KR20190097570A - Insulation·heat insulation board and manufacturingmethod thereof - Google Patents

Insulation·heat insulation board and manufacturingmethod thereof Download PDF

Info

Publication number
KR20190097570A
KR20190097570A KR1020180017146A KR20180017146A KR20190097570A KR 20190097570 A KR20190097570 A KR 20190097570A KR 1020180017146 A KR1020180017146 A KR 1020180017146A KR 20180017146 A KR20180017146 A KR 20180017146A KR 20190097570 A KR20190097570 A KR 20190097570A
Authority
KR
South Korea
Prior art keywords
insulation
weight
inorganic binder
insulation board
board
Prior art date
Application number
KR1020180017146A
Other languages
Korean (ko)
Other versions
KR102047991B1 (en
Inventor
유홍준
노동현
강창선
Original Assignee
(주)경안인더스트리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)경안인더스트리 filed Critical (주)경안인더스트리
Priority to KR1020180017146A priority Critical patent/KR102047991B1/en
Publication of KR20190097570A publication Critical patent/KR20190097570A/en
Application granted granted Critical
Publication of KR102047991B1 publication Critical patent/KR102047991B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/043Alkaline-earth metal silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/303Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/306Zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/32Carbides; Nitrides; Borides ; Silicides
    • C04B14/322Carbides
    • C04B14/324Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/46Rock wool ; Ceramic or silicate fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/02Alcohols; Phenols; Ethers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

The present invention relates to an insulation and heat insulation board and a manufacturing method thereof. The insulation and heat insulation board is easy to manufacture at the low temperature by using an inorganic binder containing boric acid and zinc oxide, and excellent workability and dimensional stability because thermal deformation does not occur even at the high temperature. Conventionally, in the case of the insulation and heat insulation board using only an organic binder as a binder, a reinforcement is essentially included due to a problem of the deterioration in mechanical strength. In the present invention, the inorganic binder performs the role of the binder and the reinforcement at the same time, thereby having mechanical strength improvement, an excellent insulation effect and an excellent heat insulation effect.

Description

절연·단열용 보드 및 이의 제조방법{INSULATION·HEAT INSULATION BOARD AND MANUFACTURINGMETHOD THEREOF}Insulation / heat insulation board and manufacturing method thereof {INSULATION · HEAT INSULATION BOARD AND MANUFACTURINGMETHOD THEREOF}

본 발명은 절연·단열용 보드 및 이의 제조방법에 관한 것으로, 보다 상세하게는 붕산 및 산화아연을 포함한 무기결합재를 사용하여 기계적 성질이 우수하며, 단열 효과 및 절연 효과가 우수한 절연·단열용 보드 및 이의 제조방법에 관한 것이다. The present invention relates to an insulating and insulating board and a method for manufacturing the same, and more particularly, to an insulating and insulating board having excellent mechanical properties using an inorganic binder including boric acid and zinc oxide, and having excellent thermal and insulating effects. It relates to a manufacturing method thereof.

절연·단열용 보드는 전동 차량용 아크 슈트(arc chute), 애자 및 플러그 등의 전기 절연용 부품, 전열기기, 유리 생산 설비 등 다양한 분야에 사용되며, 전도에 의한 열 이동으로 유발된 열 손실을 방지하거나 에너지 손실을 최소화하는데 필수적이다. 일반적으로 절연·단열용 보드는 대기 또는 증기압 하에서 경화되는 충진재, 결합재 및 보강 섬유재로 제조되며, 종래에는 결합재로서 규산칼슘, 수화된 석회를 실리카 및 물과 반응시켜 사용하였다. 반응 후 생성된 결합재의 구조는 부가되는 보강 섬유재 물질에 따라 달라지며, 보강 섬유재로 석면이 유용하게 사용되어 왔다.Insulation and insulation board is used in various fields such as electric chute, electric insulation parts such as insulators and plugs, electric heaters, glass production facilities, etc., and prevents heat loss caused by heat transfer by conduction. Or to minimize energy loss. In general, insulation and insulation boards are made of fillers, binders and reinforcing fibers that are cured under atmospheric or vapor pressure. Conventionally, calcium silicate, hydrated lime was used as a binder to react with silica and water. The structure of the binder produced after the reaction depends on the reinforcing fiber material added, and asbestos has been used as a reinforcing fiber material.

그러나 석면은 서릿발 모양으로 끝이 날카롭고 섬유상으로 결정 성장을 하여, 석면 분진을 흡입하게 되면 폐암 또는 중피종양의 원인이 되는 것으로 보고된 바 있다. 이에 결합재로 유기물질을 사용한 절연·단열용 보드가 개발되었으나, 지속적으로 열 또는 전압을 가하는 경우 탄화되어 제품의 강도가 약화되고 열변형이 발생하였다. 특히, 고온에서 열처리 시 치수가 쉽게 변화하여 치수 안정성에 문제가 있으며, 보강섬유재의 유리화로 인해 결합력이 약화되어 제품이 쉽게 변형되는 문제가 있었다.Asbestos, however, has been reported to cause pulmonary cancer or mesothelioma by inhalation of asbestos dust. Thus, insulation and insulation boards using organic materials as binders were developed. However, when heat or voltage is continuously applied, carbonization is weakened and thermal deformation occurs. In particular, there is a problem in the dimensional stability due to the change in dimensions easily during heat treatment at high temperature, the bond strength is weakened due to the vitrification of the reinforcing fiber material has a problem that the product easily deformed.

이에 본 발명의 발명자들은 붕산 및 산화아연을 포함하는 무기결합재와 유기결합재를 혼합 사용하여 치수안정성이 우수하고, 보강섬유재를 사용하지 않음으로써 유리화로 인한 결합력 약화, 열변형의 문제가 발생하지 않는 절연·단열용 보드를 제공하고자 노력한 결과 본 발명에 이르게 되었다. Therefore, the inventors of the present invention have excellent dimensional stability by using an inorganic binder containing boric acid and zinc oxide and an organic binder, and do not use the reinforcing fiber material, so that the problem of weakening of bond strength and thermal deformation does not occur. Efforts to provide an insulation and insulation board have led to the present invention.

대한민국 특허출원 제2016-26202호Republic of Korea Patent Application No. 2016-26202

본 발명의 목적은 붕산과 산화아연을 포함하는 결합재를 사용하여 낮은 온도에서 절연·단열용 보드의 제작이 용이하며, 고온에서 열변형이 발생하지 않아 가공성 및 치수안정성이 우수한 절연·단열용 보드를 제공하는 것이다.An object of the present invention is easy to manufacture a board for insulation and insulation at a low temperature using a binder containing boric acid and zinc oxide, and an insulation and insulation board having excellent workability and dimensional stability because no thermal deformation occurs at a high temperature. To provide.

본 발명의 절연·단열용 보드는 붕산 및 산화아연을 포함하는 무기결합재 10~50 중량%;Insulation and insulation board of the present invention is 10 to 50% by weight of an inorganic binder containing boric acid and zinc oxide;

변성 페놀 수지 및 페놀계 수지를 포함하는 유기결합재 1~8 중량%;1 to 8% by weight of an organic binder including a modified phenolic resin and a phenolic resin;

알루미나, 마이카, 수산화알루미늄, 지르코니아, 탄화규소, 질화규소, 황산바륨, 규회석, 락울로 이루어진 군에서 선택되는 어느 하나 또는 2 이상의 화합물인 충진재 50~80 중량%를 포함한다.Alumina, mica, aluminum hydroxide, zirconia, silicon carbide, silicon nitride, barium sulfate, wollastonite, rock wool 50 to 80% by weight of the filler is included.

상기 무기결합재 중 붕산의 함량은 50~80 중량%, 산화아연의 함량은 20~50 중량%인 것을 특징으로 한다. The content of boric acid in the inorganic binder is 50 to 80% by weight, the content of zinc oxide is characterized in that 20 to 50% by weight.

상기 절연·단열용 보드의 사용 온도가 300℃ 이상인 경우 유기결합재 함량이 1~4 중량%이고, When the use temperature of the insulation and insulation board is 300 ℃ or more, the organic binder content is 1 to 4% by weight,

상기 절연·단열용 보드의 사용 온도가 300℃ 미만인 경우 유기결합재 함량이 5~8 중량%인 것을 특징으로 한다. When the use temperature of the insulation board for insulation is less than 300 ℃ characterized in that the organic binder content is 5 to 8% by weight.

본 발명의 절연·단열용 보드 제조방법은 The insulation and insulation board manufacturing method of the present invention

붕산 50~80 중량%, 산화아연 20~50 중량%를 60~150rpm으로 10~20분간 혼합하여 무기결합재 혼합물을 제조하는 단계;Preparing an inorganic binder mixture by mixing 50 to 80% by weight of boric acid and 20 to 50% by weight of zinc oxide at 60 to 150 rpm for 10 to 20 minutes;

상기 무기결합재 혼합물을 100~150℃, 5~10시간 건조하는 단계;Drying the inorganic binder mixture at 100 to 150 ° C. for 5 to 10 hours;

상기 무기결합재 혼합물을 100~300mesh로 분쇄하는 단계;Grinding the inorganic binder mixture to 100 to 300 mesh;

상기 무기결합재 혼합물, 유기결합재 및 충진재를 60~150rpm, 10~20분간 혼합하는 단계;Mixing the inorganic binder mixture, the organic binder and the filler at 60 to 150 rpm for 10 to 20 minutes;

130~250℃, 100~250kgf/㎠에서 10~90분 동안 열프레스기로 성형하는 단계;Molding at 130 to 250 ° C. and 100 to 250 kgf / cm 2 for 10 to 90 minutes using a heat press;

90~700℃에서 5~48시간 동안 전기로에서 열처리하는 단계; 및Heat treatment in an electric furnace at 90-700 ° C. for 5-48 hours; And

표면 연마 단계;를 포함한다.A surface polishing step.

붕산 및 산화아연을 포함하는 무기결합재를 사용함으로써 낮은 온도에서 절연·단열용 보드의 제작이 용이하며, 고온에서 사용 시 열변형이 발생하지 않아 가공성 및 치수안정성이 우수하다. 또한 강도 및 절연성, 단열성이 개선된 절연·단열용 보드를 제공한다.By using inorganic binders containing boric acid and zinc oxide, it is easy to manufacture insulation and insulation boards at low temperatures, and it is excellent in workability and dimensional stability because no thermal deformation occurs at high temperatures. In addition, the present invention provides an insulation and insulation board with improved strength, insulation, and insulation.

본 발명의 절연·단열용 보드는 결합재, 충진재로 구성되고, 상기 결합재는 무기결합재 및 유기결합재로 구성된다. The insulation / insulation board of the present invention is composed of a binder and a filler, and the binder is composed of an inorganic binder and an organic binder.

본 발명에서 주결합재는 무기결합재이며, 유기결합재는 부결합재로 사용된다. 무기결합재로서 붕산과 산화아연의 혼합물을 사용하며, 고온에서 붕산과 산화아연이 반응하여 결합재의 역할을 한다. 붕산과 산화아연이 포함됨으로써 절연·단열용 보드에 광택이 있으며, 특히 산화아연의 안료 효과로 인하여 제품의 색상이 미백색으로 나타나는 효과가 있다. 본 발명에서 섬유(fiber)를 사용하지 않으므로 유리화로 인한 결합력 약화, 열변형, 피로 파괴(Fatigue fracture)의 문제가 발생하지 않으며, 고온에서 탄화되지 않아 가공성과 치수안정성이 높다.In the present invention, the main binder is an inorganic binder, and the organic binder is used as a sub binder. As an inorganic binder, a mixture of boric acid and zinc oxide is used, and boric acid and zinc oxide react at high temperatures to act as a binder. Since boric acid and zinc oxide are included, the insulation and insulation boards are glossy, and in particular, due to the pigment effect of zinc oxide, the color of the product is white. In the present invention, the fiber (fiber) is not used, so there is no problem of weakening of the bonding force due to vitrification, thermal deformation, fatigue fracture, and carbonization at a high temperature, so that workability and dimensional stability are high.

상기 무기결합재 중 붕산은 50 내지 80 중량%, 산화아연은 20 내지 50 중량% 포함되는 것을 특징으로 한다. 붕산의 함량이 50 중량% 미만이면 결합재의 결합력 약화로 성형이 불가능하고, 80 중량%를 초과하면 과포화로 인하여 성형 시 기포 및 기공이 발생하여 기계적, 전기적 물성이 취약하다. 또한, 산화아연의 함량이 20 중량% 미만인 경우 절연·단열용 보드의 조직이 치밀하지 못하여 기계적, 전기적 물성이 취약한 문제가 있고, 50 중량%를 초과하면 상대적으로 붕산의 함량이 적어지게 되므로 결합력이 저하되어 바람직하지 않다. Boric acid in the inorganic binder is 50 to 80% by weight, zinc oxide is characterized in that it comprises 20 to 50% by weight. If the content of boric acid is less than 50% by weight, it is impossible to mold due to weakening of the binding force of the binder, and if it exceeds 80% by weight, bubbles and pores are generated during molding due to oversaturation, so that the mechanical and electrical properties are weak. In addition, if the zinc oxide content is less than 20% by weight, there is a problem in that the structure of the insulation / insulation board is not dense, so that mechanical and electrical properties are weak, and when the content of the zinc oxide is more than 50% by weight, the amount of boric acid is relatively decreased, so that the bonding strength is low. It is lowered and is not preferable.

유기결합재로는 변성 페놀수지 및 페놀계 수지 혼합물이 사용된다. 본 발명의 절연·단열용 보드에서 무기결합재를 단독으로 사용하는 경우 붕산을 산화아연, 충진재와 혼합 시 300℃를 초과하는 온도에서 성형해야 하는 문제가 있다. 이를 해소하기 위해 소량의 유기결합재를 포함하여 절연·단열용 보드의 성형 온도를 낮추고 결합력을 높이는 효과가 있다.As the organic binder, a modified phenolic resin and a phenolic resin mixture are used. In the case of using the inorganic binder alone in the insulation / insulation board of the present invention, there is a problem in that boric acid must be molded at a temperature exceeding 300 ° C. when mixed with zinc oxide and a filler. In order to solve this problem, there is an effect of lowering the forming temperature of the insulation / insulation board including a small amount of organic binder and increasing the bonding force.

본 발명에서 무기결합재는 10 내지 50 중량%, 유기결합재는 1 내지 8 중량%가 포함되는데, 상기 무기결합재의 함량이 10 중량% 미만이면 결합력이 약화되어 절연·단열용 보드의 성형이 불가능하고, 50 중량%를 초과하여 사용 시 상대적으로 충진재의 함량이 부족하게 되어 절연·단열 성능이 약화된다. In the present invention, the inorganic binder is 10 to 50% by weight, the organic binder is contained 1 to 8% by weight, if the content of the inorganic binder is less than 10% by weight the bonding strength is weakened, it is impossible to form the insulation / insulation board, When used in excess of 50% by weight, the content of filler is relatively insufficient, and the insulation and insulation performance is weakened.

또한, 유기결합재는 절연·단열용 보드가 사용되는 온도에 따라 그 함량을 달리 하는데, 상기 보드의 사용 온도가 300℃ 이상이면 1 내지 4 중량%, 사용 온도가 300℃ 미만이면 5 내지 8 중량%를 포함하는 것이 바람직하다. 붕산이 산화아연 및 충진재와 혼합 사용되면 300℃ 이상에서 성형을 해야 하는 어려움이 있으므로 성형 온도를 낮추기 위해 유기결합재를 소량 포함한다. 유기결합재의 함량이 1 중량% 미만이면 유기결합재의 함량이 지나치게 적어 저온 결합 효과가 저하되고, 8 중량%를 초과하면 성형 및 열처리 시 탄화 현상이 발생하여 결합 효과가 저하되며, 고온에서의 물성이 취약하다. In addition, the content of the organic binder varies depending on the temperature at which the board for insulation and insulation is used. If the temperature of the board is 300 ° C or higher, 1 to 4% by weight, and if the temperature is less than 300 ° C, 5 to 8% by weight. It is preferable to include. When boric acid is mixed with zinc oxide and a filler, it is difficult to mold at 300 ° C. or higher, so that a small amount of organic binder is included to lower the molding temperature. If the content of the organic binder is less than 1% by weight, the content of the organic binder is too small to reduce the low temperature bonding effect. If the content of the organic binder is more than 8% by weight, the carbonization phenomenon occurs during molding and heat treatment. weak.

본 발명의 절연·단열용 보드에서 충진재로는 알루미나, 마이카, 수산화알루미늄, 지르코니아, 탄화규소, 질화규소, 황산바륨, 규회석, 락울로 구성된 군에서 1 이상을 선택하여 사용할 수 있다. 충진재는 절연·단열용 보드의 전체 중량 대비 50 내지 80 중량% 포함되며, 50 중량% 미만 사용 시 절연, 단열 성능이 저하되고, 내마모성이 약화되어 제품 가공이 용이하지 않다. 80 중량%를 넘어서면 절연·단열용 보드의 결합력 약화로 제품 성형이 어려운 문제가 있다. In the insulation / insulation board of the present invention, the filler may be selected from the group consisting of alumina, mica, aluminum hydroxide, zirconia, silicon carbide, silicon nitride, barium sulfate, wollastonite, and rock wool. Filler is contained 50 to 80% by weight relative to the total weight of the insulation / insulation board, when less than 50% by weight insulation, heat insulation performance is reduced, wear resistance is weakened, the product processing is not easy. If it exceeds 80% by weight, the molding of the product is difficult due to the weakening of the bonding strength of the insulation / insulation board.

종래 절연·단열용 보드에는 충진재로 규조토, 실리카흄, 퍼라이트 등을 사용하였으나, 상기 물질들은 제품의 기계적 강도를 저하시키고, 절연효과 및 단열효과를 감소시키므로 바람직하지 않다. Diatomite, silica fume, perlite, etc. are used as a filler in the conventional insulation and insulation board, but the materials are not preferable because they lower the mechanical strength of the product and reduce the insulation and insulation effects.

본 발명의 절연·단열용 보드의 제조방법은 하기와 같다.The manufacturing method of the board for insulation and insulation of this invention is as follows.

붕산 50 내지 80 중량%와 산화아연 20 내지 50 중량%를 60~120rpm으로 10~20분 동안 혼합 후, 건조기에서 100~150℃, 5~10시간 건조한다. 상기 건조 과정에서 혼합물의 습기 제거 및 성형 시 혼합물의 결합이 용이하게 이루어지도록 하는 사전 반응이 일어난다. 건조 후 결합재의 고른 분산 및 침투를 위해 상기 혼합물을 100~300 mesh로 분쇄한다.50 to 80% by weight of boric acid and 20 to 50% by weight of zinc oxide are mixed at 60 to 120 rpm for 10 to 20 minutes, and then dried in a dryer at 100 to 150 ° C. for 5 to 10 hours. In the drying process, a pre-reaction occurs to facilitate the removal of the moisture from the mixture and the bonding of the mixture during molding. After drying, the mixture is ground to 100-300 mesh for even dispersion and penetration of the binder.

붕산 및 산화아연이 혼합된 무기결합재 10 내지 50 중량%, 변성 페놀수지 및 페놀계 수지를 포함하는 유기결합재 1 내지 8 중량%, 충진재 50 내지 80 중량%를 60~150rpm, 10~20분간 혼합 후, 온도 130~250℃, 압력 100~250kgf/㎠ 하에서 10~90분간 열프레스기로 성형한다. 성형이 완료된 제품을 온도 90~700℃에서 5~48시간 동안 열처리 후 표면 연마를 실시한다. After mixing 10 to 50% by weight of an inorganic binder mixed with boric acid and zinc oxide, 1 to 8% by weight of an organic binder including a modified phenol resin and a phenolic resin, and 50 to 80% by weight of a filler 60 to 150 rpm, for 10 to 20 minutes Molded by a hot press for 10 to 90 minutes under a temperature of 130 ~ 250 ℃, pressure 100 ~ 250kgf / ㎠. The molded product is heat-treated for 5 to 48 hours at a temperature of 90 to 700 ° C and then surface polished.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.This embodiment is intended to illustrate the present invention in more detail, and the scope of the present invention is not limited by these examples.

<실시예 1><Example 1>

무기결합재 35 중량%(붕산 65 중량%, 산화아연 35 중량% 포함)를 150℃, 9시간 건조 처리 후 150mesh로 분쇄한다. 상기 무기결합재를 노볼락 분말 수지 3 중량%, 충진재 62 중량%(알루미나 54 중량%, 마이카 31 중량%, 수산화알루미늄 15 중량% 포함)와 100rpm에서 20분간 건식 혼합 후, 혼합된 원료를 두께 20T, 질량 64kg으로 계량하여 180kg/㎠, 200℃에서 30분간 열압축하였다. 압축된 보드를 400℃에서 15시간 열처리 후 표면 연마를 실시하여 절연·단열용 보드를 제조하였다. 35% by weight of the inorganic binder (65% by weight of boric acid, 35% by weight of zinc oxide) was pulverized to 150mesh after drying for 9 hours at 150 ° C. After mixing the inorganic binder with 3% by weight of novolak powder resin, 62% by weight of filler (54% by weight of alumina, 31% by weight of mica, 15% by weight of aluminum hydroxide) at 100 rpm for 20 minutes, the mixed raw material was 20T thick, It weighed at 64 kg in mass and heat-compressed at 180 kg / cm <2>, 200 degreeC for 30 minutes. The compressed board was heat-treated at 400 ° C. for 15 hours, and then subjected to surface polishing to prepare an insulating and insulating board.

<실시예 2><Example 2>

무기결합재 40 중량%(붕산 60 중량%, 산화아연 40 중량% 포함), 충진재 57 중량%(알루미나 50 중량%, 마이카 25 중량%, 수산화알루미늄 25 중량% 포함)를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하여 절연·단열용 보드를 제조하였다.Example 1 except that 40% by weight of inorganic binder (60% by weight boric acid, 40% by weight zinc oxide), 57% by weight filler (50% by weight alumina, 25% by weight mica, 25% by weight aluminum hydroxide) were used. In the same manner as to prepare an insulation and insulation board.

<실시예 3><Example 3>

무기결합재 35 중량%(붕산 60 중량%, 산화아연 40 중량% 포함), 노볼락 분말 수지 5 중량%, 충진재 60 중량%(알루미나 58 중량%, 마이카 25 중량%, 수산화알루미늄 17 중량% 포함)를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하여 절연·단열용 보드를 제조하였다.35 wt% of inorganic binder (60 wt% boric acid, 40 wt% zinc oxide), 5 wt% novolak powder resin, 60 wt% filler (58 wt% alumina, 25 wt% mica, 17 wt% aluminum hydroxide) Except for the use, it carried out in the same manner as in Example 1 to prepare a board for insulation and insulation.

<비교예 1>Comparative Example 1

노볼락 분말 수지 30 중량%, 충진재 65 중량%(알루미나 50 중량%, 마이카 25 중량%, 수산화알루미늄 25 중량% 포함), 아라미드 섬유 5 중량%를 100rpm으로 20분간 건식 혼합하여 혼합물을 형성하였다. 상기 혼합물을 두께 20T, 질량 64kg으로 계량한 후, 180kg/㎠ 및 150℃에서 30분간 열압축하였다. 압축된 보드를 105℃에서 4시간 열처리 후 표면 연마를 실시하여 절연·단열용 보드를 제조하였다. 30% by weight of novolak powder resin, 65% by weight of filler (50% by weight of alumina, 25% by weight of mica, 25% by weight of aluminum hydroxide) and 5% by weight of aramid fibers were dry mixed at 100 rpm for 20 minutes to form a mixture. The mixture was weighed at a thickness of 20T and a mass of 64 kg and then thermally compressed at 180 kg / cm 2 and 150 ° C. for 30 minutes. The compressed board was heat-treated at 105 ° C. for 4 hours, and then subjected to surface polishing to prepare an insulating and insulating board.

<비교예 2>Comparative Example 2

충진재 62 중량%(규조토 50 중량%, 퍼라이트 25 중량%, 실리카흄 25 중량% 포함)를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하여 절연·단열용 보드를 제조하였다.Except for using 62% by weight of the filler (50% by weight of diatomaceous earth, 25% by weight of perlite, 25% by weight of silica fume) was carried out in the same manner as in Example 1 to prepare an insulation and insulation board.

<실험예>Experimental Example

1. 굴곡강도(MPa)1. Flexural Strength (MPa)

제조된 단열판을 두께 10T, 20mm×140mm로 절단하여 시험편을 준비하고, 100mm 떨어진 두 지점 위에 수평으로 얹어 양 지점 중앙에 서서히 하중을 걸어 절단될 때의 하중을 측정하였다. 이 때 굴곡강도는 하기 식 1에 의하여 산출되었다. 정상상태의 시험은 실온에서 진행하며, 가열 후의 굴곡강도는 시험편을 500℃의 노 안에서 3시간 동안 가열한 후 상온으로 식힌 것에 대하여 시험한다.The prepared thermal insulation plate was cut to a thickness of 10T, 20mm × 140mm to prepare a test piece, and the load was measured when the load was cut by gradually placing the load horizontally on two points 100mm apart. At this time, the bending strength was calculated by the following Equation 1. Steady state tests are carried out at room temperature, and the flexural strength after heating is tested by heating the specimen in a furnace at 500 ° C for 3 hours and then cooling to room temperature.

(식 1)(Equation 1)

Figure pat00001
Figure pat00001

(상기 식 1에서, P: 힘(kgf(N)), L: 지점 사이의 거리(100mm), b: 시험편의 폭(10∼20 mm) 및 h: 시험편의 두께(mm)이다.)(In Formula 1, P: force (kgf (N)), L: distance between points (100 mm), b: width of the test piece (10-20 mm), and h: thickness of the test piece (mm).)

2. 충격강도(kJ/m2)2. Impact strength (kJ / m 2 )

제조된 단열판의 시험편을 두께 10T, 10mm×90mm로 절단하여 준비한 다음, 샤르피 충격 시험기(용량 약 30 kgfㆍcm){Nㆍcm}를 이용하여 지점 사이의 거리를 60mm로 하고, 준비된 시험편을 양 지점에 얹고 그 중앙부를 망치로 1회 충격하여 절단되는 최소의 kgfㆍcm{Nㆍcm}를 절입부에서의 원 단면적 (cm2)으로 나누어 내 충격치로 결정하였다.After preparing the test piece of the manufactured insulation board to a thickness of 10T, 10mm × 90mm, using a Charpy impact tester (capacity about 30 kgf · cm) {Ncm} to make a distance of 60mm between the points, the prepared test piece The minimum kgf · cm {N · cm} cut on the point and impacted once with the hammer at the center was divided by the circular cross-sectional area (cm 2 ) at the incision to determine the impact value.

3. 겉보기 비중(g/㎤)3. Apparent specific gravity (g / cm 3)

제조된 단열판의 시험편을 두께 10T, 25mm×25mm로 절단하여 준비한 다음, 150±5℃의 항온기 안에서 4시간 이상 건조시킨 후 데시게이터 안에 넣고 실온에서 30분 이상 방치한 다음, 시험편의 중량을 측정하여 겉보기 비중을 산출하였다.Prepared by cutting the test piece of the prepared insulation plate to a thickness of 10T, 25mm × 25mm, dried in a thermostat at 150 ± 5 ℃ for at least 4 hours, and placed in a desiccator and left at room temperature for 30 minutes, and then measured the weight of the test piece The apparent specific gravity was calculated.

4. 절연파괴강도(kv/mm)4. Insulation breakdown strength (kv / mm)

시험 온도 23℃ 및 상대 습도 50% 하에서, 섬락을 방지하기 위해 절연유가 든 기름중탕 속에서 상·하 동일한 지름인 25.0mm의 실린더형 전극 사이의 중앙에 상기 실시예 및 비교예에서 제조된 단열판의 시험편을 두께 5T, 70mm×70mm로 절단하여 놓고, 단시간 시험방법으로 AC 60Hz의 상용주파 전압을 0에서부터 3000V/s의 속도로 상승시켜 시편이 파괴되었을 때의 파괴전압을 측정한다.Under the test temperature of 23 ° C and a relative humidity of 50%, in order to prevent flashover, the insulating plates prepared in Examples and Comparative Examples were placed in the center between cylindrical electrodes of 25.0 mm diameters up and down in an oil bath containing insulating oil. Cut the specimen into thickness of 5T, 70mm × 70mm, and measure the breakdown voltage when the specimen is broken by raising the commercial frequency voltage of AC 60Hz from 0 to 3000V / s by short time test method.

5. 내아크성(sec)5. Arc resistance (sec)

제조된 단열판의 시험편을 두께 3T, 지름 100mm의 원형으로 절단한 후, 20℃, 상대습도 65% 하에서 전극장치를 이용하여 내아크성을 측정한다. After cutting the test piece of the manufactured insulation plate in a circular shape having a thickness of 3T and a diameter of 100mm, the arc resistance was measured using an electrode device at 20 ° C. and a relative humidity of 65%.

6. 표면저항율(Ω)6. Surface resistivity (Ω)

제조된 단열판의 시험편을 두께 3T, 지름 100mm의 원형으로 절단한 후 20℃, 상대습도 65% 하에서 절연저항 측정기를 이용하여 표면저항율을 측정한다. The test piece of the prepared insulation plate is cut into a circle having a thickness of 3T and a diameter of 100mm, and the surface resistivity is measured using an insulation resistance measuring instrument at 20 ° C. and a relative humidity of 65%.

7. 체적저항율(Ω·㎝)7. Volume resistivity (Ω · cm)

제조된 단열판의 시험편을 두께 3T, 지름 100mm의 원형으로 절단한 후 20℃, 상대습도 65% 하에서 절연저항 측정기를 이용하여 체적저항율을 측정한다. The test piece of the prepared insulation plate is cut in a circular shape having a thickness of 3T and a diameter of 100mm, and the volume resistivity is measured using an insulation resistance measuring instrument at 20 ° C. and a relative humidity of 65%.

8. 열전도율8. Thermal conductivity

제조된 단열판의 시험편을 두께 20T, 300mm×300mm로 절단하여 시험체 양 표면의 유효측정 영역 내에 1개소 이상의 온도측정 접점을 설치하고, 시험체 주위를 항온조를 이용하여 충분히 단열한 후, 시험체의 양면에 10℃ 이상의 온도차를 부여한다. 시험체 표면온도가 똑같은 방향에 변화가 없게 된 후부터 시험체 온도차에 대하여 30분당 1% 이상 변화하지 않는 정상상태에 도달하면 측정을 종료하고, 식 2에 따라 열전도율을 산출한다.Cut the test piece of the manufactured insulation plate to a thickness of 20T, 300mm x 300mm, install at least one temperature measuring contact in the effective measurement area on both surfaces of the test body, and sufficiently insulate around the test body using a thermostat, It gives a temperature difference of not less than ℃. After the specimen surface temperature is not changed in the same direction, the measurement is terminated when the steady state is not changed by more than 1% per 30 minutes with respect to the specimen temperature difference, and the thermal conductivity is calculated according to Equation 2.

(식 2)(Equation 2)

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

(상기에서, ι: 시험체의 두께(m), Rc: 시험체의 열저항(m2·h·℃/kcal)(m2·K/W), θ1: 시험체 고온면의 온도(℃), θ2: 시험체 저온면의 온도(℃), q: 단위 면적당 열류량(kcal/m2·h)(W/m2), K1K2: 열류계의 감도계수(kcal/m2·h)(W/m2·V), e1e2: 열류계의 출력(V))(In the above, ι: thickness of the test body (m), Rc: thermal resistance of the test body (m 2 · h · ℃ / kcal) (m 2 · K / W), θ 1 : temperature of the test object hot surface (℃), θ 2 : temperature of test specimen cold surface (° C.), q: heat flow rate per unit area (kcal / m 2 · h) (W / m 2 ), K 1 K 2 : sensitivity coefficient of heat flow meter (kcal / m 2 · h) (W / m 2 · V), e 1 e 2 : output of heat flow meter (V))

이상의 실험에서 측정된 값들을 아래의 [표 1]에 나타내었다.The values measured in the above experiments are shown in Table 1 below.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 정상상태 굴곡강도 (MPa)Steady State Flexural Strength (MPa) 29.429.4 27.227.2 25.425.4 24.524.5 25.125.1 500℃, 3시간 가열 후 굴곡강도 (MPa)Flexural strength after heating at 500 ℃ for 3 hours (MPa) 30.930.9 42.842.8 23.523.5 0.80.8 19.519.5 충격강도(kJ/m2)Impact strength (kJ / m 2 ) 3.33.3 2.92.9 2.72.7 1.51.5 2.22.2 겉보기 비중(g/㎤)Apparent specific gravity (g / cm3) 2.42.4 2.62.6 2.42.4 1.91.9 1.81.8 절연파괴강도(kv/mm)Dielectric breakdown strength (kv / mm) 7.27.2 7.17.1 6.66.6 6.06.0 5.55.5 내아크성(sec)Arc resistance (sec) 420420 420420 420420 250250 280280 표면저항율(Ω)Surface resistivity (Ω) 1.8×1015 1.8 × 10 15 1.6×1016 1.6 × 10 16 6.4×1015 6.4 × 10 15 6.8×1013 6.8 × 10 13 2.1×1013 2.1 × 10 13 체적저항율(Ω·㎝)Volume resistivity (Ωcm) 5.9×1015 5.9 × 10 15 5.5×1015 5.5 × 10 15 4.7×1015 4.7 × 10 15 4.4×1014 4.4 × 10 14 9.5×1013 9.5 × 10 13 열전도율(W/mK)Thermal Conductivity (W / mK) 0.380.38 0.370.37 0.380.38 0.430.43 0.450.45

상기 [표 1]에서와 같이 실시예 1 내지 3의 경우 무기결합재를 사용하지 않은 비교예 1보다 기계적 강도 측면에서 우수함을 확인할 수 있다. 특히, 정상상태 굴곡강도는 유사하나, 500℃ 온도에서 3시간 가열 후 조건에서 실시예 1 내지 3의 경우 소성효과로 인해 굴곡강도가 증가하였으며, 유기결합재만을 사용한 비교예 1의 경우 고온에서 탄화 및 열변형이 발생하여 굴곡강도가 감소하였다. 또한 실시예 1 내지 3에서 제조된 절연·단열용 보드의 겉보기 비중이 높아 가공시 치수 변화가 적으며, 전기적 성질과 단열 성능이 개선되었음을 확인할 수 있다. As shown in Table 1, it can be seen that in Examples 1 to 3, the mechanical strength is superior to Comparative Example 1 in which the inorganic binder is not used. In particular, the steady state flexural strength was similar, but the flexural strength was increased in the case of Examples 1 to 3 in the conditions after heating for 3 hours at 500 ℃ temperature, in Comparative Example 1 using only an organic binder carbonized and Thermal deformation occurred and flexural strength decreased. In addition, the apparent specific gravity of the insulation board / insulation board manufactured in Examples 1 to 3 has a small dimensional change during processing, it can be confirmed that the electrical properties and thermal insulation performance is improved.

비교예 2의 경우 규조토, 퍼라이트, 실리카흄을 포함하는 충진재를 사용하여 실시예 1 내지 3보다 강도가 약하며, 전기적 특성의 저하로 절연효과 감소, 열전도율이 감소하였음을 확인할 수 있다. In the case of Comparative Example 2 using a filler including diatomaceous earth, perlite, silica fume, the strength is weaker than Examples 1 to 3, it can be confirmed that the insulation effect is reduced, the thermal conductivity is reduced by the degradation of the electrical properties.

Claims (4)

붕산 및 산화아연을 포함하는 무기결합재 10~50 중량%;
변성 페놀 수지 및 페놀계 수지를 포함하는 유기결합재 1~8 중량%;
알루미나, 마이카, 수산화알루미늄, 지르코니아, 탄화규소, 질화규소, 황산바륨, 규회석, 락울로 이루어진 군에서 선택되는 어느 하나 또는 2 이상의 화합물인 충진재 50~80 중량%를 포함하는 절연·단열용 보드.
10 to 50% by weight of an inorganic binder including boric acid and zinc oxide;
1 to 8% by weight of an organic binder including a modified phenolic resin and a phenolic resin;
An insulation / insulation board comprising 50 to 80% by weight of a filler, which is any one or two or more compounds selected from the group consisting of alumina, mica, aluminum hydroxide, zirconia, silicon carbide, silicon nitride, barium sulfate, wollastonite, and rock wool.
제 1항에 있어서,
상기 무기결합재 중 붕산의 함량은 50~80 중량%, 산화아연의 함량은 20~50 중량%인 절연·단열용 보드.
The method of claim 1,
Boron acid content of the inorganic binder is 50 to 80% by weight, zinc oxide content is 20 to 50% by weight of the insulation and insulation board.
제 1항에 있어서,
상기 절연·단열용 보드의 사용 온도가 300℃ 이상인 경우 유기결합재 함량이 1~4 중량%이고,
상기 절연·단열용 보드의 사용 온도가 300℃ 미만인 경우 유기결합재 함량이 5~8 중량%인 절연·단열용 보드.
The method of claim 1,
When the use temperature of the insulation and insulation board is 300 ℃ or more, the organic binder content is 1 to 4% by weight,
The insulation / insulation board having an organic binder content of 5 to 8% by weight when the use temperature of the insulation / heat insulation board is less than 300 ° C.
붕산 50~80 중량%, 산화아연 20~50 중량%를 60~150rpm으로 10~20분간 혼합하여 무기결합재 혼합물을 제조하는 단계;
상기 무기결합재 혼합물을 100~150℃, 5~10시간 건조하는 단계;
상기 무기결합재 혼합물을 100~300mesh로 분쇄하는 단계;
상기 무기결합재 혼합물, 유기결합재 및 충진재를 60~150rpm, 10~20분간 혼합하는 단계;
130~250℃, 100~250kgf/㎠에서 10~90분 동안 열프레스기로 성형하는 단계;
90~700℃에서 5~48시간 동안 전기로에서 열처리하는 단계; 및
표면 연마 단계;를 포함하는 절연·단열용 보드 제조방법.

Preparing an inorganic binder mixture by mixing 50 to 80% by weight of boric acid and 20 to 50% by weight of zinc oxide at 60 to 150 rpm for 10 to 20 minutes;
Drying the inorganic binder mixture at 100 to 150 ° C. for 5 to 10 hours;
Grinding the inorganic binder mixture to 100 to 300 mesh;
Mixing the inorganic binder mixture, the organic binder and the filler at 60 to 150 rpm for 10 to 20 minutes;
Molding at 130 to 250 ° C. and 100 to 250 kgf / cm 2 for 10 to 90 minutes using a heat press;
Heat treatment in an electric furnace at 90-700 ° C. for 5-48 hours; And
Surface polishing step; insulating, insulating board manufacturing method comprising a.

KR1020180017146A 2018-02-12 2018-02-12 Insulation·heat insulation board and manufacturingmethod thereof KR102047991B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180017146A KR102047991B1 (en) 2018-02-12 2018-02-12 Insulation·heat insulation board and manufacturingmethod thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180017146A KR102047991B1 (en) 2018-02-12 2018-02-12 Insulation·heat insulation board and manufacturingmethod thereof

Publications (2)

Publication Number Publication Date
KR20190097570A true KR20190097570A (en) 2019-08-21
KR102047991B1 KR102047991B1 (en) 2019-11-22

Family

ID=67808285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180017146A KR102047991B1 (en) 2018-02-12 2018-02-12 Insulation·heat insulation board and manufacturingmethod thereof

Country Status (1)

Country Link
KR (1) KR102047991B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246859A (en) * 1986-04-21 1987-10-28 三菱電機株式会社 Manufacture of mica composite inorganic material
JPH0717438B2 (en) * 1988-08-10 1995-03-01 三菱電機株式会社 Manufacturing method of mica composite inorganic molding
KR20050078506A (en) * 2004-02-02 2005-08-05 (주)경안인더스트리 Asbestos-free insulation board and manufacturing method thereof
JP2006037269A (en) * 2004-07-26 2006-02-09 Nippon Sheet Glass Co Ltd Heat-resistant ceramic sheet
KR20160014530A (en) * 2014-07-29 2016-02-11 아사히 가라스 가부시키가이샤 Process for producing an insulating board and a vacuum insulation panel
KR20170056448A (en) * 2015-11-13 2017-05-23 강범형 Flame retardant particle, manufacturing method of the same, and flame retardant polystyrene foam
KR20170103386A (en) * 2016-03-04 2017-09-13 (주)경안인더스트리 Asbestos-free insulation·heat insulation board and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017438B2 (en) * 2018-03-07 2022-02-08 Ykk Ap株式会社 Joinery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246859A (en) * 1986-04-21 1987-10-28 三菱電機株式会社 Manufacture of mica composite inorganic material
JPH0717438B2 (en) * 1988-08-10 1995-03-01 三菱電機株式会社 Manufacturing method of mica composite inorganic molding
KR20050078506A (en) * 2004-02-02 2005-08-05 (주)경안인더스트리 Asbestos-free insulation board and manufacturing method thereof
JP2006037269A (en) * 2004-07-26 2006-02-09 Nippon Sheet Glass Co Ltd Heat-resistant ceramic sheet
KR20160014530A (en) * 2014-07-29 2016-02-11 아사히 가라스 가부시키가이샤 Process for producing an insulating board and a vacuum insulation panel
KR20170056448A (en) * 2015-11-13 2017-05-23 강범형 Flame retardant particle, manufacturing method of the same, and flame retardant polystyrene foam
KR20170103386A (en) * 2016-03-04 2017-09-13 (주)경안인더스트리 Asbestos-free insulation·heat insulation board and manufacturing method thereof

Also Published As

Publication number Publication date
KR102047991B1 (en) 2019-11-22

Similar Documents

Publication Publication Date Title
KR101757069B1 (en) Alumina composite ceramic composition and method of manufacturing the same
KR101660965B1 (en) Thermal insulation and method of producing the same
CN108587181A (en) One kind can porcelain SiClx rubber thermally protective materials and preparation method thereof
CN102976710A (en) Nano miroporous heat-insulating material
KR20080070487A (en) Carbon containing eco-friendly refractory material composition
Mehta et al. Effect of sintering on physical, mechanical, and electrical properties of alumina-based porcelain insulator using economic raw materials doped with zirconia
CN107936566A (en) It is a kind of for flame retardant cable can Ceramic silicon rubber composite material and its manufacture method
KR102047991B1 (en) Insulation·heat insulation board and manufacturingmethod thereof
CN105517212A (en) Embedded heating plate and preparation method thereof
US20020197464A1 (en) Shaped thermal insulation body
Yousaf et al. Microstructural and mechanical characterization of high strength porcelain insulators for power transmission and distribution applications
KR20170103386A (en) Asbestos-free insulation·heat insulation board and manufacturing method thereof
KR20200021807A (en) Geopolymer thermoelectric composite comprising conductive filler
Shi et al. Fluxing Agents on Ceramification of Composites of MgO-Al 2 O 3-SiO 2/Boron Phenolic Resin
CN102811968A (en) Reinforced composite material, method of preparing the same, its use for preparing manufactured products, as well as manufactured products formed in this way and their use
US20030080313A1 (en) Microporous thermal insulation molding containing electric-arc silica
KR102359022B1 (en) Non-asbestos board with excellent insulation and heat insulation and manufacturing method thereof
CN109734459A (en) Hot-metal bottle pyrophillite silicon carbide carbon brick and preparation method thereof
KR102102820B1 (en) The Bottom Gas Bubbling MgO Refractory composition to Relieve Thermal Stress and the product manufacturing Method
KR102374736B1 (en) Non-asbestos insulation board with excellent mechanical strength and heat resistance and manufacturing method thereof
KR101429056B1 (en) Magnesia-carbon refractory material
KR100562992B1 (en) Sealing Materials Composition Having Excellent Sealing and Adhension Property
KR20190044994A (en) Thermal Shock Resistant Composition for Bottom Gas Bubbling Refractory
KR101990464B1 (en) Inorganic binder for high temperature insulating materials, superhigh temperature insulating materials containing the same and Manufacturing method thereof
KR101066575B1 (en) Batch composition of thermal insulation packing materials

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant