다.
도 2를 참고하여, 5G 통신 시스템에서의 초기 접속(Initial Access, IA) 절차에 대해 추가적으로 살펴본다.
UE는 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼들에 구성되며, OFDM 심볼별로 PSS, PBCH, SSS/PBCH 또는 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파들로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파들로 구성된다.
셀 탐색은 UE가 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCI)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다
SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 UE가 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, BS)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다.
다음으로, 시스템 정보 (system information; SI) 획득에 대해 살펴본다.
SI는 마스터 정보 블록(master information block, MIB)와 복수의 시스템 정보 블록(system information block, SIB)들로 나눠진다. MIB 외의 SI는 RMSI(Remaining Minimum System Information)으로 지칭될 수 있다. MIB는 SIB1(SystemInformationBlock1)을 나르는 PDSCH를 스케줄링하는 PDCCH의 모니터링을 위한 정보/파라미터를 포함하며 SSB의 PBCH를 통해 BS에 의해 전송된다. SIB1은 나머지 SIB들(이하, SIBx, x는 2 이상의 정수)의 가용성(availability) 및 스케줄링(예, 전송 주기, SI-윈도우 크기)과 관련된 정보를 포함한다. SIBx는 SI 메시지에 포함되며 PDSCH를 통해 전송된다. 각각의 SI 메시지는 주기적으로 발생하는 시간 윈도우(즉, SI-윈도우) 내에서 전송된다.
도 2를 참고하여, 5G 통신 시스템에서의 임의 접속(Random Access, RA) 과정에 대해 추가적으로 살펴본다.
임의 접속 과정은 다양한 용도로 사용된다. 예를 들어, 임의 접속 과정은 네트워크 초기 접속, 핸드오버, UE-트리거드(triggered) UL 데이터 전송에 사용될 수 있다. UE는 임의 접속 과정을 통해 UL 동기와 UL 전송 자원을 획득할 수 있다. 임의 접속 과정은 경쟁 기반(contention-based) 임의 접속 과정과 경쟁 프리(contention free) 임의 접속 과정으로 구분된다. 경쟁 기반의 임의 접속 과정에 대한 구체적인 절차는 아래와 같다.
UE가 UL에서 임의 접속 과정의 Msg1로서 임의 접속 프리앰블을 PRACH를 통해 전송할 수 있다. 서로 다른 두 길이를 가지는 임의 접속 프리앰블 시퀀스들이 지원된다. 긴 시퀀스 길이 839는 1.25 및 5 kHz의 부반송파 간격(subcarrier spacing)에 대해 적용되며, 짧은 시퀀스 길이 139는 15, 30, 60 및 120 kHz의 부반송파 간격에 대해 적용된다.
BS가 UE로부터 임의 접속 프리앰블을 수신하면, BS는 임의 접속 응답(random access response, RAR) 메시지(Msg2)를 상기 UE에게 전송한다. RAR을 나르는 PDSCH를 스케줄링하는 PDCCH는 임의 접속(random access, RA) 무선 네트워크 임시 식별자(radio network temporary identifier, RNTI)(RA-RNTI)로 CRC 마스킹되어 전송된다. RA-RNTI로 마스킹된 PDCCH를 검출한 UE는 상기 PDCCH가 나르는 DCI가 스케줄링하는 PDSCH로부터 RAR을 수신할 수 있다. UE는 자신이 전송한 프리앰블, 즉, Msg1에 대한 임의 접속 응답 정보가 상기 RAR 내에 있는지 확인한다. 자신이 전송한 Msg1에 대한 임의 접속 정보가 존재하는지 여부는 상기 UE가 전송한 프리앰블에 대한 임의 접속 프리앰블 ID가 존재하는지 여부에 의해 판단될 수 있다. Msg1에 대한 응답이 없으면, UE는 전력 램핑(power ramping)을 수행하면서 RACH 프리앰블을 소정의 횟수 이내에서 재전송할 수 있다. UE는 가장 최근의 경로 손실 및 전력 램핑 카운터를 기반으로 프리앰블의 재전송에 대한 PRACH 전송 전력을 계산한다.
상기 UE는 임의 접속 응답 정보를 기반으로 상향링크 공유 채널 상에서 UL 전송을 임의 접속 과정의 Msg3로서 전송할 수 있다. Msg3은 RRC 연결 요청 및 UE 식별자를 포함할 수 있다. Msg3에 대한 응답으로서, 네트워크는 Msg4를 전송할 수 있으며, 이는 DL 상에서의 경쟁 해결 메시지로 취급될 수 있다. Msg4를 수신함으로써, UE는 RRC 연결된 상태에 진입할 수 있다.
C. 5G 통신 시스템의 빔 관리 (Beam Management, BM) 절차
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.
SSB를 이용한 DL BM 과정에 대해 살펴본다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC_CONNECTED에서 채널 상태 정보(channel state information, CSI)/빔 설정 시에 수행된다.
- UE는 BM을 위해 사용되는 SSB 자원들에 대한 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 BS로부터 수신한다. RRC 파라미터 csi-SSB-ResourceSetList는 하나의 자원 세트에서 빔 관리 및 보고을 위해 사용되는 SSB 자원들의 리스트를 나타낸다. 여기서, SSB 자원 세트는 {SSBx1, SSBx2, SSBx3, SSBx4, ?}으로 설정될 수 있다. SSB 인덱스는 0부터 63까지 정의될 수 있다.
- UE는 상기 CSI-SSB-ResourceSetList에 기초하여 SSB 자원들 상의 신호들을 상기 BS로부터 수신한다.
- SSBRI 및 참조 신호 수신 전력(reference signal received power, RSRP)에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 UE는 최선(best) SSBRI 및 이에 대응하는 RSRP를 BS에게 보고한다. 예를 들어, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, UE는 BS으로 최선 SSBRI 및 이에 대응하는 RSRP를 보고한다.
UE는 SSB와 동일한 OFDM 심볼(들)에 CSI-RS 자원이 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 UE는 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 유사 동일 위치된(quasi co-located, QCL) 것으로 가정할 수 있다. 여기서, QCL-TypeD는 공간(spatial) Rx 파라미터 관점에서 안테나 포트들 간에 QCL되어 있음을 의미할 수 있다. UE가 QCL-TypeD 관계에 있는 복수의 DL 안테나 포트들의 신호들을 수신 시에는 동일한 수신 빔을 적용해도 무방하다.
다음으로, CSI-RS를 이용한 DL BM 과정에 대해 살펴본다.
CSI-RS를 이용한 UE의 Rx 빔 결정(또는 정제(refinement)) 과정과 BS의 Tx 빔 스위핑 과정에 대해 차례대로 살펴본다. UE의 Rx 빔 결정 과정은 반복 파라미터가 'ON'으로 설정되며, BS의 Tx 빔 스위핑 과정은 반복 파라미터가 'OFF'로 설정된다.
먼저, UE의 Rx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'ON'으로 세팅되어 있다.
- UE는 상기 RRC 파라미터 'repetition'이 'ON'으로 설정된 CSI-RS 자원 세트 내의 자원(들) 상에서의 신호들을 BS의 동일 Tx 빔(또는 DL 공간 도메인 전송 필터)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다.
- UE는 자신의 Rx 빔을 결정한다.
- UE는 CSI 보고를 생략한다. 즉, UE는 상가 RRC 파라미터 'repetition'이 'ON'으로 설정된 경우, CSI 보고를 생략할 수 있다.
다음으로, BS의 Tx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'OFF'로 세팅되어 있으며, BS의 Tx 빔 스위핑 과정과 관련된다.
- UE는 상기 RRC 파라미터 'repetition'이 'OFF'로 설정된 CSI-RS 자원 세트 내의 자원들 상에서의 신호들을 BS의 서로 다른 Tx 빔(DL 공간 도메인 전송 필터)을 통해 수신한다.
- UE는 최상의(best) 빔을 선택(또는 결정)한다.
- UE는 선택된 빔에 대한 ID(예, CRI) 및 관련 품질 정보(예, RSRP)를 BS으로 보고한다. 즉, UE는 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 RSRP를 BS으로 보고한다.
다음으로, SRS를 이용한 UL BM 과정에 대해 살펴본다.
- UE는 'beam management'로 설정된 (RRC 파라미터) 용도 파라미터를 포함하는 RRC 시그널링(예, SRS-Config IE)를 BS로부터 수신한다. SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 리스트와 SRS-ResourceSet들의 리스트를 포함한다. 각 SRS 자원 세트는 SRS-resource들의 세트를 의미한다.
- UE는 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS 자원에 대한 Tx 빔포밍을 결정한다. 여기서, SRS-SpatialRelation Info는 SRS 자원별로 설정되고, SRS 자원별로 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용할지를 나타낸다.
- 만약 SRS 자원에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용하여 전송한다. 하지만, SRS 자원에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 UE는 임의로 Tx 빔포밍을 결정하여 결정된 Tx 빔포밍을 통해 SRS를 전송한다.
다음으로, 빔 실패 복구(beam failure recovery, BFR) 과정에 대해 살펴본다.
빔포밍된 시스템에서, RLF(Radio Link Failure)는 UE의 회전(rotation), 이동(movement) 또는 빔포밍 블로키지(blockage)로 인해 자주 발생할 수 있다. 따라서, 잦은 RLF가 발생하는 것을 방지하기 위해 BFR이 NR에서 지원된다. BFR은 무선 링크 실패 복구 과정과 유사하고, UE가 새로운 후보 빔(들)을 아는 경우에 지원될 수 있다. 빔 실패 검출을 위해, BS는 UE에게 빔 실패 검출 참조 신호들을 설정하고, 상기 UE는 상기 UE의 물리 계층으로부터의 빔 실패 지시(indication)들의 횟수가 BS의 RRC 시그널링에 의해 설정된 기간(period) 내에 RRC 시그널링에 의해 설정된 임계치(threshold)에 이르면(reach), 빔 실패를 선언(declare)한다. 빔 실패가 검출된 후, 상기 UE는 PCell 상의 임의 접속 과정을 개시(initiate)함으로써 빔 실패 복구를 트리거하고; 적절한(suitable) 빔을 선택하여 빔 실패 복구를 수행한다(BS가 어떤(certain) 빔들에 대해 전용 임의 접속 자원들을 제공한 경우, 이들이 상기 UE에 의해 우선화된다). 상기 임의 접속 절차의 완료(completion) 시, 빔 실패 복구가 완료된 것으로 간주된다.
D. URLLC (Ultra-Reliable and Low Latency Communication)
NR에서 정의하는 URLLC 전송은 (1) 상대적으로 낮은 트래픽 크기, (2) 상대적으로 낮은 도착 레이트(low arrival rate), (3) 극도의 낮은 레이턴시 요구사항(requirement)(예, 0.5, 1ms), (4) 상대적으로 짧은 전송 지속기간(duration)(예, 2 OFDM symbols), (5) 긴급한 서비스/메시지 등에 대한 전송을 의미할 수 있다. UL의 경우, 보다 엄격(stringent)한 레이턴시 요구 사항(latency requirement)을 만족시키기 위해 특정 타입의 트래픽(예컨대, URLLC)에 대한 전송이 앞서서 스케줄링된 다른 전송(예컨대, eMBB)과 다중화(multiplexing)되어야 할 필요가 있다. 이와 관련하여 한 가지 방안으로, 앞서 스케줄링 받은 UE에게 특정 자원에 대해서 프리엠션(preemption)될 것이라는 정보를 주고, 해당 자원을 URLLC UE가 UL 전송에 사용하도록 한다.
NR의 경우, eMBB와 URLLC 사이의 동적 자원 공유(sharing)이 지원된다. eMBB와 URLLC 서비스들은 비-중첩(non-overlapping) 시간/주파수 자원들 상에서 스케줄될 수 있으며, URLLC 전송은 진행 중인(ongoing) eMBB 트래픽에 대해 스케줄된 자원들에서 발생할 수 있다. eMBB UE는 해당 UE의 PDSCH 전송이 부분적으로 펑처링(puncturing)되었는지 여부를 알 수 없을 수 있고, 손상된 코딩된 비트(corrupted coded bit)들로 인해 UE는 PDSCH를 디코딩하지 못할 수 있다. 이 점을 고려하여, NR에서는 프리엠션 지시(preemption indication)을 제공한다. 상기 프리엠션 지시(preemption indication)는 중단된 전송 지시(interrupted transmission indication)으로 지칭될 수도 있다.
프리엠션 지시와 관련하여, UE는 BS로부터의 RRC 시그널링을 통해 DownlinkPreemption IE를 수신한다. UE가 DownlinkPreemption IE를 제공받으면, DCI 포맷 2_1을 운반(convey)하는 PDCCH의 모니터링을 위해 상기 UE는 DownlinkPreemption IE 내 파라미터 int-RNTI에 의해 제공된 INT-RNTI를 가지고 설정된다. 상기 UE는 추가적으로 servingCellID에 의해 제공되는 서빙 셀 인덱스들의 세트를 포함하는 INT-ConfigurationPerServing Cell에 의해 서빙 셀들의 세트와 positionInDCI에 의해 DCI 포맷 2_1 내 필드들을 위한 위치들의 해당 세트를 가지고 설정되고, dci-PayloadSize에 의해 DCI 포맷 2_1을 위한 정보 페이로드 크기를 가지고 설졍되며, timeFrequencySect에 의한 시간-주파수 자원들의 지시 입도(granularity)를 가지고 설정된다.
상기 UE는 상기 DownlinkPreemption IE에 기초하여 DCI 포맷 2_1을 상기 BS로부터 수신한다.
UE가 서빙 셀들의 설정된 세트 내 서빙 셀에 대한 DCI 포맷 2_1을 검출하면, 상기 UE는 상기 DCI 포맷 2_1이 속한 모니터링 기간의 바로 앞(last) 모니터링 기간의 PRB들의 세트 및 심볼들의 세트 중 상기 DCI 포맷 2_1에 의해 지시되는 PRB들 및 심볼들 내에는 상기 UE로의 아무런 전송도 없다고 가정할 수 있다. 예를 들어, UE는 프리엠션에 의해 지시된 시간-주파수 자원 내 신호는 자신에게 스케줄링된 DL 전송이 아니라고 보고 나머지 자원 영역에서 수신된 신호들을 기반으로 데이터를 디코딩한다.
E. mMTC (massive MTC)
mMTC(massive Machine Type Communication)은 많은 수의 UE와 동시에 통신하는 초연결 서비스를 지원하기 위한 5G의 시나리오 중 하나이다. 이 환경에서, UE는 굉장히 낮은 전송 속도와 이동성을 가지고 간헐적으로 통신하게 된다. 따라서, mMTC는 UE를 얼마나 낮은 비용으로 오랫동안 구동할 수 있는지를 주요 목표로 하고 있다. mMTC 기술과 관련하여 3GPP에서는 MTC와 NB(NarrowBand)-IoT를 다루고 있다.
mMTC 기술은 PDCCH, PUCCH, PDSCH(physical downlink shared channel), PUSCH 등의 반복 전송, 주파수 호핑(hopping), 리튜닝(retuning), 가드 구간(guard period) 등의 특징을 가진다.
즉, 특정 정보를 포함하는 PUSCH(또는 PUCCH(특히, long PUCCH) 또는 PRACH) 및 특정 정보에 대한 응답을 포함하는 PDSCH(또는 PDCCH)가 반복 전송된다. 반복 전송은 주파수 호핑(frequency hopping)을 통해 수행되며, 반복 전송을 위해, 제 1 주파수 자원에서 제 2 주파수 자원으로 가드 구간(guard period)에서 (RF) 리튜닝(retuning)이 수행되고, 특정 정보 및 특정 정보에 대한 응답은 협대역(narrowband)(ex. 6 RB (resource block) or 1 RB)를 통해 송/수신될 수 있다.
F. 5G 통신을 이용한 자율 주행 차량 간 기본 동작
도 3은 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 기본 동작의 일 예를 나타낸다.
자율 주행 차량(Autonomous Vehicle)은 특정 정보 전송을 5G 네트워크로 전송한다(S1). 상기 특정 정보는 자율 주행 관련 정보를 포함할 수 있다. 그리고, 상기 5G 네트워크는 차량의 원격 제어 여부를 결정할 수 있다(S2). 여기서, 상기 5G 네트워크는 자율 주행 관련 원격 제어를 수행하는 서버 또는 모듈을 포함할 수 있다. 그리고, 상기 5G 네트워크는 원격 제어와 관련된 정보(또는 신호)를 상기 자율 주행 차량으로 전송할 수 있다(S3).
G. 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크 간의 응용 동작
이하, 도 1 및 도 2와 앞서 살핀 무선 통신 기술(BM 절차, URLLC, Mmtc 등)을 참고하여 5G 통신을 이용한 자율 주행 차량의 동작에 대해 보다 구체적으로 살펴본다.
먼저, 후술할 본 발명에서 제안하는 방법과 5G 통신의 eMBB 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 3의 S1 단계 및 S3 단계와 같이, 자율 주행 차량이 5G 네트워크와 신호, 정보 등을 송/수신하기 위해, 자율 주행 차량은 도 3의 S1 단계 이전에 5G 네트워크와 초기 접속(initial access) 절차 및 임의 접속(random access) 절차를 수행한다.
보다 구체적으로, 자율 주행 차량은 DL 동기 및 시스템 정보를 획득하기 위해 SSB에 기초하여 5G 네트워크와 초기 접속 절차를 수행한다. 상기 초기 접속 절차 과정에서 빔 관리(beam management, BM) 과정, 빔 실패 복구(beam failure recovery) 과정이 추가될 수 있으며, 자율 주행 차량이 5G 네트워크로부터 신호를 수신하는 과정에서 QCL(quasi-co location) 관계가 추가될 수 있다.
또한, 자율 주행 차량은 UL 동기 획득 및/또는 UL 전송을 위해 5G 네트워크와 임의 접속 절차를 수행한다.그리고, 상기 5G 네트워크는 상기 자율 주행 차량으로 특정 정보의 전송을 스케쥴링하기 위한 UL grant를 전송할 수 있다. 따라서, 상기 자율 주행 차량은 상기 UL grant에 기초하여 상기 5G 네트워크로 특정 정보를 전송한다. 그리고, 상기 5G 네트워크는 상기 자율 주행 차량으로 상기 특정 정보에 대한 5G 프로세싱 결과의 전송을 스케쥴링하기 위한 DL grant를 전송한다. 따라서, 상기 5G 네트워크는 상기 DL grant에 기초하여 상기 자율 주행 차량으로 원격 제어와 관련된 정보(또는 신호)를 전송할 수 있다.
다음으로, 후술할 본 발명에서 제안하는 방법과 5G 통신의 URLLC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
앞서 설명한 바와 같이, 자율 주행 차량은 5G 네트워크와 초기 접속 절차 및/또는 임의 접속 절차를 수행한 후, 자율 주행 차량은 5G 네트워크로부터 DownlinkPreemption IE를 수신할 수 있다. 그리고, 자율 주행 차량은 DownlinkPreemption IE에 기초하여 프리엠션 지시(pre-emption indication)을 포함하는 DCI 포맷 2_1을 5G 네트워크로부터 수신한다. 그리고, 자율 주행 차량은 프리엠션 지시(pre-emption indication)에 의해 지시된 자원(PRB 및/또는 OFDM 심볼)에서 eMBB data의 수신을 수행(또는 기대 또는 가정)하지 않는다. 이후, 자율 주행 차량은 특정 정보를 전송할 필요가 있는 경우 5G 네트워크로부터 UL grant를 수신할 수 있다.
다음으로, 후술할 본 발명에서 제안하는 방법과 5G 통신의 mMTC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 3의 단계들 중 mMTC 기술의 적용으로 달라지는 부분 위주로 설명하기로 한다.
도 3의 S1 단계에서, 자율 주행 차량은 특정 정보를 5G 네트워크로 전송하기 위해 5G 네트워크로부터 UL grant를 수신한다. 여기서, 상기 UL grant는 상기 특정 정보의 전송에 대한 반복 횟수에 대한 정보를 포함하고, 상기 특정 정보는 상기 반복 횟수에 대한 정보에 기초하여 반복하여 전송될 수 있다. 즉, 상기 자율 주행 차량은 상기 UL grant에 기초하여 특정 정보를 5G 네트워크로 전송한다. 그리고, 특정 정보의 반복 전송은 주파수 호핑을 통해 수행되고, 첫 번째 특정 정보의 전송은 제 1 주파수 자원에서, 두 번째 특정 정보의 전송은 제 2 주파수 자원에서 전송될 수 있다. 상기 특정 정보는 6RB(Resource Block) 또는 1RB(Resource Block)의 협대역(narrowband)을 통해 전송될 수 있다.
H. 5G 통신을 이용한 차량 대 차량 간의 자율 주행 동작
도 4는 5G 통신을 이용한 차량 대 차량 간의 기본 동작의 일 예를 예시한다.
제1 차량은 특정 정보를 제2 차량으로 전송한다(S61). 제2 차량은 특정 정보에 대한 응답을 제1 차량으로 전송한다(S62).
한편, 5G 네트워크가 상기 특정 정보, 상기 특정 정보에 대한 응답의 자원 할당에 직접적(사이드 링크 통신 전송 모드 3) 또는 간접적으로(사이드링크 통신 전송 모드 4) 관여하는지에 따라 차량 대 차량 간 응용 동작의 구성이 달라질 수 있다.
다음으로, 5G 통신을 이용한 차량 대 차량 간의 응용 동작에 대해 살펴본다.
먼저, 5G 네트워크가 차량 대 차량 간의 신호 전송/수신의 자원 할당에 직접적으로 관여하는 방법을 설명한다.
5G 네트워크는, 모드 3 전송(PSCCH 및/또는 PSSCH 전송)의 스케줄링을 위해 DCI 포맷 5A를 제1 차량에 전송할 수 있다. 여기서, PSCCH(physical sidelink control channel)는 특정 정보 전송의 스케줄링을 위한 5G 물리 채널이고, PSSCH(physical sidelink shared channel)는 특정 정보를 전송하는 5G 물리 채널이다. 그리고, 제1 차량은 특정 정보 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 제2 차량으로 전송한다. 그리고, 제1 차량이 특정 정보를 PSSCH 상에서 제2 차량으로 전송한다.
다음으로, 5G 네트워크가 신호 전송/수신의 자원 할당에 간접적으로 관여하는 방법에 대해 살펴본다.
제1 차량은 모드 4 전송을 위한 자원을 제1 윈도우에서 센싱한다. 그리고, 제1 차량은, 상기 센싱 결과에 기초하여 제2 윈도우에서 모드 4 전송을 위한 자원을 선택한다. 여기서, 제1 윈도우는 센싱 윈도우(sensing window)를 의미하고, 제2 윈도우는 선택 윈도우(selection window)를 의미한다. 제1 차량은 상기 선택된 자원을 기초로 특정 정보 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 제2 차량으로 전송한다. 그리고, 제1 차량은 특정 정보를 PSSCH 상에서 제2 차량으로 전송한다.
앞서 살핀 5G 통신 기술은 후술할 본 발명에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 발명에서 제안하는 방법들의 기술적 특징을 구체화하거나 명확하게 하는데 보충될 수 있다.
주행
(1) 차량 외관
도 5는 본 발명의 실시예에 따른 차량을 도시한 도면이다.
도 5를 참조하면, 본 발명의 실시예에 따른 차량(10)은, 도로나 선로 위를 주행하는 수송 수단으로 정의된다. 차량(10)은, 자동차, 기차, 오토바이를 포함하는 개념이다. 차량(10)은, 동력원으로서 엔진을 구비하는 내연기관 차량, 동력원으로서 엔진과 전기 모터를 구비하는 하이브리드 차량, 동력원으로서 전기 모터를 구비하는 전기 차량등을 모두 포함하는 개념일 수 있다. 차량(10)은 개인이 소유한 차량일 수 있다. 차량(10)은, 공유형 차량일 수 있다. 차량(10)은 자율 주행 차량일 수 있다.
(2) 차량의 구성 요소
도 6은 본 발명의 실시예에 따른 차량의 제어 블럭도이다.
도 6을 참조하면, 차량(10)은, 사용자 인터페이스 장치(200), 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 구동 제어 장치(250), 자율 주행 장치(260), 센싱부(270) 및 위치 데이터 생성 장치(280)를 포함할 수 있다. 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 구동 제어 장치(250), 자율 주행 장치(260), 센싱부(270) 및 위치 데이터 생성 장치(280)는 각각이 전기적 신호를 생성하고, 상호간에 전기적 신호를 교환하는 전자 장치로 구현될 수 있다.
1) 사용자 인터페이스 장치
사용자 인터페이스 장치(200)는, 차량(10)과 사용자와의 소통을 위한 장치이다. 사용자 인터페이스 장치(200)는, 사용자 입력을 수신하고, 사용자에게 차량(10)에서 생성된 정보를 제공할 수 있다. 차량(10)은, 사용자 인터페이스 장치(200)를 통해, UI(User Interface) 또는 UX(User Experience)를 구현할 수 있다. 사용자 인터페이스 장치(200)는, 입력 장치, 출력 장치 및 사용자 모니터링 장치를 포함할 수 있다.
2) 오브젝트 검출 장치
오브젝트 검출 장치(210)는, 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 오브젝트에 대한 정보는, 오브젝트의 존재 유무에 대한 정보, 오브젝트의 위치 정보, 차량(10)과 오브젝트와의 거리 정보 및 차량(10)과 오브젝트와의 상대 속도 정보 중 적어도 어느 하나를 포함할 수 있다. 오브젝트 검출 장치(210)는, 차량(10) 외부의 오브젝트를 검출할 수 있다. 오브젝트 검출 장치(210)는, 차량(10) 외부의 오브젝트를 검출할 수 있는 적어도 하나의 센서를 포함할 수 있다. 오브젝트 검출 장치(210)는, 카메라, 레이다, 라이다, 초음파 센서 및 적외선 센서 중 적어도 하나를 포함할 수 있다. 오브젝트 검출 장치(210)는, 센서에서 생성되는 센싱 신호에 기초하여 생성된 오브젝트에 대한 데이터를 차량에 포함된 적어도 하나의 전자 장치에 제공할 수 있다.
2.1) 카메라
카메라는 영상을 이용하여 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 카메라는 적어도 하나의 렌즈, 적어도 하나의 이미지 센서 및 이미지 센서와 전기적으로 연결되어 수신되는 신호를 처리하고, 처리되는 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다.
카메라는, 모노 카메라, 스테레오 카메라, AVM(Around View Monitoring) 카메라 중 적어도 어느 하나일 수 있다. 카메라는, 다양한 영상 처리 알고리즘을 이용하여, 오브젝트의 위치 정보, 오브젝트와의 거리 정보 또는 오브젝트와의 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는, 획득된 영상에서, 시간에 따른 오브젝트 크기의 변화를 기초로, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는, 핀홀(pin hole) 모델, 노면 프로파일링 등을 통해, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는, 스테레오 카메라에서 획득된 스테레오 영상에서 디스패러티(disparity) 정보를 기초로 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
카메라는, 차량 외부를 촬영하기 위해 차량에서 FOV(field of view) 확보가 가능한 위치에 장착될 수 있다. 카메라는, 차량 전방의 영상을 획득하기 위해, 차량의 실내에서, 프런트 윈드 쉴드에 근접하게 배치될 수 있다. 카메라는, 프런트 범퍼 또는 라디에이터 그릴 주변에 배치될 수 있다. 카메라는, 차량 후방의 영상을 획득하기 위해, 차량의 실내에서, 리어 글라스에 근접하게 배치될 수 있다. 카메라는, 리어 범퍼, 트렁크 또는 테일 게이트 주변에 배치될 수 있다. 카메라는, 차량 측방의 영상을 획득하기 위해, 차량의 실내에서 사이드 윈도우 중 적어도 어느 하나에 근접하게 배치될 수 있다. 또는, 카메라는, 사이드 미러, 휀더 또는 도어 주변에 배치될 수 있다.
2.2) 레이다
레이다는 전파를 이용하여 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 레이다는, 전자파 송신부, 전자파 수신부 및 전자파 송신부 및 전자파 수신부와 전기적으로 연결되어, 수신되는 신호를 처리하고, 처리되는 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다. 레이다는 전파 발사 원리상 펄스 레이다(Pulse Radar) 방식 또는 연속파 레이다(Continuous Wave Radar) 방식으로 구현될 수 있다. 레이다는 연속파 레이다 방식 중에서 신호 파형에 따라 FMCW(Frequency Modulated Continuous Wave)방식 또는 FSK(Frequency Shift Keyong) 방식으로 구현될 수 있다. 레이다는 전자파를 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 레이다는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
2.3) 라이다
라이다는, 레이저 광을 이용하여, 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 라이다는, 광 송신부, 광 수신부 및 광 송신부 및 광 수신부와 전기적으로 연결되어, 수신되는 신호를 처리하고, 처리된 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다. 라이다는, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식으로 구현될 수 있다. 라이다는, 구동식 또는 비구동식으로 구현될 수 있다. 구동식으로 구현되는 경우, 라이다는, 모터에 의해 회전되며, 차량(10) 주변의 오브젝트를 검출할 수 있다. 비구동식으로 구현되는 경우, 라이다는, 광 스티어링에 의해, 차량을 기준으로 소정 범위 내에 위치하는 오브젝트를 검출할 수 있다. 차량(100)은 복수의 비구동식 라이다를 포함할 수 있다. 라이다는, 레이저 광 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 라이다는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
3) 통신 장치
통신 장치(220)는, 차량(10) 외부에 위치하는 디바이스와 신호를 교환할 수 있다. 통신 장치(220)는, 인프라(예를 들면, 서버, 방송국), 타 차량, 단말기 중 적어도 어느 하나와 신호를 교환할 수 있다. 통신 장치(220)는, 통신을 수행하기 위해 송신 안테나, 수신 안테나, 각종 통신 프로토콜이 구현 가능한 RF(Radio Frequency) 회로 및 RF 소자 중 적어도 어느 하나를 포함할 수 있다.
예를 들어, 통신 장치는 C-V2X(Cellular V2X) 기술을 기반으로 외부 디바이스와 신호를 교환할 수 있다. 예를 들어, C-V2X 기술은 LTE 기반의 사이드링크 통신 및/또는 NR 기반의 사이드링크 통신을 포함할 수 있다. C-V2X와 관련된 내용은 후술한다.
예를 들어, 통신 장치는 IEEE 802.11p PHY/MAC 계층 기술과 IEEE 1609 Network/Transport 계층 기술 기반의 DSRC(Dedicated Short Range Communications) 기술 또는 WAVE(Wireless Access in Vehicular Environment) 표준을 기반으로 외부 디바이스와 신호를 교환할 수 있다. DSRC (또는 WAVE 표준) 기술은 차량 탑재 장치 간 혹은 노변 장치와 차량 탑재 장치 간의 단거리 전용 통신을 통해 ITS(Intelligent Transport System) 서비스를 제공하기 위해 마련된 통신 규격이다. DSRC 기술은 5.9GHz 대역의 주파수를 사용할 수 있고, 3Mbps~27Mbps의 데이터 전송 속도를 가지는 통신 방식일 수 있다. IEEE 802.11p 기술은 IEEE 1609 기술과 결합되어 DSRC 기술 (혹은 WAVE 표준)을 지원할 수 있다.
본 발명의 통신 장치는 C-V2X 기술 또는 DSRC 기술 중 어느 하나만을 이용하여 외부 디바이스와 신호를 교환할 수 있다. 또는, 본 발명의 통신 장치는 C-V2X 기술 및 DSRC 기술을 하이브리드하여 외부 디바이스와 신호를 교환할 수 있다.
4) 운전 조작 장치
운전 조작 장치(230)는, 운전을 위한 사용자 입력을 수신하는 장치이다. 메뉴얼 모드인 경우, 차량(10)은, 운전 조작 장치(230)에 의해 제공되는 신호에 기초하여 운행될 수 있다. 운전 조작 장치(230)는, 조향 입력 장치(예를 들면, 스티어링 휠), 가속 입력 장치(예를 들면, 가속 페달) 및 브레이크 입력 장치(예를 들면, 브레이크 페달)를 포함할 수 있다.
5) 메인 ECU
메인 ECU(240)는, 차량(10) 내에 구비되는 적어도 하나의 전자 장치의 전반적인 동작을 제어할 수 있다.
6) 구동 제어 장치
구동 제어 장치(250)는, 차량(10)내 각종 차량 구동 장치를 전기적으로 제어하는 장치이다. 구동 제어 장치(250)는, 파워 트레인 구동 제어 장치, 샤시 구동 제어 장치, 도어/윈도우 구동 제어 장치, 안전 장치 구동 제어 장치, 램프 구동 제어 장치 및 공조 구동 제어 장치를 포함할 수 있다. 파워 트레인 구동 제어 장치는, 동력원 구동 제어 장치 및 변속기 구동 제어 장치를 포함할 수 있다. 샤시 구동 제어 장치는, 조향 구동 제어 장치, 브레이크 구동 제어 장치 및 서스펜션 구동 제어 장치를 포함할 수 있다. 한편, 안전 장치 구동 제어 장치는, 안전 벨트 제어를 위한 안전 벨트 구동 제어 장치를 포함할 수 있다.
구동 제어 장치(250)는, 적어도 하나의 전자적 제어 장치(예를 들면, 제어 ECU(Electronic Control Unit))를 포함한다.
구종 제어 장치(250)는, 자율 주행 장치(260)에서 수신되는 신호에 기초하여, 차량 구동 장치를 제어할 수 있다. 예를 들면, 제어 장치(250)는, 자율 주행 장치(260)에서 수신되는 신호에 기초하여, 파워 트레인, 조향 장치 및 브레이크 장치를 제어할 수 있다.
7) 자율 주행 장치
자율 주행 장치(260)는, 획득된 데이터에 기초하여, 자율 주행을 위한 패스를 생성할 수 있다. 자율 주행 장치(260)는, 생성된 경로를 따라 주행하기 위한 드라이빙 플랜을 생성할 수 있다. 자율 주행 장치(260)는, 드라이빙 플랜에 따른 차량의 움직임을 제어하기 위한 신호를 생성할 수 있다. 자율 주행 장치(260)는, 생성된 신호를 구동 제어 장치(250)에 제공할 수 있다.
자율 주행 장치(260)는, 적어도 하나의 ADAS(Advanced Driver Assistance System) 기능을 구현할 수 있다. ADAS는, 적응형 크루즈 컨트롤 시스템(ACC : Adaptive Cruise Control), 자동 비상 제동 시스템(AEB : Autonomous Emergency Braking), 전방 충돌 알림 시스템(FCW : Foward Collision Warning), 차선 유지 보조 시스템(LKA : Lane Keeping Assist), 차선 변경 보조 시스템(LCA : Lane Change Assist), 타겟 추종 보조 시스템(TFA : Target Following Assist), 사각 지대 감시 시스템(BSD : Blind Spot Detection), 적응형 하이빔 제어 시스템(HBA : High Beam Assist), 자동 주차 시스템(APS : Auto Parking System), 보행자 충돌 알림 시스템(PD collision warning system), 교통 신호 검출 시스템(TSR : Traffic Sign Recognition), 교통 신호 보조 시스템(TSA : Trafffic Sign Assist), 나이트 비전 시스템(NV : Night Vision), 운전자 상태 모니터링 시스템(DSM : Driver Status Monitoring) 및 교통 정체 지원 시스템(TJA : Traffic Jam Assist) 중 적어도 어느 하나를 구현할 수 있다.
자율 주행 장치(260)는, 자율 주행 모드에서 수동 주행 모드로의 전환 동작 또는 수동 주행 모드에서 자율 주행 모드로의 전환 동작을 수행할 수 있다. 예를 들면, 자율 주행 장치(260)는, 사용자 인터페이스 장치(200)로부터 수신되는 신호에 기초하여, 차량(10)의 모드를 자율 주행 모드에서 수동 주행 모드로 전환하거나 수동 주행 모드에서 자율 주행 모드로 전환할 수 있다.
8) 센싱부
센싱부(270)는, 차량의 상태를 센싱할 수 있다. 센싱부(270)는, IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 중 적어도 어느 하나를 포함할 수 있다. 한편, IMU(inertial measurement unit) 센서는, 가속도 센서, 자이로 센서, 자기 센서 중 하나 이상을 포함할 수 있다.
센싱부(270)는, 적어도 하나의 센서에서 생성되는 신호에 기초하여, 차량의 상태 데이터를 생성할 수 있다. 차량 상태 데이터는, 차량 내부에 구비된 각종 센서에서 감지된 데이터를 기초로 생성된 정보일 수 있다. 센싱부(270)는, 차량 자세 데이터, 차량 모션 데이터, 차량 요(yaw) 데이터, 차량 롤(roll) 데이터, 차량 피치(pitch) 데이터, 차량 충돌 데이터, 차량 방향 데이터, 차량 각도 데이터, 차량 속도 데이터, 차량 가속도 데이터, 차량 기울기 데이터, 차량 전진/후진 데이터, 차량의 중량 데이터, 배터리 데이터, 연료 데이터, 타이어 공기압 데이터, 차량 내부 온도 데이터, 차량 내부 습도 데이터, 스티어링 휠 회전 각도 데이터, 차량 외부 조도 데이터, 가속 페달에 가해지는 압력 데이터, 브레이크 페달에 가해지는 압력 데이터 등을 생성할 수 있다.
9) 위치 데이터 생성 장치
위치 데이터 생성 장치(280)는, 차량(10)의 위치 데이터를 생성할 수 있다. 위치 데이터 생성 장치(280)는, GPS(Global Positioning System) 및 DGPS(Differential Global Positioning System) 중 적어도 어느 하나를 포함할 수 있다. 위치 데이터 생성 장치(280)는, GPS 및 DGPS 중 적어도 어느 하나에서 생성되는 신호에 기초하여 차량(10)의 위치 데이터를 생성할 수 있다. 실시예에 따라, 위치 데이터 생성 장치(280)는, 센싱부(270)의 IMU(Inertial Measurement Unit) 및 오브젝트 검출 장치(210)의 카메라 중 적어도 어느 하나에 기초하여 위치 데이터를 보정할 수 있다. 위치 데이터 생성 장치(280)는, GNSS(Global Navigation Satellite System)로 명명될 수 있다.
차량(10)은, 내부 통신 시스템(50)을 포함할 수 있다. 차량(10)에 포함되는 복수의 전자 장치는 내부 통신 시스템(50)을 매개로 신호를 교환할 수 있다. 신호에는 데이터가 포함될 수 있다. 내부 통신 시스템(50)은, 적어도 하나의 통신 프로토콜(예를 들면, CAN, LIN, FlexRay, MOST, 이더넷)을 이용할 수 있다.
(3) 자율 주행 장치의 구성 요소
도 7은 본 발명의 실시예에 따른 자율 주행 장치의 제어 블럭도이다.
도 7을 참조하면, 자율 주행 장치(260)는, 메모리(140), 프로세서(170), 인터페이스부(180) 및 전원 공급부(190)를 포함할 수 있다.
메모리(140)는, 프로세서(170)와 전기적으로 연결된다. 메모리(140)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(140)는, 프로세서(170)에서 처리된 데이터를 저장할 수 있다. 메모리(140)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 중 적어도 어느 하나로 구성될 수 있다. 메모리(140)는 프로세서(170)의 처리 또는 제어를 위한 프로그램 등, 자율 주행 장치(260) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다. 메모리(140)는, 프로세서(170)와 일체형으로 구현될 수 있다. 실시예에 따라, 메모리(140)는, 프로세서(170)의 하위 구성으로 분류될 수 있다.
인터페이스부(180)는, 차량(10) 내에 구비되는 적어도 하나의 전자 장치와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(280)는, 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 구동 제어 장치(250), 센싱부(270) 및 위치 데이터 생성 장치(280) 중 적어도 어느 하나와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(280)는, 통신 모듈, 단자, 핀, 케이블, 포트, 회로, 소자 및 장치 중 적어도 어느 하나로 구성될 수 있다.
전원 공급부(190)는, 자율 주행 장치(260)에 전원을 공급할 수 있다. 전원 공급부(190)는, 차량(10)에 포함된 파워 소스(예를 들면, 배터리)로부터 전원을 공급받아, 자율 주행 장치(260)의 각 유닛에 전원을 공급할 수 있다. 전원 공급부(190)는, 메인 ECU(240)로부터 제공되는 제어 신호에 따라 동작될 수 있다. 전원 공급부(190)는, SMPS(switched-mode power supply)를 포함할 수 있다.
프로세서(170)는, 메모리(140), 인터페이스부(280), 전원 공급부(190)와 전기적으로 연결되어 신호를 교환할 수 있다. 프로세서(170)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
프로세서(170)는, 전원 공급부(190)로부터 제공되는 전원에 의해 구동될 수 있다. 프로세서(170)는, 전원 공급부(190)에 의해 전원이 공급되는 상태에서 데이터를 수신하고, 데이터를 처리하고, 신호를 생성하고, 신호를 제공할 수 있다.
프로세서(170)는, 인터페이스부(180)를 통해, 차량(10) 내 다른 전자 장치로부터 정보를 수신할 수 있다. 프로세서(170)는, 인터페이스부(180)를 통해, 차량(10) 내 다른 전자 장치로 제어 신호를 제공할 수 있다.
자율 주행 장치(260)는, 적어도 하나의 인쇄 회로 기판(printed circuit board, PCB)을 포함할 수 있다. 메모리(140), 인터페이스부(180), 전원 공급부(190) 및 프로세서(170)는, 인쇄 회로 기판에 전기적으로 연결될 수 있다.
(4) 자율 주행 장치의 동작
도 8은 본 발명의 실시예에 따른 자율 주행 차량의 신호 흐름도이다.
1) 수신 동작
도 8을 참조하면, 프로세서(170)는, 수신 동작을 수행할 수 있다. 프로세서(170)는, 인터페이스부(180)를 통해, 오브젝트 검출 장치(210), 통신 장치(220), 센싱부(270) 및 위치 데이터 생성 장치(280) 중 적어도 어느 하나로부터, 데이터를 수신할 수 있다. 프로세서(170)는, 오브젝트 검출 장치(210)로부터, 오브젝트 데이터를 수신할 수 있다. 프로세서(170)는, 통신 장치(220)로부터, HD 맵 데이터를 수신할 수 있다. 프로세서(170)는, 센싱부(270)로부터, 차량 상태 데이터를 수신할 수 있다. 프로세서(170)는, 위치 데이터 생성 장치(280)로부터 위치 데이터를 수신할 수 있다.
2) 처리/판단 동작
프로세서(170)는, 처리/판단 동작을 수행할 수 있다. 프로세서(170)는, 주행 상황 정보에 기초하여, 처리/판단 동작을 수행할 수 있다. 프로세서(170)는, 오브젝트 데이터, HD 맵 데이터, 차량 상태 데이터 및 위치 데이터 중 적어도 어느 하나에 기초하여, 처리/판단 동작을 수행할 수 있다.
2.1) 드라이빙 플랜 데이터 생성 동작
프로세서(170)는, 드라이빙 플랜 데이터(driving plan data)를 생성할 수 있다. 예를 들면, 프로세서(1700는, 일렉트로닉 호라이즌 데이터(Electronic Horizon Data)를 생성할 수 있다. 일렉트로닉 호라이즌 데이터는, 차량(10)이 위치한 지점에서부터 호라이즌(horizon)까지 범위 내에서의 드라이빙 플랜 데이터로 이해될 수 있다. 호라이즌은, 기 설정된 주행 경로를 기준으로, 차량(10)이 위치한 지점에서 기설정된 거리 앞의 지점으로 이해될 수 있다. 호라이즌은, 기 설정된 주행 경로를 따라 차량(10)이 위치한 지점에서부터 차량(10)이 소정 시간 이후에 도달할 수 있는 지점을 의미할 수 있다.
일렉트로닉 호라이즌 데이터는, 호라이즌 맵 데이터 및 호라이즌 패스 데이터를 포함할 수 있다.
2.1.1) 호라이즌 맵 데이터
호라이즌 맵 데이터는, 토폴로지 데이터(topology data), 도로 데이터, HD 맵 데이터 및 다이나믹 데이터(dynamic data) 중 적어도 어느 하나를 포함할 수 있다. 실시예에 따라, 호라이즌 맵 데이터는, 복수의 레이어를 포함할 수 있다. 예를 들면, 호라이즌 맵 데이터는, 토폴로지 데이터에 매칭되는 1 레이어, 도로 데이터에 매칭되는 제2 레이어, HD 맵 데이터에 매칭되는 제3 레이어 및 다이나믹 데이터에 매칭되는 제4 레이어를 포함할 수 있다. 호라이즌 맵 데이터는, 스태이틱 오브젝트(static object) 데이터를 더 포함할 수 있다.
토폴로지 데이터는, 도로 중심을 연결해 만든 지도로 설명될 수 있다. 토폴로지 데이터는, 차량의 위치를 대략적으로 표시하기에 알맞으며, 주로 운전자를 위한 내비게이션에서 사용하는 데이터의 형태일 수 있다. 토폴로지 데이터는, 차로에 대한 정보가 제외된 도로 정보에 대한 데이터로 이해될 수 있다. 토폴로지 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초하여 생성될 수 있다. 토폴로지 데이터는, 차량(10)에 구비된 적어도 하나의 메모리에 저장된 데이터에 기초할 수 있다.
도로 데이터는, 도로의 경사 데이터, 도로의 곡률 데이터, 도로의 제한 속도 데이터 중 적어도 어느 하나를 포함할 수 있다. 도로 데이터는, 추월 금지 구간 데이터를 더 포함할 수 있다. 도로 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초할 수 있다. 도로 데이터는, 오브젝트 검출 장치(210)에서 생성된 데이터에 기초할 수 있다.
HD 맵 데이터는, 도로의 상세한 차선 단위의 토폴로지 정보, 각 차선의 연결 정보, 차량의 로컬라이제이션(localization)을 위한 특징 정보(예를 들면, 교통 표지판, Lane Marking/속성, Road furniture 등)를 포함할 수 있다. HD 맵 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초할 수 있다.
다이나믹 데이터는, 도로상에서 발생될 수 있는 다양한 동적 정보를 포함할 수 있다. 예를 들면, 다이나믹 데이터는, 공사 정보, 가변 속도 차로 정보, 노면 상태 정보, 트래픽 정보, 무빙 오브젝트 정보 등을 포함할 수 있다. 다이나믹 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초할 수 있다. 다이나믹 데이터는, 오브젝트 검출 장치(210)에서 생성된 데이터에 기초할 수 있다.
프로세서(170)는, 차량(10)이 위치한 지점에서부터 호라이즌까지 범위 내에서의 맵 데이터를 제공할 수 있다.
2.1.2) 호라이즌 패스 데이터
호라이즌 패스 데이터는, 차량(10)이 위치한 지점에서부터 호라이즌까지의 범위 내에서 차량(10)이 취할 수 있는 궤도로 설명될 수 있다. 호라이즌 패스 데이터는, 디시전 포인트(decision point)(예를 들면, 갈림길, 분기점, 교차로 등)에서 어느 하나의 도로를 선택할 상대 확률을 나타내는 데이터를 포함할 수 있다. 상대 확률은, 최종 목적지까지 도착하는데 걸리는 시간에 기초하여 계산될 수 있다. 예를 들면, 디시전 포인트에서, 제1 도로를 선택하는 경우 제2 도로를 선택하는 경우보다 최종 목적지에 도착하는데 걸리는 시간이 더 작은 경우, 제1 도로를 선택할 확률은 제2 도로를 선택할 확률보다 더 높게 계산될 수 있다.
호라이즌 패스 데이터는, 메인 패스와 서브 패스를 포함할 수 있다. 메인 패스는, 선택될 상대적 확률이 높은 도로들을 연결한 궤도로 이해될 수 있다. 서브 패스는, 메인 패스 상의 적어도 하나의 디시전 포인트에서 분기될 수 있다. 서브 패스는, 메인 패스 상의 적어도 하나의 디시전 포인트에서 선택될 상대적 확률이 낮은 적어도 어느 하나의 도로를 연결한 궤도로 이해될 수 있다.
3) 제어 신호 생성 동작
프로세서(170)는, 제어 신호 생성 동작을 수행할 수 있다. 프로세서(170)는, 일렉트로닉 호라이즌 데이터에 기초하여, 제어 신호를 생성할 수 있다. 예를 들면, 프로세서(170)는, 일렉트로닉 호라이즌 데이터에 기초하여, 파워트레인 제어 신호, 브라이크 장치 제어 신호 및 스티어링 장치 제어 신호 중 적어도 어느 하나를 생성할 수 있다.
프로세서(170)는, 인터페이스부(180)를 통해, 생성된 제어 신호를 구동 제어 장치(250)에 전송할 수 있다. 구동 제어 장치(250)는, 파워 트레인(251), 브레이크 장치(252) 및 스티어링 장치(253) 중 적어도 어느 하나에 제어 신호를 전송할 수 있다.
캐빈
도 9는 본 발명의 실시예에 따른 차량의 내부를 도시한 도면이다. 도 10은 본 발명의 실시예에 따른 차량용 캐빈 시스템을 설명하는데 참조되는 블럭도이다.
(1) 캐빈의 구성 요소
도 9 내지 도 10을 참조하면, 차량용 캐빈 시스템(300)(이하, 캐빈 시스템)은 차량(10)을 이용하는 사용자를 위한 편의 시스템으로 정의될 수 있다. 캐빈 시스템(300)은, 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이 먼트 시스템(365)을 포함하는 최상위 시스템으로 설명될 수 있다. 캐빈 시스템(300)은, 메인 컨트롤러(370), 메모리(340), 인터페이스부(380), 전원 공급부(390), 입력 장치(310), 영상 장치(320), 통신 장치(330), 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365)을 포함할 수 있다. 실시예에 따라, 캐빈 시스템(300)은, 본 명세서에서 설명되는 구성 요소외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.
1) 메인 컨트롤러
메인 컨트롤러(370)는, 입력 장치(310), 통신 장치(330), 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365)과 전기적으로 연결되어 신호를 교환할 수 있다. 메인 컨트롤러(370)는, 입력 장치(310), 통신 장치(330), 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365)을 제어할 수 있다. 메인 컨트롤러(370)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
메인 컨트롤러(370)는, 적어도 하나의 서브 컨트롤러로 구성될 수 있다. 실시예에 따라, 메인 컨트롤러(370)는, 복수의 서브 컨트롤러를 포함할 수 있다. 복수의 서브 컨트롤러는 각각이, 그루핑된 캐빈 시스템(300)에 포함된 장치 및 시스템을 개별적으로 제어할 수 있다. 캐빈 시스템(300)에 포함된 장치 및 시스템은, 기능별로 그루핑되거나, 착좌 가능한 시트를 기준으로 그루핑될 수 있다.
메인 컨트롤러(370)는, 적어도 하나의 프로세서(371)를 포함할 수 있다. 도 6에는 메인 컨트롤러(370)가 하나의 프로세서(371)를 포함하는 것으로 예시되나, 메인 컨트롤러(371)는, 복수의 프로세서를 포함할 수도 있다. 프로세서(371)는, 상술한 서브 컨트롤러 중 어느 하나로 분류될 수도 있다.
프로세서(371)는, 통신 장치(330)를 통해, 사용자 단말기로부터 신호, 정보 또는 데이터를 수신할 수 있다. 사용자 단말기는, 캐빈 시스템(300)에 신호, 정보 또는 데이터를 전송할 수 있다.
프로세서(371)는, 영상 장치에 포함된 내부 카메라 및 외부 카메 중 적어도 어느 하나에서 수신되는 영상 데이터에 기초하여, 사용자를 특정할 수 있다. 프로세서(371)는, 영상 데이터에 영상 처리 알고리즘을 적용하여 사용자를 특정할 수 있다. 예를 들면, 프로세서(371)는, 사용자 단말기로부터 수신되는 정보와 영상 데이터를 비교하여 사용자를 특정할 수 있다. 예를 들면, 정보는, 사용자의 경로 정보, 신체 정보, 동승자 정보, 짐 정보, 위치 정보, 선호하는 컨텐츠 정보, 선호하는 음식 정보, 장애 여부 정보 및 이용 이력 정보 중 적어도 어느 하나를 포함할 수 있다.
메인 컨트롤러(370)는, 인공지능 에이전트(artificial intelligence agent)(372)를 포함할 수 있다. 인공지능 에이전트(372)는, 입력 장치(310)를 통해 획득된 데이터를 기초로 기계 학습(machine learning)을 수행할 수 있다. 인공지능 에이전트(372)는, 기계 학습된 결과에 기초하여, 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나를 제어할 수 있다.
2) 필수 구성 요소
메모리(340)는, 메인 컨트롤러(370)와 전기적으로 연결된다. 메모리(340)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(340)는, 메인 컨트롤러(370)에서 처리된 데이터를 저장할 수 있다. 메모리(340)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 중 적어도 어느 하나로 구성될 수 있다. 메모리(340)는 메인 컨트롤러(370)의 처리 또는 제어를 위한 프로그램 등, 캐빈 시스템(300) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다. 메모리(340)는, 메인 컨트롤러(370)와 일체형으로 구현될 수 있다.
인터페이스부(380)는, 차량(10) 내에 구비되는 적어도 하나의 전자 장치와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(380)는, 통신 모듈, 단자, 핀, 케이블, 포트, 회로, 소자 및 장치 중 적어도 어느 하나로 구성될 수 있다.
전원 공급부(390)는, 캐빈 시스템(300)에 전원을 공급할 수 있다. 전원 공급부(390)는, 차량(10)에 포함된 파워 소스(예를 들면, 배터리)로부터 전원을 공급받아, 캐빈 시스템(300)의 각 유닛에 전원을 공급할 수 있다. 전원 공급부(390)는, 메인 컨트롤러(370)로부터 제공되는 제어 신호에 따라 동작될 수 있다. 예를 들면, 전원 공급부(390)는, SMPS(switched-mode power supply)로 구현될 수 있다.
캐빈 시스템(300)은, 적어도 하나의 인쇄 회로 기판(printed circuit board, PCB)을 포함할 수 있다. 메인 컨트롤러(370), 메모리(340), 인터페이스부(380) 및 전원 공급부(390)는, 적어도 하나의 인쇄 회로 기판에 실장될 수 있다.
3) 입력 장치
입력 장치(310)는, 사용자 입력을 수신할 수 있다. 입력 장치(310)는, 사용자 입력을 전기적 신호로 전환할 수 있다. 입력 장치(310)에 의해 전환된 전기적 신호는 제어 신호로 전환되어 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나에 제공될 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는 입력 장치(310)로부터 수신되는 전기적 신호에 기초한 제어 신호를 생성할 수 있다.
입력 장치(310)는, 터치 입력부, 제스쳐 입력부, 기계식 입력부 및 음성 입력부 중 적어도 어느 하나를 포함할 수 있다. 터치 입력부는, 사용자의 터치 입력을 전기적 신호로 전환할 수 있다. 터치 입력부는, 사용자의 터치 입력을 감지하기 위해 적어도 하나의 터치 센서를 포함할 수 있다. 실시예에 따라, 터치 입력부는 디스플레이 시스템(350)에 포함되는 적어도 하나의 디스플레이 와 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 이러한, 터치 스크린은, 캐빈 시스템(300)과 사용자 사이의 입력 인터페이스 및 출력 인터페이스를 함께 제공할 수 있다. 제스쳐 입력부는, 사용자의 제스쳐 입력을 전기적 신호로 전환할 수 있다. 제스쳐 입력부는, 사용자의 제스쳐 입력을 감지하기 위한 적외선 센서 및 이미지 센서 중 적어도 어느 하나를 포함할 수 있다. 실시예에 따라, 제스쳐 입력부는, 사용자의 3차원 제스쳐 입력을 감지할 수 있다. 이를 위해, 제스쳐 입력부는, 복수의 적외선 광을 출력하는 광출력부 또는 복수의 이미지 센서를 포함할 수 있다. 제스쳐 입력부는, TOF(Time of Flight) 방식, 구조광(Structured light) 방식 또는 디스패러티(Disparity) 방식을 통해 사용자의 3차원 제스쳐 입력을 감지할 수 있다. 기계식 입력부는, 기계식 장치를 통한 사용자의 물리적인 입력(예를 들면, 누름 또는 회전)을 전기적 신호로 전환할 수 있다. 기계식 입력부는, 버튼, 돔 스위치(dome switch), 조그 휠 및 조그 스위치 중 적어도 어느 하나를 포함할 수 있다. 한편, 제스쳐 입력부와 기계식 입력부는 일체형으로 형성될 수 있다. 예를 들면, 입력 장치(310)는, 제스쳐 센서가 포함되고, 주변 구조물(예를 들면, 시트, 암레스트 및 도어 중 적어도 어느 하나)의 일부분에서 출납 가능하게 형성된 조그 다이얼 장치를 포함할 수 있다. 조그 다이얼 장치가 주변 구조물과 평평한 상태를 이룬 경우, 조그 다이얼 장치는 제스쳐 입력부로 기능할 수 있다. 조그 다이얼 장치가 주변 구조물에 비해 돌출된 상태의 경우, 조그 다이얼 장치는 기계식 입력부로 기능할 수 있다. 음성 입력부는, 사용자의 음성 입력을 전기적 신호로 전환할 수 있다. 음성 입력부는, 적어도 하나의 마이크로 폰을 포함할 수 있다. 음성 입력부는, 빔 포밍 마이크(Beam foaming MIC)를 포함할 수 있다.
4) 영상 장치
영상 장치(320)는, 적어도 하나의 카메라를 포함할 수 있다. 영상 장치(320)는, 내부 카메라 및 외부 카메라 중 적어도 어느 하나를 포함할 수 있다. 내부 카메라는, 캐빈 내의 영상을 촬영할 수 있다. 외부 카메라는, 차량 외부 영상을 촬영할 수 있다. 내부 카메라는, 캐빈 내의 영상을 획득할 수 있다. 영상 장치(320)는, 적어도 하나의 내부 카메라를 포함할 수 있다. 영상 장치(320)는, 탑승 가능 인원에 대응되는 갯수의 카메라를 포함하는 것이 바람직하다. 영상 장치(320)는, 내부 카메라에 의해 획득된 영상을 제공할 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는, 내부 카메라에 의해 획득된 영상에 기초하여 사용자의 모션을 검출하고, 검출된 모션에 기초하여 신호를 생성하여, 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나에 제공할 수 있다. 외부 카메라는, 차량 외부 영상을 획득할 수 있다. 영상 장치(320)는, 적어도 하나의 외부 카메라를 포함할 수 있다. 영상 장치(320)는, 탑승 도어에 대응되는 갯수의 카메라를 포함하는 것이 바람직하다. 영상 장치(320)는, 외부 카메라에 의해 획득된 영상을 제공할 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는, 외부 카메라에 의해 획득된 영상에 기초하여 사용자 정보를 획득할 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는, 사용자 정보에 기초하여, 사용자를 인증하거나, 사용자의 신체 정보(예를 들면, 신장 정보, 체중 정보 등), 사용자의 동승자 정보, 사용자의 짐 정보 등을 획득할 수 있다.
5) 통신 장치
통신 장치(330)는, 외부 디바이스와 무선으로 신호를 교환할 수 있다. 통신 장치(330)는, 네트워크 망을 통해 외부 디바이스와 신호를 교환하거나, 직접 외부 디바이스와 신호를 교환할 수 있다. 외부 디바이스는, 서버, 이동 단말기 및 타 차량 중 적어도 어느 하나를 포함할 수 있다. 통신 장치(330)는, 적어도 하나의 사용자 단말기와 신호를 교환할 수 있다. 통신 장치(330)는, 통신을 수행하기 위해 안테나, 적어도 하나의 통신 프로토콜이 구현 가능한 RF(Radio Frequency) 회로 및 RF 소자 중 적어도 어느 하나를 포함할 수 있다. 실시예에 따라, 통신 장치(330)는, 복수의 통신 프로토콜을 이용할 수도 있다. 통신 장치(330)는, 이동 단말기와의 거리에 따라 통신 프로토콜을 전환할 수 있다.
예를 들어, 통신 장치는 C-V2X(Cellular V2X) 기술을 기반으로 외부 디바이스와 신호를 교환할 수 있다. 예를 들어, C-V2X 기술은 LTE 기반의 사이드링크 통신 및/또는 NR 기반의 사이드링크 통신을 포함할 수 있다. C-V2X와 관련된 내용은 후술한다.
예를 들어, 통신 장치는 IEEE 802.11p PHY/MAC 계층 기술과 IEEE 1609 Network/Transport 계층 기술 기반의 DSRC(Dedicated Short Range Communications) 기술 또는 WAVE(Wireless Access in Vehicular Environment) 표준을 기반으로 외부 디바이스와 신호를 교환할 수 있다. DSRC (또는 WAVE 표준) 기술은 차량 탑재 장치 간 혹은 노변 장치와 차량 탑재 장치 간의 단거리 전용 통신을 통해 ITS(Intelligent Transport System) 서비스를 제공하기 위해 마련된 통신 규격이다. DSRC 기술은 5.9GHz 대역의 주파수를 사용할 수 있고, 3Mbps~27Mbps의 데이터 전송 속도를 가지는 통신 방식일 수 있다. IEEE 802.11p 기술은 IEEE 1609 기술과 결합되어 DSRC 기술 (혹은 WAVE 표준)을 지원할 수 있다.
본 발명의 통신 장치는 C-V2X 기술 또는 DSRC 기술 중 어느 하나만을 이용하여 외부 디바이스와 신호를 교환할 수 있다. 또는, 본 발명의 통신 장치는 C-V2X 기술 및 DSRC 기술을 하이브리드하여 외부 디바이스와 신호를 교환할 수 있다.
6) 디스플레이 시스템
디스플레이 시스템(350)은, 그래픽 객체를 표시할 수 있다. 디스플레이 시스템(350)은, 적어도 하나의 디스플레이 장치를 포함할 수 있다. 예를 들면, 디스플레이 시스템(350)은, 공용으로 이용 가능한 제1 디스플레이 장치(410)와 개별 이용 가능한 제2 디스플레이 장치(420)를 포함할 수 있다.
6.1) 공용 디스플레이 장치
제1 디스플레이 장치(410)는, 시각적 컨텐츠를 출력하는 적어도 하나의 디스플레이(411)를 포함할 수 있다. 제1 디스플레이 장치(410)에 포함되는 디스플레이(411)는, 평면 디스플레이. 곡면 디스플레이, 롤러블 디스플레이 및 플렉서블 디스플레이 중 적어도 어느 하나로 구현될 수 있다. 예를 들면, 제1 디스플레이 장치(410)는, 시트 후방에 위치하고, 캐빈 내로 출납 가능하게 형성된 제1 디스플레이(411) 및 상기 제1 디스플레이(411)를 이동시키기 위한 제1 메카니즘를 포함할 수 있다. 제1 디스플레이(411)는, 시트 메인 프레임에 형성된 슬롯에 출납 가능하게 배치될 수 있다. 실시예에 따라, 제1 디스플레이 장치(410)는, 플렉서블 영역 조절 메카니즘을 더 포함할 수 있다. 제1 디스플레이는, 플렉서블하게 형성될 수 있고, 사용자의 위치에 따라, 제1 디스플레이의 플렉서블 영역이 조절될 수 있다. 예를 들면, 제1 디스플레이 장치(410)는, 캐빈내 천장에 위치하고, 롤러블(rollable)하게 형성된 제2 디스플레이 및 상기 제2 디스플레이를 감거나 풀기 위한 제2 메카니즘을 포함할 수 있다. 제2 디스플레이는, 양면에 화면 출력이 가능하게 형성될 수 있다. 예를 들면, 제1 디스플레이 장치(410)는, 캐빈내 천장에 위치하고, 플렉서블(flexible)하게 형성된 제3 디스플레이 및 상기 제3 디스플레이를 휘거나 펴기위한 제3 메카니즘을 포함할 수 있다. 실시예에 따라, 디스플레이 시스템(350)은, 제1 디스플레이 장치(410) 및 제2 디스플레이 장치(420) 중 적어도 어느 하나에 제어 신호를 제공하는 적어도 하나의 프로세서를 더 포함할 수 있다. 디스플레이 시스템(350)에 포함되는 프로세서는, 메인 컨트롤러(370), 입력 장치(310), 영상 장치(320) 및 통신 장치(330) 중 적어도 어느 하나로부터 수신되는 신호에 기초하여 제어 신호를 생성할 수 있다.
제1 디스플레이 장치(410)에 포함되는 디스플레이의 표시 영역은, 제1 영역(411a) 및 제2 영역(411b)으로 구분될 수 있다. 제1 영역(411a)은, 컨텐츠를 표시 영역으로 정의될 수 있다. 예를 들면, 제 1영역(411)은, 엔터테인먼트 컨텐츠(예를 들면, 영화, 스포츠, 쇼핑, 음악 등), 화상 회의, 음식 메뉴 및 증강 현실 화면에 대응하는 그래픽 객체 중 적어도 어느 하나를 표시할 수 있다. 제1 영역(411a)은, 차량(10)의 주행 상황 정보에 대응하는 그래픽 객체를 표시할 수 있다. 주행 상황 정보는, 주행 상황 정보는, 차량 외부의 오브젝트 정보, 내비게이션 정보 및 차량 상태 정보 중 적어도 어느 하나를 포함할 수 있다. 차량 외부의 오브젝트 정보는, 오브젝트의 존재 유무에 대한 정보, 오브젝트의 위치 정보, 차량(300)과 오브젝트와의 거리 정보 및 차량(300)과 오브젝트와의 상대 속도 정보를 포함할 수 있다. 내비게이션 정보는, 맵(map) 정보, 설정된 목적지 정보, 상기 목적지 설정 따른 경로 정보, 경로 상의 다양한 오브젝트에 대한 정보, 차선 정보 및 차량의 현재 위치 정보 중 적어도 어느 하나를 포함할 수 있다. 차량 상태 정보는, 차량의 자세 정보, 차량의 속도 정보, 차량의 기울기 정보, 차량의 중량 정보, 차량의 방향 정보, 차량의 배터리 정보, 차량의 연료 정보, 차량의 타이어 공기압 정보, 차량의 스티어링 정보, 차량 실내 온도 정보, 차량 실내 습도 정보, 페달 포지션 정보 및 차량 엔진 온도 정보 등을 포함할 수 있다. 제2 영역(411b)은, 사용자 인터페이스 영역으로 정의될 수 있다. 예를 들면, 제2 영역(411b)은, 인공 지능 에이전트 화면을 출력할 수 있다. 실시예에 따라, 제2 영역(411b)은, 시트 프레임으로 구분되는 영역에 위치할 수 있다. 이경우, 사용자는, 복수의 시트 사이로 제2 영역(411b)에 표시되는 컨텐츠를 바라볼 수 있다. 실시예에 따라, 제1 디스플레이 장치(410)는, 홀로그램 컨텐츠를 제공할 수 있다. 예를 들면, 제1 디스플레이 장치(410)는, 복수의 사용자별로 홀로그램 컨텐츠를 제공하여 컨텐츠를 요청한 사용자만 해당 컨텐츠를 시청하게 할 수 있다.
6.2) 개인용 디스플레이 장치
제2 디스플레이 장치(420)는, 적어도 하나의 디스플레이(421)을 포함할 수 있다. 제2 디스플레이 장치(420)는, 개개의 탑승자만 디스플레이 내용을 확인할 수 있는 위치에 디스플레이(421)을 제공할 수 있다. 예를 들면, 디스플레이(421)은, 시트의 암 레스트에 배치될 수 있다. 제2 디스플레이 장치(420)는, 사용자의 개인 정보에 대응되는 그래픽 객체를 표시할 수 있다. 제2 디스플레이 장치(420)는, 탑승 가능 인원에 대응되는 갯수의 디스플레이(421)을 포함할 수 있다. 제2 디스플레이 장치(420)는, 터치 센서와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 제2 디스플레이 장치(420)는, 시트 조정 또는 실내 온도 조정의 사용자 입력을 수신하기 위한 그래픽 객체를 표시할 수 있다.
7) 카고 시스템
카고 시스템(355)은, 사용자의 요청에 따라 상품을 사용자에게 제공할 수 있다. 카고 시스템(355)은, 입력 장치(310) 또는 통신 장치(330)에 의해 생성되는 전기적 신호에 기초하여 동작될 수 있다. 카고 시스템(355)은, 카고 박스를 포함할 수 있다. 카고 박스는, 상품들이 적재된 상태로 시트 하단의 일 부분에 은닉될 수 있다. 사용자 입력에 기초한 전기적 신호가 수신되는 경우, 카고 박스는, 캐빈으로 노출될 수 있다. 사용자는 노출된 카고 박스에 적재된 물품 중 필요한 상품을 선택할 수 있다. 카고 시스템(355)은, 사용자 입력에 따른 카고 박스의 노출을 위해, 슬라이딩 무빙 메카니즘, 상품 팝업 메카니즘을 포함할 수 있다. 카고 시스템은(355)은, 다양한 종류의 상품을 제공하기 위해 복수의 카고 박스를 포함할 수 있다. 카고 박스에는, 상품별로 제공 여부를 판단하기 위한 무게 센서가 내장될 수 있다.
8) 시트 시스템
시트 시스템(360)은, 사용자에 맞춤형 시트를 사용자에게 제공할 수 있다. 시트 시스템(360)은, 입력 장치(310) 또는 통신 장치(330)에 의해 생성되는 전기적 신호에 기초하여 동작될 수 있다. 시트 시스템(360)은, 획득된 사용자 신체 데이터에 기초하여, 시트의 적어도 하나의 요소를 조정할 수 있다. 시트 시스템(360)은 사용자의 착좌 여부를 판단하기 위한 사용자 감지 센서(예를 들면, 압력 센서)를 포함할 수 있다. 시트 시스템(360)은, 복수의 사용자가 각각 착좌할 수 있는 복수의 시트를 포함할 수 있다. 복수의 시트 중 어느 하나는 적어도 다른 하나와 마주보게 배치될 수 있다. 캐빈 내부의 적어도 두명의 사용자는 서로 마주보고 앉을 수 있다.
9) 페이먼트 시스템
페이먼트 시스템(365)은, 결제 서비스를 사용자에게 제공할 수 있다. 페이먼트 시스템(365)은, 입력 장치(310) 또는 통신 장치(330)에 의해 생성되는 전기적 신호에 기초하여 동작될 수 있다. 페이먼트 시스템(365)은, 사용자가 이용한 적어도 하나의 서비스에 대한 가격을 산정하고, 산정된 가격이 지불되도록 요청할 수 있다.
(2) 자율 주행 차량 이용 시나리오
도 11은 본 발명의 실시예에 따라 사용자의 이용 시나리오를 설명하는데 참조되는 도면이다.
1) 목적지 예측 시나리오
제1 시나리오(S111)는, 사용자의 목적지 예측 시나리오이다. 사용자 단말기는 캐빈 시스템(300)과 연동 가능한 애플리케이션을 설치할 수 있다. 사용자 단말기는, 애플리케이션을 통해, 사용자의 컨텍스트추얼 정보(user's contextual information)를 기초로, 사용자의 목적지를 예측할 수 있다. 사용자 단말기는, 애플리케이션을 통해, 캐빈 내의 빈자리 정보를 제공할 수 있다.
2) 캐빈 인테리어 레이아웃 준비 시나리오
제2 시나리오(S112)는, 캐빈 인테리어 레이아웃 준비 시나리오이다. 캐빈 시스템(300)은, 차량(300) 외부에 위치하는 사용자에 대한 데이터를 획득하기 위한 스캐닝 장치를 더 포함할 수 있다. 스캐닝 장치는, 사용자를 스캐닝하여, 사용자의 신체 데이터 및 수하물 데이터를 획득할 수 있다. 사용자의 신체 데이터 및 수하물 데이터는, 레이아웃을 설정하는데 이용될 수 있다. 사용자의 신체 데이터는, 사용자 인증에 이용될 수 있다. 스캐닝 장치는, 적어도 하나의 이미지 센서를 포함할 수 있다. 이미지 센서는, 가시광 대역 또는 적외선 대역의 광을 이용하여 사용자 이미지를 획득할 수 있다.
시트 시스템(360)은, 사용자의 신체 데이터 및 수하물 데이터 중 적어도 어느 하나에 기초하여, 캐빈 내 레이아웃을 설정할 수 있다. 예를 들면, 시트 시스템(360)은, 수하물 적재 공간 또는 카시트 설치 공간을 마련할 수 있다.
3) 사용자 환영 시나리오
제3 시나리오(S113)는, 사용자 환영 시나리오이다. 캐빈 시스템(300)은, 적어도 하나의 가이드 라이트를 더 포함할 수 있다. 가이드 라이트는, 캐빈 내 바닥에 배치될 수 있다. 캐빈 시스템(300)은, 사용자의 탑승이 감지되는 경우, 복수의 시트 중 기 설정된 시트에 사용자가 착석하도록 가이드 라이트를 출력할 수 있다. 예를 들면, 메인 컨트롤러(370)는, 오픈된 도어에서부터 기 설정된 사용자 시트까지 시간에 따른 복수의 광원에 대한 순차 점등을 통해, 무빙 라이트를 구현할 수 있다.
4) 시트 조절 서비스 시나리오
제4 시나리오(S114)는, 시트 조절 서비스 시나리오이다. 시트 시스템(360)은, 획득된 신체 정보에 기초하여, 사용자와 매칭되는 시트의 적어도 하나의 요소를 조절할 수 있다.
5) 개인 컨텐츠 제공 시나리오
제5 시나리오(S115)는, 개인 컨텐츠 제공 시나리오이다. 디스플레이 시스템(350)은, 입력 장치(310) 또는 통신 장치(330)를 통해, 사용자 개인 데이터를 수신할 수 있다. 디스플레이 시스템(350)은, 사용자 개인 데이터에 대응되는 컨텐츠를 제공할 수 있다.
6) 상품 제공 시나리오
제6 시나리오(S116)는, 상품 제공 시나리오이다. 카고 시스템(355)은, 입력 장치(310) 또는 통신 장치(330)를 통해, 사용자 데이터를 수신할 수 있다. 사용자 데이터는, 사용자의 선호도 데이터 및 사용자의 목적지 데이터 등을 포함할 수 있다. 카고 시스템(355)은, 사용자 데이터에 기초하여, 상품을 제공할 수 있다.
7) 페이먼트 시나리오
제7 시나리오(S117)는, 페이먼트 시나리오이다. 페이먼트 시스템(365)은, 입력 장치(310), 통신 장치(330) 및 카고 시스템(355) 중 적어도 어느 하나로부터 가격 산정을 위한 데이터를 수신할 수 있다. 페이먼트 시스템(365)은, 수신된 데이터에 기초하여, 사용자의 차량 이용 가격을 산정할 수 있다. 페이먼트 시스템(365)은, 산정된 가격으로 사용자(예를 들면, 사용자의 이동 단말기)에 요금 지불을 요청할 수 있다.
8) 사용자의 디스플레이 시스템 제어 시나리오
제8 시나리오(S118)는, 사용자의 디스플레이 시스템 제어 시나리오이다. 입력 장치(310)는, 적어도 어느 하나의 형태로 이루어진 사용자 입력을 수신하여, 전기적 신호로 전환할 수 있다. 디스플레이 시스템(350)은, 전기적 신호에 기초하여, 표시되는 컨텐츠를 제어할 수 있다.
9) AI 에이전트 시나리오
제9 시나리오(S119)는, 복수의 사용자를 위한 멀티 채널 인공지능(artificial intelligence, AI) 에이전트 시나리오이다. 인공 지능 에이전트(372)는, 복수의 사용자 별로 사용자 입력을 구분할 수 있다. 인공 지능 에이전트(372)는, 복수의 사용자 개별 사용자 입력이 전환된 전기적 신호에 기초하여, 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나를 제어할 수 있다.
10) 복수 사용자를 위한 멀티미디어 컨텐츠 제공 시나리오
제10 시나리오(S120)는, 복수의 사용자를 대상으로 하는 멀티미디어 컨텐츠 제공 시나리오이다. 디스플레이 시스템(350)은, 모든 사용자가 함께 시청할 수 있는 컨텐츠를 제공할 수 있다. 이경우, 디스플레이 시스템(350)은, 시트별로 구비된 스피커를 통해, 동일한 사운드를 복수의 사용자 개별적으로 제공할 수 있다. 디스플레이 시스템(350)은, 복수의 사용자가 개별적으로 시청할 수 있는 컨텐츠를 제공할 수 있다. 이경우, 디스플레이 시스템(350)는, 시트별로 구비된 스피커를 통해, 개별적 사운드를 제공할 수 있다.
11) 사용자 안전 확보 시나리오
제11 시나리오(S121)는, 사용자 안전 확보 시나리오이다. 사용자에게 위협이되는 차량 주변 오브젝트 정보를 획득하는 경우, 메인 컨트롤러(370)는, 디스플레이 시스템(350)을 통해, 차량 주변 오브젝트에 대한 알람이 출력되도록 제어할 수 있다.
12) 소지품 분실 예방 시나리오
제12 시나리오(S122)는, 사용자의 소지품 분실 예방 시나리오이다. 메인 컨트롤러(370)는, 입력 장치(310)를 통해, 사용자의 소지품에 대한 데이터를 획득할 수 있다. 메인 컨트롤러(370)는, 입력 장치(310)를 통해, 사용자의 움직임 데이터를 획득할 수 있다. 메인 컨트롤러(370)는, 소지품에 대한 데이터 및 움직임 데이터에 기초하여, 사용자가 소지품을 두고 하차하는지 여부를 판단할 수 있다. 메인 컨트롤러(370)는, 디스플레이 시스템(350)을 통해, 소지품에 관한 알람이 출력되도록 제어할 수 있다.
13) 하차 리포트 시나리오
제13 시나리오(S123)는, 하차 리포트 시나리오이다. 메인 컨트롤러(370)는, 입력 장치(310)를 통해, 사용자의 하차 데이터를 수신할 수 있다. 사용자 하차 이후, 메인 컨트롤러(370)는, 통신 장치(330)를 통해, 사용자의 이동 단말기에 하차에 따른 리포트 데이터를 제공할 수 있다. 리포트 데이터는, 차량(10) 전체 이용 요금 데이터를 포함할 수 있다.
앞서 살핀 5G 통신 기술은 후술할 본 발명에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 발명에서 제안하는 방법들의 기술적 특징을 구체화하거나 명확하게 하는데 보충될 수 있다.
도 12 내지 도 14는 본 발명의 일 실시예에 따른 뇌파 검출 장치를 도시한다.
도 12 내지 도 14에 도시된 바와 같이, 본 발명의 일 실시예에 따른 뇌파 검출 장치(500)는 제1 바디(510), 제2 바디(520) 및 광출력부(540)를 포함할 수 있다.
제1 바디(510)는 운전자의 이마에 접촉되도록 라운드 형태로 구부러져 있다.
제1 바디(510)의 이마 접촉면에는 뇌파 측정을 위한 전극부(550)가 설치될 수 있다.
전극부(550)는 운전자의 뇌파 신호를 검출할 수 있다. 전극부(550)는 운전자의 이마 부분 및 관자놀이 부분의 뇌파 신호를 검출할 수 있도록, 제1 바디(510)의 이마 접촉면 및 제1 바디(510)의 관자놀이 접촉면에 구비될 수 있다.
전극부(550)는 학습자의 뇌파(EEG, Electro-Encephalography)를 측정하기 위한 것이다. 뇌파(EEG)란 뇌에서 발생한 신호를 전극부(550)로 측정한 것을 말하며, 뇌의 수많은 신경에서 발생한 전기적인 신호가 합성되어 나타나는 미세한 뇌 표면의 신호를 의미한다. 뇌파 신호는 뇌의 활동, 측정 시의 상태 및 뇌 기능에 따라 시공간적으로 변화하며, 이에 따라 뇌파 신호는 주파수에 따른 대역별 특성, 시간 영역에서의 특성, 뇌 기능과 관련된 공간적 특성을 가진다.
여기서, 전극부(550)는 단추식으로 구성되며, 제1 바디(510)로부터 탈착/부착되어 교체될 수 있다. 즉, 전극부(550)는 제1 바디(510)에 360도 회전 가능한 볼 형태의 연결부위를 통해 연결될 수 있으며, 전극부(550)가 제1 바디(510)에 연결되는 각도는 임의로 조절될 수 있다.
전극부(550)는 금속(551), 전도성 쿠션(552) 및 전도성 천(553)으로 구성될 수 있다.
제1 바디(510)의 이마 접촉면의 타면에는 미리 설정된 광을 출력하기 위한 광출력부(540)가 구비될 수 있다.
제1 바디(510)에는 전극부(550)와 전기적으로 연결되는 구동 모듈(530)이 구비될 수 있다. 구동 모듈(530)은 전극부(550)에 의해 검출된 뇌파 신호를 측정하는 측정부, 측정된 뇌파 신호를 분석하는 분석부, 분석부에 의해 분석된 결과를 외부의 장치(예: 차량(10))로 전송하는 통신부, 측정부와 분석부 및 통신부를 제어하며, 미리 설정된 광을 출력하도록 상기 광출력부(540)를 제어하는 제어부를 포함할 수 있다. 여기서, 구동 모듈(530)의 분석부는 디지털 형태의 뇌파 신호를 분석하고, 머신 러닝 등의 알고리즘을 통해, 집중도 레벨을 판단할 수도 있다.
제2 바디(520)는 제1 바디(510)와 전기적으로 연결되며, 제1 바디(510)에 구비된 전극부(미도시)와 제1 바디(510)를 통해 전기적으로 연결되고, 운전자의 피부에 접착될 경우 전극부 전압에 대하여 전기적으로 REF(reference) 및 GROUND가 될 수 있다.
제1 바디(510) 및 제2 바디(520)는 신축성 있는 재질(예: 고무)로 구성될 수 있다.
도 15는 본 발명의 일 실시예에 따른 AI 장치의 블록도이다.
상기 AI 장치(20)는 AI 프로세싱을 수행할 수 있는 AI 모듈을 포함하는 전자 기기 또는 상기 AI 모듈을 포함하는 서버 등을 포함할 수 있다. 또한, 상기 AI 장치(20)는 도 5에 도시된 차량(10)의 적어도 일부의 구성으로 포함되어 AI 프로세싱 중 적어도 일부를 함께 수행하도록 구비될 수도 있다.
상기 AI 프로세싱은, 도 5에 도시된 차량(10)의 제어와 관련된 모든 동작들을 포함할 수 있다. 예를 들어, 차량(10)는 센싱 데이터 또는 획득된 데이터를 AI 프로세싱 하여 처리/판단, 제어 신호 생성 동작을 수행할 수 있다. 또한, 예를 들어, 차량(10)는 통신 장치(220)를 통해 수신된 데이터를 AI 프로세싱하여 차량의 제어를 수행할 수 있다.
상기 AI 장치(20)는 AI 프로세싱 결과를 직접 이용하는 클라이언트 디바이스이거나, 상기 AI 프로세싱 결과를 다른 기기에 제공하는 클라우드 환경의 디바이스일 수도 있다.
상기 AI 장치(20)는 AI 프로세서(21), 메모리(25) 및/또는 통신부(27)를 포함할 수 있다.
상기 AI 장치(20)는 신경망을 학습할 수 있는 컴퓨팅 장치로서, 서버, 데스크탑 PC, 노트북 PC, 태블릿 PC 등과 같은 다양한 전자 장치로 구현될 수 있다.
AI 프로세서(21)는 메모리(25)에 저장된 프로그램을 이용하여 신경망을 학습할 수 있다. 특히, AI 프로세서(21)는 차량 관련 데이터를 인식하기 위한 신경망을 학습할 수 있다. 여기서, 차량 관련 데이터를 인식하기 위한 신경망은 인간의 뇌 구조를 컴퓨터 상에서 모의하도록 설계될 수 있으며, 인간의 신경망의 뉴런(neuron)을 모의하는, 가중치를 갖는 복수의 네트워크 노드들을 포함할 수 있다. 복수의 네트워크 모드들은 뉴런이 시냅스(synapse)를 통해 신호를 주고받는 뉴런의 시냅틱 활동을 모의하도록 각각 연결 관계에 따라 데이터를 주고받을 수 있다. 여기서 신경망은 신경망 모델에서 발전한 딥러닝 모델을 포함할 수 있다. 딥 러닝 모델에서 복수의 네트워크 노드들은 서로 다른 레이어에 위치하면서 컨볼루션(convolution) 연결 관계에 따라 데이터를 주고받을 수 있다. 신경망 모델의 예는 심층 신경망(DNN, deep neural networks), 합성곱 신경망(CNN, convolutional deep neural networks), 순환 신경망(RNN, Recurrent Boltzmann Machine), 제한 볼츠만 머신(RBM, Restricted Boltzmann Machine), 심층 신뢰 신경망(DBN, deep belief networks), 심층 Q-네트워크(Deep Q-Network)와 같은 다양한 딥 러닝 기법들을 포함하며, 컴퓨터비젼, 음성인식, 자연어처리, 음성/신호처리 등의 분야에 적용될 수 있다.
한편, 전술한 바와 같은 기능을 수행하는 프로세서는 범용 프로세서(예를 들어, CPU)일 수 있으나, 인공지능 학습을 위한 AI 전용 프로세서(예를 들어, GPU)일 수 있다.
메모리(25)는 AI 장치(20)의 동작에 필요한 각종 프로그램 및 데이터를 저장할 수 있다. 메모리(25)는 비 휘발성 메모리, 휘발성 메모리, 플래시 메모리(flash-memory), 하드디스크 드라이브(HDD) 또는 솔리드 스테이트 드라이브(SDD) 등으로 구현할 수 있다. 메모리(25)는 AI 프로세서(21)에 의해 액세스되며, AI 프로세서(21)에 의한 데이터의 독취/기록/수정/삭제/갱신 등이 수행될 수 있다. 또한, 메모리(25)는 본 발명의 일 실시예에 따른 데이터 분류/인식을 위한 학습 알고리즘을 통해 생성된 신경망 모델(예를 들어, 딥 러닝 모델(26))을 저장할 수 있다.
한편, AI 프로세서(21)는 데이터 분류/인식을 위한 신경망을 학습하는 데이터 학습부(22)를 포함할 수 있다. 데이터 학습부(22)는 데이터 분류/인식을 판단하기 위하여 어떤 학습 데이터를 이용할지, 학습 데이터를 이용하여 데이터를 어떻게 분류하고 인식할지에 관한 기준을 학습할 수 있다. 데이터 학습부(22)는 학습에 이용될 학습 데이터를 획득하고, 획득된 학습데이터를 딥러닝 모델에 적용함으로써, 딥러닝 모델을 학습할 수 있다.
데이터 학습부(22)는 적어도 하나의 하드웨어 칩 형태로 제작되어 AI 장치(20)에 탑재될 수 있다. 예를 들어, 데이터 학습부(22)는 인공지능(AI)을 위한 전용 하드웨어 칩 형태로 제작될 수도 있고, 범용 프로세서(CPU) 또는 그래픽 전용 프로세서(GPU)의 일부로 제작되어 AI 장치(20)에 탑재될 수도 있다. 또한, 데이터 학습부(22)는 소프트웨어 모듈로 구현될 수 있다. 소프트웨어 모듈(또는 인스트럭션(instruction)을 포함하는 프로그램 모듈)로 구현되는 경우, 소프트웨어 모듈은 컴퓨터로 읽을 수 있는 판독 가능한 비일시적 판독 가능 기록 매체(non-transitory computer readable media)에 저장될 수 있다. 이 경우, 적어도 하나의 소프트웨어 모듈은 OS(Operating System)에 의해 제공되거나, 애플리케이션에 의해 제공될 수 있다.
데이터 학습부(22)는 학습 데이터 획득부(23) 및 모델 학습부(24)를 포함할 수 있다.
학습 데이터 획득부(23)는 데이터를 분류하고 인식하기 위한 신경망 모델에 필요한 학습 데이터를 획득할 수 있다. 예를 들어, 학습 데이터 획득부(23)는 학습 데이터로서, 신경망 모델에 입력하기 위한 차량 데이터 및/또는 샘플 데이터를 획득할 수 있다.
모델 학습부(24)는 상기 획득된 학습 데이터를 이용하여, 신경망 모델이 소정의 데이터를 어떻게 분류할지에 관한 판단 기준을 가지도록 학습할 수 있다. 이 때 모델 학습부(24)는 학습 데이터 중 적어도 일부를 판단 기준으로 이용하는 지도 학습(supervised learning)을 통하여, 신경망 모델을 학습시킬 수 있다. 또는 모델 학습부(24)는 지도 없이 학습 데이터를 이용하여 스스로 학습함으로써, 판단 기준을 발견하는 비지도 학습(unsupervised learning)을 통해 신경망 모델을 학습시킬 수 있다. 또한, 모델 학습부(24)는 학습에 따른 상황 판단의 결과가 올바른지에 대한 피드백을 이용하여 강화 학습(reinforcement learning)을 통하여, 신경망 모델을 학습시킬 수 있다. 또한, 모델 학습부(24)는 오류 역전파법(error back-propagation) 또는 경사 하강법(gradient decent)을 포함하는 학습 알고리즘을 이용하여 신경망 모델을 학습시킬 수 있다.
신경망 모델이 학습되면, 모델 학습부(24)는 학습된 신경망 모델을 메모리에 저장할 수 있다. 모델 학습부(24)는 학습된 신경망 모델을 AI 장치(20)와 유선 또는 무선 네트워크로 연결된 서버의 메모리에 저장할 수도 있다.
데이터 학습부(22)는 인식 모델의 분석 결과를 향상시키거나, 인식 모델의 생성에 필요한 리소스 또는 시간을 절약하기 위해 학습 데이터 전처리부(미도시) 및 학습 데이터 선택부(미도시)를 더 포함할 수도 있다.
학습 데이터 전처리부는 획득된 데이터가 상황 판단을 위한 학습에 이용될 수 있도록, 획득된 데이터를 전처리할 수 있다. 예를 들어, 학습 데이터 전처리부는, 모델 학습부(24)가 이미지 인식을 위한 학습을 위하여 획득된 학습 데이터를 이용할 수 있도록, 획득된 데이터를 기 설정된 포맷으로 가공할 수 있다.
또한, 학습 데이터 선택부는, 학습 데이터 획득부(23)에서 획득된 학습 데이터 또는 전처리부에서 전처리된 학습 데이터 중 학습에 필요한 데이터를 선택할 수 있다. 선택된 학습 데이터는 모델 학습부(24)에 제공될 수 있다. 예를 들어, 학습 데이터 선택부는, 차량의 카메라를 통해 획득한 영상 중 특정 영역을 검출함으로써, 특정 영역에 포함된 객체에 대한 데이터만을 학습 데이터로 선택할 수 있다.
또한, 데이터 학습부(22)는 신경망 모델의 분석 결과를 향상시키기 위하여 모델 평가부(미도시)를 더 포함할 수도 있다.
모델 평가부(미도시)는, 신경망 모델에 평가 데이터를 입력하고, 평가 데이터로부터 출력되는 분석 결과가 소정 기준을 만족하지 못하는 경우, 모델 학습부(22)로 하여금 다시 학습하도록 할 수 있다. 이 경우, 평가 데이터는 인식 모델을 평가하기 위한 기 정의된 데이터일 수 있다. 일 예로, 모델 평가부는 평가 데이터에 대한 학습된 인식 모델의 분석 결과 중, 분석 결과가 정확하지 않은 평가 데이터의 개수 또는 비율이 미리 설정된 임계치를 초과하는 경우, 소정 기준을 만족하지 못한 것으로 평가할 수 있다.
통신부(27)는 AI 프로세서(21)에 의한 AI 프로세싱 결과를 외부 전자 기기로 전송할 수 있다.
상기 외부 전자 기기는, 자율주행 차량, 로봇, 드론, AR 기기, 모바일 기기, 가전 기기 등을 포함할 수 있다.
일 예로 상기 외부 전자 기기가 자율 주행 차량인 경우 상기 AI 장치(20)는 상기 자율 주행 차량과 통신하는 다른 차량 또는 5G 네트워크로 정의될 수 있다. 한편, 상기 AI 장치(20)는 차량 내에 구비된 자율 주행 장치에 기능적으로 임베딩되어 구현될 수도 있다. 또한, 상기 5G 네트워크는 자율 주행 관련 제어를 수행하는 서버 또는 모듈을 포함할 수 있다.
한편, 도 5에 도시된 AI 장치(20)는 AI 프로세서(21)와 메모리(25), 통신부(27) 등으로 기능적으로 구분하여 설명하였지만, 전술한 구성요소들이 하나의 모듈로 통합되어 AI 모듈로 호칭될 수도 있음을 밝혀둔다.
도 16은 본 발명의 실시예에 따른 자율 주행 차량과 AI 장치가 연계된 시스템을 설명하기 위한 도면이다.
도 16을 참조하면, 차량(10)은 AI 프로세싱이 필요한 데이터를 통신부를 통해 AI 장치(20)로 전송할 수 있고, 딥러닝 모델(26)을 포함하는 AI 장치(20)는 상기 딥러닝 모델(26)을 이용한 AI 프로세싱 결과를 차량(10)으로 전송할 수 있다. AI 장치(20)는 도 15에 설명한 내용을 참조할 수 있다.
차량(10)은 도 6을 참조하여 설명한 구성요소들(200, 210, 220, 230, 240, 250, 260, 270 및 280)을 포함할 수 있으며, 차량(10) 내에서 수행하는 기능에 대한 설명은 도 6을 참조하여 설명한 바와 동일하다. 여기서, 자율 주행 장치(260)는 AI 프로세서(261)를 더 구비할 수 있다.
이하, 상기 사용자 인터페이스 장치(200)와 연결된 차량 내 다른 전자 장치 및 AI 프로세서(261)에 대하여 보다 구체적으로 설명한다.
먼저, AI 프로세서(261)는 오브젝트 검출 장치(210)를 통해 획득된 데이터에 신경망 모델을 적용함으로써, 오브젝트의 존재 유무, 오브젝트의 위치 정보, 차량과 오브젝트의 거리 정보, 차량과 오브젝트와의 상대 속도 정보 중 적어도 하나를 생성할 수 있다.
한편, 차량(10)은 상기 적어도 하나의 센서를 통해 획득된 데이터를 통신 장치(220)를 통해 AI 장치(20)로 전송하고, AI 장치(20)가, 전달된 데이터에 신경망 모델(26)을 적용함으로써 생성된 AI 프로세싱 데이터를 차량(10)으로 전송할 수 있다. 차량(10)은 수신된 AI 프로세싱 데이터에 기초하여 검출된 오브젝트에 대한 정보를 인식하고, 자율 주행 장치(260)는 상기 인식한 정보를 이용하여 자율 주행 제어 동작을 수행할 수 있다.
AI 프로세서(261)는 자율 주행 모드에서, 자율 주행 장치(260)를 통해 생성된 드라이빙 플랜에 따른 차량의 움직임을 제어하기 위한 신호에 따라 상기 운전 조작 장치(230)의 입력 신호를 생성할 수 있다.
한편, 차량(10)는 운전 조작 장치(230)의 제어에 필요한 데이터를 통신 장치(220)를 통해 AI 장치(20)로 전송하고, AI 장치(20)가, 전달된 데이터에 신경망 모델(26)을 적용함으로써 생성된 AI 프로세싱 데이터를 차량(10)으로 전송할 수 있다. 차량(10)은 수신된 AI 프로세싱 데이터에 기초하여 운전 조작 장치(230)의 입력 신호를 차량의 움직임 제어에 이용할 수 있다.
구동 제어 장치(250)는, 자율 주행 장치(260)에서 수신되는 신호에 기초하여, 파워 트레인, 조향 장치 및 브레이크 장치를 제어할 수 있다. 상기 자율 주행 장치(260)에서 수신되는 신호는 AI 프로세서(261)에서 차량 관련 데이터를 신경망 모델을 적용함으로써, 생성되는 구동 제어 신호일 수 있다. 상기 구동 제어 신호는 통신 장치(220)를 통해 외부의 AI 장치(20)로부터 수신된 신호일 수도 있다.
AI 프로세서(261)는 적어도 하나의 센서에서 생성되는 센싱 데이터에 신경망 모델을 적용함으로써, 차량의 상태 데이터를 생성할 수 있다. 상기 신경망 모델을 적용하여 생성되는 AI 프로세싱 데이터는, 차량 자세 데이터, 차량 모션 데이터, 차량 요(yaw) 데이터, 차량 롤(roll) 데이터, 차량 피치(pitch) 데이터, 차량 충돌 데이터, 차량 방향 데이터, 차량 각도 데이터, 차량 속도 데이터, 차량 가속도 데이터, 차량 기울기 데이터, 차량 전진/후진 데이터, 차량의 중량 데이터, 배터리 데이터, 연료 데이터, 타이어 공기압 데이터, 차량 내부 온도 데이터, 차량 내부 습도 데이터, 스티어링 휠 회전 각도 데이터, 차량 외부 조도 데이터, 가속 페달에 가해지는 압력 데이터, 브레이크 페달에 가해지는 압력 데이터 등을 포함할 수 있다.
자율 주행 장치(260)은 상기 AI 프로세싱된 차량의 상태 데이터에 기초하여 주행 제어 신호를 생성할 수 있다.
한편, 차량(10)은 상기 적어도 하나의 센서를 통해 획득된 센싱 데이터를 통신부(22)를 통해 AI 장치(20)로 전송하고, AI 장치(20)가, 전달된 센싱 데이터에 신경망 모델(26)을 적용함으로써, 생성된 AI 프로세싱 데이터를 차량(10)으로 전송할 수 있다.
AI 프로세서(261)는 적어도 하나의 위치 데이터 생성장치에서 생성되는 위치 데이터에 신경망 모델을 적용함으로써, 보다 정확한 차량의 위치 데이터를 생성할 수 있다.
일 실시예에 따라, AI 프로세서(261)는 센싱부(270)의 IMU(Inertial Measurement Unit) 및 오브젝트 검출 장치(210)의 카메라 영상 중 적어도 어느 하나에 기초하여 딥러닝 연산을 수행하고, 생성된 AI 프로세싱 데이터에 기초하여 위치 데이터를 보정할 수 있다.
한편, 차량(10)은 위치 데이터 생성 장치(280)로부터 획득된 위치 데이터를 통신 장치(220)를 통해 AI 장치(20)로 전송하고, AI 장치(20)가, 수신한 위치 데이터에 신경망 모델(26)을 적용함으로써 생성된 AI 프로세싱 데이터를 차량(10)으로 전송할 수 있다.
AI 프로세서(261)는, 차량에 구비된 적어도 하나의 센서, 외부 기기로부터 수신된 교통 관련 정보, 상기 차량과 통신하는 다른 차량으로부터 수신된 정보를 신경망 모델에 적용함으로써, 전술한 적어도 하나의 ADAS 기능들을 수행 가능한 제어 신호를 자율 주행 장치(260)로 전달할 수 있다.
또한, 차량(10)은 ADAS 기능들을 수행하기 위한 적어도 하나의 데이터를 통신 장치(220)를 통해 AI 장치(20)로 전송하고, AI 장치(20)가, 수신된 데이터에 신경망 모델(260)을 적용함으로써, ADAS 기능을 수행할 수 있는 제어 신호를 차량(10)으로 전달할 수 있다.
자율 주행 장치(260)는, AI 프로세서(261)를 통해 운전자의 상태 정보 및/또는 차량의 상태 정보를 획득하고, 이에 기초하여 자율 주행 모드에서 수동 주행 모드로의 전환 동작 또는 수동 주행 모드에서 자율 주행 모드로의 전환 동작을 수행할 수 있다.
한편, 차량(10)은 승객 지원을 위한 AI 프로세싱 데이터를 주행 제어에 이용할 수 있다. 예를 들어, 전술한 바와 같이 차량 내부에 구비된 적어도 하나의 센서를 통해 운전자, 탑승자의 상태를 확인할 수 있다.
또는, 차량(10)은 AI 프로세서(261)를 통해 운전자 또는 탑승자의 음성 신호를 인식하고, 음성 처리 동작을 수행하고, 음성 합성 동작을 수행할 수 있다.
이상, 도 1 내지 도 16을 참조하여, 본 발명의 일 실시예에 따른 차량 제어 방법을 구현하기 위하여 필요한 5G 통신 및 상기 5G 통신을 적용하여 AI 프로세싱을 수행하고, AI 프로세싱 결과를 송수신하기 위한 개략적인 내용을 살펴보았다.
이하, 도 17 내지 도 27을 참조하여, 본 발명의 일 실시예에 따라 운전자의 상태 정보에 기초하여 운전자의 집중도를 높이기 위한 정보(또는 인터페이스)를 제공하는 구체적인 방법에 대하여 필요한 도면들을 참조하여 설명한다.
도 17은 본 발명의 일 실시예에 따른 차량 제어 방법을 나타낸 흐름도이다.
본 발명의 일 실시예에 따른 차량 제어 방법은, 전술한 도 1 내지 도 16의 기능을 포함하는 차량, 또는 상기 차량을 제어하는 지능형 컴퓨팅 디바이스에서 구현될 수 있다. 보다 구체적으로는 본 발명의 일 실시예에 따른 차량 제어 방법은, 전술한 도 1 내지 도 16의 차량(10)에서 구현될 수 있다.
도 17에 도시된 바와 같이, 본 발명의 일 실시예에 따른 차량 제어 방법(S1000)은 상태 정보 획득 단계(S1010), 집중도 관련 정보 생성 단계(S1030), 졸음 방지 관련 정보 출력 단계(S1050)를 포함할 수 있으며, 상세한 내용은 하기와 같다.
먼저, 차량(10)의 자율 주행 장치(260)는 센싱부(270)를 통해 운전자의 상태 정보를 획득할 수 있다(S1010).
예를 들면, 센싱부(270)는 운전자를 촬영할 수 있는 카메라를 포함할 수 있으며, 자율 주행 장치(260)는 카메라에 의해 촬영된 운전자에 대한 영상을 획득할 수 있다. 다른 예를 들면, 센싱부(270)는 차량(10) 내의 공기 상태를 검출할 수 있는 공기 센서를 포함할 수 있으며, 자율 주행 장치(260)는 공기 센서에 의해 검출된 차량 내부 공기에 대한 센싱값을 획득할 수 있다.
예를 들면, 뇌파 측정 장치(500)는 운전자의 뇌파 신호를 검출할 수 있으며, 자율 주행 장치(260)는 통신 장치(220)를 통해 뇌파 측정 장치(500)에 의해 검출된 뇌파 신호를 획득할 수 있다.
그 다음, 자율 주행 장치(260)는 운전자 상태 정보를 분석하여, 운전자에 대한 집중도 관련 정보를 생성할 수 있다.
예를 들면, 자율 주행 장치(260)는 운전자의 집중도를 '낮음'(Low), '중간'(Medium) 또는 '높음'(High)의 레벨로 판단할 수 있으며, 운전자의 집중도가 '낮음'(Low) 레벨, '중간'(Medium) 레벨 또는 '높음'(High) 레벨에 해당한다는 집중도 관련 정보를 생성할 수 있다.
마지막으로, 자율 주행 장치(260)는 집중도 관련 정보에 기반하여, 졸음 방지와 관련된 정보를 출력할 수 있다.
본 발명의 실시예에 따르면, 졸음 방지와 관련된 정보는 차량(10)에서 출력될 수 있으며, 운전자의 졸음을 방지하기 위한 미리 설정된 정보가 될 수 있다. 예를 들어, 졸음 방지와 관련된 정보는 운전자의 졸음에 대하여 경고하는 내용을 포함하는 텍스트 정보, 영상 정보 등 시각 정보와, 경고음 등의 촉각 정보뿐만 아니라, 차량(10) 내의 적어도 하나의 시스템(예: 시트 시스템)을 통해 출력되는 촉각 정보를 포함할 수 있다.
도 18은 본 발명의 일 실시예에서 운전자의 상태 정보를 획득하는 예를 도시한다.
도 18에 도시된 바와 같이, 차량(10)의 센싱부는 카메라(271)를 포함할 수 있다. 카메라(271)는 차량(10)에 착석한 운전자를 촬영할 수 있고, 운전자를 촬영한 데이터를 자율 주행 장치(260)로 전송할 수 있다. 자율 주행 장치(260)는 카메라(271)로부터 전송된 운전자를 촬영한 데이터를 이용하여 운전자 영상을 운전자 상태 정보로서 획득할 수 있다.
또한, 도 18에 도시된 바와 같이, 뇌파 측정 장치(500)는 운전자의 뇌파 신호를 검출할 수 있고, 검출된 뇌파 신호를 자율 주행 장치(260)로 통신부를 통해 전송할 수 있다. 자율 주행 장치(260)는 뇌파 측정 장치(500)에 의해 검출된 운전자의 뇌파 신호를 운전자 상태 정보로서 획득할 수 있다.
도 19는 본 발명의 일 실시예에 따라 졸음 방지 관련 정보를 출력하는 예를 도시한다.
본 발명의 일 실시예에 따르면, 차량(10)의 자율 주행 장치(260)는 운전자 상태 정보를 획득할 수 있다. 예를 들어, 도 19에 도시된 바와 같이, 공기 센서(273)는 차량(10) 내부의 공기 상태를 센싱하여 자율 주행 장치(260)로 전달할 수 있다. 예를 들면, 공기 센서(273)는 차량(10) 내부의 이산화탄소 양을 센싱할 수 있고, 센싱된 이산화탄소 양과 관련된 센싱값을 자율 주행 장치(260)로 전달할 수 있다.
자율 주행 장치(260)는 공기 센서(273) 및 다른 장치(예: 뇌파 검출 장치(500))로부터 전달된 운전자 상태 정보를 분석하고, 운전자 상태 정보에 기반하여 운전자의 집중도 레벨을 판단할 수 있다.
자율 주행 장치(260)는 운전자의 집중도 레벨을 미리 설정된 임계값보다 작은 경우, 운전자의 졸음을 방지하기 위한 정보를 출력할 수 있다.
예를 들면, 도 19에 도시된 바와 같이, 운전자의 집중도 레벨이 미리 설정된 임계값보다 작은 것으로 판단된 경우, 자율 주행 장치(260)는 운전자의 졸음을 방지하기 위해, 운전자 졸음 방지 관련 정보를 출력할 수 있다. 예를 들면, 자율 주행 장치(260)는 닫힌 상태의 차량(10)의 창문(291)을 내릴 수 있다.
도 20은 본 발명의 일 실시예에 따른 졸음 방지 관련 정보를 출력하는 다른 예를 도시한다.
본 발명의 일 실시예에 따르면, 차량(10)의 자율 주행 장치(260)는 운전자 상태 정보에 기반하여 운전자의 집중도 레벨을 판단할 수 있고, 집중도 레벨이 임계값 이하인 경우, 위와 같이, 시각 형태의 운전자 졸음 방지 관련 정보를 출력할 수 있다.
상기와 관련하여, 도 20에 도시된 바와 같이, 자율 주행 장치(260)는 운전자의 졸음을 방지하기 위해, 차량(10) 내부의 조명(292)을 통해 졸음 방지 관련된 시각 정보를 출력할 수 있다. 예를 들면, 자율 주행 장치(260)는 조명(292)을 통해 특정 파장의 광을 출력할 수 있다. 예를 들면, 자율 주행 장치(260)는 조명(292)을 통해 서로 다른 파장의 광을 미리 설정된 주기로 출력할 수 있다.
도 21은 본 발명의 일 실시예에 따른 졸음 방지 관련 정보를 출력하는 또 다른 예를 도시한다.
본 발명의 일 실시예에 따르면, 차량(10)의 자율 주행 장치(260)는 운전자 상태 정보에 기반하여 운전자의 집중도 레벨을 판단할 수 있고, 집중도 레벨이 임계값 이하인 경우, 위와 같이, 촉각 형태의 운전자 졸음 방지 관련 정보를 출력할 수 있다.
상기와 관련하여, 도 21에 도시된 바와 같이, 자율 주행 장치(260)는 운전자의 졸음을 방지하기 위해, 차량(10) 내부의 시트 시스템(361)을 통해 졸음 방지 관련된 촉각 정보를 출력할 수 있다. 예를 들면, 자율 주행 장치(260)는 시트 시스템(361)을 통해 진동 효과를 출력할 수 있다. 예를 들면, 자율 주행 장치(260)는 시트 시스템(361)을 통해 미리 설정된 주기로 진동 효과를 출력할 수 있다.
도 22는 본 발명의 일 실시예에 따른 졸음 방지 관련 정보를 출력하는 또 다른 예를 도시한다.
본 발명의 일 실시예에 따르면, 차량(10)의 자율 주행 장치(260)는 운전자 상태 정보에 기반하여 운전자의 집중도 레벨을 판단할 수 있고, 집중도 레벨이 임계값 이하인 경우, 위와 같이, 시각 형태의 운전자 졸음 방지 관련 정보를 출력할 수 있다.
상기와 관련하여, 도 22에 도시된 바와 같이, 자율 주행 장치(260)는 운전자의 졸음을 방지하기 위해, 차량(10) 내부의 디스플레이 시스템(350)을 통해 졸음 방지 관련된 영상 정보를 출력할 수 있다. 예를 들면, 자율 주행 장치(260)는 디스플레이 시스템(350)을 통해 운전자에게 휴식을 취할 수 있는 특정 위치(예: 졸음 쉼터)로의 길 안내 영상을 출력할 수 있다.
또한, 도 22에 도시된 바와 같이, 자율 주행 장치(260)는 비상등(294)을 통해 미리 설정된 광을 출력함으로써, 차량(10) 외부로 운전자의 집중도가 임계값 이하임을 알릴 수 있다.
도 23은 본 발명의 일 실시예에 따른 졸음 방지 관련 정보를 출력하는 또 다른 예를 도시한다.
본 발명의 일 실시예에 따르면, 차량(10)의 자율 주행 장치(260)는 운전자 상태 정보에 기반하여 운전자의 집중도 레벨을 판단할 수 있고, 집중도 레벨이 임계값 이하인 경우, 위와 같이, 시각 형태의 운전자 졸음 방지 관련 정보를 출력할 수 있다.
상기와 관련하여, 도 23에 도시된 바와 같이, 자율 주행 장치(260)는 운전자의 졸음을 방지하기 위해, 자율 주행 장치(260)와 통신 연결된 뇌파 검출 장치(500)를 통해 졸음 방지 관련된 영상 정보를 출력할 수 있다. 예를 들면, 자율 주행 장치(260)는 뇌파 검출 장치(500)의 광 출력부(540)로 미리 설정된 파장의 광이 출력되도록, 뇌파 검출 장치(500)를 제어할 수 있다.
도 24는 본 발명의 일 실시예에서 운전자의 집중도 레벨을 판단하는 예를 설명하기 위한 도면이다.
도 24에 도시된 바와 같이, 운전자의 집중도 레벨을 판단하는 방법(S1030)은 S1031 단계 내지 S1037 단계를 포함하며, 상세한 설명은 하기와 같다. 운전자의 집중도 레벨은 자율 주행 장치(260) 내의 AI 프로세서(261) 또는 AI 장치(20)의 AI 프로세서(21)에 의해 수행될 수 있으며, 이하 설명은 AI 프로세서(261)를 기준으로 설명한다.
먼저, AI 프로세서(261)는 S1010 단계에서 획득한 운전자 상태 정보로부터 특징값을 추출할 수 있다(S1031). 예를 들어, AI 프로세서(261)는 뇌파 검출 장치(500)에 의해 검출된 운전자의 뇌파 신호로부터 특징값을 추출할 수 있다.
그 다음, AI 프로세서(261)는 추출된 특징값을 인공신경망(ANN) 분류기에 입력할 수 있다(S1033). 예를 들어, AI 프로세서(261)는 뇌파 신호의 특징값을 인공 신경망 분류기에 입력할 수 있다.
이어서, AI 프로세서(261)는 인공신경망의 출력값을 분석할 수 있다(S1035). 예를 들어, AI 프로세서(261)는 인공 신경망에 뇌파 신호의 특징값을 입력한 결과(출력)를 획득할 수 있다.
마지막으로, AI 프로세서(261)는 인공신경망의 출력값을 분석한 결과에 기반하여 운전자의 집중도 레벨을 판단할 수 있다(S1037).
예를 들면, 운전자가 하기와 같은 행동을 취하거나, 차량 내부에 하기와 같은 상황이 발생할 때, 카메라가 이를 촬영한 경우, 인공 신경망 분류기 및/또는 AI 프로세서(261)는 운전자의 집중도 레벨을 '낮음'으로 분류할 수 있다.
- 운전자가 휴대폰을 사용하는 경우
- 운전자가 차량 내의 기기를 제어하는 경우
- 운전자가 네비게이션을 조작하는 경우
- 운전자가 흡연을 하는 경우
- 운전자가 음식물을 섭취하는 경우
- 운전자가 동영상을 시청하는 경우
- 운전자가 창 밖의 풍경을 바라보는 경우
- 운전자가 책 또는 지도를 보는 경우
- 운전자가 화장을 하는 경우
- 운전자가 타인과 잡담하는 경우
- 운전자가 타인과 장난치는 경우
- 차량 내부에 애완동물이 있는 경우
- 운전자의 시선을 방해하는 객체가 있는 경우
- 운전자가 전방 외의 다른 곳을 주시하는 경우
- 운전자의 운전 시 머리 위치의 평균값에서 10% 이상 변경된 경우
- 차량이 커브 구간으로 진입하는 경우
- 차량이 사고 다발 구간으로 진입하는 경우
- 차량이 진입하는 구간을 진입했던 과거 무사고 운전자의 집중력 레벨의 평균이 미리 설정된 임계값 이상인 경우
하기의 표 1은 뇌파 측정 장치에 의해 측정된 뇌파 신호에 따른 주파수 대역 및 뇌파 형태와 뇌 상태를 나타낸다.
Figure pat00001
뇌파는 주파수의 범위에 따라 델타(Delta), 세타(Theta), 알파(Alpha), 에스엠알(SMR), 베타(Beta), 하이 베타(High Beta) 등으로 나뉘며, 뇌파의 주파수 대역에 따른 신체 상태를 살펴보면 상기한 표 1과 같다.
델타(Delta)는 0.5~4Hz이며 깊은 수면 상태나 뇌 이상 상태에 대응된다. 세타(Theta)는 4~7Hz이며 졸립거나 산만한 상태 또는 백일몽 상태에 대응된다. 알파(Alpha)는 8~12Hz이며 이완 및 휴식 상태 또는 집중력이 느슨한 상태에 대응된다. 에스엠알(SMR)은 12~15Hz이며 움직이지 않고 집중력을 유지하는 상태에 대응된다. 베타(Beta)는 15~18Hz이며 움직이면서도 집중력을 유지하는 상태에 대응된다. 하이 베타(High Beta)는 18Hz이며 긴장, 불안, 초조 등 강한 스트레스 상태에 대응된다.
예를 들어, 인공 신경망 및/또는 AI 프로세서(261)는 뇌파 검출 장치(500)에 의해 검출된 뇌파 신호가 상기한 표 1에 나타난 예와 같을 때, 해당 뇌파 신호에 따른 뇌의 상태에 기반하여 운전자의 집중도 레벨을 판단할 수도 있다.
한편, 도 24에서는 AI 프로세싱을 통해 운전자의 집중도 레벨을 식별하는 동작이 차량(10)의 프로세싱에서 구현되는 예를 설명하였으나, 본 발명은 이에 한정되지 않는다. 예를 들어, 상기 AI 프로세싱은 차량(10)으로부터 수신된 센싱 정보에 기초하여 5G 네트워크 상에서 이루어질 수도 있다.
도 25는 눈움직임에 따른 뇌파 변화의 일 예를 나타낸다.
도 25에 도시된 바와 같이, 운전자가 눈을 깜박일 때, 뇌파 신호는 운전자의 눈 깜박임에 따라 변화할 수 있다.
AI 프로세서(261)는 운전자의 눈 깜박임에 기반하여 운전자의 집중도 레벨을 판단할 수 도 있다.
도 26은 좌/우 뇌파 정보와 눈움직임 신호를 모두 포함한 뇌파 모델링의 일 예를 나타낸다.
AI 프로세서(261)는 뇌파에 포함된 학습자의 좌뇌 정보와 우뇌 정보뿐만 아니라 학습자의 눈 움직임 신호까지 고려하여 뇌파 스펙트럼의 파형 패턴을 분석하여, 운전자의 집중도 레벨을 판단할 수 있다.
도 27은 본 발명의 일 실시예에서 졸음 상태를 판단하는 다른 예를 설명하기 위한 도면이다.
프로세서(170)는 상기 운전자의 상태 정보를 5G 네트워크에 포함된 AI 프로세서로 전송하도록 통신 장치(220)를 제어할 수 있다. 또한, 프로세서(170)는 상기 AI 프로세서로부터 AI 프로세싱된 정보를 수신하도록 상기 통신 장치(220)를 제어할 수 있다.
상기 AI 프로세싱된 정보는, 상기 운전자의 집중 정도(레벨)를 나타내는 정보일 수 있다.
한편, 차량(10)은 5G 네트워크로 운전자의 상태 정보를 전송하기 위하여, 5G 네트워크와 초기 접속 절차를 수행할 수 있다. 차량(10)은 SSB(Synchronization signal block)에 기초하여 상기 5G 네트워크와 초기 접속 절차를 수행할 수 있다.
또한, 차량(10)은 무선 통신부를 통해 상기 차량의 내부에 구비된 적어도 하나의 센서로부터 획득되는 상기 운전자의 상태 정보의 전송을 스케줄링하기 위해 사용되는 DCI(Downlink Control Information)을 네트워크로부터 수신할 수 있다.
프로세서(170)는 상기 DCI에 기초하여 상기 운전자의 상태 정보를 상기 네트워크로 전송할 수 있다.
상기 운전자의 상태 정보는 PUSCH를 통해 상기 네트워크로 전송되며, 상기 SSB와 상기 PUSCH의 DM-RS는 QCL type D에 대해 QCL될 수 있다.
도 27을 참조하면, 차량(10)은 운전자 상태 정보로부터 추출된 특징값을 5G 네트워크로 전송할 수 있다(S2700).
여기서 5G 네트워크는 AI 프로세서 또는 AI 시스템을 포함할 수 있으며, 5G 네트워크의 AI 시스템은 수신된 센싱 정보에 기초하여 AI 프로세싱(S2710)을 수행할 수 있다(S810).
AI 시스템은, 차량(10)으로부터 수신된 특징값들을 ANN 분류기에 입력할 수 있다(S2711). AI 시스템은, ANN 출력값을 분석하고(S2713), 상기 ANN 출력값으로부터 운전자의 집중도 레벨을 판단할 수 있다(S2715). 5G 네트워크는 상기 AI 시스템에서 판단한 운전자의 집중도 레벨을 무선 통신부를 통해 차량(10)으로 전송할 수 있다.
여기서 상기 운전자의 집중도 레벨은, 운전자의 집중 정도를 수치화한 정보 또는 등급 정보를 포함할 수 있다.
AI 시스템은, 상기 운전자의 집중도가 임계값 이하인 것으로 판단한 경우(S2717), 도 17 내지 도 27을 참조하여 설명한 졸음 방지 관련 정보를 전송하는 졸음 방지 관련 원격 제어를 수행할 수 있다.
AI 시스템은 운전자의 집중도가 임계값 이상인 경우, 원격 제어 여부를 결정할 수 있다(S2719). 또한, AI 시스템은 원격 제어와 관련된 정보(또는 신호)를 차량(10)으로 전송할 수 있다.
한편, 상기 차량(10)은 운전자 상태 정보만을 5G 네트워크로 전송하고, 상기 5G 네트워크에 포함된 AI 시스템 내에서 상기 운전자 상태 정보로부터 운전자의 집중도 레벨을 판단하기 위한 인공 신경망의 입력으로 이용될 운전자 상태 정보에 대응하는 특징값을 추출할 수도 있다.
한편, 차량은, 적어도 하나의 로봇(robot)과 상호 작용할 수 있다. 로봇은, 자력으로 주행이 가능한 이동 로봇(Autonomous Mobile Robot, AMR)일 수 있다. 이동 로봇은, 스스로 이동이 가능하여 이동이 자유롭고, 주행 중 장애물 등을 피하기 위한 다수의 센서가 구비되어 장애물을 피해 주행할 수 있다. 이동 로봇은, 비행 장치를 구비하는 비행형 로봇(예를 들면, 드론)일 수 있다. 이동 로봇은, 적어도 하나의 바퀴를 구비하고, 바퀴의 회전을 통해 이동되는 바퀴형 로봇일 수 있다. 이동 로봇은, 적어도 하나의 다리를 구비하고, 다리를 이용해 이동되는 다리식 로봇일 수 있다.
로봇은 차량 사용자의 편의를 보완하는 장치로 기능할 수 있다. 예를 들면, 로봇은, 차량에 적재된 짐을 사용자의 최종 목적지까지 이동하는 기능을 수행할 수 있다. 예를 들면, 로봇은, 차량에서 하차한 사용자에게 최종 목적지까지 길을 안내하는 기능을 수행할 수 있다. 예를 들면, 로봇은, 차량에서 하차한 사용자를 최종 목적지까지 수송하는 기능을 수행할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는, 통신 장치를 통해, 로봇과 통신을 수행할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는, 로봇에 차량에 포함되는 적어도 하나의 전자 장치에서 처리한 데이터를 제공할 수 있다. 예를 들면, 차량에 포함되는 적어도 하나의 전자 장치는, 오브젝트 데이터, HD 맵 데이터, 차량 상태 데이터, 차량 위치 데이터 및 드라이빙 플랜 데이터 중 적어도 어느 하나를 로봇에 제공할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는, 로봇으로부터, 로봇에서 처리된 데이터를 수신할 수 있다. 차량에 포함되는 적어도 하나의 전자 장치는, 로봇에서 생성된 센싱 데이터, 오브젝트 데이터, 로봇 상태 데이터, 로봇 위치 데이터 및 로봇의 이동 플랜 데이터 중 적어도 어느 하나를 수신할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는, 로봇으로부터 수신된 데이터에 더 기초하여, 제어 신호를 생성할 수 있다. 예를 들면, 차량에 포함되는 적어도 하나의 전자 장치는, 오브젝트 검출 장치에 생성된 오브젝트에 대한 정보와 로봇에 의해 생성된 오브젝트에 대한 정보를 비교하고, 비교 결과에 기초하여, 제어 신호를 생성할 수 있다. 차량에 포함되는 적어도 하나의 전자 장치는, 차량의 이동 경로와 로봇의 이동 경로간의 간섭이 발생되지 않도록, 제어 신호를 생성할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는, 인공 지능(artificial intelligence, AI)를 구현하는 소프트웨어 모듈 또는 하드웨어 모듈(이하, 인공 지능 모듈)을 포함할 수 있다. 차량에 포함되는 적어도 하나의 전자 장치는, 획득되는 데이터를 인공 지능 모듈에 입력(input)하고, 인공 지능 모듈에서 출력(output)되는 데이터를 이용할 수 있다.
인공 지능 모듈은, 적어도 하나의 인공 신경망(artificial neural network, ANN)을 이용하여, 입력되는 데이터에 대한 기계 학습(machine learning)을 수행할 수 있다. 인공 지능 모듈은, 입력되는 데이터에 대한 기계 학습을 통해, 드라이빙 플랜 데이터를 출력할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는, 인공 지능 모듈에서 출력되는 데이터에 기초하여, 제어 신호를 생성할 수 있다.
실시예에 따라, 차량에 포함되는 적어도 하나의 전자 장치는, 통신 장치를 통해, 외부 장치로부터, 인공 지능에 의해 처리된 데이터를 수신할 수 있다. 차량에 포함되는 적어도 하나의 전자 장치는, 인공 지능에 의해 처리된 데이터에 기초하여, 제어 신호를 생성할 수 있다.
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (18)

  1. 운전자 상태에 기반하여 차량을 제어하는 방법에 있어서,
    차량 내의 운전자와 관련된 상태 정보를 획득하는 단계; 및
    상기 운전자와 관련된 상태 정보에 기반하여 졸음 방지 관련 정보를 출력하는 단계;를 포함하되,
    상기 졸음 방지 관련 정보를 출력하는 단계는,
    상기 운전자와 관련된 상태 정보를 분석하여 상기 운전자의 집중도 관련 정보를 생성하는 단계, 및
    상기 집중도 관련 정보에 기반하여 상기 졸음 방지 관련 정보를 출력하는 단계를 포함하는 것을 특징으로 하는,
    방법.
  2. 제1항에 있어서,
    상기 운전자와 관련된 상태 정보를 획득하는 단계는,
    상기 운전자의 뇌파 신호를 검출하는 것을 특징으로 하는,
    방법.
  3. 제1항에 있어서,
    상기 운전자와 관련된 상태 정보를 획득하는 단계는,
    상기 운전자를 촬영하는 것을 특징으로 하며,
    상기 운전자의 집중도 관련 정보를 생성하는 단계는,
    상기 촬영된 운전자의 행동 정보에 기반하여 상기 집중도 관련 정보를 생성하는 것을 특징으로 하는,
    방법.
  4. 제1항에 있어서,
    상기 졸음 방지 관련 정보를 출력하는 단계는,
    상기 차량의 조명을 통해 미리 설정된 파장의 광을 출력하는 것을 특징으로 하는,
    방법.
  5. 제1항에 있어서,
    상기 졸음 방지 관련 정보를 출력하는 단계는,
    상기 차량의 시트를 통해 진동을 출력하는 것을 특징으로 하는,
    방법.
  6. 제1항에 있어서,
    상기 졸음 방지 관련 정보를 출력하는 단계는,
    상기 차량의 디스플레이를 통해 미리 설정된 휴식 공간으로의 길 안내 정보를 출력하는 것을 특징으로 하는,
    방법.
  7. 제1항에 있어서,
    상기 차량의 내부에 구비된 적어도 하나의 센서로부터 획득되는 상기 운전자의 상태 정보의 전송을 스케줄링하기 위해 사용되는 DCI(Downlink Control Information)을 네트워크로부터 수신하는 단계;를 더 포함하고,
    상기 운전자의 상태 정보는, 상기 DCI에 기초하여 상기 네트워크로 전송되는 것을 특징으로 하는,
    방법.
  8. 제7항에 있어서,
    SSB(Synchronization signal block)에 기초하여 상기 네트워크와 초기 접속 절차를 수행하는 단계;를 더 포함하고,
    상기 운전자의 상태 정보는 PUSCH를 통해 상기 네트워크로 전송되며,
    상기 SSB와 상기 PUSCH의 DM-RS는 QCL type D에 대해 QCL되어 있는 것을 특징으로 하는,
    방법.
  9. 제8항에 있어서,
    상기 운전자의 상태 정보를 상기 네트워크에 포함된 AI 프로세서로 전송하는 단계;
    상기 AI 프로세서로부터 AI 프로세싱된 정보를 수신하는 단계;를 더 포함하고,
    상기 AI 프로세싱된 정보는,
    상기 운전자의 집중도를 집중도가 낮은 상태(Low), 집중도가 보통인 상태(Medium) 또는 집중도가 높은 상태(High) 중 어느 하나로 판단한 정보인 것을 특징으로 하는,
    방법.
  10. 차량을 제어하는 지능형 컴퓨팅 디바이스는,
    상기 차량의 내부에 구비된 카메라;
    센싱부;
    프로세서; 및
    상기 프로세서에 의해 실행 가능한 명령어를 포함하는 메모리;를 포함하고,
    상기 명령어는,
    차량 내의 운전자와 관련된 상태 정보를 획득하고,
    상기 운전자와 관련된 상태 정보에 기반하여 졸음 방지 관련 정보를 출력하도록 하되,
    상기 졸음 방지 관련 정보를 출력함에 있어서,
    상기 운전자와 관련된 상태 정보를 분석하여 상기 운전자의 집중도 관련 정보를 생성하고,
    상기 집중도 관련 정보에 기반하여 상기 졸음 방지 관련 정보를 출력하도록 하는 것을 특징으로 차량을 제어하는,
    지능형 컴퓨팅 디바이스.
  11. 제10항에 있어서,
    상기 프로세서는,
    상기 운전자의 뇌파 신호를 검출하도록 하는 것을 특징으로 하는,
    지능형 컴퓨팅 디바이스.
  12. 제10항에 있어서,
    상기 프로세서는,
    상기 운전자를 촬영하는 것을 특징으로 하며,
    상기 촬영된 운전자의 행동 정보에 기반하여 상기 집중도 관련 정보를 생성하는 것을 특징으로 하는,
    지능형 컴퓨팅 디바이스.
  13. 제10항에 있어서,
    상기 프로세서는,
    상기 차량의 조명을 통해 미리 설정된 파장의 광을 출력하는 것을 특징으로 하는,
    지능형 컴퓨팅 디바이스.
  14. 제10항에 있어서,
    상기 프로세서는,
    상기 차량의 시트를 통해 진동을 출력하는 것을 특징으로 하는,
    지능형 컴퓨팅 디바이스.
  15. 제10항에 있어서,
    상기 프로세서는,
    상기 차량의 디스플레이를 통해 미리 설정된 휴식 공간으로의 길 안내 정보를 출력하는 것을 특징으로 하는,
    지능형 컴퓨팅 디바이스.
  16. 제10항에 있어서,
    상기 프로세서는,
    상기 차량의 내부에 구비된 적어도 하나의 센서로부터 획득되는 상기 운전자의 상태 정보의 전송을 스케줄링하기 위해 사용되는 DCI(Downlink Control Information)을 네트워크로부터 수신하고,
    상기 운전자의 상태 정보는, 상기 DCI에 기초하여 상기 네트워크로 전송되는 것을 특징으로 하는,
    지능형 컴퓨팅 디바이스.
  17. 제16항에 있어서,
    상기 프로세서는,
    SSB(Synchronization signal block)에 기초하여 상기 네트워크와 초기 접속 절차를 수행하고,
    상기 운전자의 상태 정보는 PUSCH를 통해 상기 네트워크로 전송되며,
    상기 SSB와 상기 PUSCH의 DM-RS는 QCL type D에 대해 QCL되어 있는 것을 특징으로 하는,
    지능형 컴퓨팅 디바이스.
  18. 제17항에 있어서,
    상기 프로세서는,
    상기 운전자의 상태 정보를 상기 네트워크에 포함된 AI 프로세서로 전송하도록 통신부를 제어하고,
    상기 AI 프로세서로부터 AI 프로세싱된 정보를 수신하도록 상기 통신부를 제어하며,
    상기 AI 프로세싱된 정보는,
    상기 운전자의 집중도를 집중도가 낮은 상태(Low), 집중도가 보통인 상태(Medium) 또는 집중도가 높은 상태(High) 중 어느 하나로 판단한 정보인 것을 특징으로 하는,
    지능형 컴퓨팅 디바이스.
KR1020190099961A 2019-07-05 2019-08-15 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스 KR20190104009A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KRPCT/KR2019/008316 2019-07-05
PCT/KR2019/008316 WO2021006365A1 (ko) 2019-07-05 2019-07-05 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스

Publications (1)

Publication Number Publication Date
KR20190104009A true KR20190104009A (ko) 2019-09-05

Family

ID=67949942

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190099961A KR20190104009A (ko) 2019-07-05 2019-08-15 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스

Country Status (3)

Country Link
US (1) US20210403022A1 (ko)
KR (1) KR20190104009A (ko)
WO (1) WO2021006365A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711661A (zh) * 2020-05-25 2020-09-25 五邑大学 车辆智能监测方法及其系统
WO2021216578A1 (en) * 2020-04-21 2021-10-28 Micron Technology, Inc. Driver screening
CN113780039A (zh) * 2020-06-10 2021-12-10 上海汽车集团股份有限公司 车窗智能控制方法、装置、电子设备及存储介质
KR20220036214A (ko) 2020-09-15 2022-03-22 이원준 인공지능 기반의 차량 윈도우 제어 시스템 및 방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7196683B2 (ja) * 2019-02-25 2022-12-27 トヨタ自動車株式会社 情報処理システム、プログラム、及び制御方法
CN110575163B (zh) * 2019-08-01 2021-01-29 深圳大学 一种检测驾驶员分心的方法及装置
JP7400672B2 (ja) * 2020-09-14 2023-12-19 トヨタ自動車株式会社 車両制御装置
US11755277B2 (en) * 2020-11-05 2023-09-12 Harman International Industries, Incorporated Daydream-aware information recovery system
DE102020129903B4 (de) * 2020-11-12 2022-06-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verbrennungsmotorsteuerung mit aus einem lernfähigen modell abgeleiteten betriebsparameter-kennfeld

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265377A (ja) * 2006-03-01 2007-10-11 Toyota Central Res & Dev Lab Inc 運転者状態判定装置及び運転支援装置
JP5251805B2 (ja) * 2009-09-18 2013-07-31 株式会社ユピテル 車載用電子機器及びプログラム
US9460601B2 (en) * 2009-09-20 2016-10-04 Tibet MIMAR Driver distraction and drowsiness warning and sleepiness reduction for accident avoidance
KR20170086241A (ko) * 2016-01-18 2017-07-26 계명대학교 산학협력단 바이오피드백 가능한 드라이빙 코치 시스템 및 방법
KR20190078553A (ko) * 2019-06-14 2019-07-04 엘지전자 주식회사 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021216578A1 (en) * 2020-04-21 2021-10-28 Micron Technology, Inc. Driver screening
CN111711661A (zh) * 2020-05-25 2020-09-25 五邑大学 车辆智能监测方法及其系统
CN113780039A (zh) * 2020-06-10 2021-12-10 上海汽车集团股份有限公司 车窗智能控制方法、装置、电子设备及存储介质
KR20220036214A (ko) 2020-09-15 2022-03-22 이원준 인공지능 기반의 차량 윈도우 제어 시스템 및 방법

Also Published As

Publication number Publication date
WO2021006365A1 (ko) 2021-01-14
US20210403022A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
KR20190104009A (ko) 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스
KR102305850B1 (ko) 차량 내에서 인공 지능 기반의 음성 분리 방법 및 장치
KR20190105213A (ko) 자율 주행 시스템에서 차량의 브레이크 장치를 모니터링 하는 방법 및 장치
US20210331712A1 (en) Method and apparatus for responding to hacking on autonomous vehicle
KR102630485B1 (ko) 차량 제어 방법
KR102220950B1 (ko) 자율 주행 시스템에서 차량을 제어하기 위한 방법 및 장치
KR102192142B1 (ko) 자율 주행 차량 제어 방법
KR20190100896A (ko) 자율 주행 차량 제어 방법
KR20190101926A (ko) 자율 주행 차량과 그 제어 방법
KR20190091419A (ko) 자율주행 차량의 제어방법 및 이를 위한 제어장치
US20200023856A1 (en) Method for controlling a vehicle using speaker recognition based on artificial intelligent
KR20190096866A (ko) 차량 내부의 모니터링 방법 및 장치, 이를 위한 객체검출모델을 생성하는 3d 모델링부
KR102649027B1 (ko) 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스
KR20190078553A (ko) 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스
KR20190100109A (ko) 자율주행 차량의 오탑승 방지 방법 및 그 장치
KR20190104922A (ko) 자율주행 차량의 제어 방법
KR102213095B1 (ko) 자율 주행 차량 제어 방법
KR20190100897A (ko) 자율주행시스템에서 차량의 제어 방법 및 그 장치
US20210094588A1 (en) Method for providing contents of autonomous vehicle and apparatus for same
KR20190102145A (ko) 자율주행시스템에서 원격주행을 위한 센싱정보 전송방법 및 이를 위한 장치
KR102112684B1 (ko) 자율주행시스템에서 원격운전을 위한 제어 정보를 전송하는 방법 및 이를 위한 장치
KR20190104273A (ko) 운전자 휴게 패턴에 따른 휴게 정보 제공 방법 및 이를 위한 장치
KR20190101331A (ko) 차량 내 멀티 카메라를 이용한 생체 인증 방법 및 장치
KR20190102144A (ko) 자율주행시스템에서 차량의 리소스 관리 방법 및 이를 위한 장치
KR20190101922A (ko) 차량용 인포테인먼트의 제어방법 및 제어장치