KR20190090616A - 공기 조화기 및 그 제어 방법 - Google Patents

공기 조화기 및 그 제어 방법 Download PDF

Info

Publication number
KR20190090616A
KR20190090616A KR1020180009533A KR20180009533A KR20190090616A KR 20190090616 A KR20190090616 A KR 20190090616A KR 1020180009533 A KR1020180009533 A KR 1020180009533A KR 20180009533 A KR20180009533 A KR 20180009533A KR 20190090616 A KR20190090616 A KR 20190090616A
Authority
KR
South Korea
Prior art keywords
refrigerant
compressor
injection
superheat degree
discharge superheat
Prior art date
Application number
KR1020180009533A
Other languages
English (en)
Other versions
KR102067447B1 (ko
Inventor
김경훈
명성렬
김권진
이창선
임병국
장용희
김동우
김용찬
이동찬
Original Assignee
삼성전자주식회사
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 고려대학교 산학협력단 filed Critical 삼성전자주식회사
Priority to KR1020180009533A priority Critical patent/KR102067447B1/ko
Priority to US16/964,777 priority patent/US20210055026A1/en
Priority to EP19744274.2A priority patent/EP3730875B1/en
Priority to PCT/KR2019/001129 priority patent/WO2019147085A1/ko
Publication of KR20190090616A publication Critical patent/KR20190090616A/ko
Application granted granted Critical
Publication of KR102067447B1 publication Critical patent/KR102067447B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/30Refrigerant piping for use inside the separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • F25B41/04
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/02Increasing the heating capacity of a reversible cycle during cold outdoor conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

운전 조건을 반영하여 공기 조화기를 최적의 상태로 제어함으로써 액압축으로 인한 압축기의 파손을 방지함과 동시에 난방 성능 및 히트 펌프의 효율을 향상시킬 수 있는 공기 조화기 및 그 제어 방법을 제공한다.
일 실시예에 따른 공기 조화기는, 냉매를 압축시키는 압축기; 난방 모드에서 기상 냉매를 액상 냉매로 변환하는 실내 열교환기; 상기 난방 모드에서 액상 냉매를 기상 냉매로 변환하는 실외 열교환기; 상기 실내 열교환기와 상기 실외 열교환기를 연결하는 메인 배관; 상기 메인 배관으로부터 분기되어 상기 압축기의 인젝션 포트에 연결되는 인젝션 배관; 상기 인젝션 배관에 설치되어 상기 인젝션 배관으로 흐르는 냉매의 유량을 제어하는 인젝션 밸브; 및 운전조건에 따라 나타나는 압축 계수, 압축기 주파수 및 토출 과열도(DSH) 사이의 상관관계에 기초하여 목표 토출 과열도를 산출하고, 상기 목표 토출 과열도에 기초하여 현재 토출 과열도를 제어하는 제어부;를 포함한다.

Description

공기 조화기 및 그 제어 방법{AIR CONDITIONER AND CONTROL METHOD THEREOF}
개시된 발명은 인젝션 방식으로 냉매가 순환되는 공기 조화기 및 그 제어 방법에 관한 것이다.
공기 조화기는 실외 공기와 냉매 사이의 열교환을 수행하는 실외기(Outdoor Unit)와, 실내 공기와 냉매 사이의 열교환을 수행하는 실내기(Indoor Unit)를 포함하고, 압축, 응축, 감압, 증발로 이루어지는 히트펌프 사이클을 냉매가 순환하면서 증발, 응축 과정에서 생기는 열의 이동을 이용하여 실내를 냉방 또는 난방하는 장치이다.
이러한 히트펌프 사이클을 이용하는 경우, 실외 공기와 냉매 사이에 열교환을 수행하기 때문에 외기 온도가 감소함에 따라 난방 성능도 감소하게 된다.
최근에는 공기 조화기의 난방 성능을 향상시키기 위해 응축기를 지난 냉매의 일부를 압축기에 주입하여 냉매의 유량을 증가시키는 인젝션 방식을 도입하고 있다.
운전 조건을 반영하여 공기 조화기를 최적의 상태로 제어함으로써 액압축으로 인한 압축기의 파손을 방지함과 동시에 난방 성능 및 히트 펌프의 효율을 향상시킬 수 있는 공기 조화기 및 그 제어 방법을 제공한다.
일 실시예에 따른 공기 조화기는, 냉매를 압축시키는 압축기; 난방 모드에서 기상 냉매를 액상 냉매로 변환하는 실내 열교환기; 상기 난방 모드에서 액상 냉매를 기상 냉매로 변환하는 실외 열교환기; 상기 실내 열교환기와 상기 실외 열교환기를 연결하는 메인 배관; 상기 메인 배관으로부터 분기되어 상기 압축기의 인젝션 포트에 연결되는 인젝션 배관; 상기 인젝션 배관에 설치되어 상기 인젝션 배관으로 흐르는 냉매의 유량을 제어하는 인젝션 밸브; 및 운전조건에 따라 나타나는 압축 계수, 압축기 주파수 및 토출 과열도(DSH) 사이의 상관관계에 기초하여 목표 토출 과열도를 산출하고, 상기 목표 토출 과열도에 기초하여 현재 토출 과열도를 제어하는 제어부;를 포함한다.
상기 제어부는, 인젝션 모드에서 상기 현재 토출 과열도가 상기 목표 토출 과열도에 도달하도록 상기 인젝션 밸브를 제어할 수 있다.
상기 공기 조화기는, 상기 압축기로부터 토출되는 냉매의 온도, 상기 압축기에 흡입되는 냉매의 온도 및 실외 온도를 측정하는 센서부;를 더 포함할 수 있다.
상기 센서부는, 상기 압축기로부터 토출되는 냉매의 압력, 상기 압축기에 인젝션되는 냉매의 압력 및 상기 압축기에 흡입되는 냉매의 압력 중 적어도 하나를 더 측정할 수 있다.
상기 센서부는, 상기 압축기 주파수를 더 측정할 수 있다.
상기 제어부는, 상기 압축기로부터 토출되거나 상기 압축기에 유입되는 냉매의 압력들 사이의 관계에 의해 결정되는 상기 압축 계수 및 상기 압축기 주파수를 상기 미리 저장된 상관관계에 대입하여 상기 목표 토출 과열도를 산출할 수 있다.
상기 제어부는, 상기 압축기로부터 토출되는 냉매의 압력 및 상기 압축기로부터 토출되는 냉매의 온도에 기초하여 상기 현재 토출 과열도를 산출할 수 있다.
상기 제어부는, 인젝션 모드에서 상기 인젝션 밸브를 제어하여 상기 압축기의 인젝션 포트에 기상 및 액상을 포함하는 이상(two-phase) 냉매를 주입시킬 수 있다.
상기 제어부는, 상기 실외 온도가 미리 설정된 기준 온도 이하이면, 상기 인젝션 밸브를 개방하여 인젝션 모드로 진입할 수 있다.
상기 제어부는, 미리 설정된 주기에 따라 상기 목표 토출 과열도를 산출하고, 상기 목표 토출 과열도에 기초하여 현재 토출 과열도를 제어할 수 있다.
상기 공기 조화기는, 상기 인젝션 밸브 및 상기 압축기의 인젝션 포트 사이에 설치되고, 상기 인젝션 밸브를 통과한 냉매의 상태를 변화시키는 보조 열교환기;를 더 포함할 수 있다.
일 실시예에 따른 냉매를 압축시키는 압축기, 상기 압축기의 인젝션 포트에 연결되는 인젝션 배관 및 상기 인젝션 배관으로 흐르는 냉매의 유량을 제어하는 인젝션 밸브를 포함하는 공기 조화기의 제어 방법은, 실외 온도에 기초하여 인젝션 모드의 진입 여부를 판단하고; 상기 인젝션 모드로 진입하면, 미리 저장된 압축 계수, 압축기 주파수 및 토출 과열도(DSH) 사이의 상관관계에 기초하여 목표 토출 과열도를 산출하고; 상기 목표 토출 과열도에 기초하여 현재 토출 과열도를 제어하는 것;을 포함한다.
상기 현재 토출 과열도를 제어하는 것은, 상기 현재 토출 과열도가 상기 목표 토출 과열도에 도달하도록 상기 인젝션 밸브를 제어하는 것;을 포함할 수 있다.
상기 제어 방법은, 상기 압축기로부터 토출되되거나, 상기 압축기에 유입되는 냉매의 압력 및 상기 압축기 주파수를 측정하는 것;을 더 포함하고, 상기 목표 토출 과열도를 산출하는 것은, 상기 압축기로부터 토출되거나 상기 압축기에 유입되는 냉매의 압력들 사이의 관계에 의해 결정되는 상기 압축 계수 및 상기 압축기 주파수를 상기 미리 저장된 상관관계에 대입하여 상기 목표 토출 과열도를 산출하는 것;을 포함할 수 있다.
상기 제어 방법은, 상기 압축기로부터 토출되는 냉매의 압력 및 상기 압축기로부터 토출되는 냉매의 온도를 측정하는 것;을 더 포함하고, 상기 현재 토출 과열도를 제어하는 것은, 상기 현재 토출 과열도가 상기 목표 토출 과열도에 도달하도록 인젝션 밸브를 제어하는 것을 포함할 수 있다.
상기 현재 토출 과열도를 제어하는 것은, 상기 현재 토출 과열도가 상기 목표 토출 과열도에 도달하도록 인젝션 밸브의 개도를 제어하는 것을 포함할 수 있다.
상기 제어 방법은, 상기 인젝션 모드에 진입하면 상기 인젝션 밸브를 제어하여 상기 압축기의 인젝션 포트에 기상 및 액상을 포함하는 이상(two-phase) 냉매를 주입시키는 것;을 더 포함할 수 있다.
상기 인젝션 모드의 진입 여부를 판단하는 것은, 실외 온도가 미리 설정된 기준 온도 이하이면, 상기 인젝션 모드로 진입하는 것을 포함할 수 있다.
일 측면에 따른 공기 조화기 및 그 제어 방법에 의하면, 운전 조건(압축 계수, 압축기 주파수 등)을 반영하여 공기 조화기를 최적의 상태로 제어함으로써 액압축으로 인한 압축기의 파손을 방지함과 동시에 난방 성능 및 히트 펌프의 효율이 향상될 수 있다.
또한, 제품의 종류에 상관없이 압축 계수, 압축기 주파수 및 토출 과열도 사이의 상관 관계를 사용할 수 있기 때문에 제품마다 동일한 신뢰성 시험을 할 필요가 없어 시간과 비용을 절약할 수 있다.
도 1은 인젝션 방식의 공기 조화기에서의 난방 사이클을 개략적으로 나타낸 도면이다.
도 2는 인젝션 방식을 적용하지 않는 일반 공기 조화기의 난방 용량과 난방 부하를 나타낸 그래프이다.
도 3은 일 실시예에 따른 공기 조화기에서 실외기와 실내기의 구성을 구체화한 도면이다.
도 4는 일 실시예에 따른 공기 조화기의 제어 블록도이다.
도 5는 일 실시예에 따른 공기 조화기가 냉방 모드로 동작하는 경우에 냉매의 흐름을 나타낸 도면이다.
도 6은 일 실시예에 따른 공기 조화기가 난방 모드로 동작하는 경우에 냉매의 흐름을 나타낸 도면이다.
도 7 은 엔탈피(Enthalpy)와 압력과의 관계를 나타낸 PH선도(냉매 선도)를 도시한 그래프이다.
도 8은 PH 선도에 있어서 등건조선을 표시한 도면이다.
도 9는 공기 조화기가 기체 상태의 냉매를 주입하는 기상 인젝션 모드로 동작할 때의 냉매의 순환 과정의 예시를 PH 선도에 도시한 그래프이다.
도 10은 액상 및 기상 냉매가 혼합된 이상 냉매를 주입하는 이상 인젝션 모드로 동작할 때의 냉매의 순환 과정의 예시를 PH 선도에 도시한 그래프이다.
도 11은 압축 계수와 압축기 주파수에 따른 최적 토출 과열도의 예시를 나타낸 그래프이다.
도 12는 일 실시예에 따른 공기 조화기의 제어 방법에 관한 순서도이다.
도 13은 일 실시예에 따른 공기 조화기의 제어방법에 있어서, 토출 과열도를 산출하는 과정이 구체화된 순서도이다.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. 본 명세서가 실시예들의 모든 요소들을 설명하는 것은 아니며, 본 발명이 속하는 기술분야에서 일반적인 내용 또는 실시예들 간에 중복되는 내용은 생략한다. 명세서에서 사용되는 '부, 모듈, 부재, 블록'이라는 용어는 소프트웨어 또는 하드웨어로 구현될 수 있으며, 실시예들에 따라 복수의 '부, 모듈, 부재, 블록'이 하나의 구성요소로 구현되거나, 하나의 '부, 모듈, 부재, 블록'이 복수의 구성요소들을 포함하는 것도 가능하다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 간접적으로 연결되어 있는 경우를 포함하고, 간접적인 연결은 무선 통신망을 통해 연결되는 것을 포함한다.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
명세서 전체에서, 어떤 구성요소가 다른 구성요소에 신호 또는 데이터를 전달 또는 전송한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 해당 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 존재하여 이 구성요소를 통해 전달 또는 전송하는 것을 배제하지 않는다.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.
각 단계들에 있어 식별부호는 각 단계들을 식별하기 위해 사용되는 것으로 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 실시될 수 있다.
이하, 첨부된 도면을 참조하여 일 측면에 따른 공기 조화기 및 그 제어 방법에 관한 실시예를 상세하게 설명한다.
도 1은 인젝션 방식의 공기 조화기에서의 난방 사이클을 개략적으로 나타낸 도면이고, 도 2는 인젝션 방식을 적용하지 않는 일반 공기 조화기의 난방 용량과 난방 부하를 나타낸 그래프이다.
도 1에 도시된 인젝션 방식의 공기 조화기(10)에 따르면, 어큐뮬레이터(11)로부터 공급된 냉매는 압축기(12)로 주입되고, 압축기(12)는 저온저압의 기상 냉매를 압축하여 고온고압의 기상 냉매로 토출한다.
토출된 기상 냉매는 실내에 설치되는 실내 열교환기(13)로 유입되고, 실내 열교환기(13)는 고온고압의 기상 냉매를 응축온도 이하의 고압의 액상 냉매로 응축시키는 응축기의 역할을 수행하고, 냉매의 엔탈피 변화에 대응하여 주변 공기와 열교환을 수행한다. 난방 사이클에서는 실내 열교환기(13)가 기상 냉매를 액상으로 응축시키면서 열을 방출하므로, 실내 공기가 가열된다.
냉매가 메인 배관(10a)을 흐르는 경우, 실내 열교환기(13)를 통과한 저온고압의 액상 냉매는 메인 밸브(15a)에서 팽창되어 감압된다.
메인 밸브(15a)를 통과한 저온저압의 액상 냉매는 실외에 설치되는 실외 열교환기(16)로 주입되고, 실외 열교환기(16)는 저온저압의 이상(Two-phase) 냉매를 기상 냉매로 증발시키는 증발기의 역할을 수행한다.
실외 열교환기(16)를 통과한 기상 냉매는 다시 어큐뮬레이터(11)로 주입되고, 어큐뮬레이터(11)는 주입된 냉매 중에서 상 변환이 안되어 액상으로 남아있는 냉매를 걸러줄 수 있다.
전술한 바와 같이, 실외 열교환기(16)는 액상 냉매를 기상으로 변환시키기 때문에 외기로부터 에너지를 공급 받아야 한다. 따라서, 실외에 설치되는 실외 열교환기(16)의 특성 상 도 2에 도시된 바와 같이, 외기 온도가 낮아질수록 난방 용량은 감소하고 난방 부하는 증가하여 난방 성능이 떨어진다. 반대로, 외기 온도가 높아질수록 난방 용량은 증가하고 난방 부하는 감소하여 잉여 용량이 발생하게 된다.
따라서, 인젝션(Injection) 방식의 공기 조화기(10)에서는 난방 성능을 향상시키기 위해, 실내 열교환기(13)의 출구 측 메인 배관(10a)을 분기하여 인젝션 배관(10b)을 형성함으로써, 실내 열교환기(13)를 통과한 냉매 중 일부를 압축기(12)에 공급할 수 있다.
인젝션 밸브(15b)가 개방되면, 실내 열교환기(13)를 통과한 냉매가 인젝션 배관(10b)으로 유입될 수 있고, 인젝션 배관(10b)을 흐르는 액상 냉매는 인젝션 밸브(15b)에서 팽창되어 압력 및 온도가 낮아지고, 보조 열교환기(14)를 통과하면서 열교환을 한다.
기상 인젝션(Vapor Injection) 방식에서는 기상 냉매만을 압축기(12)로 공급하고, 이상 인젝션(Two-phase Injection) 방식에서는 액상과 기상의 혼합 상태의 냉매를 압축기(12)로 공급할 수 있다.
일 실시예에 따른 공기 조화기는 압축기로 공급되는 냉매량을 증가시켜 난방 효율을 더 향상시키기 위해 이상 인젝션 방식을 채용할 수 있다. 다만, 이상 인젝션 방식을 채용하는 것이 항상 이상 인젝션만을 수행하는 것을 의미하는 것이 아니라, 공기 조화기의 운전 환경에 따라 인젝션 유로를 개방하지 않는 정상 모드로 동작할 수도 있고, 기상 냉매만을 공급하는 기상 인젝션 모드로 동작할 수도 있으며, 기상 냉매와 액상 냉매를 함께 공급하는 이상 인젝션 모드로 동작할 수도 있음을 의미할 수 있다.
도 3은 일 실시예에 따른 공기 조화기에서 실외기와 실내기의 구성을 구체화한 도면이고, 도 4는 일 실시예에 따른 공기 조화기의 제어 블록도이다.
일 실시예에 따른 공기 조화기는 난방 또는 난방 및 냉방을 수행할 수 있는 장치이다. 후술하는 실시예에서는 난방 및 냉방을 모두 수행할 수 있는 공기 조화기를 예로 들어 설명하기로 한다.
도 3을 참조하면, 일 실시예에 따른 공기 조화기(1)는 실외 공기와 냉매 사이의 열교환을 수행하는 실외기(100)와, 실내 공기와 냉매 사이의 열교환을 수행하는 실내기(200)를 포함할 수 있다.
실외기(100)와 실내기(200)는 냉매 배관을 통해 서로 연결되어 사이클을 구성한다. 또한, 실외기(100)를 구성하는 구성요소들 사이의 냉매의 흐름과 실내기(200)를 구성하는 구성요소들 사이의 냉매의 흐름 역시 냉매 배관을 통해 이루어질 수 있다.
실내 공기 또는 실외 공기와 열교환이 이루어지는 냉매로는 HFC 계열의 냉매를 사용할 수 있고, 일 예로, R32 냉매 또는 R32 냉매를 포함하는 혼합 냉매를 사용할 수 있다.
압축기(120)는 흡입 포트(121)를 통해 흡입된 저온저압의 냉매를 고온고압의 냉매로 압축하고, 토출 포트(122)를 통해 고온고압의 냉매를 토출한다.
일 예로, 압축기(120)는 로터리 압축기(Rotary Compressor) 또는 스크롤 압축기(Scroll Compressor)로 구현될 수 있다. 다만, 압축기(120)의 예시가 이에 한정되는 것은 아니다.
압축기(120)의 토출 포트(122)와 일 단이 연결된 배관의 타 단은 유로 전환 밸브(151)와 연결될 수 있다. 일 예로, 유로 전환 밸브(151)는 사방 밸브로 구현될 수 있으며, 압축기(120)로부터 토출되는 냉매의 흐름을 운전 모드(냉방 모드 또는 난방 모드)에 따라 전환함으로써, 해당 모드의 운전에 필요한 냉매 유로를 형성할 수 있다.
유로 전환 밸브(151)는 압축기(120)의 토출 포트(122)와 연결된 제1포트(151a), 실내 열교환기(230)와 연결된 제2포트(151b), 실외 열교환기(130)와 연결된 제3포트(151c) 및 어큐뮬레이터(110)와 연결된 제4포트(151d)를 포함할 수 있다.
실외 열교환기(130)는 냉방 모드에서는 고온고압의 기상 냉매를 응축 온도 이하의 고압의 액상 냉매로 응축시키는 응축기(condenser)로 동작하고, 난방 모드에서는 저온저압의 액상 냉매를 기상 냉매로 증발시키는 증발기(evaporator)로 동작할 수 있다.
실외 열교환기(130)에서 발생하는 냉매의 엔탈피(enthalpy) 변화에 대응하여 냉매와 실외 공기 사이에 열교환이 일어나고, 냉매와 실외 공기 사이의 열교환 효율을 높이기 위한 실외 송풍팬(181)이 설치될 수 있다.
실외 열교환기(130)와 실내 열교환기(230) 사이에는 메인 밸브(152)가 설치될 수 있다. 메인 밸브(152)는 개도량 조절이 가능한 전자식 팽창 밸브(Electronic Expansion Valve)로 구현될 수 있으며, 냉매를 감압시키고 그 유량을 조절할 수 있으며, 필요한 경우 냉매의 유동을 차단할 수 있다.
또한, 유로 전환 밸브(151)의 제4포트(151d)와 압축기(120) 사이에는 어큐뮬레이터(Accumulator, 110)가 마련될 수 있다. 어큐뮬레이터(110)는 유로 전환 밸브(151)로부터 압축기(120)로 유입되는 냉매 중에서 상 변환하지 못하고 액상으로 남아있는 냉매를 걸러주고 압축기(120)에 오일을 공급할 수 있다.
또한, 압축기(120)와 유로 전환 밸브(151)의 제1포트(151a) 사이에 오일을 분리하는 오일 분리기가 마련되어, 압축기(120)로부터 토출된 냉매에서 오일을 분리하는 것도 가능하다.
실내기(200)는 냉매와 실내 공기 사이의 열 교환을 통해 실내를 냉방 또는 난방시키는 장치이다. 실내기(200)는 실내 열교환기(230)와 실내 송풍팬(281)을 포함할 수 있으며, 필요에 따라 두 개 이상의 실내 열교환기와 실내 송풍팬이 설치될 수도 있다.
실내 열교환기(230)는 냉방 모드에서는 저온저압의 액상 냉매를 기상 냉매로 증발시키는 증발기로 동작하고, 난방 모드에서는 고온고압의 기상 냉매를 응축 온도 이하의 고압의 액상 냉매로 응축시키는 응축기로 동작한다.
실내 송풍팬(281)은 실내 열교환기(230)에 근접하게 설치되어 실내 공기를 송풍시킴으로써 실내 열교환기(230) 내부를 순환하는 냉매와 실내 공기 사이의 열교환 효율을 높일 수 있다.
또한, 실내기(200)는 냉매의 흐름을 제어하는 실내기 밸브(154)를 포함할 수 있다. 실내기 밸브(154)는 개도량 조절이 가능한 전자식 팽창 밸브(Electronic Expansion Valve)로 구현될 수 있으며, 냉매를 감압시키고 그 유량을 조절할 수 있으며, 필요한 경우 냉매의 유동을 차단할 수 있다.
한편, 실내 열교환기(230)와 실외 열교환기(130)를 연결하는 메인 배관(101)이 분기되어 인젝션 배관(103)을 형성한다. 인젝션 배관(103)은 메인 배관(101)으로부터 분기되어 보조 열교환기(140)를 거쳐 압축기(120)의 인젝션 포트(123)와 연결된다.
인젝션 배관(103)에는 인젝션 배관(103)을 흐르는 냉매의 유량을 제어하는 인젝션 밸브(153)가 설치될 수 있고, 인젝션 밸브(153)는 유량 제어가 가능한 전동 밸브로 구현될 수 있다. 예를 들어, 인젝션 밸브(153)는 전자식 팽창 밸브(Electronic Expansion Valve)로 구현될 수 있다.
보조 열교환기(140)는 냉매 사이의 열교환을 가능하게 하는 것으로서, 냉방 모드로 운전 시에는 고압 냉매의 과냉각도를 확보할 수 있고, 인젝션 모드로 운전 시에는 압축기(120)의 인젝션 포트(123)로 유입되는 냉매의 건도를 조정할 수 있다. 예를 들어, 보조 열교환기(140)는 이중관식 열교환기 또는 판상 열교환기로 구현될 수 있다.
이하, 도 4를 참조하여 공기 조화기(1)의 제어 관련 내용을 설명한다.
공기 조화기(1)는 실외기(100), 실내기(200) 및 제어부를 포함한다. 제어부는 후술하는 실외기 제어부(170) 및 실내기 제어부(270)를 포함할 수 있다.
도 4를 참조하면, 공기 조화기(1)의 실외기(100)는 압축기(120), 밸브 유닛(150) 및 팬 유닛(180)을 제어하는 실외기 제어부(170), 냉매 또는 주변 공기의 온도와 압력을 측정하는 센서부(160) 및 실내기(200)와 통신하는 실외기 통신부(190)를 포함한다.
밸브 유닛(150)은 전술한 유로 전환 밸브(151), 메인 밸브(152) 및 인젝션 밸브(153)를 포함할 수 있고, 팬 유닛(180)은 실외 송풍팬(181)을 포함할 수 있다.
센서부(160)는 온도 센서(161), 압력 센서(162) 및 회전수 센서(163)를 포함할 수 있다. 센서부(160)는 후술하는 온도, 압력 및 회전수를 미리 정해진 주기에 따라 측정할 수도 있고, 실시간으로 측정할 수도 있으며, 특정 이벤트의 발생 시에 측정할 수도 있다. 또한, 미리 정해진 측정 주기는 변경될 수도 있다.
온도 센서(161)는 토출 온도 센서(161a)와 흡입 온도 센서(161b)를 포함할 수 있고, 압력 센서(162)는 토출 압력 센서(162a)와 흡입 압력 센서(162b)를 포함할 수 있다.
토출 온도 센서(161a)는 압축기(120)의 토출 포트(122) 측에 설치되어 압축기(120)로부터 토출되는 냉매의 온도를 측정할 수 있고, 흡입 온도 센서(161b)는 압축기(120)의 흡입 포트(121) 측에 설치되어 압축기(120)에 흡입되는 냉매의 온도를 측정할 수 있다.
또한, 온도 센서(161)가 인젝션 밸브(153)와 보조 열교환기(140) 사이 또는 보조 열교환기(140)와 인젝션 포트(123) 사이에 마련되어 압축기(120)에 인젝션되는 냉매, 즉 압축기(120)의 인젝션 포트(120)에 유입되는 냉매의 온도를 측정하는 센서를 더 포함하는 것도 가능하다. 후술하는 바와 같이, 인젝션되는 냉매의 온도로부터 인젝션되는 냉매의 압력을 추정할 수 있다.
토출 압력 센서(162a)는 압축기(120)의 토출 포트(122) 측에 설치되어 압축기(120)로부터 토출되는 냉매의 압력을 측정할 수 있고, 흡입 압력 센서(162b)는 압축기(120)의 흡입 포트(121) 측에 설치되어 압축기(120)에 흡입되는 냉매의 압력을 측정할 수 있다.
또한, 온도 센서(161)는 실외 온도를 측정하는 실외 온도 센서 및 실내 온도를 측정하는 실내 온도 센서를 더 포함할 수 있다.
회전수 센서(163)는 압축기(120)의 압축실에 연결된 모터의 회전수를 측정할 수 있다.
실외기 제어부(170)는 실외기(100)의 전반적인 동작을 제어하는 프로그램이 저장된 적어도 하나의 메모리 및 저장된 프로그램을 실행하는 적어도 하나의 프로세서를 포함할 수 있다.
실외기 제어부(170)는 센서부(160)로부터 전달되는 정보 또는 실외기 통신부(190)로부터 전달되는 명령에 기초하여 압축기(120), 밸브 유닛(150) 및 팬 유닛(180)을 제어할 수 있다.
실내기(200)는 팬 유닛(280), 디스플레이(241), 입력부(242), 온도 센서(261), 실내기 통신부(290) 및 실내기 제어부(270)를 포함한다.
팬 유닛(280)은 전술한 바와 같이 실내 열교환기(230)와 인접하게 설치되는 실내 송풍팬(281)을 포함할 수 있다.
디스플레이(241)는 LCD, LED, OLED 등의 디스플레이 장치로 구현되어 공기 조화기(1)에 관한 정보를 표시할 수 있다. 예를 들어, 디스플레이(241)는 공기 조화기(1)의 현재 상태에 관한 정보(현재 운전 모드, 설정된 온도 또는 습도 등) 또는 환경 정보(현재 실내 온도 또는 실내 습도)를 표시할 수도 있고, 사용자의 입력을 가이드하기 위한 화면을 표시할 수도 있다.
예를 들어, 사용자의 입력을 가이드하기 위한 화면은, 공기 조화기(1)의 운전 모드를 난방 모드 및 냉방 모드 중 하나로 선택 받기 위한 화면, 공기 조화기(1)의 목표 온도나 습도를 선택 받기 위한 화면 등을 포함할 수 있다.
입력부(242)는 실내기(200)의 본체에 마련된 버튼, 터치 패드 등으로 구현될 수도 있고, 실내기(200)의 본체와 이격된 리모트 컨트롤러를 더 포함할 수도 있다.
입력부(242)는 공기 조화기(1)의 전원을 온/오프하기 위한 전원 버튼, 운전 모드를 선택 받기 위한 운전 선택 버튼, 기류의 방향을 선택 받기 위한 풍향 버튼, 기류의 세기를 선택 받기 위한 풍량 버튼, 온도 설정을 위한 온도 버튼 등을 포함할 수 있다.
온도 센서(261)는 실내 공기의 온도 또는 실내 열교환기(230)의 온도를 측정할 수 있다.
실내기 통신부(290)는 실외기 통신부(190)와 통신하여 서로 필요한 정보를 주고 받을 수 있다.
실내기 제어부(270)는 실내기(200)의 전반적인 동작을 제어하는 프로그램이 저장된 적어도 하나의 메모리 및 저장된 프로그램을 실행하는 적어도 하나의 프로세서를 포함할 수 있다.
실내기 제어부(270)는 입력부(242)를 통해 입력된 사용자의 명령, 온도 센서(261)가 측정한 온도 또는 실내기 통신부(290)가 실외기 통신부(190)로부터 수신한 정보에 기초하여 팬 유닛(280), 디스플레이(241) 또는 실내기 통신부(290)를 제어할 수 있다.
도 5는 일 실시예에 따른 공기 조화기가 냉방 모드로 동작하는 경우에 냉매의 흐름을 나타낸 도면이고, 도 6은 일 실시예에 따른 공기 조화기가 난방 모드로 동작하는 경우에 냉매의 흐름을 나타낸 도면이다. 도 5 및 도 6에 각각 표시된 화살표는 냉매의 흐름을 나타낸다.
사용자가 입력부(242)를 통해 냉방 모드를 선택한 경우, 실내기 제어기(270)와 실외기 제어기(170)는 실내기(200)와 실외기(100)를 각각 냉방 모드로 동작시킬 수 있다.
냉방 모드로 동작 시에, 실외기 제어부(170)는 유로 전환 밸브(151)를 제어하여 제1포트(151a)와 제3포트(151c)가 연결되고, 제2포트(151b)와 제4포트(151d)가 연결되는 냉매 유로를 형성할 수 있다.
도 5를 참조하면, 압축기(120)의 토출 포트(122)로부터 토출되는 고온고압의 기상 냉매는 유로 전환 밸브(151)의 제1포트(151a)로 유입되고(①), 제3포트(151c)를 통해 배출되어(②) 실외 열교환기(130)로 유입된다.
실외 열교환기(130)는 냉매와 실외 공기 사이의 열교환을 통해 고온고압의 기상 냉매를 응축 온도 이하의 고압의 액상 냉매로 응축시키고, 실외 열교환기(130)에서 배출되는 고압의 액상 냉매는 메인 밸브(152)를 통과하면서 고온 고압의 액상 냉매로 변환된 후, 실내기 밸브(154)를 통과하면서 팽창되어 저온저압의 액상 냉매가 된다.
저온저압의 액상 냉매는 실내 열교환기(230)로 유입되고, 실내 열교환기(230)는 유입된 냉매와 실내 공기 사이의 열교환을 통해 액상 냉매를 기상 냉매로 증발시킨다.
실내 열교환기(230)에서 배출되는 기상 냉매는 유로 전환 밸브(151)의 제2포트(151b)로 유입되고(③), 유입된 기상 냉매는 제4포트(151d)를 통해 어큐뮬레이터(110)의 입구(112)로 유입된다(④).
어큐뮬레이터(110)는 유입된 냉매에 포함된 액상을 걸러주고, 배출구(111)를 통해 저온저압의 기상 냉매를 오일과 함께 배출하여 압축기(120)에 공급한다.
압축기(120)에 공급된 냉매는 압축기에서 고온고압으로 압축되어 토출되고, 토출된 냉매가 전술한 과정을 거쳐 다시 압축기(120)로 공급되는 순환 사이클을 통해 공기 조화기(1)가 냉방 모드에서 동작하게 된다.
사용자가 입력부(242)를 통해 난방 모드를 선택한 경우에는, 실내기 제어기(270)와 실외기 제어기(170)는 실내기(200)와 실외기(100)를 각각 난방 모드로 동작시킬 수 있다.
난방 모드로 동작 시에, 실외기 제어부(170)는 유로 전환 밸브(151)를 제어하여 제1포트(151a)와 제2포트(151b)가 연결되고, 제3포트(151c)와 제4포트(151d)가 연결되는 냉매 유로를 형성할 수 있다.
도 6을 참조하면, 압축기(120)의 토출 포트(122)로부터 토출되는 고온고압의 기상 냉매는 유로 전환 밸브(151)의 제1포트(151a)로 유입되고(①) 제2포트(151b)로 배출되어(②) 실내기(200)로 유입된다.
실내 열교환기(230)는 냉매와 실내 공기 사이의 열교환을 통해 고온고압의 기상 냉매를 응축 온도 이하의 고압의 액상 냉매로 응축시키며, 실내기 밸브(154)를 통과한 응축 온도 이하의 고압의 액상 냉매는 보조 열교환기(140)로 이동한다.
난방 모드는 정상 모드와 인젝션 모드로 구분될 수 있다. 예를 들어, 외기 온도가 미리 설정된 기준 온도 이하인 경우에는 인젝션 밸브(153)를 개방하여 인젝션 모드로 동작하고, 기준 온도를 초과하는 경우에는 정상 모드로 동작할 수 있다. 인젝션 모드는 기상 인젝션 모드와 이상 인젝션 모드를 포함할 수 있다.
정상 모드로 동작할 때에는 실외기 제어부(170)가 인젝션 밸브(153)를 폐쇄한다. 인젝션 밸브(153)가 폐쇄되면, 실내 열교환기(230)를 통과한 냉매는 전부 메인 배관(101)을 통해 메인 팽창 밸브(152)를 지나게 된다. 메인 팽창 밸브(152)에서 감압된 저온저압의 액상 냉매는 실외 열교환기(130)에서 기상 냉매로 상 변환되어 유로 전환 밸브(151)로 유입된다.
공기 조화기(1)가 인젝션 모드로 동작할 때에는 실외기 제어부(170)가 인젝션 밸브(153)를 개방한다. 인젝션 밸브(153)가 개방되면, 실내 열교환기(230)를 통과한 냉매 중 일부는 인젝션 밸브(153)를 통과하여 인젝션 배관(103)을 흐르게 되고, 나머지 일부는 메인 배관(101)을 흐른다.
인젝션 배관(103)을 흐르는 액상 냉매를 인젝션 밸브(153)에서 팽창되어 압력 및 온도가 낮아지고, 보조 열교환기(140)를 통과하면서 메인 배관(101)을 흐르는 냉매와 열교환을 한다. 보조 열교환기(140)에서는 액상 냉매의 일부가 기상 냉매로 변환될 수 있다. 따라서, 보조 열교환기(140)에서 열 교환된 냉매는 액상과 기상이 혼합된 이상 상태로 존재할 수 있다.
액상과 기상이 혼합된 상태의 냉매는 인젝션 배관(103)을 통해 압축기(120)의 인젝션 포트(123)로 주입된다.
메인 배관(101)을 통해 보조 열교환기(140)를 통과한 냉매는 메인 팽창 밸브(152)에서 감압되어 저온저압의 이상 냉매가 되고, 실외 열교환기(130)는 실외 공기와의 열교환을 통해 저온저압의 이상 냉매를 기상 냉매로 증발시킨다.
실외 열교환기(130)에서 배출되는 기상 냉매는 유로 전환 밸브(151)의 제3포트(151c)로 유입되고(③), 유입된 기상 냉매는 제4포트(151d)를 통해 어큐뮬레이터(110)의 입구(112)로 유입된다(④).
어큐뮬레이터(110)는 유입된 냉매에 포함된 액상을 걸러주고, 배출구(111)를 통해 저온저압의 기상 냉매를 오일과 함께 배출하여 압축기(120)에 공급한다.
압축기(120)에 공급된 냉매는 압축기에서 고온고압으로 압축되어 토출되고, 토출된 냉매가 전술한 과정을 거쳐 다시 압축기(120)로 공급되는 순환 사이클을 통해 공기 조화기(1)가 난방 모드에서 동작하게 된다.
전술한 바와 같이, 실외기 제어부(170)는 센서부(160)로부터 전달되는 실외 온도에 기초하여 인젝션 모드로 진입할지 여부를 결정할 수 있다. 또한, 인젝션 모드 진입이 결정된 이후에는 토출 과열도(Discharge Super Heat: DSH) 제어를 통해 압축기(120)에 주입되는 냉매의 건도와 주입량을 최적의 상태로 조절함으로써 액압축에 의한 압축기(120)의 파손을 방지하고, 최적의 인젝션 모드를 수행할 수 있다. 이하, 실외기 제어부(170)의 토출 과열도 제어를 통해 최적의 인젝션 모드를 수행하는 동작에 대해 구체적으로 설명한다.
도 7 은 엔탈피(Enthalpy)와 압력과의 관계를 나타낸 PH선도(냉매 선도)를 도시한 그래프이다.
PH 선도란, 냉매와 관련된 여러 가지 열역학적 성질을 표시한 그래프를 의미하며, PH 선도에는 등압선, 등엔탈피선, 포화액선, 포화증기선, 등온선, 등엔트로피선, 등건조선 등에 대한 정보를 포함하고 있다.
도 7을 참조하여 PH 선도를 설명하면, 냉동 사이클에 있어서 냉매는 압력의 변화에 따라 총 3가지의 상태를 가질 수 있다. 도 7에서 좌측 X 영역은 냉매가 과냉각 상태로 액체로 존재하는 영역을 의미하며, 도 7에서 가운데 Y 영역은 냉매가 액체에서 기체로 상변화하는 영역 즉, 냉매가 액체와 기체로 혼합하여 존재하는 영역을 의미한다. 그리고 도 7에서 우측 Z 영역은 액체 상태였던 냉매가 모두 기화하여 전부 기체로 존재하는 영역을 의미한다.
그리고 도 7의 a와 b를 이은 선 ①은 액체 상태의 냉매와 액체와 기체로 혼합되어 있는 상태의 냉매를 구분하는 선을 의미한다. 선 ①은 포화액선으로 불리며, 선 ①은 액체 상태와 액체 및 기체가 혼합되어 있는 상태를 구분하는 선이므로, 액체에서 기체로 증발을 시작하고자 하는 냉매는 선 ① 위에 존재한다.
따라서, 포화액선 좌측 영역에는 포화액보다 온도가 낮은 과냉각된 액체 상태의 냉매가 존재하며, 포화액션선 우측 영역은 액체 냉매 및 액체 상태에서 증발된 기체 냉매가 혼합되어 존재한다. 냉매가 액체 상태와 기체 상태로 혼합되어 있는 상태를 습포화증기 상태라 부른다.
도 7의 b와 c를 이은 선 ②는 냉매가 액체와 기체로 혼합되어 있는 상태와 기체 상태로만 존재하는 상태를 구분하는 선을 의미한다. 선 ②는 포화증기선으로 불리며, 선 ②는 기체와 기체 및 액체가 혼합되어 있는 상태를 구분하므로, 액체에서 기체로 증발을 시작하고자 하는 냉매는 선 ②위에 존재한다.
선 ②위에 존재하는 냉매는 액체로부터 증발이 모두 완료된 상태의 냉매를 의미하므로, 액체가 존재하지 않는 건포화증기 상태이며, 냉매의 온도는 증발하고자 하는 액체와 마찬가지로 포화 온도이다.
포화증기선의 좌측 영역에는 액체 상태의 냉매와 기체 상태가 냉매가 혼합하여 존재하며, 포화증기선 우측 영역에는 기체만 존재하며, 이 때의 기체는 포화 온도보다 높은 과열 증기의 상태를 나타낸다. 즉, 포화증기선의 우측 영역에 존재하는 기체 상태의 냉매는 같은 압력하에서 증발하는 액체보다 온도가 높다.
또한, 포화액선과 포화증기선은 만나는 점(b)을 임계점이라 부르며, 임계점에서의 압력과 온도를 임계 압력 및 임계 온도라 부른다. 임계온도는 냉매가 응축될 수 있는 가장 높은 온도를 의미한다. 따라서, 임계온도 이상에서는 냉매가 더 이상 응축되지 않는다.
도 8은 PH 선도에 있어서 등건도선을 표시한 도면이다.
등건도선은 PH 선도에서 냉매가 Y 영역 즉, 액체와 기체로 혼합되어 존재할 때, 액체와 기체의 비율이 동일한 위치를 이은 선을 의미하며, 도 8에서 일 예로 9개의 등건조선을 도시하였다.
도 8에서 X는 기체 상태의 비율을 의미한다. 따라서 X=0.1인 등건도선의 냉매는 기체 상태의 냉매가 10%, 액체 상태의 냉매가 90%가 존재하며, X=0.7인 등건도선의 냉매는 기체 상태의 냉매가 70%, 액체 상태의 냉매가 30% 존재한다. 당연히 포화액선 상에서의 냉매는 X가 0이 되므로 액체 상태의 냉매만 존재하며, 포화증기선 상에서의 냉매는 X가 1이되므로 기체 상태의 냉매만이 존재한다.
도 9는 공기 조화기가 기체 상태의 냉매를 주입하는 기상 인젝션 모드로 동작할 때의 냉매의 순환 과정의 예시를 PH 선도에 도시한 그래프이며, 도 10은 액상 및 기상 냉매가 혼합된 이상 냉매를 주입하는 이상 인젝션 모드로 동작할 때의 냉매의 순환 과정의 예시를 PH 선도에 도시한 그래프이다.
도 9와 도 10을 참조하여 설명하면, 저온저압의 기체 상태인 냉매(①)는 압축기(120)에 유입되면서 고온고압의 기체로 압축된다(②→③→④). 압축 과정에서 인젝션 포트(123)에 기체 또는 액체와 기체의 이상 상태인 냉매(⑦)가 추가로 주입될 수 있다.
그리고 압축기(120)를 통과한 냉매는 응축기로 동작하는 실내 열교환기(230)에 유입되면서 응축 온도 이하의 고압의 액상 냉매로 변환되며(⑤), 액상으로 변환된 냉매는 증발기로 동작하는 실외 열교환기(130)로 향하는 제1경로와 인젝션 밸브(153)로 향하는 제2경로로 나뉘어 이동할 수 있다.
메인 배관(101)을 따라 보조 열교환기(140)를 통과한 고압의 액상 냉매(⑩)는 메인 밸브(152)를 통과하면서 저온저압의 액상 및 기상이 혼합되어 있는 형태로 변환된다(⑪).
메인 밸브(152)를 통과한 냉매는 실외 열교환기(130)에 유입되며, 실외 열교환기(130)를 통과한 냉매는 고온저압의 기상 냉매로 변환된다. (①)
반면, 인젝션 배관(103)을 따라 인젝션 밸브(153)로 유입되는 냉매는 인젝션 밸브(153) 통과하면서 감압되고 냉매의 상태가 액상과 기상의 혼합 형태로 변환될 수 있다(⑥).
인젝션 밸브(153)를 통과한 냉매는 보조 열교환기(140)에서 열교환이 이루어지면서 엔탈피가 증가한다. 기상 인젝션 모드에서는 도 9에 도시된 바와 같이, 기상 냉매만을 압축기(120)의 인젝션 포트(123)에 주입하고(⑦), 이상 인젝션 모드에서는 도 10에 도시된 바와 같이, 액상과 기상이 혼합된 냉매를 압축기(120)의 인젝션 포트(123)에 주입할 수 있다(⑦).
도 9 및 도 10에 도시된 바와 같이, 토출 과열도(DSH)는 냉매의 압축기(120) 토출 온도(Td)와, 냉매의 압축기(120) 토출 압력(Pd)에서의 포화 온도(Ts) 사이의 차이를 의미한다. 즉, 토출 과열도(DSH)는 아래 [수학식 1]에 의해 표현될 수 있다.
[수학식 1]
DSH = Td - Tsat(at Pd)
압축기(120)에서 토출되는 냉매의 온도(Td)는 토출 온도 센서(161a)에 의해 측정될 수 있고, 압축기(120)에서 토출되는 냉매의 압력(Pd)은 토출 압력 센서(162a)에 의해 측정될 수 있다. 실외기 제어부(170)는 냉매의 토출 압력(Pd)을 이용하여 해당 토출 압력(Pd)에서의 포화 온도(Ts)를 획득할 수 있다.
실외기 제어부(170)는 공기 조화기(1)를 인젝션 모드에서 동작시킬 때, 현재 토출 과열도 즉, 냉매의 토출 온도와 포화 온도를 이용하여 산출된 토출 과열도를 목표 토출 과열도에 기초하여 제어할 수 있다. 이 때, 목표 토출 과열도를 액압축으로 인한 압축기(120)의 파손을 방지하면서 난방 효율을 향상시키는 최적의 토출 과열도로 설정할 수 있다.
압축기(120)의 파손을 방지하면서 난방 효율은 극대화시킬 수 있는 최적의 토출 과열도 값은 압축 계수(Pr)와 압축기 주파수(f)와 같은 운전 조건에 의해 결정될 수 있다. 압축 계수(Pr)는 압축기(120)에 유입되거나 압축기(120)에서 토출되는 냉매의 압력 사이의 상관 관계를 나타내는 값이다. 예를 들어, 압축기(120)로 흡입되는 냉매의 압력(Ps)과 압축기(120)에서 토출되는 냉매의 압력(Pd) 사이의 차이나 비율을 의미할 수도 있고, 압축기(120)에 유입되는 인젝션 냉매 압력(Pi)과 압축기(120)에서 토출되는 냉매의 압력(Pd) 사이의 차이나 비율을 의미할 수도 있으며, 압축기(120)에 유입되는 인젝션 냉매 압력(Pi)과 압축기(120)에 흡입되는 냉매의 압력(Ps) 사이의 차이나 비율을 의미할 수도 있다. 압축기 주파수(f)는 압축기(120)의 압축실에 연결된 모터의 초당 회전수를 의미한다.
따라서, 실외기 제어부(170)는 압축 계수(Pr) 및 압축기 주파수(f)와 최적 토출 과열도(DSH_opt) 사이의 상관 관계를 메모리에 미리 저장하고, 주기적으로 또는 실시간으로 측정되는 압축 계수(Pr) 및 압축기 주파수(f)를 이용하여 최적 토출 과열도(DSH_opt)를 산출할 수 있다.
도 11은 압축 계수와 압축기 주파수에 따른 최적 토출 과열도의 예시를 나타낸 그래프이다.
도 11은 다양한 종류의 히트펌프 제품을 다양한 운전조건에서 실험하여 획득한 압축기 주파수 및 압축 계수와 최적 토출 과열도 사이의 상관 관계를 나타낸 그래프이다. 해당 실험을 통해 액압축으로 인한 압축기(120)의 파손을 방지하면서 난방 효율을 극대화시키는 최적 토출 과열도(DSH_opt)에 큰 영향을 미치는 핵심 인자가 압축기 주파수와 압축 계수라는 것을 확인할 수 있다.
압축 계수(Pr) 및 압축기 주파수(f)와 최적 토출 과열도(DSH_opt) 사이의 상관 관계를 아래 [수학식 2]와 같이 표현할 수 있다.
[수학식 2]
DSH_opt = k1[e(pr/k2) + k3*f +k4]
k1, k2, k3 및 k4는 상수에 해당한다. 일 예로, k1=1, k2=2.418, k3=0.0262, k4= 12.786의 값을 가질 수 있다.
위의 예시와 같은 상관 관계는 실험, 시뮬레이션, 통계 등의 방법에 의해 획득되어 미리 저장될 수 있고, 상관 관계에 의해 산출되는 최적 토출 과열도가 실외기 제어부(170)의 제어 목표가 되는 목표 토출 과열도로 설정된다. 즉, 실외기 제어부(170)는 미리 저장된 상관 관계를 이용하여 목표 토출 과열도를 산출할 수 있다.
공기 조화기(1)의 운전 모드가 인젝션 모드로 진입하면, 실외기 제어부(170)는 목표 토출 과열도를 설정하고, 공기 조화기(1)의 토출 과열도가 목표 토출 과열도에 도달하도록 제어할 수 있다.
실외기 제어부(170)는 토출 압력 센서(162a)가 측정한 냉매의 토출 압력(Pd), 흡입 압력 센서(162b)가 측정한 냉매의 흡입 압력(Ps) 또는 인젝션 포트(123)로 유입되는 냉매의 압력, 즉 인젝션 압력을 이용하여 압축 계수(Pr)를 산출할 수 있다. 예를 들어, 인젝션 압력은 인젝션 밸브(153)와 보조 열교환기(140) 사이에 마련된 온도 센서가 측정한 온도를 이용하여 추정할 수 있다.
또한, 실외기 제어부(170)는 회전수 센서(163)가 측정한 모터의 회전수를 이용하여 압축기 주파수(f)를 획득할 수 있다.
실외기 제어부(170)는 저장된 상관 관계에 측정된 압축 계수(Pr) 및 압축기 주파수를 대입하여 목표 토출 과열도를 산출한다.
기존에는 목표 토출 과열도 값이 고정으로 설정되어 운전 조건에 따른 변화를 반영한 최적 제어를 수행할 수 없었다. 당해 실시예는 전술한 바와 같이, 최적 토출 과열도를 결정하는 핵심 인자인 압축 계수와 압축기 주파수를 이용하는 상관 관계에 따라 목표 DSH를 설정함으로써, 변화하는 운전 조건에 맞는 최적 제어를 수행할 수 있다.
전술한 바와 같이, 실외기 제어부(170)는 현재 토출 과열도가 목표 토출 과열도에 도달하도록 제어한다. 예를 들어, 실외기 제어부(170)는 인젝션 밸브(153)의 개도를 조절하여 현재 토출 과열도가 목표 토출 과열도에 도달하도록 제어할 수 있다. 또한, 메인 벨브(152)를 함께 제어하는 것도 가능하다.
한편, 실외기 제어부(170)는 전술한 토출 과열도 제어를 주기적으로 수행할 수 있다. 예를 들어, 현재 토출 과열도를 목표 토출 과열도에 도달시키기 위해 인젝션 밸브(153)의 개도를 조절하고, 미리 설정된 주기가 경과하면 다시 현재 토출 과열도와 목표 토출 과열도를 산출하여 그 편차에 따라 인젝션 밸브(153)의 개도를 조절할 수 있다.
이하, 일 실시예에 따른 공기 조화기의 제어 방법을 설명한다. 일 실시예에 따른 공기 조화기의 제어 방법을 실시함에 있어서, 전술한 실시예에 따른 공기 조화기(1)가 사용될 수 있다. 따라서, 앞서 도 1 내지 도 11을 참조한 설명은 특별한 언급이 없어도 일 실시예에 따른 공기 조화기의 제어 방법에도 동일하게 적용될 수 있다.
도 12는 일 실시예에 따른 공기 조화기의 제어 방법에 관한 순서도이다. 당해 순서도에 도시된 공기 조화기의 제어방법을 구성하는 각 단계는 실외기 제어부(170)에 의해 수행될 수 있다.
도 12를 참조하면, 인젝션 모드의 진입 여부를 판단한다(410). 예를 들어, 실외기 제어부(170)는 센서부(160)로부터 전달되는 외기 온도에 기초하여 인젝션 모드로 진입할지 여부를 결정할 수 있다. 이 경우, 실외기 제어부(170)는 외기 온도가 미리 설정된 기준 온도 이하인 경우에 인젝션 모드의 진입을 결정할 수 있다.
인젝션 모드로 진입하면(410의 예), 목표 토출 과열도를 설정하고(411), 현재 토출 과열도를 산출한다(412). 목표 토출 과열도 설정과 현재 토출 과열도 산출의 순서는 바뀔 수 있으며 동시에 설정 및 산출되는 것도 가능하다.
현재 토출 과열도가 목표 토출 과열도에 도달하도록 인젝션 밸브를 제어한다(413). 예를 들어, 실외기 제어부(170)는 현재 토출 과열도가 목표 토출 과열도에 도달하도록 인젝션 밸브(153)의 개도를 제어할 수 있다. 또한, 메인 벨브(152)를 함께 제어하는 것도 가능하다.
도 13은 일 실시예에 따른 공기 조화기의 제어방법에 있어서, 토출 과열도를 산출하는 과정이 구체화된 순서도이다.
도 13을 참조하면, 인젝션 모드의 진입 여부를 판단하고(420), 인젝션 모드로 진입하면(420의 예), 압축기(120)에서 토출되는 냉매의 압력(Pd)을 측정하고(421), 압축기(120)에서 흡입되는 냉매의 압력(Ps)을 측정하고(422), 압축기 주파수(f)를 측정한다(423). 압축기(120)에서 토출되는 냉매의 압력(Pd), 압축기(120)에서 흡입되는 냉매의 압력(Ps) 및 압축기 주파수(f)는 각각 토출 압력 센서(162a), 흡입 압력 센서(162b) 및 회전수 센서(163)에 의해 측정될 수 있고, 이들 센서의 측정은 주기적으로 또는 실시간으로 이루어질 수 있다. 또한, 도면 부호 422, 423, 424는 각각의 측정을 구분하기 위한 것이지 측정 순서를 한정하기 위한 것이 아니다.
압축 계수 및 압축기 주파수에 기초하여 목표 토출 과열도를 산출한다(424). 목표 토출 과열도의 산출은 실외기 제어부(170)에 의해 이루어질 수 있고, 목표 토출 과열도는 압축 계수, 압축기 주파수 및 목표 토출 과열도 사이의 상관 관계에 압축 계수 및 압축기 주파수를 대입하여 산출할 수 있다. 압축 계수는 압축기(120)에 유입되거나 압축기(120)에서 토출되는 냉매의 압력 사이의 상관 관계를 나타내는 값이다. 압축 계수(Pr)에 관한 설명은 앞서 공기 조화기(1)의 실시예에서 설명한 바와 같다.
압축기(120)에서 토출되는 냉매의 압력(Pd)에 기초하여 냉매의 포화 온도(Tsat)를 획득하고(425), 압축기(120)에서 토출되는 냉매의 온도(Td)를 측정한다(426). 압축기(120)에서 토출되는 냉매의 온도(Td)는 토출 온도 센서(161a)에 의해 측정될 수 있다. 압축기(120)에서 토출되는 냉매의 온도(Td) 역시 주기적으로 또는 실시간으로 이루어질 수 있다.
냉매의 포화 온도(Tsat)와 토출 온도(Td)에 기초하여 현재 토출 과열도(DSH)를 산출한다(427). 현재 토출 과열도(DSH)는 전술한 [수학식 1]에 따라 산출될 수 있다.
현재 토출 과열도가 목표 토출 과열도에 도달하도록 인젝션 밸브를 제어한다(428).
지금까지 상술한 공기 조화기 및 그 제어 방법에 의하면, 운전 조건(압축 계수, 압축기 주파수 등)을 반영하여 공기 조화기를 최적의 상태로 제어하므로 액압축으로 인한 압축기의 파손을 방지함과 동시에 난방 성능 및 히트 펌프의 효율(COP: Coefficient of Performance)이 향상될 수 있다.
또한, 제품에 상관없이 압축 계수, 압축기 주파수 및 토출 과열도 사이의 상관 관계를 사용할 수 있기 때문에 제품마다 동일한 신뢰성 시험을 할 필요가 없어 시간과 비용을 절약할 수 있다.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위내에서 변경 또는 수정이 가능하다. 전술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.
1: 공기 조화기
100: 실외기
200: 실내기
110: 어큐뮬레이터
120: 압축기
130: 실외 열교환기
140: 보조 열교환기
150: 밸브 유닛
160: 센서부
170: 실외기 제어부
230: 실내 열교환기
270: 실내기 제어부

Claims (18)

  1. 냉매를 압축시키는 압축기;
    난방 모드에서 기상 냉매를 액상 냉매로 변환하는 실내 열교환기;
    상기 난방 모드에서 액상 냉매를 기상 냉매로 변환하는 실외 열교환기;
    상기 실내 열교환기와 상기 실외 열교환기를 연결하는 메인 배관;
    상기 메인 배관으로부터 분기되어 상기 압축기의 인젝션 포트에 연결되는 인젝션 배관;
    상기 인젝션 배관에 설치되어 상기 인젝션 배관으로 흐르는 냉매의 유량을 제어하는 인젝션 밸브; 및
    운전조건에 따라 나타나는 압축 계수, 압축기 주파수 및 토출 과열도(DSH) 사이의 상관관계에 기초하여 목표 토출 과열도를 산출하고, 상기 목표 토출 과열도에 기초하여 현재 토출 과열도를 제어하는 제어부;를 포함하는 공기 조화기.
  2. 제1항에 있어서,
    상기 제어부는,
    인젝션 모드에서 상기 현재 토출 과열도가 상기 목표 토출 과열도에 도달하도록 상기 인젝션 밸브를 제어하는 공기 조화기.
  3. 제1항에 있어서,
    상기 압축기로부터 토출되는 냉매의 온도, 상기 압축기에 흡입되는 냉매의 온도 및 실외 온도를 측정하는 센서부;를 더 포함하는 공기 조화기.
  4. 제3항에 있어서,
    상기 센서부는,
    상기 압축기로부터 토출되는 냉매의 압력, 상기 압축기에 인젝션되는 냉매의 압력 및 상기 압축기에 흡입되는 냉매의 압력 중 적어도 하나를 더 측정하는 공기 조화기.
  5. 제4항에 있어서,
    상기 센서부는,
    상기 압축기 주파수를 더 측정하는 공기 조화기.
  6. 제5항에 있어서,
    상기 제어부는,
    상기 압축기로부터 토출되거나 상기 압축기에 유입되는 냉매의 압력들 사이의 관계에 의해 결정되는 상기 압축 계수 및 상기 압축기 주파수를 상기 상관관계에 대입하여 상기 목표 토출 과열도를 산출하는 공기 조화기.
  7. 제5항에 있어서,
    상기 제어부는,
    상기 압축기로부터 토출되는 냉매의 압력 및 상기 압축기로부터 토출되는 냉매의 온도에 기초하여 상기 현재 토출 과열도를 산출하는 공기 조화기.
  8. 제1항에 있어서,
    상기 제어부는,
    인젝션 모드에서 상기 인젝션 밸브를 제어하여 상기 압축기의 인젝션 포트에 기상 및 액상을 포함하는 이상(two-phase) 냉매를 주입시키는 공기 조화기.
  9. 제3항에 있어서,
    상기 제어부는,
    상기 실외 온도가 미리 설정된 기준 온도 이하이면, 상기 인젝션 밸브를 개방하여 인젝션 모드로 진입하는 공기 조화기.
  10. 제1항에 있어서,
    상기 제어부는,
    미리 설정된 주기에 따라 상기 목표 토출 과열도를 산출하고, 상기 목표 토출 과열도에 기초하여 현재 토출 과열도를 제어하는 공기 조화기.
  11. 제1항에 있어서,
    상기 인젝션 밸브 및 상기 압축기의 인젝션 포트 사이에 설치되고, 상기 인젝션 밸브를 통과한 냉매의 상태를 변화시키는 보조 열교환기;를 더 포함하는 공기 조화기.
  12. 냉매를 압축시키는 압축기, 상기 압축기의 인젝션 포트에 연결되는 인젝션 배관 및 상기 인젝션 배관으로 흐르는 냉매의 유량을 제어하는 인젝션 밸브를 포함하는 공기 조화기의 제어 방법에 있어서,
    실외 온도에 기초하여 인젝션 모드의 진입 여부를 판단하고;
    상기 인젝션 모드로 진입하면, 압축 계수, 압축기 주파수 및 토출 과열도(DSH) 사이의 상관관계에 기초하여 목표 토출 과열도를 산출하고;
    상기 목표 토출 과열도에 기초하여 현재 토출 과열도를 제어하는 것;을 포함하는 공기 조화기의 제어 방법.
  13. 제12항에 있어서,
    상기 현재 토출 과열도를 제어하는 것은,
    상기 현재 토출 과열도가 상기 목표 토출 과열도에 도달하도록 상기 인젝션 밸브를 제어하는 것;을 포함하는 공기 조화기의 제어 방법.
  14. 제12항에 있어서,
    상기 압축기로부터 토출되거나 상기 압축기에 유입되는 냉매의 압력 및 상기 압축기 주파수를 측정하는 것;을 더 포함하고,
    상기 목표 토출 과열도를 산출하는 것은,
    상기 압축기로부터 토출되거나 상기 압축기에 유입되는 냉매의 압력들 사이의 관계에 의해 결정되는 상기 압축 계수 및 상기 압축기 주파수를 상기 상관관계에 대입하여 상기 목표 토출 과열도를 산출하는 것;을 포함하는 공기 조화기의 제어 방법.
  15. 제14항에 있어서,
    상기 압축기로부터 토출되는 냉매의 압력 및 상기 압축기로부터 토출되는 냉매의 온도를 측정하는 것;을 더 포함하고,
    상기 현재 토출 과열도를 제어하는 것은,
    상기 현재 토출 과열도가 상기 목표 토출 과열도에 도달하도록 인젝션 밸브를 제어하는 것을 포함하는 공기 조화기의 제어 방법.
  16. 제15항에 있어서,
    상기 현재 토출 과열도를 제어하는 것은,
    상기 현재 토출 과열도가 상기 목표 토출 과열도에 도달하도록 인젝션 밸브의 개도를 제어하는 것을 포함하는 공기 조화기의 제어 방법.
  17. 제13항에 있어서,
    상기 인젝션 모드에 진입하면 상기 인젝션 밸브를 제어하여 상기 압축기의 인젝션 포트에 기상 및 액상을 포함하는 이상(two-phase) 냉매를 주입시키는 것;을 더 포함하는 공기 조화기의 제어 방법.
  18. 제12항에 있어서,
    상기 인젝션 모드의 진입 여부를 판단하는 것은,
    실외 온도가 미리 설정된 기준 온도 이하이면, 상기 인젝션 모드로 진입하는 것을 포함하는 공기 조화기의 제어 방법.
KR1020180009533A 2018-01-25 2018-01-25 공기 조화기 및 그 제어 방법 KR102067447B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020180009533A KR102067447B1 (ko) 2018-01-25 2018-01-25 공기 조화기 및 그 제어 방법
US16/964,777 US20210055026A1 (en) 2018-01-25 2019-01-25 Air conditioner and control method therefor
EP19744274.2A EP3730875B1 (en) 2018-01-25 2019-01-25 Air conditioner and control method therefor
PCT/KR2019/001129 WO2019147085A1 (ko) 2018-01-25 2019-01-25 공기 조화기 및 그 제어 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180009533A KR102067447B1 (ko) 2018-01-25 2018-01-25 공기 조화기 및 그 제어 방법

Publications (2)

Publication Number Publication Date
KR20190090616A true KR20190090616A (ko) 2019-08-02
KR102067447B1 KR102067447B1 (ko) 2020-01-20

Family

ID=67394692

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180009533A KR102067447B1 (ko) 2018-01-25 2018-01-25 공기 조화기 및 그 제어 방법

Country Status (4)

Country Link
US (1) US20210055026A1 (ko)
EP (1) EP3730875B1 (ko)
KR (1) KR102067447B1 (ko)
WO (1) WO2019147085A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112524777A (zh) * 2020-11-18 2021-03-19 青岛海尔空调器有限总公司 一种空调器的温度调节时间控制方法、装置及空调器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102654833B1 (ko) * 2019-08-14 2024-04-05 삼성전자주식회사 공기 조화기 및 그 제어 방법
CN110940123B (zh) * 2019-11-29 2021-06-04 广东海悟科技有限公司 补气口常开型变频压缩机补气增焓系统及其控制方法、计算机可读存储介质
EP3875874A1 (en) * 2020-03-05 2021-09-08 Thermo King Corporation Speed control strategies for a condenser fan in a refrigeration system
CN111380147B (zh) * 2020-03-30 2022-01-25 宁波奥克斯电气股份有限公司 变频空调过负荷控制方法、装置和变频空调器
CN114198827B (zh) * 2021-11-15 2024-02-23 青岛海尔空调电子有限公司 目标排气过热度检测方法、装置、存储介质和空调
JP2024078027A (ja) 2022-11-29 2024-06-10 パナソニックIpマネジメント株式会社 蒸気圧縮式冷凍サイクル装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121361A (ja) * 2003-10-17 2005-05-12 Lg Electronics Inc ヒートポンプシステムの過熱度制御装置及び方法。
JP2006242506A (ja) * 2005-03-04 2006-09-14 Chubu Electric Power Co Inc 蓄熱式空気調和装置
KR20140008677A (ko) * 2012-07-11 2014-01-22 엘지전자 주식회사 공기 조화기

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970731A (en) * 1997-11-21 1999-10-26 International Business Machines Corporation Modular refrigeration system
KR100505237B1 (ko) * 2002-12-18 2005-08-03 엘지전자 주식회사 공기조화기의 운전 제어방법
KR20060069714A (ko) * 2004-12-18 2006-06-22 엘지전자 주식회사 공기 조화기의 압축기 토출온도 상승 억제 방법
JP2007255864A (ja) * 2006-03-27 2007-10-04 Mitsubishi Electric Corp 二段圧縮式冷凍装置
KR101450545B1 (ko) * 2007-12-26 2014-10-15 엘지전자 주식회사 공기조화 시스템
KR102103358B1 (ko) * 2013-04-15 2020-04-22 엘지전자 주식회사 공기조화기 및 그 제어방법
JP6594698B2 (ja) * 2015-08-10 2019-10-23 三菱重工サーマルシステムズ株式会社 冷凍・空調装置
EP3690349B1 (en) * 2017-09-28 2023-12-13 Mitsubishi Electric Corporation Air conditioner
CN110100136A (zh) * 2017-11-27 2019-08-06 日立江森自控空调有限公司 空调以及电机控制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121361A (ja) * 2003-10-17 2005-05-12 Lg Electronics Inc ヒートポンプシステムの過熱度制御装置及び方法。
JP2006242506A (ja) * 2005-03-04 2006-09-14 Chubu Electric Power Co Inc 蓄熱式空気調和装置
KR20140008677A (ko) * 2012-07-11 2014-01-22 엘지전자 주식회사 공기 조화기

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112524777A (zh) * 2020-11-18 2021-03-19 青岛海尔空调器有限总公司 一种空调器的温度调节时间控制方法、装置及空调器

Also Published As

Publication number Publication date
EP3730875A4 (en) 2021-03-03
EP3730875B1 (en) 2021-09-15
EP3730875A1 (en) 2020-10-28
US20210055026A1 (en) 2021-02-25
WO2019147085A1 (ko) 2019-08-01
KR102067447B1 (ko) 2020-01-20

Similar Documents

Publication Publication Date Title
KR20190090616A (ko) 공기 조화기 및 그 제어 방법
CN109855281B (zh) 空调换热装置及空调器
KR100540808B1 (ko) 히트펌프 시스템의 과열도 제어 방법
KR101355689B1 (ko) 공기 조화 장치 및 그 어큐뮬레이터
KR20100063173A (ko) 공기조화기 및 그 제어방법
JP5046895B2 (ja) 空気調和装置およびその運転制御方法
WO2007110908A9 (ja) 冷凍空調装置
US8205464B2 (en) Refrigeration device
CN101476791B (zh) 空调系统
CN109073304B (zh) 制冷装置
KR101329752B1 (ko) 공기조화 시스템
KR102662870B1 (ko) 공기 조화기 및 그 제어 방법
KR102165354B1 (ko) 공기조화기 및 그 제어방법
KR101392316B1 (ko) 공기조화 시스템
WO2017094172A1 (ja) 空気調和装置
KR101321543B1 (ko) 공기조화 시스템
JP3661014B2 (ja) 冷凍装置
KR101450545B1 (ko) 공기조화 시스템
EP3726164B1 (en) Air conditioner and method for controlling air conditioner
KR20200058871A (ko) 공기조화기 및 그의 동작 방법
JP7397286B2 (ja) 冷凍サイクル装置
US20190293333A1 (en) Refrigeration cycle apparatus
KR102136416B1 (ko) 공기조화기 및 그 제어방법
KR101513305B1 (ko) 냉난방 겸용 인젝션 타입 공기조화기 및 그 공기조화기의 인젝션 모드 절환방법
JP2018173198A (ja) 冷凍装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant