KR20190095998A - Power semiconductor module - Google Patents

Power semiconductor module Download PDF

Info

Publication number
KR20190095998A
KR20190095998A KR1020180015405A KR20180015405A KR20190095998A KR 20190095998 A KR20190095998 A KR 20190095998A KR 1020180015405 A KR1020180015405 A KR 1020180015405A KR 20180015405 A KR20180015405 A KR 20180015405A KR 20190095998 A KR20190095998 A KR 20190095998A
Authority
KR
South Korea
Prior art keywords
dbc substrate
terminal
semiconductor module
power semiconductor
heat sink
Prior art date
Application number
KR1020180015405A
Other languages
Korean (ko)
Other versions
KR102490612B1 (en
Inventor
박유철
Original Assignee
현대모비스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대모비스 주식회사 filed Critical 현대모비스 주식회사
Priority to KR1020180015405A priority Critical patent/KR102490612B1/en
Publication of KR20190095998A publication Critical patent/KR20190095998A/en
Application granted granted Critical
Publication of KR102490612B1 publication Critical patent/KR102490612B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/46Structure, shape, material or disposition of the wire connectors prior to the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/074Stacked arrangements of non-apertured devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4846Connecting portions with multiple bonds on the same bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

The present invention relates to a power semiconductor module capable of reducing the resistance to reduce generation of heat, thereby increasing the efficiency of a system. The power semiconductor module comprises: a direct bonded copper (DBC) substrate including a base portion made of a ceramic material and pattern layers made of copper and bonded to upper and lower surfaces of the base portion; a semiconductor chip mounted on an upper surface of the DBC substrate; a bonding wire electrically connecting the DBC substrate and the semiconductor chip to each other and electrically connecting any one of a positive terminal or a negative terminal to the DBC substrate; and a heat sink disposed on a lower surface of the DBC substrate to radiate heat. A plurality of fixing protrusions protruding from the upper surface in the direction, in which the DBC substrate is disposed, are formed in one direction of the heat sink. The DBC substrate has through holes which are formed in a number corresponding to that of the fixing protrusions at positions corresponding to those of the fixing protrusions, and through which the fixing protrusions pass. The positive terminal and the negative terminal are disposed in the other direction opposite to the direction in which the through holes are formed in the DBC substrate.

Description

전력용 반도체 모듈{POWER SEMICONDUCTOR MODULE}Power Semiconductor Modules {POWER SEMICONDUCTOR MODULE}

본 발명은 전력용 반도체 모듈에 관한 것으로서, 더욱 상세하게는 저항을 감소시켜 발열을 줄일 수 있고 이로 인해 시스템의 효율을 높일 수 있는 전력용 반도체 모듈에 관한 것이다.The present invention relates to a power semiconductor module, and more particularly, to a power semiconductor module that can reduce heat generation by reducing the resistance, thereby increasing the efficiency of the system.

통상적으로 반도체 산업은 저렴한 가격에 더욱 경량화, 소형화, 다기능화 및 고성능화 추세에 있다. In general, the semiconductor industry tends to be lighter, smaller, more versatile, and higher in performance at a lower price.

이러한 추세에 부응하기 위하여 요구되는 중요한 기술 중의 하나가 집적회로 패키지 기술이다.One of the important technologies required to meet this trend is integrated circuit package technology.

집적회로 패키지는 각종 전자 회로 및 배선이 적층된 단일 소자 및 집적회로 등의 반도체칩을 먼지, 습기, 전기적 부하, 기계적 부하 등의 각종 외부 환경으로부터 보호한다.An integrated circuit package protects semiconductor chips such as single devices and integrated circuits in which various electronic circuits and wiring are stacked from various external environments such as dust, moisture, electrical loads, and mechanical loads.

그리고, 집적회로 패키지는 반도체칩의 전기적 성능을 최적화 및 극대화하기 위해 리드 프레임(LEAD FRAME)이나 인쇄회로기판(PRINTED CIRCUIT BOARD) 등을 이용하여 메인보드로의 신호 입/출력 단자를 형성하고, 봉지재(HERMETIC SEAL)를 이용하여 몰딩한 것을 일컫는다. In order to optimize and maximize the electrical performance of the semiconductor chip, the integrated circuit package forms a signal input / output terminal to the main board using a lead frame or printed circuit board, and encapsulates the encapsulation. Refers to molding using HERMETIC SEAL.

한편, 최근 집적회로 패키지가 실장되는 제품들은 경박단소(LIGHT WEIGHT SHORT SMALL)화되고, 많은 기능이 요구됨에 따라 집적회로 패키지 기술은 집적회로 패키지 내에 복수의 반도체칩을 실장하는 SIP(SYSTEM IN PACKAGE), PoP(PACKAGE ON PACKAGE) 등과 같은 방식을 적용하는 추세이다.On the other hand, as the products in which the integrated circuit package is recently installed become light weight short SMALL, and many functions are required, the integrated circuit package technology is SIP (SYSTEM IN PACKAGE) for mounting a plurality of semiconductor chips in the integrated circuit package , PoP (PACKAGE ON PACKAGE), etc. is a trend to apply.

더불어 고집적화 및 초막화된 부품이 실장되는 인쇄회로기판 역시 박형화해야 하는 것이 과제가 되고 있다. In addition, it is also a problem that the printed circuit board on which the highly integrated and ultra-thin components are mounted is also thinned.

이를 만족시키기 위해서는 기판의 회로설계 자유도가 증가하여야 하는데 마이크로비아, 빌드업 등 다양한 신기술들을 채택함으로써 이러한 문제에 대한 해결을 시도하고 있다.To satisfy this, the degree of freedom of circuit design of the board must be increased, and various new technologies such as microvia and build-up are adopted to solve this problem.

한편, 다양한 기판들 중 세라믹기판은 일반 PCB와 달리 세라믹을 기초 소재로 사용함으로써 높은 온도와 고전류를 잘 견디는 특성을 갖고 있다.On the other hand, the ceramic substrate of the various substrates have a characteristic that withstands high temperature and high current by using ceramic as a base material unlike the general PCB.

이런 특성으로 인해 세라믹기판은 전력용 반도체, 절연게이트양극성트랜지스터(IGBT), 고출력 발광다이오드(LED), 태양전지 모듈 등에 주로 사용된다.Due to these characteristics, ceramic substrates are mainly used for power semiconductors, insulated gate bipolar transistors (IGBTs), high power light emitting diodes (LEDs), and solar cell modules.

이러한 세라믹기판 중 특히 DBC(DIRECT BONDED COPPER)기판은 상대적으로 고전압 제품에 사용된다.Among these ceramic substrates, especially DBC (DIRECT BONDED COPPER) substrate is used for relatively high voltage products.

그리고, 최근, 전자기기는 다기능화, 고성능화 추세에 따라 더욱 많은 수의 반도체를 필요로 하게 되었으며, 이로 인해, 높은 온도가 발생되어 반도체 모듈의 더 높을 방열효율을 요구하였다.In recent years, electronic devices have required a greater number of semiconductors in accordance with the trend of multifunctionalization and high performance, and thus, high temperatures have been generated, requiring higher heat dissipation efficiency of semiconductor modules.

이러한 종래의 반도체 모듈은 도 1에 도시된 바와 같이 히트싱크(10) 상면에 서멀그리스(20)가 도포되어 베이스플레이트(30)가 안착된다.In the conventional semiconductor module, as shown in FIG. 1, the thermal grease 20 is coated on the top surface of the heat sink 10, and the base plate 30 is seated thereon.

그리고, 베이스플레이트(30)의 상면에는 DBC기판(40)이 안착되며, DBC기판(40)의 상면에는 반도체칩(50)을 실장하고, 반도체칩(50)의 상면에는 와이어 본딩(60)을 형성한다.The DBC substrate 40 is mounted on the upper surface of the base plate 30, the semiconductor chip 50 is mounted on the upper surface of the DBC substrate 40, and the wire bonding 60 is mounted on the upper surface of the semiconductor chip 50. Form.

이러한 와이어 본딩(60)은 반도체칩(50)와 DBC기판(40)을 연결하고, DBC기판(40)과 터미털(70)과 연결한다.The wire bonding 60 connects the semiconductor chip 50 and the DBC substrate 40 and connects the DBC substrate 40 and the terminal 70.

DBC기판(40)은 세라믹 소재(알루미나(Al2O3), 질화알루미늄(AlN) 등)의 층 상하 양면에 구리층이 형성된 형태이다. The DBC substrate 40 has a copper layer formed on both upper and lower layers of a ceramic material (alumina (Al 2 O 3), aluminum nitride (AlN), etc.).

그리고, DBC기판(40)의 상부 패턴은 반도체칩(50)과 솔더링이 되고 DBC기판(40)의 하부는 베이스플레이트(30)와 솔더링이 된다.The upper pattern of the DBC substrate 40 is soldered with the semiconductor chip 50, and the lower part of the DBC substrate 40 is soldered with the base plate 30.

한편, 터미널(70)은 +터미널(71)과 -터미널(72)로 이루어진다.On the other hand, the terminal 70 is composed of a + terminal 71 and a-terminal 72.

이러한 터미널(70)은 히트싱크(10)와 간접적으로 연결되어 히트싱크(10)로 인해 온도가 낮춰지는 구조로 이루어져 있다.The terminal 70 is indirectly connected to the heat sink 10 and has a structure in which the temperature is lowered due to the heat sink 10.

따라서, 도 1에 도시된 바와 같이 +터미널(71)과 -터미널(72)이 DBC기판(40)을 중심으로 DBC기판(40)의 좌우에 배치된다.Accordingly, as illustrated in FIG. 1, the + terminal 71 and the − terminal 72 are disposed on the left and right of the DBC substrate 40 with the DBC substrate 40 as the center.

이로 인해, +터미널(71)과 -터미널(72) 중 어느 하나는 길게 연장될 수 밖에 없다.For this reason, any one of the + terminal 71 and the-terminal 72 is inevitably extended.

따라서, +터미널(71)과 -터미널(72) 중 길게 연장된 터미널(70)에는 큰 값의 기생인덕턴스가 발생될 수 밖에 없다.Accordingly, a large parasitic inductance can be generated in the long terminal 70 of the + terminal 71 and the-terminal 72.

이러한 기생인덕턴스는 하나 또는 여러 회로의 반도체칩 동작이나 커플링 등에 의해서 생긴 단시간의 전압 또는 전류 진폭인 전압 스파이크에 영향을 준다.These parasitic inductances affect voltage spikes, which are short-term voltage or current amplitudes caused by semiconductor chip operation or coupling of one or more circuits.

상기 기생인덕턴스의 값이 커지면 전압이 상승하여 시스템에 노이즈를 발생시키거나, 반도체칩 소손의 원인이 된다.If the value of the parasitic inductance is large, the voltage rises to generate noise in the system or may cause damage to the semiconductor chip.

또한, 상기와 같은 과전압을 줄이기 위해 반도체칩의 저항을 증가시키면, 손실이 증가하여 반도체 모듈의 온도가 증가하는 현상이 발생하고 시스템 효율이 낮아지는 문제가 있다.In addition, if the resistance of the semiconductor chip is increased in order to reduce the overvoltage as described above, a loss may increase, thereby increasing the temperature of the semiconductor module, and the system efficiency may be lowered.

본 발명은 상기와 같은 실정을 감안하여 제안된 것으로서, 저항을 감소시켜 발열을 줄일 수 있고, 이로 인해 시스템의 효율을 높일 수 있는 전력용 반도체 모듈을 제공하는데 그 목적이 있다.The present invention has been proposed in view of the above-described circumstances, and has an object to provide a power semiconductor module capable of reducing heat generation by reducing resistance, thereby increasing the efficiency of the system.

본 발명의 일실시예에 의한 전력용 반도체 모듈은 +터미널 및 -터미널이 전기적으로 연결된 본 발명의 일실시예에 의한 전력용 반도체 모듈은 세라믹 재질로 이루어진 베이스부와, 구리 재질로 이루어지고 상기 베이스부의 상면 및 하면에 각각 접합된 패턴층으로 이루어진 DBC(DIRECT BONDED COPPER)기판; 상기 DBC기판의 상면에 실장된 반도체칩; 상기 DBC기판과 상기 반도체칩을 상호 전기적으로 연결하고, 상기 +터미널 또는 -터미널 중 어느 하나와 상기 DBC기판을 상호 전기적으로 연결시키는 본딩와이어; 및 상기 DBC기판의 하면에 배치되어 열을 방사하는 히트싱크(HEAT SINK);를 포함하고, 상기 히트싱크의 일측방향에는 상면으로부터 상기 DBC기판이 배치된 방향으로 돌출되는 다수개의 고정돌기가 형성되며, 상기 DBC기판에는 상기 고정돌기와 대응되는 위치에서, 상기 고정돌기와 대응되는 개수로 형성되어 상기 고정돌기가 관통되는 관통공이 형성되며, 상기 DBC기판에서 상기 관통공이 형성된 방향의 반대방향인 타측방향에 +터미널과 -터미널이 배치된다.Power semiconductor module according to an embodiment of the present invention is a power semiconductor module according to an embodiment of the present invention in which the + terminal and the-terminal is electrically connected to a base portion made of a ceramic material, a copper material and the base DBC (DIRECT BONDED COPPER) substrate consisting of a pattern layer bonded to each of the upper and lower surfaces of the negative portion; A semiconductor chip mounted on an upper surface of the DBC substrate; Bonding wires electrically connecting the DBC substrate and the semiconductor chip to each other, and electrically connecting any one of the + terminal or the-terminal to the DBC substrate; And a heat sink disposed on a lower surface of the DBC substrate to radiate heat, wherein one side of the heat sink has a plurality of fixing protrusions protruding from the upper surface in a direction in which the DBC substrate is disposed. In the DBC substrate, a through hole is formed at a position corresponding to the fixing protrusion to correspond to the fixing protrusion to form the through hole through which the fixing protrusion passes, and in the other direction opposite to the direction in which the through hole is formed in the DBC substrate Terminals and terminals are placed.

상기 반도체칩과 상기 DBC기판 및 상기 히트싱크와 상기 DBC기판은 각각 솔더(SOLDER)를 이용하여 전기전으로 연결된다.The semiconductor chip, the DBC substrate, the heat sink, and the DBC substrate are each connected to an electric field by using a solder (SOLDER).

상기 고정돌기와 상기 관통공은 솔더를 이용하여 연결된다.The fixing protrusion and the through hole are connected using solder.

상기 고정돌기와 상기 관통공 사이를 솔더링할 때, 상기 DBC의 모서리에 압력이 가해진다.When soldering between the fixing protrusion and the through hole, pressure is applied to an edge of the DBC.

상기 히트싱크는 상면에 상기 -터미널이 배치된다.The heat sink is disposed on the upper surface of the terminal.

상기 히트싱크와 상기 -터미널은 솔더를 이용하여 연결된다.The heat sink and the -terminal are connected using solder.

상기 히트 싱크는 알루미늄, 알루미늄 합금, 구리, 구리 합금, 알루미나, BeO, 알루미늄나이트라이드, SiN, 에폭시계 수지, 또는 이들의 조합을 포함한다.The heat sink includes aluminum, aluminum alloy, copper, copper alloy, alumina, BeO, aluminum nitride, SiN, epoxy resin, or a combination thereof.

상기 히트싱크는 알루미늄, 알루미늄 합금, 또는 이들의 조합을 포함되, 주석으로 도금된다.The heat sink includes aluminum, an aluminum alloy, or a combination thereof, plated with tin.

상기 본딩와이어는, 일단은 상기 반도체칩의 일방향 영역의 상면에 솔더링되고, 타단은 상기 반도체칩의 타방향 영역의 상면에 솔더링되는 버퍼와이어; 상기 DBC기판의 상면과 상기 +터미널 또는 -터미널 중 어느 하나를 상호 전기적으로 연결시키는 도전성와이어;를 포함한다.The bonding wire may include: a buffer wire having one end soldered to an upper surface of one region of the semiconductor chip and the other end soldered to an upper surface of the other region of the semiconductor chip; And a conductive wire electrically connecting the upper surface of the DBC substrate and any one of the + terminal and the-terminal to each other.

버퍼와이어는, 리본형 금속 와이어 또는 테이프형 금속 와이어이다.The buffer wire is a ribbon metal wire or a tape metal wire.

상기 DBC기판을 둘러싸서 상기 DBC기판에 배치된 각종 전자부품들을 보호하는 몰딩부;를 더 포함한다.And a molding unit surrounding the DBC substrate to protect various electronic components disposed on the DBC substrate.

상기 몰딩부는, EMC(EPOXY MOLDING COMPOUND)로 이루어진다.The molding part is made of EMC (EPOXY MOLDING COMPOUND).

본 발명에 따른 전력용 반도체 모듈은 히트싱크에 고정돌기가 형성되고, DBC기판에 관통공이 형성되어 상호 고정됨으로써, DBC기판은 히트싱크에 견고하게 고정될 수 있는 효과가 있다.In the power semiconductor module according to the present invention, a fixing protrusion is formed in the heat sink, and through holes are formed in the DBC substrate so that the DBC substrate can be firmly fixed to the heat sink.

또한, 고정돌기 및 관통공의 결합으로 인해 베이스플레이트와 서멀그리스가 삭제됨으로서, 반도체 모듈을 제작하는 제작공정과 공정시간을 줄일 수 있는 효과가 있다.In addition, the base plate and the thermal grease are eliminated due to the combination of the fixing protrusion and the through hole, thereby reducing the manufacturing process and processing time for manufacturing the semiconductor module.

그리고, -터미널은 +터미널과 같은 방향에 위치하여 -터미널의 길이가 짧게 형성되고, 낮은 값의 기생인덕턴스가 발생됨으로써, 반도체칩에 스트레스가 적게 발생되고, 반도체칩의 저항을 낮출 수 있어, 반도체 모듈의 온도를 낮출 수 있고, 고주파에서 동작시, 손실이 작아 우수한 효율을 얻을 수 있는 효과가 있다.And, since the terminal is located in the same direction as the + terminal, the length of the terminal is short and the parasitic inductance of low value is generated, so that the stress on the semiconductor chip is generated less and the resistance of the semiconductor chip can be lowered. The temperature of the module can be lowered, and when operating at a high frequency, the loss is small, so that an excellent efficiency can be obtained.

도 1은 종래의 전력용 반도체 모듈을 나타낸 단면도.
도 2는 본 발명의 일실시예에 따른 전력용 반도체 모듈의 단면을 나타낸 단면도.
도 3은 본 발명의 일실시예에 따른 DBC기판과 히트싱크를 나타낸 분해사시도.
1 is a cross-sectional view showing a conventional power semiconductor module.
2 is a cross-sectional view showing a cross section of a power semiconductor module according to an embodiment of the present invention.
Figure 3 is an exploded perspective view showing a DBC substrate and a heat sink according to an embodiment of the present invention.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 기재에 의해 정의된다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자 이외의 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the invention is defined by the description of the claims. Meanwhile, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, “comprises” or “comprising” means the presence of one or more other components, steps, operations and / or elements other than the components, steps, operations and / or elements mentioned or Does not exclude additional

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 일실시예에 따른 전력용 반도체 모듈의 단면을 나타낸 단면도이고, 도 3은 본 발명의 일실시예에 따른 DBC기판과 히트싱크를 나타낸 분해사시도이다.2 is a cross-sectional view showing a cross section of a power semiconductor module according to an embodiment of the present invention, Figure 3 is an exploded perspective view showing a DBC substrate and a heat sink according to an embodiment of the present invention.

도 2 및 도 3을 참조하면, +터미널(600) 및 -터미널이 전기적으로 연결된 본 실시예에 따른 전력용 반도체 모듈은 DBC(DIRECT BONDED COPPER)기판(100)과, 반도체칩(200)과, 본딩와이어(300)와, 히트싱크(400) 및 몰딩부(500)를 포함한다.2 and 3, the power semiconductor module according to the present embodiment in which the + terminal 600 and the-terminal are electrically connected to each other includes a DBC (DIRECT BONDED COPPER) substrate 100, a semiconductor chip 200, The bonding wire 300 includes a heat sink 400 and a molding part 500.

DBC기판(100)은 열전도성과 절연성이 우수하고, 기존의 방열소재 표면에 안착시키는 경우보다 높은 방열 특징이 있는 것으로서, 베이스부(110)와 패턴층(120)으로 이루어진다.The DBC substrate 100 is excellent in thermal conductivity and insulation, and has a higher heat dissipation characteristic than when it is seated on a surface of a conventional heat dissipation material. The DBC substrate 100 includes a base part 110 and a pattern layer 120.

베이스부(110)는 세라믹으로 이루어진 판재로서, 더욱 상세하게는 절연기재인 알루미나(Al2O3)나 알루미늄나이트라이드(AlN) 등으로 형성된다.The base 110 is a plate made of ceramic, and more particularly, is formed of alumina (Al 2 O 3), aluminum nitride (AlN), or the like, which is an insulating substrate.

패턴층(120)은 베이스부(110)의 상면과 하면에 각각 접합된 것으로서, 구리 또는 구리합금으로 이루어진다.The pattern layer 120 is bonded to the upper and lower surfaces of the base unit 110, respectively, and is made of copper or a copper alloy.

이러한 구조로 이루어진 DBC기판(100)은 일반 기판에 비해 월등히 높은 열방출 특성을 갖는다.The DBC substrate 100 having such a structure has much higher heat dissipation characteristics than a general substrate.

또한, DBC기판(100)은 베이스부(110)의 상면과 하면에 구리 또는 구리합금으로 이루어진 패턴부가 접착됨으로써, 솔더링이나 와이어 본딩이 가능하다.In addition, the DBC substrate 100 may be soldered or wire bonded by adhering a pattern part made of copper or a copper alloy to the upper and lower surfaces of the base part 110.

한편, 베이스부(110)와 패턴층(120)에는 하기에 설명할 히트싱크(400)과 결합되는 관통공(130)이 형성된다.On the other hand, the base portion 110 and the pattern layer 120 is formed with a through hole 130 coupled to the heat sink 400 to be described later.

관통공(130)은 다수개로 이루어진 것으로서, DBC기판(100)의 일측방향에 관통된 구멍으로써, 히트싱크(400)가 결합될 수 있도록 한다.As the through hole 130 is formed of a plurality, the through hole in one direction of the DBC substrate 100, so that the heat sink 400 can be coupled.

반도체칩(200)은 DBC기판(100)의 상면에 실장된 것으로서, 솔더(SOLDER) 또는 도전성 에폭시에 의해 DBC기판(100)의 상면에 실장되어 상호 전기적으로 연결된다.The semiconductor chip 200 is mounted on the upper surface of the DBC substrate 100, and is mounted on the upper surface of the DBC substrate 100 by solder (SOLDER) or conductive epoxy and electrically connected to each other.

이러한 반도체칩(200)은 작은 입력으로 큰 출력을 얻을 수 있는 반도체 소자로써, 예컨대 DIODE, MOSFET(METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR), IGBT(INSULATED GATE BIPOLAR TRANSISTOR) 등과 같은 반도체 소자이다.The semiconductor chip 200 is a semiconductor device capable of obtaining a large output with a small input. For example, the semiconductor chip 200 is a semiconductor device such as a diode, a MOSFET (METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR), an IGBT (INSULATED GATE BIPOLAR TRANSISTOR), or the like.

따라서, 반도체칩(200)은 작은 입력으로 큰 출력을 얻기 위해 입력값을 증폭시켜발진시키는 것으로서, 이러한 과정에서 높은 열이 발생할 수 있다.Therefore, the semiconductor chip 200 amplifies and oscillates an input value in order to obtain a large output with a small input, and high heat may be generated in this process.

즉, 반도체칩(200)은 열을 발생시키는 주요 부분이다.That is, the semiconductor chip 200 is a main part that generates heat.

그리고, 반도체칩(200)은 최근 전자기기의 다기능화, 고성능화 추세에 따라 전자기기의 설계를 다양화함으로써 전자기기의 설계에 따라 반도체칩(200)의 개수를 달리할 수 있다.In addition, the semiconductor chip 200 may vary the number of the semiconductor chips 200 according to the design of the electronic device by diversifying the design of the electronic device according to the recent trend of multifunctional and high performance of the electronic device.

본딩와이어(300)는 DBC기판(100)과 반도체칩(200)을 상호 전기적으로 연결시키고, +터미널(600) 또는 -터미널 중 어느 하나와 DBC기판(100)을 상호 전기적으로 연결시킨다.The bonding wire 300 electrically connects the DBC substrate 100 and the semiconductor chip 200, and electrically connects any one of the + terminal 600 or the-terminal to the DBC substrate 100.

이러한 본딩와이어(300)는 버퍼와이어(310) 및 도전성와이어(320)를 포함한다.The bonding wire 300 includes a buffer wire 310 and a conductive wire 320.

버퍼와이어(310)는 일단이 반도체칩(200)의 일방향 영역의 상면에 솔더링되고, 타단은 반도체칩(200)의 타방향 영역의 상면에 솔더링된다.One end of the buffer wire 310 is soldered to the upper surface of the one direction region of the semiconductor chip 200, and the other end is soldered to the upper surface of the other direction region of the semiconductor chip 200.

이러한 버퍼와이어(310)는 리본형 금속 와이어 또는 테이프형 금속 와이어 중 어느 하나로 이루질 수 있다.The buffer wire 310 may be made of either a ribbon metal wire or a tape metal wire.

도전성와이어(320)는 DBC기판(100)의 상면과 +터미널(600) 또는 -터미널 중 어느 하나를 상호 전기적으로 연결시키는 것으로서, 금, 알루미늄 또는 구리를 포함하여 형성될 수있다. The conductive wire 320 electrically connects the upper surface of the DBC substrate 100 with any one of the + terminal 600 or the-terminal, and may be formed of gold, aluminum, or copper.

히트싱크(400)는 DBC기판(100)의 하면에 배치되어 반도체칩(200)으로부터 전달 받은 열을 외부로 방사시킨다.The heat sink 400 is disposed on the lower surface of the DBC substrate 100 to radiate heat received from the semiconductor chip 200 to the outside.

이러한 히트싱크(400)는 DBC기판(100)과 솔더를 이용하여 전기전으로 연결된다.The heat sink 400 is connected to the electric war by using the DBC substrate 100 and the solder.

그리고, 히트싱크(400)는 열전달이 우수한 금속재질로 형성될 수 있고, 표면적을 극대화하여 열방출 면적을 넓히므로 방열 효율을 높일수 있다.In addition, the heat sink 400 may be formed of a metal material having excellent heat transfer, and may maximize the surface area to increase the heat dissipation area, thereby increasing heat dissipation efficiency.

예컨대, 히트싱크(400)는 알루미늄, 알루미늄 합금, 구리, 구리 합금, 알루미나, BeO, 알루미늄나이트라이드, SiN, 에폭시계 수지, 또는 이들의 조합을 포함할 수 있다. For example, the heat sink 400 may include aluminum, aluminum alloy, copper, copper alloy, alumina, BeO, aluminum nitride, SiN, epoxy resin, or a combination thereof.

한편 히트싱크(400)는 알루미늄 또는 알루미늄 합금으로 이루어진 경우, 주석으로 도금하여 DBC기판(100)과 솔더를 이용하여 접한다.Meanwhile, when the heat sink 400 is made of aluminum or an aluminum alloy, the heat sink 400 is plated with tin to be in contact with the DBC substrate 100 using solder.

그리고, 히트싱크(400)는 보다 효과적인 열 방사를 위하여 다양한 치수와 형상을 가질 수 있다. In addition, the heat sink 400 may have various dimensions and shapes for more effective heat radiation.

이러한 히트싱크(400)는 고정돌기(410)가 형성된다.The heat sink 400 is a fixing protrusion 410 is formed.

고정돌기(410)는 관통공(130)과 대응되는 위치에서 관통공(130)과 대응되는 개수로 이루어진것으로서, 도 3에 도시된 바와 같이 히트싱크(400)의 일측방향 상면으로부터 관통공(130)이 배치된 방향으로 돌출된다.The fixing protrusion 410 is made of a number corresponding to the through hole 130 at a position corresponding to the through hole 130, as shown in Figure 3 through hole 130 from one side of the upper surface of the heat sink 400 ) Projects in the direction in which it is disposed.

이러한 고정돌기(410)는 관통공(130)에 삽입될 때, 솔더를 이용하여 연결된다.When the fixing protrusion 410 is inserted into the through hole 130, it is connected using a solder.

이때. 고정돌기(410)와 관통공(130) 사이를 솔더링할 때, DBC기판(100)의 모서리에 압력을 가하여 고정돌기(410)와 과통공 사이에 솔더가 용이하게 스며들 수 있도록 한다.At this time. When soldering between the fixing protrusion 410 and the through hole 130, pressure is applied to the edge of the DBC substrate 100 so that the solder easily penetrates between the fixing protrusion 410 and the through hole.

이로 인해, DBC기판(100)은 히트싱크(400)에 견고하게 고정될 수 있다.As a result, the DBC substrate 100 may be firmly fixed to the heat sink 400.

또한, 히트싱크(400)의 상면에 서멀그리스가 도포되어 베이스플레이트가 안착되었던 종래와는 달리 본원발명에서는 DBC기판(100)에 형성된 관통공(130)에 히트싱크(400)의 고정돌기(410)가 삽입되어 히트싱크(400)와 DBC기판(100)이 상호 결합함으로써, 베이스플레이트와 서멀그리스가 삭제된다.In addition, unlike the conventional thermal grease is applied to the upper surface of the heat sink 400 and the base plate is seated, in the present invention, the fixing protrusion 410 of the heat sink 400 in the through hole 130 formed in the DBC substrate 100. ) Is inserted into the heat sink 400 and the DBC substrate 100, so that the base plate and the thermal grease are removed.

이로 인해 본원발명의 반도체 모듈은 반도체 모듈을 제작하는 제작공정과 공정시간을 줄일 수 있다.Therefore, the semiconductor module of the present invention can reduce the manufacturing process and the process time for manufacturing the semiconductor module.

한편, DBC기판(100) 및 히트싱크(400)의 일측방향에 고정돌기(410) 및 관통공(130)이 각각 형성됨으로써, DBC기판(100) 및 히트히크에서 고정돌기(410) 및 관통공(130)이 형성된 방향의 반대방향인 타측방향에 +터미널(600)과 -터미널(700)이 배치된다.Meanwhile, the fixing protrusion 410 and the through hole 130 are formed in one side of the DBC substrate 100 and the heat sink 400, respectively, such that the fixing protrusion 410 and the through hole are formed in the DBC substrate 100 and the heat sink. The + terminal 600 and the-terminal 700 are disposed in the other direction opposite to the direction in which the 130 is formed.

그리고, -터미널(700)은 히트싱크(400) 상면에 배치된다.In addition, the terminal 700 is disposed on the top surface of the heat sink 400.

이때, 히트싱크(400)와 -터미널은 솔더를 이용하여 연결된다.At this time, the heat sink 400 and the terminal are connected using a solder.

이로 인해, 본원발명의 반도체 모듈은 히트싱크(400)와 -터미널(700)의 연결시, 본딩와이어(300)가 아닌 솔더를 이용함으로써, 히트싱크(400)와 -터미널(700)을 연결하는 제작공정과 공정시간을 효율적으로 줄일 수 있다.For this reason, the semiconductor module of the present invention connects the heat sink 400 and the terminal 700 by using solder instead of the bonding wire 300 when the heat sink 400 and the terminal 700 are connected. Manufacturing process and process time can be reduced efficiently.

또한, -터미널(700)이 +터미널(600)과 같은 방향에 위치함으로써, 도 2에 도시된 바와 같이 -터미널(700)의 길이가 짧게 형성된다.In addition, since the terminal 700 is located in the same direction as the + terminal 600, the length of the terminal 700 is shortened as shown in FIG. 2.

이로 인해, -터미널에는 종래 기술에 비해 낮은 값의 기생인덕턴스가 발생된다.This results in a lower parasitic inductance in the terminal than in the prior art.

따라서, 종래 기술에 비해 본원발명은 반도체칩(200)에 스트레스가 적게 발생되고, 반도체칩(200)의 저항을 낮출 수 있어, 반도체 모듈의 온도를 낮출 수 있고, 고주파에서 동작시, 손실이 작아 우수한 효율을 얻을 수 있다.Accordingly, the present invention provides less stress on the semiconductor chip 200, lowers the resistance of the semiconductor chip 200, lowers the temperature of the semiconductor module, and reduces the loss when operating at high frequency. Excellent efficiency can be obtained.

또한, 히트싱크(400)는 -터미널(700)과 연결되어 솔더가 가능하다면 히트싱크(400)에서 다양한 영역에서 -터미널(700)을 만들 수 있다.In addition, the heat sink 400 may be connected to the terminal 700 to make the terminal 700 in various regions in the heat sink 400 if solder is possible.

한편, 본 발명의 상세한 설명에서는 -터미널이 히트싱크(400)와 전기적으로 연결되는 것으로 설명하였지만, 히트싱크(400)와 전기적으로 연결될 수 있다면 히트싱크(400)의 상면에는 +터미널(600)이 위치됨도 가능하다.Meanwhile, in the detailed description of the present invention, the terminal is electrically connected to the heat sink 400, but if the terminal can be electrically connected to the heat sink 400, the + terminal 600 is provided on the top surface of the heat sink 400. It is also possible to be located.

몰딩부(500)는 DBC기판(100)을 둘러싸서 DBC기판(100)의 상면에 배치된 각종 전자부품들을 밀봉하여 보호하는 역할을 한다.The molding part 500 seals and protects various electronic components disposed on the upper surface of the DBC substrate 100 by surrounding the DBC substrate 100.

이러한 몰딩부(500)는 에폭시 몰드 컴파운드(EMC: EPOXY MOLD COMPOUND)로 형성될 수 있다.The molding part 500 may be formed of an epoxy mold compound (EMC: EPOXY MOLD COMPOUND).

이상 상술한 바와 같이 본 발명에 의한 전력용 반도체 모듈은, 히트싱크(400)에 고정돌기(410)가 형성되고, DBC기판(100)에 관통공(130)이 형성되어 상호 고정됨으로써, DBC기판(100)은 히트싱크(400)에 견고하게 고정될 수 있다.As described above, in the power semiconductor module according to the present invention, the fixing protrusion 410 is formed in the heat sink 400, and the through-hole 130 is formed in the DBC substrate 100, thereby being fixed to each other. 100 may be firmly fixed to the heat sink 400.

또한, 고정돌기(410) 및 관통공(130)의 결합으로 인해 베이스플레이트와 서멀그리스가 삭제됨으로서, 반도체 모듈을 제작하는 제작공정과 공정시간을 줄일 수 있다.In addition, the base plate and the thermal grease are eliminated due to the combination of the fixing protrusion 410 and the through hole 130, thereby reducing the manufacturing process and processing time of manufacturing the semiconductor module.

그리고, -터미널(700)은 +터미널(600)과 같은 방향에 위치하여 -터미널(700)의 길이가 짧게 형성되고, 낮은 값의 기생인덕턴스가 발생됨으로써, 반도체칩(200)에 스트레스가 적게 발생되고, 반도체칩(200)의 저항을 낮출 수 있어, 반도체 모듈의 온도를 낮출 수 있고, 고주파에서 동작시, 손실이 작아 우수한 효율을 얻을 수 있다.In addition, the terminal 700 is positioned in the same direction as the + terminal 600, and thus, the length of the terminal 700 is short and a low parasitic inductance is generated, thereby generating less stress on the semiconductor chip 200. As a result, the resistance of the semiconductor chip 200 can be lowered, the temperature of the semiconductor module can be lowered, and when operating at a high frequency, the loss is small and excellent efficiency can be obtained.

본 발명은 전술한 실시예에 국한하지 않고, 본 발명의 기술사상이 허용되는 범위내에서 다양하게 변형하여 실시할 수 있다.The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea of the present invention.

100: DBC기판 110: 베이스부
120: 패턴층 130: 관통공
200: 반도체칩 300: 본딩와이어
310: 버퍼와이어 320: 도전성와이어
400: 히트싱크 410: 고정돌기
500: 몰딩부 600: +터미널
700: -터미널
100: DBC substrate 110: base portion
120: pattern layer 130: through hole
200: semiconductor chip 300: bonding wire
310: buffer wire 320: conductive wire
400: heat sink 410: fixed protrusion
500: molding part 600: + terminal
700: Terminal

Claims (12)

+터미널 및 -터미널이 전기적으로 연결된 전력용 반도체 모듈에 있어서,
세라믹 재질로 이루어진 베이스부와, 구리 재질로 이루어지고 상기 베이스부의 상면 및 하면에 각각 접합된 패턴층으로 이루어진 DBC(DIRECT BONDED COPPER)기판;
상기 DBC기판의 상면에 실장된 반도체칩;
상기 DBC기판과 상기 반도체칩을 상호 전기적으로 연결하고, 상기 +터미널 또는 -터미널 중 어느 하나와 상기 DBC기판을 상호 전기적으로 연결시키는 본딩와이어; 및
상기 DBC기판의 하면에 배치되어 열을 방사하는 히트싱크(HEAT SINK);를 포함하고,
상기 히트싱크의 일측방향에는 상면으로부터 상기 DBC기판이 배치된 방향으로 돌출되는 다수개의 고정돌기가 형성되며,
상기 DBC기판에는 상기 고정돌기와 대응되는 위치에서, 상기 고정돌기와 대응되는 개수로 형성되어 상기 고정돌기가 관통되는 관통공이 형성되며,
상기 DBC기판에서 상기 관통공이 형성된 방향의 반대방향인 타측방향에 +터미널과 -터미널이 배치되는 것
인 전력용 반도체 모듈.
In the power semiconductor module electrically connected to the + terminal and-terminal,
A DBC (DIRECT BONDED COPPER) substrate made of a ceramic material and a pattern layer made of copper and bonded to the upper and lower surfaces of the base part, respectively;
A semiconductor chip mounted on an upper surface of the DBC substrate;
Bonding wires electrically connecting the DBC substrate and the semiconductor chip to each other, and electrically connecting any one of the + terminal or the-terminal to the DBC substrate; And
A heat sink disposed on a lower surface of the DBC substrate to radiate heat;
One side of the heat sink is formed with a plurality of fixing projections protruding from the upper surface in the direction in which the DBC substrate is disposed,
The DBC substrate is formed with a number corresponding to the fixing protrusion at a position corresponding to the fixing protrusion to form a through hole through which the fixing protrusion passes.
The + terminal and the-terminal is arranged in the other direction opposite to the direction in which the through hole is formed in the DBC substrate
Power semiconductor module.
제1항에 있어서,
상기 반도체칩과 상기 DBC기판 및 상기 히트싱크와 상기 DBC기판은 각각 솔더(SOLDER)를 이용하여 전기전으로 연결되는 것
인 전력용 반도체 모듈.
The method of claim 1,
The semiconductor chip, the DBC substrate, the heat sink and the DBC substrate are each connected to an electric field using a solder (SOLDER)
Power semiconductor module.
제1항에 있어서,
상기 고정돌기와 상기 관통공은 솔더를 이용하여 연결되는 것
인 전력용 반도체 모듈.
The method of claim 1,
The fixing protrusion and the through hole are connected by using a solder
Power semiconductor module.
제3항에 있어서,
상기 고정돌기와 상기 관통공 사이를 솔더링할 때, 상기 DBC의 모서리에 압력이 가해지는 것
인 전력용 반도체 모듈.
The method of claim 3,
When soldering between the fixing protrusion and the through hole, pressure is applied to the edge of the DBC
Power semiconductor module.
제1항에 있어서,
상기 히트싱크는 상면에 상기 -터미널이 배치된 것
인 전력용 반도체 모듈.
The method of claim 1,
The heat sink is the terminal is disposed on the upper surface
Power semiconductor module.
제5항에 있어서,
상기 히트싱크와 상기 -터미널은 솔더를 이용하여 연결되는 것
인 전력용 반도체 모듈.
The method of claim 5,
The heat sink and the -terminal are connected using solder
Power semiconductor module.
제1항에 있어서,
상기 히트 싱크는 알루미늄, 알루미늄 합금, 구리, 구리 합금, 알루미나, BeO, 알루미늄나이트라이드, SiN, 에폭시계 수지, 또는 이들의 조합을 포함하는 것
인 전력용 반도체 모듈.
The method of claim 1,
The heat sink includes aluminum, aluminum alloy, copper, copper alloy, alumina, BeO, aluminum nitride, SiN, epoxy resin, or a combination thereof.
Power semiconductor module.
제1항에 있어서,
상기 히트싱크는 알루미늄, 알루미늄 합금, 또는 이들의 조합을 포함되, 주석으로 도금된 것
인 전력용 반도체 모듈.
The method of claim 1,
The heat sink comprises aluminum, an aluminum alloy, or a combination thereof, plated with tin
Power semiconductor module.
제1항에 있어서, 상기 본딩와이어는,
일단은 상기 반도체칩의 일방향 영역의 상면에 솔더링되고, 타단은 상기 반도체칩의 타방향 영역의 상면에 솔더링되는 버퍼와이어;
상기 DBC기판의 상면과 상기 +터미널 또는 -터미널 중 어느 하나를 상호 전기적으로 연결시키는 도전성와이어;를 포함하는 것
인 전력용 반도체 모듈.
The method of claim 1, wherein the bonding wire,
A buffer wire having one end soldered to an upper surface of one region of the semiconductor chip and the other end soldered to an upper surface of the other region of the semiconductor chip;
And conductive wires electrically connecting the upper surface of the DBC substrate and any one of the + terminal and the-terminal to each other.
Power semiconductor module.
제9항에 있어서, 버퍼와이어는,
리본형 금속 와이어 또는 테이프형 금속 와이어인 것
인 전력용 반도체 모듈.
The method of claim 9, wherein the buffer wire,
With ribbon-shaped metal wire or tape-shaped metal wire
Power semiconductor module.
제1항에 있어서,
상기 DBC기판을 둘러싸서 상기 DBC기판에 배치된 각종 전자부품들을 보호하는 몰딩부;를 더 포함하는 것
인 전력용 반도체 모듈.
The method of claim 1,
And a molding unit surrounding the DBC substrate to protect various electronic components disposed on the DBC substrate.
Power semiconductor module.
제11항에 있어서, 상기 몰딩부는,
EMC(EPOXY MOLDING COMPOUND)로 이루어진 것
인 전력용 반도체 모듈.

The method of claim 11, wherein the molding part,
Consisting of EMC (EPOXY MOLDING COMPOUND)
Power semiconductor module.

KR1020180015405A 2018-02-08 2018-02-08 Power semiconductor module KR102490612B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180015405A KR102490612B1 (en) 2018-02-08 2018-02-08 Power semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180015405A KR102490612B1 (en) 2018-02-08 2018-02-08 Power semiconductor module

Publications (2)

Publication Number Publication Date
KR20190095998A true KR20190095998A (en) 2019-08-19
KR102490612B1 KR102490612B1 (en) 2023-01-19

Family

ID=67807096

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180015405A KR102490612B1 (en) 2018-02-08 2018-02-08 Power semiconductor module

Country Status (1)

Country Link
KR (1) KR102490612B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725196A (en) * 2020-06-30 2020-09-29 中南大学 High-temperature in-situ ultraviolet detection system
CN112447699A (en) * 2019-09-05 2021-03-05 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
KR20220033089A (en) * 2020-09-08 2022-03-16 제엠제코(주) Complex semiconductor package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990084839A (en) * 1998-05-12 1999-12-06 김영환 Packaged integrated circuit devices and manufacturing method thereof
JP2005203570A (en) * 2004-01-15 2005-07-28 Toyota Industries Corp Semiconductor module
KR20100120006A (en) * 2009-05-04 2010-11-12 삼성전기주식회사 Power module package
JP2012248568A (en) * 2011-05-25 2012-12-13 Sanken Electric Co Ltd Heat dissipation substrate, method for manufacturing the same, and semiconductor module
US20130252381A1 (en) * 2009-06-16 2013-09-26 Ixys Corporation Electrically Isolated Power Semiconductor Package With Optimized Layout

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990084839A (en) * 1998-05-12 1999-12-06 김영환 Packaged integrated circuit devices and manufacturing method thereof
JP2005203570A (en) * 2004-01-15 2005-07-28 Toyota Industries Corp Semiconductor module
KR20100120006A (en) * 2009-05-04 2010-11-12 삼성전기주식회사 Power module package
US20130252381A1 (en) * 2009-06-16 2013-09-26 Ixys Corporation Electrically Isolated Power Semiconductor Package With Optimized Layout
JP2012248568A (en) * 2011-05-25 2012-12-13 Sanken Electric Co Ltd Heat dissipation substrate, method for manufacturing the same, and semiconductor module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112447699A (en) * 2019-09-05 2021-03-05 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
CN111725196A (en) * 2020-06-30 2020-09-29 中南大学 High-temperature in-situ ultraviolet detection system
CN111725196B (en) * 2020-06-30 2023-11-28 长沙安牧泉智能科技有限公司 High-temperature in-situ ultraviolet detection system
KR20220033089A (en) * 2020-09-08 2022-03-16 제엠제코(주) Complex semiconductor package

Also Published As

Publication number Publication date
KR102490612B1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US8309399B2 (en) Power semiconductor module and method of manufacturing the same
US9911680B2 (en) Bidirectional semiconductor package
KR101222831B1 (en) Power module package
US7005734B2 (en) Double-sided cooling isolated packaged power semiconductor device
US20040061221A1 (en) High power MCM package
US20100013070A1 (en) Power module package having excellent heat sink emission capability and method for manufacturing the same
EP2889902B1 (en) Electric power semiconductor device
KR102172689B1 (en) Semiconductor package and method of fabricating the same
US20140110833A1 (en) Power module package
KR102490612B1 (en) Power semiconductor module
CN111261598A (en) Packaging structure and power module applicable to same
US20230187311A1 (en) Semiconductor device and manufacturing method thereof
KR101388857B1 (en) Semiconductor package and method of manufacturing the semiconductor package
CN112864113A (en) Power device, power device assembly and related device
CN112530915A (en) Semiconductor device with a plurality of semiconductor chips
US20220208661A1 (en) Qfn/qfp package with insulated top-side thermal pad
KR102488931B1 (en) Bidirectional Thermal Flow Semiconductor Package And Method for Manufacturing Same
KR102228938B1 (en) Coupled semiconductor package
KR20150061441A (en) Package Substrate and Manufacturing Method for the same and Power module Package using the same
WO2022061759A1 (en) Substrate, encapsulation structure, and electronic device
KR102405129B1 (en) Semiconductor package having exposed heat sink and method for fabricating the same
TWI831247B (en) Power module and method for manufacturing the same
US11721615B2 (en) Coupled semiconductor package
US11521920B2 (en) Plurality of power semiconductor chips between a substrate and leadframe
CN113764357B (en) Packaging structure of conductive module

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant