KR20190095489A - 그래프 처리 시스템 및 그래프 처리 시스템의 동작 방법 - Google Patents
그래프 처리 시스템 및 그래프 처리 시스템의 동작 방법 Download PDFInfo
- Publication number
- KR20190095489A KR20190095489A KR1020197022145A KR20197022145A KR20190095489A KR 20190095489 A KR20190095489 A KR 20190095489A KR 1020197022145 A KR1020197022145 A KR 1020197022145A KR 20197022145 A KR20197022145 A KR 20197022145A KR 20190095489 A KR20190095489 A KR 20190095489A
- Authority
- KR
- South Korea
- Prior art keywords
- data
- graph
- memory
- processing
- graphics processing
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 318
- 238000011017 operating method Methods 0.000 title 1
- 230000015654 memory Effects 0.000 claims abstract description 220
- 238000000034 method Methods 0.000 claims description 67
- 230000008569 process Effects 0.000 claims description 34
- 238000003672 processing method Methods 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000013403 standard screening design Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013404 process transfer Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/901—Indexing; Data structures therefor; Storage structures
- G06F16/9024—Graphs; Linked lists
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0806—Multiuser, multiprocessor or multiprocessing cache systems
- G06F12/0815—Cache consistency protocols
- G06F12/0831—Cache consistency protocols using a bus scheme, e.g. with bus monitoring or watching means
- G06F12/0835—Cache consistency protocols using a bus scheme, e.g. with bus monitoring or watching means for main memory peripheral accesses (e.g. I/O or DMA)
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/60—Memory management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/10—Address translation
- G06F12/1009—Address translation using page tables, e.g. page table structures
- G06F12/1018—Address translation using page tables, e.g. page table structures involving hashing techniques, e.g. inverted page tables
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/23—Updating
- G06F16/2365—Ensuring data consistency and integrity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2455—Query execution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/24569—Query processing with adaptation to specific hardware, e.g. adapted for using GPUs or SSDs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/20—Processor architectures; Processor configuration, e.g. pipelining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2213/00—Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F2213/0026—PCI express
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Computer Security & Cryptography (AREA)
- Software Systems (AREA)
- Memory System Of A Hierarchy Structure (AREA)
- Image Generation (AREA)
Abstract
일 실시예에 따른 그래프 처리 시스템은 위상 데이터 및 속성 데이터를 포함하는 그래프 데이터를 저장하는 적어도 하나의 보조 기억 장치, 그래프 데이터의 일부를 저장하는 메인 메모리, 메인 메모리로부터 수신한 그래프 데이터의 처리 및 동기화를 수행하는 코어들 및 장치 메모리들을 포함하는 복수의 그래픽 처리 장치들, 및 복수의 그래픽 처리 장치들에서 수행되는 그래프 데이터에 대한 질의 처리를 관리하고, 질의 처리 결과 중 갱신 가능한 속성 데이터를 적어도 하나의 보조 기억 장치에 저장하는 중앙 처리 장치를 포함한다.
Description
일 실시예는 그래픽 처리 장치(GPU)와 보조 기억 장치를 이용하여 대규모 그래프를 처리하는 시스템 및 방법에 관한 것으로, 보다 상세하게는 보조 기억 장치에 저장된 큰 대규모의 그래프 데이터를 스트리밍 방법을 이용하여 처리하는 그래프 처리 시스템 및 방법에 관한 것이다.
그래프 처리 시스템은 중앙 처리 장치(Central Processing Unit; CPU) 보다 높은 처리율을 가진 그래픽 처리 장치(Graphic Processing Unit; GPU)를 이용함으로써, 중앙 처리 장치보다 빠른 속도로 그래프 알고리즘을 수행할 수 있다. 그래픽 처리 장치를 이용한 그래프 처리 시스템은 그래픽 처리 장치에 장착된 장치 메모리에서 저장 가능한 규모의 그래프 데이터(그래프)를 처리하는 것이 일반적이다.
장치 메모리에서 저장 가능한 규모의 그래프 데이터를 처리하는 경우, 그래픽 처리 장치의 높은 처리율로 인하여 중앙 처리 장치에 비해 빠른 처리가 가능하다. 하지만, 장치 메모리보다 큰 규모의 그래프 데이터를 처리하는 경우, 그래프 데이터는 그래픽 처리 장치의 장치 메모리에 저장 가능한 부분과 메인 메모리에 저장 가능한 부분으로 분할될수 있다. 이때, 그래픽 처리 장치는 장치 메모리에 저장된 그래프 데이터만을 처리하고, 메인 메모리에 저장된 나머지 대부분의 그래프 데이터는 중앙 처리 장치에 의해 처리함으로써 그래프 데이터의 규모가 커짐에 따라 성능 저하가 커지는 문제점이 있다.
이 밖에도, 그래프 데이터의 위상 데이터는 그래픽 처리 장치의 개수가 증가하여 분할되는 파티션의 개수가 증가할 경우, 그래픽 처리 장치 간의 데이터 중복이 증가하여 그래프 처리 성능이 저하되는 문제점, 다시 말해, 그래픽 처리 장치의 개수 증가에 따른 규모 확장성이 좋지 않은 문제점이 있다.
또한, 기존의 그래프 처리 시스템은 그래프 데이터를 모두 메인 메모리에 저장한 뒤에야, 그래프 데이터를 처리할 수 있다. 이로 인하여, 메인 메모리의 크기에 따라 그래프 처리 시스템이 처리할 수 있는 그래프 데이터의 크기가 결정되며, 메인 메모리보다 큰 규모의 그래프 데이터는 처리될 수 없다.
이와 같이, 대규모의 그래프 데이터를 처리하는 방법에 대한 중요성은 인지되고 있으나, 상술한 문제점들을 해결하는 동시에, 대규모의 그래프 데이터를 처리하는 보다 효율적인 방법은 개발되지 못한 실정이다.
일 실시예에 따르면, 보조 기억 장치에 저장된 대규모의 그래프 데이터의 스트리밍을 통해 메인 메모리보다 규모가 큰 그래프 데이터의 처리를 가능하게 할 수 있다.
일 실시예에 따르면, 성능 위주의 전략뿐 아니라 확장 위주의 전략을 제공할 수 있다.
일 측에 따른 그래프 처리 시스템은 위상 데이터 및 속성 데이터를 포함하는 그래프 데이터를 저장하는 적어도 하나의 보조 기억 장치; 상기 그래프 데이터를 처리하는 복수의 그래픽 처리 장치들(Graphic Processing Unit; GPU); 상기 복수의 그래픽 처리 장치들과 상기 보조 기억 장치 사이에서 상기 그래프 데이터의 적어도 일부를 캐싱하는 메인 메모리; 및 상기 복수의 그래픽 처리 장치들 각각에 포함된 장치 메모리에 상기 속성 데이터 중 갱신 가능한 속성 데이터가 저장될 수 있는지 여부에 따라, 상기 그래프 데이터의 적재를 제어하는 중앙 처리 장치(Central Processing Unit; CPU)를 포함한다.
상기 적어도 하나의 보조 기억 장치는 상기 메인 메모리의 용량보다 큰 용량의 그래프 데이터를 저장할 수 있다. 상기 위상 데이터는 상기 그래프 데이터에 포함된 정점들에 관한 정보 및 상기 정점들 사이의 연결 관계에 관한 정보를 포함하고, 상기 속성 데이터는 상기 갱신 가능한 속성 데이터 및 읽기 전용 속성 데이터를 포함할 수 있다.
상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 상기 갱신 가능한 속성 데이터가 저장될 수 있는 경우, 상기 중앙 처리 장치는 상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 상기 갱신 가능한 속성 데이터를 저장하고, 상기 복수의 그래픽 처리 장치들에 서로 다른 위상의 위상 페이지 및 해당 위상 페이지에 대응하는 읽기 전용 속성 데이터를 스트리밍할 수 있다.
상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 상기 갱신 가능한 속성 데이터가 저장될 수 없는 경우, 상기 중앙 처리 장치는 상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 상기 갱신 가능한 속성 데이터를 나누어 저장하고, 상기 복수의 그래픽 처리 장치들에 동일한 위상의 위상 페이지 및 해당 위상 페이지에 대응하는 읽기 전용 속성 데이터를 스트리밍할 수 있다.
상기 중앙 처리 장치는 상기 갱신 가능한 속성 데이터의 크기와 단일 그래픽 처리 장치의 장치 메모리의 크기를 비교하고, 상기 단일 그래픽 처리 장치의 장치 메모리의 크기가 상기 갱신 가능한 속성 데이터의 크기보다 크거나 같으면, 성능 위주의 실행 전략으로 상기 그래프 데이터를 처리하고, 상기 단일 그래픽 처리 장치의 장치 메모리의 크기가 상기 갱신 가능한 속성 데이터의 크기보다 작으면, 확장 위주의 실행 전략으로 상기 그래프 데이터를 처리할 수 있다.
상기 중앙 처리 장치는 상기 위상 데이터를 상기 보조 기억 장치에서 상기 메인 메모리로 비동기적으로 스트리밍 하고, 상기 위상 데이터를 상기 메인 메모리에서 상기 복수의 그래픽 처리 장치들의 장치 메모리로 비동기적으로 스트리밍할 수 있다.
상기 위상 데이터는 가변 사이즈를 가지는 복수의 페이지들로 구성되고, 상기 복수의 페이지들에 포함된 슬롯들은 임의의 바이트(Byte)로 구성된 페이지 식별자(ID) 번호와 슬롯 오프셋을 포함할 수 있다.
상기 중앙 처리 장치는 상기 복수의 그래픽 처리 장치들의 장치 메모리들, 상기 적어도 하나의 보조 기억 장치 및 상기 메인 메모리 간의 상기 그래프 데이터의 전송을 처리하는 적재 컨트롤러; 상기 그래프 데이터의 크기와 상기 장치 메모리들의 용량을 기초로, 상기 그래프 데이터에 대한 질의 처리 시의 실행 전략을 결정하는 실행 컨트롤러; 상기 그래프 데이터에 대한 질의 처리 시에 상기 메인 메모리에 상기 장치 메모리들로 전송할 위상 페이지가 존재하는지 여부에 기초하여, 상기 메인 메모리의 영역을 보호하는 버퍼 매니저; 상기 복수의 그래픽 처리 장치들을 제어하는 제어 시스템; 및 상기 그래프 데이터의 질의 처리 결과를 상기 보조 기억 장치에 저장하는 결과 처리기 중 적어도 하나를 포함할 수 있다.
상기 제어 시스템은 상기 적재 컨트롤러가 해시 연산을 사용하여 상기 적어도 하나의 보조 기억 장치 간에 서로 다른 위상 데이터의 페이지를 동시에 읽어 상기 메인 메모리에 적재하도록 하고, 상기 적재 컨트롤러가 상기 위상 데이터의 페이지를 적재하는 동안에 상기 복수의 그래픽 처리 장치들의 장치 메모리들에서 상기 그래프 데이터의 처리가 실행되도록 제어할 수 있다.
일 측에 따른 그래프 처리 방법은 그래프 처리를 위한 실행 전략에 기초하여, 상기 그래프 처리를 위해 요구되는 갱신 가능한 속성 데이터를 복수의 그래픽 처리 장치들의 장치 메모리에 복사하는 단계; 상기 그래프 처리를 위해 요구되는 위상 데이터가 메인 메모리에 적재되어 있는지 여부를 확인하는 단계; 상기 실행 전략에 기초하여, 상기 메인 메모리에 적재된 위상 데이터를 상기 장치 메모리에 스트리밍하는 단계; 상기 실행 전략에 따른 질의 처리가 구현된 사용자 정의 커널을 수행하는 단계; 및 상기 실행 전략에 따른 질의 처리 결과를 동기화 하는 단계를 포함한다.
상기 그래프 처리 방법은 적어도 하나의 보조 기억 장치에 저장되어 있는 위상 데이터 중 상기 메인 메모리에 적재할 위상 데이터를 결정하여 적재 목록을 생성하는 단계; 및 상기 메인 메모리에 적재 공간이 있는지 여부를 기초로, 상기 적어도 하나의 보조 기억 장치로부터 상기 메인 메모리로 상기 적재 목록에 포함된 위상 데이터를 적재하는 단계를 더 포함할 수 있다.
상기 그래프 처리 방법은 상기 적재 목록에 포함된 위상 데이터의 적재를 위해, 상기 적어도 하나의 보조 기억 장치에 접근할 적어도 하나의 접근 스레드를 생성하는 단계를 더 포함하고, 상기 적어도 하나의 접근 스레드 각각은 상기 적어도 하나의 접근 스레드 각각이 적재해야 할 위상 데이터의 페이지 식별자(ID)에 대한 해시 연산을 통해 접근해야 할 보조 기억 장치를 결정할 수 있다.
상기 그래프 처리를 위한 실행 전략이 성능 위주의 실행 전략인 경우, 상기 갱신 가능한 속성 데이터를 상기 장치 메모리에 복사하는 단계는 상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 상기 갱신 가능한 속성 데이터를 동일하게 복사하는 단계를 포함하고, 상기 위상 데이터를 상기 장치 메모리에 스트리밍하는 단계는 상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 서로 다른 위상의 위상 데이터를 복사하는 단계를 포함할 수 있다.
상기 그래프 처리를 위한 실행 전략이 확장 위주의 실행 전략인 경우, 상기 갱신 가능한 속성 데이터를 상기 장치 메모리에 복사하는 단계는 상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 상기 갱신 가능한 속성 데이터의 서로 다른 부분을 복사하는 단계를 포함하고, 상기 위상 데이터를 상기 장치 메모리에 스트리밍하는 단계는 상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 동일한 위상의 위상 데이터를 복사하는 단계를 포함할 수 있다.
상기 실행 전략이 성능 위주의 실행 전략인 경우, 상기 실행 전략에 따른 질의 처리 결과를 동기화하는 단계는 상기 복수의 그래픽 처리 장치들의 장치 메모리에 저장된 갱신 가능한 속성 데이터를 상기 복수의 그래픽 처리 장치들 중 대표 그래픽 처리 장치의 장치 메모리에 취합하는 단계; 및 상기 취합된 갱신 가능한 속성 데이터를 상기 메인 메모리로 동기화하는 단계를 포함할 수 있다.
상기 실행 전략이 확장 위주의 실행 전략인 경우, 상기 실행 전략에 따른 질의 처리 결과를 동기화하는 단계는 상기 복수의 그래픽 처리 장치들의 장치 메모리에 저장된 갱신 가능한 속성 데이터를 각각 상기 메인 메모리로 동기화 하는 단계를 포함할 수 있다.
일 측에 따르면, 대규모의 그래프 데이터를 보조 기억 장치에 저장하여 스트리밍 함으로써 메인 메모리보다 규모가 큰 그래프 데이터의 처리를 가능하게 할 수 있다.
일 측에 따르면, 성능 위주의 전략뿐 아니라 확장 위주의 전략을 제공함으로써, 시스템 상황에 맞게 대규모의 그래프 데이터를 처리할 수 있다.
도 1은 일 실시예에 따른 그래프 처리 시스템의 구조를 나타낸 도면.
도 2는 일 실시예에 따른 그래프 처리 시스템에서 사용되는 그래프의 데이터 구조인 슬롯티드 페이지의 구성을 설명하기 위한 도면.
도 3은 일 실시예에 따른 버퍼 매니저가 메인 메모리 및 보조 기억 장치를 이용하여 데이터를 관리하는 방법을 설명하기 위한 도면.
도 4는 일 실시예에 따라 그래프 데이터를 처리하는 과정을 설명하기 위한 도면.
도 5는 일 실시예에 따른 그래프 처리 시스템의 동작 방법을 나타낸 흐름도.
도 6 내지 도 7은 실시예들에 따른 실행 전략에 따른 데이터 흐름 및 동기화 흐름을 설명하기 위한 도면.
도 8은 일 실시예에 따른 그래프 처리 과정에서 실행 전략에 따른 그래프 처리 시스템의 동작을 나타낸 흐름도.
도 2는 일 실시예에 따른 그래프 처리 시스템에서 사용되는 그래프의 데이터 구조인 슬롯티드 페이지의 구성을 설명하기 위한 도면.
도 3은 일 실시예에 따른 버퍼 매니저가 메인 메모리 및 보조 기억 장치를 이용하여 데이터를 관리하는 방법을 설명하기 위한 도면.
도 4는 일 실시예에 따라 그래프 데이터를 처리하는 과정을 설명하기 위한 도면.
도 5는 일 실시예에 따른 그래프 처리 시스템의 동작 방법을 나타낸 흐름도.
도 6 내지 도 7은 실시예들에 따른 실행 전략에 따른 데이터 흐름 및 동기화 흐름을 설명하기 위한 도면.
도 8은 일 실시예에 따른 그래프 처리 과정에서 실행 전략에 따른 그래프 처리 시스템의 동작을 나타낸 흐름도.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 특허출원의 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
아래 설명하는 실시예들에는 다양한 변경이 가해질 수 있다. 아래 설명하는 실시예들은 실시 형태에 대해 한정하려는 것이 아니며, 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 실시예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
도 1은 일 실시예에 따른 그래프 처리 시스템의 구조를 나타낸 도면이다. 도 1을 참조하면, 일 실시예에 따른 그래프 처리 시스템(100)은 적어도 하나의 보조 기억 장치(110), 메인 메모리(130), 복수의 그래픽 처리 장치들(Graphic Processing Unit; GPU)(150), 및 중앙 처리 장치(Central Processing Unit; CPU)(170)를 포함한다. 적어도 하나의 보조 기억 장치(110), 메인 메모리(130), 복수의 그래픽 처리 장치들(150), 및 중앙 처리 장치(170)는 PCI-E 인터페이스(190)를 통해 서로 통신할 수 있다. 실시예에 따라 PCI-E 인터페이스(190)는 SATA 인터페이스 등 다양한 인터페이스로 대체될 수 있다.
적어도 하나의 보조 기억 장치(110)는 그래프 데이터를 저장한다. 적어도 하나의 보조 기억 장치(110)는 메인 메모리(130)의 용량보다 큰 규모의 그래프 데이터를 저장할 수 있다.
그래프 데이터는 위상 데이터 및 속성 데이터를 포함한다. 위상 데이터는 그래프 데이터에 포함된 정점들에 관한 정보 및 정점들 사이의 연결 관계에 관한 정보(예를 들어, 에지에 관한 정보)를 포함할 수 있다. 속성 데이터는 읽기 및 쓰기(이하, '읽기/쓰기’) 속성 데이터(WA) 및 읽기 전용 속성 데이터(RA)로 분류될 수 있다.
예를 들어, 너비 우선 탐색(breadth first search, BFS)에서 각 정점들을 위한 탐색 레벨은 읽기/쓰기 속성 데이터일 수 있다. 이 밖에도 속성 데이터는 그래프 알고리즘을 수행하기 위해 추가적으로 요구되는 정보를 포함할 수 있다. 그래프 알고리즘은 위상 데이터와 속성 데이터를 요구한다. 이하에서, '갱신 가능한 속성 데이터'는 읽기/쓰기 속성 데이터와 동일한 의미로 해석될 수 있다.
메인 메모리(130)는 그래프 데이터의 적어도 일부를 저장한다. 메인 메모리(130)는 복수의 그래픽 처리 장치들(150)과 적어도 하나의 보조 기억 장치(110) 사이에서 그래프 데이터의 적어도 일부를 캐싱(caching)할 수 있다. 메인 메모리(130)는 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153) 각각의 용량 보다 큰 용량의 그래프 데이터에 대한 위상 데이터 및 속성 데이터를 저장할 수 있다.
복수의 그래픽 처리 장치들(150)은 그래프 데이터를 처리하고, 처리된 그래프 데이터를 동기화한다. 복수의 그래픽 처리 장치들(150) 각각은 장치 메모리를 포함하고, 최대 n개의 코어들(151)을 포함할 수 있다.
중앙 처리 장치(170)는 복수의 그래픽 처리 장치들(150)가 그래프 데이터를 처리함에 있어서, 그래프 데이터 처리에 대한 관리를 수행한다. 중앙 처리 장치(170)는 복수의 그래픽 처리 장치들(150)에서 수행되는 그래프 데이터에 대한 질의 처리를 관리하고, 질의 처리 결과 중 갱신 가능한 속성 데이터를 적어도 하나의 보조 기억 장치(110)에 저장한다.
일 실시예에 따르면, 중앙 처리 장치(170)는 적재 컨트롤러(171), 실행 컨트롤러(173), 버퍼 매니저(175), 제어 시스템(174) 및 결과 처리기(179)를 포함한다.
적재 컨트롤러(171)는 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153), 적어도 하나의 보조 기억 장치(110) 및 메인 메모리(130) 간의 그래프 데이터의 전송을 처리할 수 있다. 예를 들어, 적재 컨트롤러(171)는 장치 메모리들(153)로 전송해야 하는 위상 데이터가 메인 메모리(130)에 없다면, 보조 기억 장치(110)에 포함되어 있는 위상 데이터를 메인 메모리(130)로 적재할 수 있다. 아래에서 상세히 설명하겠으나, 위상 데이터는 위상 페이지의 형태로 저장되고 전송될 수 있다.
실행 컨트롤러(173)는 그래프 데이터의 크기와 장치 메모리의 용량을 기초로, 그래프 데이터에 대한 질의 처리 시의 실행 전략을 결정할 수 있다. 예를 들어, 실행 컨트롤러(173)는 그래프 데이터의 속성 데이터 중 갱신 가능한 속성 데이터가 장치 메모리들(153) 각각에 저장될 수 있는지 여부에 따라 실행 전략을 결정할 수 있다.
보다 구체적으로, 실행 컨트롤러(173)는 읽기/쓰기 속성 데이터의 크기와 단일 그래픽 처리 장치의 장치 메모리의 크기를 비교하여, 성능 위주의 실행 전략 혹은 확장 위주의 실행 전략을 처리할 수 있다. 그래프 데이터의 속성 데이터 중 읽기/쓰기 속성 데이터의 크기는 그래프의 정점 개수와 비례하여 증가할 수 있다.
실행 컨트롤러(173)는 그래프의 정점 개수와 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)의 용량을 기준으로 실행 전략을 달리 결정할 수 있다. 예를 들어, 읽기/쓰기 속성 데이터의 크기가 단일 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)의 용량보다 작은 경우, 실행 컨트롤러(173)는 성능 위주의 실행 전략으로 그래프 데이터를 처리할 수 있다. 또는 읽기/쓰기 속성 데이터의 크기가 단일 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)의 용량보다 큰 경우, 실행 컨트롤러(173)는 확장 위주의 실행 전략으로 그래프 데이터를 처리할 수 있다. 성능 위주의 실행 전략 및 확장 위주의 실행 전략에 대하여는 도 6 및 도 7을 참조하여 상세히 설명한다.
버퍼 매니저(175)는 그래프 데이터에 대한 질의 처리 시에 메인 메모리(130)에 장치 메모리들(153)로 전송할 위상 페이지가 존재하는지 여부를 확인할 수 있다. 메인 메모리(130)에 장치 메모리들(153)로 전송할 위상 페이지가 존재하는 경우, 버퍼 매니저(175)는 적재 컨트롤러(171)가 메인 메모리(130)에 저장되어야 하는 위상 페이지를 덮어쓰지 않도록 메인 메모리(130)의 영역을 보호할 수 있다.
제어 시스템(174)은 복수의 그래픽 처리 장치들(150)을 제어할 수 있다. 예를 들어, 제어 시스템(174)은 읽기/쓰기 속성 데이터를 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)에 저장하고, 위상 데이터 및 읽기 전용 속성 데이터를 스트리밍에 의해 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)에 전송하여 그래프 데이터를 처리할 수 있다.
복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)은 한정된 용량을 가질 수 있다. 제어 시스템(174)은 위상 데이터에 비하여 상대적으로 작은 용량의 속성 데이터를 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)에 저장하고, 위상 데이터를 스트리밍 함으로써, 대규모의 그래프 데이터를 처리할 수 있다.
예를 들어, 위상 데이터는 PCI-E 인터페이스(190)를 통하여 보조 기억 장치(110) 또는 메인 메모리(130)로부터 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)로 전송될 수 있다. 제어 시스템(174)은 위상 데이터가 전송되는 동안 이미 주어진 데이터를 처리함으로써, 위상 데이터의 전송을 위한 오버헤드를 감소시킬 수 있다.
그래프 알고리즘 θ은 복수의 그래픽 처리 장치들(150) 각각의 커널 함수 Kθ에 의하여 수행될 수 있다. 커널 함수 Kθ는 복수의 그래픽 처리 장치들(150) 각각의 코어들(151)을 이용하여 수행될 수 있다. 복수의 그래픽 처리 장치들(150) 각각의 코어들(151)은 장치 메모리 내 저장된 속성 데이터와 메인 메모리로부터 스트리밍 되는 위상 데이터를 함께 처리할 수 있다.
예를 들어, 속성 데이터를 X라고 하고, 위상 데이터를 Y = {y1, ... , yn}이라고 하자. 이 경우, 그래프 알고리즘 θ을 처리하기 위하여 요구되는 장치 메모리의 용량은 |X| + |yi|이다. 대규모 그래프를 제한된 크기의 장치 메모리를 이용하여 처리하기 위하여 |X| 또는 |yi|를 감소시키는 것이 요구된다. 일반적으로 |X| >> |yi|이므로, 실시예들은 |X|를 감소시키는 데 집중할 수 있다.
장치 메모리들(153) 각각의 용량을 감소시키기 위하여, 제어 시스템(174)은 읽기 전용 속성 데이터와 읽기/쓰기 속성 데이터 중 읽기/쓰기 속성 데이터만 장치 메모리들(153)에 유지할 수 있다. 일반적으로 그래프 알고리즘에서 읽기/쓰기 속성 데이터는 자주 그리고 랜덤하게 갱신되므로, 성능을 위하여 읽기/쓰기 속성 데이터를 장치 메모리들(153)에 유지하는 것이 중요하다. 읽기 전용 속성 데이터는 그래프 알고리즘이 수행되는 동안 갱신되지 않고, 따라서 대응하는 위상 데이터와 함께 장치 메모리들(153)로 전송될 수 있다.
읽기/쓰기 속성 데이터는 W개의 조각들(디폴트로, W=1)로 분할되고, 읽기 전용 속성 데이터는 R개의 서브 벡터들로 분할될 수 있다. 일 예로, 읽기 전용 속성 데이터의 수는 슬롯티드 페이지들의 수와 같을 수 있다. 슬롯티드 페이지는 위상 데이터를 저장하는 자료 구조로, 보다 상세한 사항은 도 2를 참고하여 후술한다.
제어 시스템(174)은 읽기/쓰기 속성 데이터를 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)로 복사하고, 위상 데이터에 해당하는 슬롯티드 페이지를 읽기 전용 속성 데이터와 함께 장치 메모리들(153)로 스트리밍 하는 동안 그래프 알고리즘을 수행할 수 있다.
제어 시스템(174)은 PCI-E 인터페이스(190)를 통하여 위상 데이터를 메인 메모리(130)로부터 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)로 비동기적으로(asynchrously) 스트리밍할 수 있다.
버퍼 매니저(173)는 스트리밍을 위하여 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)에 읽기 전용 속성 데이터(RA)를 위한 버퍼(RABuf) 및 위상 데이터(예를 들어, 슬롯티드 페이지)를 위한 버퍼(PBuf)를 할당할 수 있다. 또한, 버퍼 매니저(173)는 읽기/쓰기 속성 데이터(WA)의 조각을 위한 버퍼(WABuf)도 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)에 할당할 수 있다.
제어 시스템(174)은 스트리밍을 위하여 복수의 그래픽 처리 장치들 스트림들을 활용할 수 있다. 제어 시스템(174)은 우선 읽기/쓰기 속성 데이터를 버퍼(WABuf)로 전송한다. 이후, 제어 시스템(174)은 j번째 위상 데이터를 버퍼(PBuf)로 전송하고, j번째 읽기 전용 속성 데이터를 버퍼(RABuf)로 전송하며, 커널 함수를 수행하는 복수의 그래픽 처리 장치들(150)의 스트림들을 시작할 수 있다. 이 때, 복수의 그래픽 처리 장치들(150)의 스트림들 각각의 커널 함수는 서로 시간적으로 중첩되어 수행될 수 있다. 스트림들의 수 k는 j번째 위상 데이터 및 j번째 읽기 전용 속성 데이터의 전송 시간 대비 커널 함수의 수행 시간의 비율을 이용하여 결정될 수 있다. 그래프 알고리즘에 따라 커널 함수의 수행 시간이 달라지므로, 이상적인 스트림들의 수는 그래프 알고리즘에 따라 달라질 수 있다.
일 실시예에 따르면, 위상 데이터는 단일 페이지로 구성되는 스몰 페이지(SP)와 복수의 페이지들로 구성되는 라지 페이지(LP)에 구분되어 저장될 수 있다. 이 경우, 제어 시스템(174)은 스몰 페이지들을 우선적으로 처리한 뒤, 라지 페이지들을 처리함으로써 커널 스위칭 오버헤드를 감소시킬 수 있다.
일 실시예에 따르면, 그래프 알고리즘들은 그래프 탐색을 통하여 그래프의 일부에 접근하는 제1 유형, 및 정점들과 에지들을 선형 스캐닝(linear scanning)하여 전체 그래프에 접근하는 제2 유형의 두 가지 유형으로 구분될 수 있다. 제1 유형의 그래프 알고리즘은 상대적으로 연산량이 적으나, 그래프의 비정규적 구조로 인하여 비융합적(non-coalesced) 메모리 접근이 유발된다. 제2 유형의 그래프 알고리즘은 상대적으로 연산량이 높으나, 정점들과 에지들의 스캔 순서는 크게 중요하지 않다.
전술한 기법은 한번에 전체 위상 데이터에 접근하는, 제2 유형의 알고리즘의 단일 이터레이션(iteration)을 처리하는 데 적합하다. 그러나, 제1 유형의 알고리즘은 레벨 단위의 탐색을 요구한다. 단일 레벨의 탐색은 위상 데이터의 매우 작은 부분만을 접근할 것을 요구하며, 전체 위상 데이터를 스트리밍할 것이 요구되지 않는다. 각각의 탐색은 방문한 정점들을 포함하는 위상 데이터(페이지)의 세트만 스트리밍할 것을 요구한다. 이러한 목적으로, 중앙 처리 장치(170)는 다음 레벨에서 접근될 페이지들의 식별자(ID)들을 포함하는 다음 처리할 페이지의 식별자들의 집합(nextPIDSet)을 이용할 수 있다.
단일 레벨의 탐색에서 각각의 복수의 그래픽 처리 장치들(150)에 의하여 로컬 버전의 다음 처리할 페이지의 식별자들의 집합이 갱신되고, 메인 메모리(130)로 복사된다. 로컬 버전의 다음 처리할 페이지의 식별자들의 집합들은 글로벌 버전의 다음 처리할 페이지의 식별자들의 집합으로 합쳐진다. 다음 레벨에서 글로벌 버전의 다음 처리할 페이지의 식별자들의 집합에 포함된 위상 데이터(페이지)가 복수의 그래픽 처리 장치들(150)로 전송될 수 있다. 일 실시예에서는 이러한 방식으로 접근 패턴이 상이한 서로 다른 두 유형의 알고리즘들을 단일 프레임워크로 통합할 수 있다.
읽기 전용 속성 데이터를 위한 버퍼(RABuf), 위상 데이터(예를 들어, 슬롯티드 페이지)를 위한 버퍼(PBuf), 위상 데이터의 스몰 페이지를 위한 버퍼(SPBuf), 및 위상 데이터의 라지 페이지를 위한 버퍼(LPBuf)가 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)에 할당된 이후, 복수의 그래픽 처리 장치들(150)의 장치 메모리들(153)에 잔여 공간이 남을 수 있다. 특히, 제1 유형의 알고리즘에서 읽기/쓰기 속성 데이터의 조각을 위한 버퍼(WABuf)는 매우 작으므로, 장치 메모리들(153)에 많은 잔여 공간이 남을 수 있다. 이 경우, 복수의 그래픽 처리 장치들(150)는 잔여 공간을 이용하여 위상 데이터(페이지)를 캐싱함으로써 성능을 향상시킬 수 있다. 제1 유형의 알고리즘은 탐색 동안 동일한 위상 데이터(페이지)에 반복적으로 접근하므로, 캐싱 기법은 메인 메모리(130)로부터 장치 메모리들(153)로의 불필요한 전송을 방지할 수 있다. 실시예들은 아래 [표 1]의 알고리즘으로 표현될 수 있다.
아래의 [표 1]에서 G는 입력 그래프를, KSP는 스몰 페이지들을 위한 그래픽 처리 장치 커널을, KLP는 라지 페이지들을 위한 그래픽 처리 장치 커널을 나타낸다. nextPIDSet은 다음 처리할 페이지의 식별자(ID)들의 집합을 나타내고, cachedPIDMap1:N은 그래픽 처리 장치들에 캐시된 페이지 식별자(ID)들을 나타내며, bufferPIDMap은 메인 메모리에 버퍼된 페이지 식별자(ID)들을 나타낸다. h() 및 g()는 해쉬 함수로, 예를 들어 모드(mod) 함수가 이용될 수 있다. ∪는 합집합을 나타내며, ∨는 교집합을 나타낸다.
결과 처리기(179)는 그래프 데이터의 질의 처리 결과를 적어도 하나의 보조 기억 장치(110)에 저장할 수 있다. 예를 들어, 결과 처리기(179)는 그래프 알고리즘의 수행에 의하여 갱신된 읽기/쓰기 속성 데이터를 메인 메모리(130)로 저장하여 동기화할 수 있다.
도 2는 일 실시예에 따른 그래프 처리 시스템에서 사용되는 그래프의 데이터 구조인 슬롯티드 페이지의 구성을 설명하기 위한 도면이다. 도 2를 참조하면, 그래프 처리 시스템에서 사용되는 그래프 데이터 구조인 슬롯티드 페이지(200)의 구조가 도시된다.
도 2에 도시된 바와 같이, 슬롯티드 페이지(200)는 레코드 및 슬롯을 포함할 수 있다. 레코드는 슬롯티드 페이지(200)의 한쪽 끝(예를 들어, 앞)에서부터 저장되고, 정점에 대한 인접 정점의 개수 및 인접 정점에 대한 정보를 포함할 수 있다. 슬롯은 슬롯티드 페이지(200)의 다른쪽 끝(예를 들어, 뒤)에서부터 저장될 수 있다. 슬롯은 정점의 식별자(ID)와 정점에 대응하는 레코드의 처음을 가리키는 오프셋을 포함한다.
레코드 내 인접 정점(예를 들어, U1, 210)에 관한 정보는 인접 정점이 속해 있는 페이지 식별자(ID)(213)와 해당 페이지 내 인접 정점에 해당하는 슬롯 번호(215)를 포함할 수 있다. 슬롯 번호(215)는 슬롯 오프셋으로 표현될 수도 있다.
일 실시예에 따르면, 슬롯티드 페이지(200)는 미리 정해진 고정된 크기를 가질 수 있다. 이 경우, 페이지 식별자와 슬롯 오프셋도 각각 미리 정해진 고정된 크기를 가질 수 있다.
다른 실시예에 따르면, 슬롯티드 페이지(200)는 임의의 크기를 가질 수 있다. 이 경우, 페이지 식별자와 슬롯 오프셋도 임의의 크기를 가질 수 있으며, 이러한 방식은 확장된 2단계 주소 표기법이라 지칭될 수 있다. 확장된 2단계 주소 표기법에 의하면, 임의의 바이트(Byte)의 페이지 식별자(ID)정보와 임의의 바이트의 슬롯 오프셋 정보를 나타냄으로써 대규모 그래프를 슬롯티드 페이지로 구성할 수 있을 뿐만 아니라, 다양한 설정을 통해 그래프 크기와 특징에 따른 최적화 된 슬롯티드 페이지를 구성할 수 있다. 확장된 2단계 주소 표기법에서 임의의 바이트의 페이지 식별자(ID) 정보는 슬롯티드 페이지의 개수를 결정 짓고, 임의의 바이트의 슬롯 오프셋 정보는 페이지 사이즈를 결정 지을 수 있다.
전술한 슬롯티드 페이지(200)는 보조 기억 장치에 스파스(sparse)한 그래프의 위상 데이터를 저장하기에 적합한 구조일 수 있다. 그래프의 위상 데이터는 복수의 슬롯티드 페이지들의 집합에 저장될 수 있다.
도 3은 일 실시예에 따른 버퍼 매니저가 메인 메모리 및 보조 기억 장치를 이용하여 데이터를 관리하는 방법을 설명하기 위한 도면이다. 도 3을 참조하면, 그래프 데이터가 저장된 적어도 하나의 보조 기억 장치(110) 및 적재 공간이 원형 큐(310)로 구성된 메인 메모리가 도시된다.
보조 기억 장치(110)에 저장된 그래프 데이터는 적재 컨트롤러에 의해 메인 메모리(310)에 적재된 후, 제어 시스템에 의해 복수의 그래픽 처리 장치들의 장치 메모리들(도면 미도시)로 전송될 수 있다.
버퍼 매니저는 메인 메모리의 적재 공간을 원형 큐(310)로 구성하여 관리할 수 있다. 버퍼 매니저는 적재 컨트롤러에게 원형 큐(310)에서 어느 위치가 사용 가능 한 공간인지 알려줄 수 있다. 버퍼 매니저는, 복수의 그래픽 처리 장치들의 장치 메모리들에 아직 전송되지 않은 위상 데이터가 포함된, 원형 큐(310) 공간에 적재 컨트롤러가 접근하지 못하게 보호할 수 있다.
버퍼 매니저는 현재 그래프 데이터에 대한 질의 처리 과정에서 처리 되지 않는 위상 데이터가 포함되어 있거나, 복수의 그래픽 처리 장치들의 장치 메모리들에 전송이 완료된 위상 데이터가 포함되어 있거나, 또는 아직 위상 데이터가 포함되지 않은 원형 큐(310)의 공간을 사용 가능한 공간 또는 적재 공간이라고 판단할 수 있다. 일 실시예에 따르면, 동시에 복수의 사용 가능한 공간이 남아 있다면, 버퍼 매니저는 LRU(Least Recently Used) 알고리즘을 사용하여 원형 큐(310)에서 가장 오래된 사용 가능한 공간부터 적재 공간으로 지정할 수 있다.
도 4는 일 실시예에 따라 그래프 데이터를 처리하는 과정을 설명하기 위한 도면이다. 도 4를 참조하면, 중앙 처리 장치는 그래프 처리 시스템을 초기화하고(410), 그래프 데이터를 처리할 수 있다(420).
단계(420)에서 제어 시스템은, 적재 컨트롤러가 해시 연산을 사용하여 적어도 하나의 보조 기억 장치 간에 서로 다른 위상 페이지를 동시에 읽어서 메인 메모리에 적재하도록 제어할 수 있다. 제어 시스템은 적재 컨트롤러가 위상 페이지를 적재하고 있는 동안에도 복수의 그래픽 처리 장치들의 장치 메모리에서 그래프 처리가 실행되도록 제어할 수 있다. 이 때, 제어 시스템은 적재 컨트롤러가 올바르게 동작하도록 버퍼 매니저와 적재 컨트롤러 사이에서 양쪽을 제어할 수 있다. 제어 시스템은 실행 컨트롤러와 버퍼 매니저 사이에서의 통신을 통해 메인 메모리가 정상적으로 관리되도록 할 수 있다.
또한, 제어 시스템은 실행 전략에 따라, 복수의 그래픽 처리 장치들에서 목표 질의가 처리될 그래픽 처리 장치를 선택하여 실행 컨트롤러에게 알려줄 수 있다. 예를 들어, 실행 전략이 성능 위주의 실행 전략의 경우, 제어 시스템은 해시 기능을 사용하여 개별 그래픽 처리 장치를 선택할 수 있다. 또는 실행 전략이 확장 위주의 실행 전략의 경우, 제어 시스템은 모든 그래픽 처리 장치를 선택할 수 있다. 제어 시스템이 그래프 데이터를 처리하는 방법은 도 5를 참조하여 구체적으로 설명한다.
중앙 처리 장치는 페이지 정보를 메인 메모리로 복사할 수 있다(430). 단계(430)에서, 중앙 처리 장치는 현재 장치 메모리에 저장되어 있어 다음 그래프 처리 프로세스에서 캐시로 사용될 수 있는 페이지에 대한 정보 및 다음 그래프 처리 프로세스에서 처리되어야 하는 페이지에 대한 정보를 메인 메모리로 복사할 수 있다
중앙 처리 장치는 처리할 페이지(처리를 요하는 페이지)가 처리 요청 집합 내에 존재하는지를 확인할 수 있다(440). 단계(440)에서 처리할 페이지가 존재하는 경우, 중앙 처리 장치는 처리 요청 집합 내에 존재하는 처리할 페이지에 대하여 단계(420) 내지 단계(440)의 과정을 반복적으로 수행할 수 있다.
단계(440)에서 처리할 페이지가 존재하지 않는 경우, 중앙 처리 장치는 동작을 종료할 수 있다.
도 5는 일 실시예에 따른 그래프 처리 시스템의 동작 방법을 나타낸 흐름도이다. 도 5를 참조하면, 일 실시예에 따른 제어 시스템은 데이터 적재 컨트롤러가 실행할 스레드(‘적재 스레드’)를 생성한다(505). 이하에서 그래프 처리 시스템의 동작은 그래프 처리 스레드와 적재 스레드로 나뉘어서 진행될 수 있다.
제어 시스템은 단계(505)에서 적재 스레드 생성 후에 수신한 스레드가 그래프 처리 스레드인지를 판단할 수 있다(510).
단계(510)의 판단 결과, 수신한 스레드가 그래프 처리 스레드이면, 제어 시스템은 현재 루프에서 필요한 위상 데이터가 장치 메모리에 포함되어 있는지 확인한다(515). 단계(515)의 확인 결과, 필요한 위상 데이터가 장치 메모리에 포함되어 있다면, 제어 시스템은 실행 전략에 따른 실행 컨트롤러를 통해 질의 처리가 구현된 사용자 정의 커널을 수행할 수 있다.
단계(515)의 확인 결과, 필요한 위상 데이터가 장치 메모리에 포함되지 않았다면, 제어 시스템은 현재 루프에 필요한 위상 데이터가 메인 메모리에 적재 되어 있는지 버퍼 매니저를 통해 확인한다(520).
단계(520)의 확인 결과, 필요한 위상 데이터가 메인 메모리에 적재 되어 있지 않았다면, 제어 시스템은 적재 컨트롤러가 메인 메모리로 적재 할 때까지 기다린다.
단계(520)의 확인 결과, 필요한 위상 데이터가 메인 메모리에 적재 되어 있다면, 실행 컨트롤러가 실행 전략에 따른 위상 데이터 및 읽기 전용 속성 청크(chunk)를 장치 메모리에 복사한다(525). 여기서, 읽기 전용 속성 청크는 그래프 데이터의 전체 읽기 전용 속성 데이터 중 해당하는 위상 데이터에 대응하는 청크를 의미할 수 있다.
장치 메모리로의 전송이 완료 되면, 제어 시스템은 실행 컨트롤러를 통해 실행 전략에 따른 질의 처리가 구현된 사용자 정의 커널을 수행한다(530).
커널 수행이 완료 되면, 버퍼 매니저는 현재 루프에서 사용된 메인 메모리의 공간을 사용 가능한 공간으로 업데이트하고, 그래프 처리 스레드를 위한 처리 요청 집합에 있는 페이지가 모두 처리 되었는지 판단한다(535).
단계(535)의 판단 결과, 처리 요청 집합에 있는 페이지가 모두 처리 되지 않았다면, 제어 시스템은 페이지가 모두 처리 될 때까지 단계(515) 내지 단계(535)의 과정을 반복 실행한다.
단계(535)의 판단 결과, 처리 요청 집합에 있는 페이지가 모두 처리 되었다면, 제어 시스템은 실행 전략에 따른 질의 처리 결과를 동기화할 수 있다(540).
단계(510)의 판단 결과, 수신한 스레드가 그래프 처리 스레드가 아니면(다시 말해 적재 스레드이면), 제어 시스템은 적재 컨트롤러의 초기화를 수행할 수 있다(550). 단계(550)에서, 제어 시스템은 먼저 이번 그래프 처리 프로세스에서 처리 해야 할 처리 요청 집합을 확인할 수 있다. 제어 시스템은 버퍼 매니저를 통해 현재 메인 메모리에 적재 되어 있는 위상 데이터를 확인하여, 적재 컨트롤러가 어떤 위상 데이터를 적재할지를 결정하고, 적재 목록을 생성하는 적재 컨트롤러 초기화를 수행할 수 있다.
제어 시스템은 적어도 하나의 보조 기억 장치에 접근할 스레드(이하 '접근 스레드')를 생성할 수 있다(555). 일 실시예에 따르면, 접근 스레드는 보조 기억 장치에 대응할 수 있으며, 복수의 보조 기억 장치들이 이용되는 경우 복수의 접근 스레드들이 생성될 수 있다.
제어 시스템은 버퍼 매니저를 통해 메인 메모리에 위상 데이터를 적재할 수 있는 적재 공간이 남아 있는지 확인할 수 있다(560). 단계(560)에서, 제어 시스템은 적재 스레드 내부에서 생성된 접근 스레드들 각각의 위상 데이터를 적재할 수 있는 공간이 메인 메모리에 남아 있는지 확인할 수 있다.
단계(560)의 확인 결과, 메인 메모리에 적재 공간이 없는 경우, 제어 시스템은 적재 공간이 생길 때까지 대기한다.
단계(560)의 확인 결과, 메인 메모리의 적재 공간이 있는 경우, 제어 시스템은 접근 스레드들 각각의 위상 데이터를 보조 기억 장치로부터 메인 메모리로 적재한다(565). 이 때, 접근 스레드들은 각 스레드가 적재 해야 할 페이지 식별자(ID)에 해시 연산을 사용하여 접근해야 할 보조 기억 장치를 결정한다.
제어 시스템은 적재 목록에 적재해야 할 위상 데이터가 남아 있는지를 판단할 수 있다(570). 단계(570)의 판단 결과, 적재 목록에 적재해야 할 위상 데이터가 남아 있다면, 제어 시스템은 적재 목록에 적재 해야 할 위상 데이터가 남지 않을 때까지 단계(560) 내지 단계(570)의 적재 과정을 반복할 수 있다.
단계(570)의 판단 결과, 적재 목록에 적재해야 할 위상 데이터가 남아 있지 않다면, 제어 시스템은 모든 적재 스레드가 완료되었는지를 판단할 수 있다(575). 단계(575)에서 모든 적재 스레드가 완료되지 않았다고 판단되면, 제어 시스템은 모든 적재 스레드가 완료될 때까지 대기할 수 있다.
단계(575)에서 모든 적재 스레드가 완료되었다고 판단되면, 제어 시스템은 적재 컨트롤러를 종료하고(580), 실행 전략에 따른 질의 처리 결과를 동기화할 수 있다(540). 적재 컨트롤러가 종료되고, 그래프 처리 스레드에서 처리 요청 집합에 있는 모든 위상 페이지 목록을 처리한 경우, 제어 시스템은 실행 전략에 따라 질의 처리 결과를 동기화 한다.
단계(540)에서 실행 전략이 성능 위주의 실행 전략인 경우, 제어 시스템은 각 그래픽 처리 장치의 장치 메모리에 저장된 읽기/쓰기 속성 데이터에 대한 질의 처리 결과를 대표 그래픽 처리 장치의 장치 메모리의 읽기/쓰기 속성 데이터로 취합할 수 있다. 제어 시스템은 취합된 읽기/쓰기 속성 데이터를 메인 메모리로 복사하여 동기화 작업을 수행한다.
단계(540)에서 실행 전략이 확장 위주의 실행 전략의 경우, 제어 시스템은 모든 그래픽 처리 장치의 장치 메모리에 저장된 읽기/쓰기 속성 데이터를 메인 메모리로 복사하여 동기화 작업을 수행한다.
도 6 내지 도 7은 실시예들에 따른 실행 전략에 따른 데이터 흐름 및 동기화 흐름을 설명하기 위한 도면이다.
도 6 내지 도 7에 도시된 'WA'는 읽기/쓰기 속성 데이터를 나타내고, 'RA'는 읽기 전용 속성 데이터를 나타내고, 'SP'는 슬랏티드 페이지로 구성된 위상 데이터를 나타낸다.
일 실시예에 따른 중앙 처리 장치는 그래프 데이터들을 SSD(Solid State Drive)에 저장하고, PCI-E 인터페이스를 통하여 그래프 데이터의 위상 데이터를 수천 개의 그래픽 처리 장치들로 스트리밍 함으로써 그래프 알고리즘을 수행할 수 있다. 중앙 처리 장치는 갱신 가능한 속성 데이터만을 그래픽 처리 장치에 저장하고, 위상 데이터를 스트리밍할 수 있다. 실시예들은 비동기적(asynchronous) 그래픽 처리 장치 스트림들을 활용하여 대규모 그래프들을 효율적으로 처리하는 그래프 알고리즘을 제안한다. 실시예들에서는 복수의 그래픽 처리 장치들과 복수의 SSD들을 활용하여 성능을 향상시키거나 확장성을 향상시키는 두 가지 전략들을 제안한다. 이하, 도 6을 참조하여 성능 위주의 실행 전략을 설명하고, 도 7을 참조하여 확장 위주의 실행 전략을 설명한다.
도 6을 참조하면, 일 실시예에 따른 제어 시스템이 성능 위주의 실행 전략을 수행하는 경우의 데이터 흐름이 도시된다.
성능 위주의 실행 전략에서 읽기/쓰기 속성 데이터의 크기가 단일 그래픽 처리 장치의 장치 메모리의 용량 보다 작기 때문에, 제어 시스템은 읽기/쓰기 속성 데이터 전체를 그래픽 처리 장치들(150) 각각의 읽기/쓰기 속성 데이터 버퍼로 복사할 수 있다(610).
제어 시스템은 서로 다른 위상 데이터와 읽기 전용 속성 데이터를 서로 다른 그래픽 처리 장치에 복사할 수 있다(620). 제어 시스템은 서로 다른 위상 데이터의 페이지(SPk)와 읽기 전용 속성 데이터(RAk)를 서로 다른 그래픽 처리 장치들로 스트리밍할 수 있다. 각 그래픽 처리 장치는 서로 다른 위상 데이터를 이용하여 독립적으로 그래픽 처리 장치의 커널 함수를 수행할 수 있다. 이때, 각 그래픽 처리 장치는 위상 데이터의 스몰 페이지를 위한 커널 함수(KSP)를 수행할 수 있다. 또는 각 그래픽 처리 장치는 위상 데이터의 라지 페이지를 위한 커널 함수(KLP)를 수행할 수 있다. 위상 데이터의 스몰 페이지 및 라지 페이지는 동일한 방식으로 처리될 수 있다. 여기서, 각각의 그래픽 처리 장치들은 서로 다른 부분의 위상 데이터에 대하여 동일한 그래픽 처리 장치 커널 함수를 독립적으로 수행할 수 있다. 단계(620)에서 갱신된 읽기/쓰기 속성 데이터는 아래의 단계(630) 및 단계(640)에서 성능 위주의 실행 전략에 따라 동기화될 수 있다.
제어 시스템은 그래픽 처리 장치의 장치 메모리(DM)들을 동기화(630)한 후, 메인 메모리(MM)를 동기화할 수 있다(640). 복수의 그래픽 처리 장치들들 각각이 동기화를 수행하는 경우, 그래픽 처리 장치들의 수가 증가함에 따라 동기화 오버 헤드가 증가할 수 있다. 일 실시예에서는 그래픽 처리 장치의 피어-투-피어(peer-to-peer) 메모리 복사 기능을 활용하여, 동기화 오버 헤드를 감소시킬 수 있다. 이는 그래픽 처리 장치의 피어-투-피어 메모리 복사 시간은 메인 메모리와 그래픽 처리 장치들의 사이의 데이터 전송 시간에 비하여 짧기 때문이다.
단계(630)에서, 그래픽 처리 장치들 각각의 읽기/쓰기 속성 데이터(WA)는 마스터 그래픽 처리 장치(예를 들어, 첫 번째 그래픽 처리 장치)로 합쳐질 수 있다.
단계(640)에서, 마스터 그래픽 처리 장치의 갱신된 읽기/쓰기 속성 데이터(WA), 다시 말해, 하나로 합쳐진 그래픽 처리 장치들 각각의 읽기/쓰기 속성 데이터(WA)가 메인 메모리(130)로 복사될 수 있다.
상술한 단계(610)은 [표 1]의 11번째 라인에 대응되고, 단계(620)은 [표 1]의 16 내지 26번째 라인들에 대응되며, 단계(630) 및 단계(640)은 [표 1]의 28번째 라인에 대응될 수 있다.
성능 위주의 실행 전략은 데이터 스트리밍의 용량이 충분한 경우, 그래프 데이터를 처리하는 그래픽 처리 장치들의 수가 증가함에 따라 성능이 향상될 수 있다. 나아가, 복수의 그래픽 처리 장치들들로 분배된 서로 다른 위상 데이터는 실질적으로 동일한 크기를 가지므로, 동일한 작업 부하(work load)가 복수의 그래픽 처리 장치들들로 분배될 수 있다. 따라서, 그래프의 특성(예를 들어, 그래프의 크기 및 밀도 등)과 무관하게 그래프 처리 성능이 향상될 수 있다.
데이터 스트리밍의 용량은 PCI-E 인터페이스의 속도 및 SSD의 I/O 성능에 의하여 결정된다. 현 컴퓨터 구조 하에서, SSD의 I/O 성능(예를 들어, 2GB/s)은 PCI-E 인터페이스의 속도(예를 들어, 16GB/s)에 비하여 낮다.
일 실시예에 따르면, 메인 메모리로 복수의 SSD들을 이용함으로써 데이터 스트리밍의 용량을 증가시킬 수 있다. 예를 들어, 각 슬롯티드 페이지는 특정 SSDg(j)에 저장될 수 있다. g(j)는 페이지 식별자(ID)인 j의 해쉬 값을 리턴하고, 표 1의 23번째 라인에서 I/O 요청에 따라 SSDg(j)로부터 해당하는 페이지가 패치(fetch)될 수 있다.
만약 그래프 데이터(G)의 크기가 메인 메모리의 버퍼(MMBuf)보다 작은 경우, [표 1]의 9-10번째 라인들에서 그래프 데이터(G)는 모두 메인 메모리의 버퍼에 로드될 수 있다. 이 경우, PCI-E 인터페이스의 속도에 의하여 성능이 결정될 수 있다.
도 7을 참조하면, 일 실시예에 따른 제어 시스템이 확장 위주의 실행 전략을 수행하는 경우의 데이터 흐름이 도시된다. 확장 위주의 실행 전략에서, 서로 다른 속성 데이터(예를 들어, WAi)가 복수의 그래픽 처리 장치들(150)로 복사되고, 동일한 위상 데이터가 모든 그래픽 처리 장치들(150)로 스트리밍될 수 있다.
확장 위주의 실행 전략에서 읽기/쓰기 속성 데이터의 크기가 단일 그래픽 처리 장치의 장치 메모리의 용량 보다 크기 때문에, 제어 시스템은 읽기/쓰기 속성 데이터를 그래픽 처리 장치의 개수만큼 나누어 각 그래픽 처리 장치의 읽기/쓰기 속성 데이터 버퍼로 복사할 수 있다(710). 단계(710)에서 제어 시스템은 서로 다른 읽기/쓰기 속성 데이터(WAi)를 각 그래픽 처리 장치에 복사할 수 있다.
제어 시스템은 같은 위상 페이지와 읽기 전용 속성 데이터를 서로 다른 그래픽 처리 장치에 복사하고, 각 그래픽 처리 장치에서 같은 위상 데이터를 이용하여 독립적으로 커널을 수행할 수 있다(720). 단계(720)에서, 동일한 <SPj, RAj>가 모든 그래픽 처리 장치들로 스트리밍 되는 동안, 각 그래픽 처리 장치들은 주어진 그래픽 처리 장치의 커널 함수를 수행할 수 있다. 이때, 각 그래픽 처리 장치는 위상 데이터의 스몰 페이지(SP)를 위한 커널 함수(KSP)를 수행할 수 있다. 또는 각 그래픽 처리 장치는 위상 데이터의 라지 페이지(LP)를 위한 커널 함수(KLP)를 수행할 수 있다. 위상 데이터의 스몰 페이지(SP) 및 라지 페이지(LP)는 동일한 방식으로 처리될 수 있다. 여기서, 각 그래픽 처리 장치는 서로 다른 부분의 속성 데이터에 대하여 동일한 그래픽 처리 장치의 커널 함수를 독립적으로 수행할 수 있다. 단계(720)에서 갱신된 모든 읽기/쓰기 속성 데이터{WAi}는 단계(730)을 통해 동기화될 수 있다. 읽기/쓰기 속성 데이터(WAi) 조각들은 서로 분리되어 있으므로, 그래픽 처리 장치의 피어-투-피어 메모리 복사 기능이 활용될 수 없다.
제어 시스템은 확장 위주의 실행 전략에서의 동기화 과정을 수행할 수 있다(730). 단계(730)에서 제어 시스템은 각 그래픽 처리 장치로부터 메인 메모리로 총 N번의 동기화 과정을 수행할 수 있다.
상술한 단계(710)은 [표 1]의 11번째 라인에 대응되고, 단계(720)은 [표 1]의 16 내지 26번째 라인들에 대응되며, 단계(730)은 [표 1]의 28번째 라인에 대응될 수 있다.
확장 위주의 실행 전략은 처리 대상 그래프의 크기를 최대화할 수 있다. SSD 또는 메인 메모리의 전송 용량이 충분한 경우, 그래픽 처리 장치들의 수가 증가함에 따라 처리 대상 그래프의 크기가 증가할 수 있다. 나아가, 복수의 그래픽 처리 장치들들로 분배된 서로 다른 속성 데이터는 실질적으로 동일한 크기를 가지고, 동일한 위상 데이터가 각 그래픽 처리 장치들로 전송될 수 있다. 그러므로, 동일한 작업 부하가 복수의 그래픽 처리 장치들들로 분배될 수 있다. 따라서, 그래프의 특성(예를 들어, 크기 및 밀도 등)과 무관하게 워크로드가 균등하게 분배될 수 있다.
확장 위주의 실행 전략은 큰 장치 메모리를 갖는 단일 그래픽 처리 장치를 이용하는 것과 논리적으로 유사하다. 따라서, 그래픽 처리 장치들의 수가 증가하더라도 그래프 데이터의 처리 성능 자체는 변하지 않으며, 그래픽 처리 장치로 데이터를 스트리밍하는 용량도 변하지 않는다.
만약, 전체 그래프를 저장할 만큼 큰 용량의 메인 메모리가 있다면, PCI-E 인터페이스의 속도에 의하여 성능이 결정된다. 그렇지 않은 경우, SSD의 I/O 성능에 의하여 성능이 결정된다. 이 경우, 복수의 SSD들을 활용함으로써 성능이 향상될 수 있다.
이처럼, 확장 위주의 실행 전략은 읽기/쓰기 속성 데이터가 단일 그래픽 처리 장치의 장치 메모리에 저장되지 못하는 상대적으로 큰 규모의 그래프를 처리하기에 적합하다. 반면, 성능 위주의 실행 전략은 읽기/쓰기 속성 데이터가 단일 그래픽 처리 장치의 장치 메모리에 저장되는 상대적으로 작은 규모의 그래프를 처리하기에 적합하다.
도 8은 일 실시예에 따른 그래프 처리 과정에서 실행 전략에 따른 그래프 처리 시스템의 동작을 나타낸 흐름도이다. 도 8을 참조하면, 도 5에 도시된 위상 데이터 복사 및 읽기 전용 속성 청크 복사 단계(525)와 실행 전략에 따른 사용자 정의 커널 수행 단계(530)를 수행하는 과정이 도시된다.
도 5에 도시된 바와 같이, 그래프 처리 스레드에서 장치 메모리로 위상 데이터 복사 및 읽기 전용 속성 청크 복사 시, 제어 시스템은 각 실행 전략에 따라 선택한 그래픽 처리 장치의 장치 메모리로 위상 데이터와 읽기 전용 속성 청크를 복사할 수 있다. 이 후, 제어 시스템은 각 실행 전략에 따라 선택한 그래픽 처리 장치의 코어와 장치 메모리를 이용하여 사용자 정의 커널을 수행할 수 있다.
보다 구체적으로, 제어 시스템은 실행 전략이 성능 위주의 실행 전략인지를 판단할 수 있다(810). 단계(810)의 판단 결과, 실행 전략이 성증 위주의 실행 전략인 경우, 제어 시스템은 복수의 그래픽 처리 장치들 중 어느 하나의 그래픽 처리 장치를 선택하고, 선택된 그래픽 처리 장치의 장치 메모리에 위상 데이터 및 읽기 전용 속성 청크를 복사할 수 있다(820). 이때, 제어 시스템은 해시 함수를 사용하여 복수의 그래픽 처리 장치들 중 어느 하나의 그래픽 처리 장치를 선택할 수 있다.
제어 시스템은 성능 위주의 실행 전략에 따라 단계(820)에서 제어 시스템이 선택한 그래픽 처리 장치의 코어와 장치 메모리를 이용하여 사용자 정의 커널을 수행할 수 있다(830).
이 때, 제어 시스템은 복수의 그래픽 처리 장치들에 대하여 단계(820)과 단계(830)을 수행하는 복수의 그래픽 처리 스레드들을 이용할 수 있다. 복수의 그래픽 처리 스레드들은 서로 병렬적으로 수행될 수 있다.
단계(810)의 판단 결과, 실행 전략이 성증 위주의 실행 전략이 아닌 경우(다시 말해 확장 위주의 실행 전략인 경우), 제어 시스템은 복수의 그래픽 처리 장치들의 모든 장치 메모리에 위상 데이터 및 읽기 전용 속성 청크를 복사할 수 있다(840).
제어 시스템은 복수의 그래픽 처리 장치들 전부의 코어와 장치 메모리를 이용하여 사용자 정의 커널을 수행할 수 있다(850).
사용자 정의 커널의 수행이 종료하면, 제어 시스템은 질의 처리된 위상 데이터 정보를 버퍼 매니저에게 알려줘서 버퍼 매니저가 메인 메모리 공간에 대한 정보를 갱신하도록 할 수 있다.
일 실시예에 따른 결과 처리기는 질의 처리가 완전히 완료된 다음, 그래픽 처리 장치의 장치 메모리에 있는 속성 데이터를 메인 메모리로 복사하여 동기화시킬 수 있다. 결과 처리기는 동기화 된 메인 메모리의 속성 데이터를 보조 기억 장치에 저장할 수 있다.
이상에서 설명된 실시예들은 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치, 방법 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
Claims (18)
- 위상 데이터 및 속성 데이터를 포함하는 그래프 데이터를 저장하는 적어도 하나의 보조 기억 장치;
상기 그래프 데이터를 처리하는 복수의 그래픽 처리 장치들(Graphic Processing Unit; GPU);
상기 복수의 그래픽 처리 장치들과 상기 보조 기억 장치 사이에서 상기 그래프 데이터의 적어도 일부를 캐싱하는 메인 메모리; 및
상기 복수의 그래픽 처리 장치들 각각에 포함된 장치 메모리에 상기 속성 데이터 중 갱신 가능한 속성 데이터가 저장될 수 있는지 여부에 따라, 상기 그래프 데이터의 적재를 제어하는 중앙 처리 장치(Central Processing Unit; CPU)
를 포함하는, 그래프 처리 시스템. - 제1항에 있어서,
상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 상기 갱신 가능한 속성 데이터가 저장될 수 있는 경우,
상기 중앙 처리 장치는
상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 상기 갱신 가능한 속성 데이터를 저장하고, 상기 복수의 그래픽 처리 장치들에 서로 다른 위상의 위상 페이지 및 해당 위상 페이지에 대응하는 읽기 전용 속성 데이터를 스트리밍하는, 그래프 처리 시스템. - 제1항에 있어서,
상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 상기 갱신 가능한 속성 데이터가 저장될 수 없는 경우,
상기 중앙 처리 장치는
상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 상기 갱신 가능한 속성 데이터를 나누어 저장하고, 상기 복수의 그래픽 처리 장치들에 동일한 위상의 위상 페이지 및 해당 위상 페이지에 대응하는 읽기 전용 속성 데이터를 스트리밍하는, 그래프 처리 시스템. - 제1항에 있어서,
상기 중앙 처리 장치는
상기 갱신 가능한 속성 데이터의 크기와 단일 그래픽 처리 장치의 장치 메모리의 크기를 비교하고,
상기 단일 그래픽 처리 장치의 장치 메모리의 크기가 상기 갱신 가능한 속성 데이터의 크기보다 크거나 같으면, 성능 위주의 실행 전략으로 상기 그래프 데이터를 처리하고,
상기 단일 그래픽 처리 장치의 장치 메모리의 크기가 상기 갱신 가능한 속성 데이터의 크기보다 작으면, 확장 위주의 실행 전략으로 상기 그래프 데이터를 처리하는, 그래프 처리 시스템. - 제1항에 있어서,
상기 적어도 하나의 보조 기억 장치는
상기 메인 메모리의 용량보다 큰 용량의 그래프 데이터를 저장하는, 그래프 처리 시스템. - 제1항에 있어서,
상기 위상 데이터는
상기 그래프 데이터에 포함된 정점들에 관한 정보 및 상기 정점들 사이의 연결 관계에 관한 정보를 포함하고,
상기 속성 데이터는
상기 갱신 가능한 속성 데이터 및 읽기 전용 속성 데이터를 포함하는, 그래프 처리 시스템. - 제1항에 있어서,
상기 중앙 처리 장치는
상기 위상 데이터를 상기 보조 기억 장치에서 상기 메인 메모리로 비동기적으로 스트리밍 하고, 상기 위상 데이터를 상기 메인 메모리에서 상기 복수의 그래픽 처리 장치들의 장치 메모리로 비동기적으로 스트리밍 하는, 그래프 처리 시스템. - 제1항에 있어서,
상기 위상 데이터는
가변 사이즈를 가지는 복수의 페이지들로 구성되고, 상기 복수의 페이지들에 포함된 슬롯들은 임의의 바이트(Byte)로 구성된 페이지 식별자(ID) 번호와 슬롯 오프셋을 포함하는, 그래프 처리 시스템. - 제1항에 있어서,
상기 중앙 처리 장치는
상기 복수의 그래픽 처리 장치들의 장치 메모리들, 상기 적어도 하나의 보조 기억 장치 및 상기 메인 메모리 간의 상기 그래프 데이터의 전송을 처리하는 적재 컨트롤러;
상기 그래프 데이터의 크기와 상기 장치 메모리들의 용량을 기초로, 상기 그래프 데이터에 대한 질의 처리 시의 실행 전략을 결정하는 실행 컨트롤러;
상기 그래프 데이터에 대한 질의 처리 시에 상기 메인 메모리에 상기 장치 메모리들로 전송할 위상 페이지가 존재하는지 여부에 기초하여, 상기 메인 메모리의 영역을 보호하는 버퍼 매니저;
상기 복수의 그래픽 처리 장치들을 제어하는 제어 시스템; 및
상기 그래프 데이터의 질의 처리 결과를 상기 보조 기억 장치에 저장하는 결과 처리기
중 적어도 하나를 포함하는, 그래프 처리 시스템. - 제9항에 있어서,
상기 제어 시스템은
상기 적재 컨트롤러가 해시 연산을 사용하여 상기 적어도 하나의 보조 기억 장치 간에 서로 다른 위상 데이터의 페이지를 동시에 읽어 상기 메인 메모리에 적재하도록 하고,
상기 적재 컨트롤러가 상기 위상 데이터의 페이지를 적재하는 동안에 상기 복수의 그래픽 처리 장치들의 장치 메모리들에서 상기 그래프 데이터의 처리가 실행되도록 제어하는, 그래프 처리 시스템. - 그래프 처리를 위한 실행 전략에 기초하여, 상기 그래프 처리를 위해 요구되는 갱신 가능한 속성 데이터를 복수의 그래픽 처리 장치들의 장치 메모리에 복사하는 단계;
상기 그래프 처리를 위해 요구되는 위상 데이터가 메인 메모리에 적재되어 있는지 여부를 확인하는 단계;
상기 실행 전략에 기초하여, 상기 메인 메모리에 적재된 위상 데이터를 상기 장치 메모리에 스트리밍하는 단계;
상기 실행 전략에 따른 질의 처리가 구현된 사용자 정의 커널을 수행하는 단계; 및
상기 실행 전략에 따른 질의 처리 결과를 동기화 하는 단계
를 포함하는, 그래프 처리 방법. - 제11항에 있어서,
적어도 하나의 보조 기억 장치에 저장되어 있는 위상 데이터 중 상기 메인 메모리에 적재할 위상 데이터를 결정하여 적재 목록을 생성하는 단계; 및
상기 메인 메모리에 적재 공간이 있는지 여부를 기초로, 상기 적어도 하나의 보조 기억 장치로부터 상기 메인 메모리로 상기 적재 목록에 포함된 위상 데이터를 적재하는 단계
를 더 포함하는, 그래프 처리 방법. - 제12항에 있어서,
상기 적재 목록에 포함된 위상 데이터의 적재를 위해, 상기 적어도 하나의 보조 기억 장치에 접근할 적어도 하나의 접근 스레드를 생성하는 단계
를 더 포함하고,
상기 적어도 하나의 접근 스레드 각각은
상기 적어도 하나의 접근 스레드 각각이 적재해야 할 위상 데이터의 페이지 식별자(ID)에 대한 해시 연산을 통해 접근해야 할 보조 기억 장치를 결정하는, 그래프 처리 방법. - 제11항에 있어서,
상기 그래프 처리를 위한 실행 전략이 성능 위주의 실행 전략인 경우,
상기 갱신 가능한 속성 데이터를 상기 장치 메모리에 복사하는 단계는
상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 상기 갱신 가능한 속성 데이터를 동일하게 복사하는 단계
를 포함하고,
상기 위상 데이터를 상기 장치 메모리에 스트리밍하는 단계는
상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 서로 다른 위상의 위상 데이터를 복사하는 단계
를 포함하는, 그래프 처리 방법. - 제11항에 있어서,
상기 그래프 처리를 위한 실행 전략이 확장 위주의 실행 전략인 경우,
상기 갱신 가능한 속성 데이터를 상기 장치 메모리에 복사하는 단계는
상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 상기 갱신 가능한 속성 데이터의 서로 다른 부분을 복사하는 단계
를 포함하고,
상기 위상 데이터를 상기 장치 메모리에 스트리밍하는 단계는
상기 복수의 그래픽 처리 장치들 각각의 장치 메모리에 동일한 위상의 위상 데이터를 복사하는 단계
를 포함하는, 그래프 처리 방법. - 제11항에 있어서,
상기 실행 전략이 성능 위주의 실행 전략인 경우,
상기 실행 전략에 따른 질의 처리 결과를 동기화하는 단계는
상기 복수의 그래픽 처리 장치들의 장치 메모리에 저장된 갱신 가능한 속성 데이터를 상기 복수의 그래픽 처리 장치들 중 대표 그래픽 처리 장치의 장치 메모리에 취합하는 단계; 및
상기 취합된 갱신 가능한 속성 데이터를 상기 메인 메모리로 동기화하는 단계
를 포함하는, 그래프 처리 방법. - 제11항에 있어서,
상기 실행 전략이 확장 위주의 실행 전략인 경우,
상기 실행 전략에 따른 질의 처리 결과를 동기화하는 단계는
상기 복수의 그래픽 처리 장치들의 장치 메모리에 저장된 갱신 가능한 속성 데이터를 각각 상기 메인 메모리로 동기화 하는 단계
를 포함하는, 그래프 처리 방법. - 하드웨어와 결합되어 제11항의 방법을 실행시키기 위하여 매체에 저장된 컴퓨터 프로그램.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2016/015424 WO2018124331A1 (ko) | 2016-12-28 | 2016-12-28 | 그래프 처리 시스템 및 그래프 처리 시스템의 동작 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20190095489A true KR20190095489A (ko) | 2019-08-14 |
Family
ID=62709898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020197022145A KR20190095489A (ko) | 2016-12-28 | 2016-12-28 | 그래프 처리 시스템 및 그래프 처리 시스템의 동작 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10719906B2 (ko) |
KR (1) | KR20190095489A (ko) |
WO (1) | WO2018124331A1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2564878B (en) * | 2017-07-25 | 2020-02-26 | Advanced Risc Mach Ltd | Parallel processing of fetch blocks of data |
CN111338805B (zh) * | 2020-05-19 | 2020-08-25 | 北京数字绿土科技有限公司 | 架空输电线路激光雷达点云数据并行分析处理方法与系统 |
US11374838B1 (en) * | 2021-03-29 | 2022-06-28 | Mellanox Technologies, Ltd. | Using a data processing unit (DPU) as a pre-processor for graphics processing unit (GPU) based machine learning |
CN115660940B (zh) * | 2022-11-11 | 2023-04-28 | 北京麟卓信息科技有限公司 | 一种基于垂直消隐模拟的图形应用帧率同步方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6862027B2 (en) * | 2003-06-30 | 2005-03-01 | Microsoft Corp. | System and method for parallel execution of data generation tasks |
GB2462860B (en) * | 2008-08-22 | 2012-05-16 | Advanced Risc Mach Ltd | Apparatus and method for communicating between a central processing unit and a graphics processing unit |
US9164688B2 (en) * | 2012-07-03 | 2015-10-20 | International Business Machines Corporation | Sub-block partitioning for hash-based deduplication |
KR101440577B1 (ko) | 2012-07-26 | 2014-09-17 | 유호석 | 이동형 라우터의 식별자를 이용하여 단말의 위치 정보를 생성하는 장치 및 방법, 그리고 이동형 라우터를 인식하는 장치 |
KR102131644B1 (ko) | 2014-01-06 | 2020-07-08 | 삼성전자주식회사 | 전자장치 및 전자장치에서의 웹 플랫폼 동작방법 |
KR101620602B1 (ko) * | 2014-10-29 | 2016-05-11 | 재단법인대구경북과학기술원 | Gpu를 이용한 큰 규모 그래프 처리 시스템 및 방법 |
-
2016
- 2016-12-28 WO PCT/KR2016/015424 patent/WO2018124331A1/ko active Application Filing
- 2016-12-28 US US15/556,411 patent/US10719906B2/en active Active
- 2016-12-28 KR KR1020197022145A patent/KR20190095489A/ko not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
US10719906B2 (en) | 2020-07-21 |
WO2018124331A1 (ko) | 2018-07-05 |
US20200043128A1 (en) | 2020-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11082206B2 (en) | Layout-independent cryptographic stamp of a distributed dataset | |
US10255287B2 (en) | Method and apparatus for on-disk deduplication metadata for a deduplication file system | |
US9648081B2 (en) | Network-attached memory | |
EP3249889B1 (en) | Workload migration across a hybrid network | |
US8793528B2 (en) | Dynamic hypervisor relocation | |
US9760493B1 (en) | System and methods of a CPU-efficient cache replacement algorithm | |
US10572175B2 (en) | Method and apparatus of shared storage between multiple cloud environments | |
WO2018005613A1 (en) | Systems and methods for efficient distribution of stored data objects | |
US20080235477A1 (en) | Coherent data mover | |
US10223026B2 (en) | Consistent and efficient mirroring of nonvolatile memory state in virtualized environments where dirty bit of page table entries in non-volatile memory are not cleared until pages in non-volatile memory are remotely mirrored | |
US20130297899A1 (en) | Traffic reducing on data migration | |
KR20200016809A (ko) | 솔리드-스테이트 스토리지 미디어의 격리 영역들의 가상화 | |
US10140212B2 (en) | Consistent and efficient mirroring of nonvolatile memory state in virtualized environments by remote mirroring memory addresses of nonvolatile memory to which cached lines of the nonvolatile memory have been flushed | |
KR20190095489A (ko) | 그래프 처리 시스템 및 그래프 처리 시스템의 동작 방법 | |
KR101620602B1 (ko) | Gpu를 이용한 큰 규모 그래프 처리 시스템 및 방법 | |
CN111124951A (zh) | 管理数据访问的方法、设备和计算机程序产品 | |
EP2979187B1 (en) | Data flush of group table | |
US9804885B2 (en) | Cooperative thread array granularity context switch during trap handling | |
US10289306B1 (en) | Data storage system with core-affined thread processing of data movement requests | |
KR20210096153A (ko) | 캐시 메모리들의 계층에서의 캐시 메모리들에 저장을 위한 데이터를 압축하는 방법 | |
CN110990133A (zh) | 边缘计算服务迁移方法、装置、电子设备及介质 | |
US9934147B1 (en) | Content-aware storage tiering techniques within a job scheduling system | |
KR102315102B1 (ko) | 가상 머신을 부팅하기 위한 방법, 장치, 기기 및 매체 | |
WO2015125271A1 (ja) | ファイルサーバ、その制御方法、およびストレージシステム | |
CN108733585B (zh) | 缓存系统及相关方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal |