KR20190085255A - Preparation method of Ti3AlC2 tape and the joining method of silicon carbide using the same - Google Patents

Preparation method of Ti3AlC2 tape and the joining method of silicon carbide using the same Download PDF

Info

Publication number
KR20190085255A
KR20190085255A KR1020180003154A KR20180003154A KR20190085255A KR 20190085255 A KR20190085255 A KR 20190085255A KR 1020180003154 A KR1020180003154 A KR 1020180003154A KR 20180003154 A KR20180003154 A KR 20180003154A KR 20190085255 A KR20190085255 A KR 20190085255A
Authority
KR
South Korea
Prior art keywords
alc
tape
bonding
sic
silicon carbide
Prior art date
Application number
KR1020180003154A
Other languages
Korean (ko)
Other versions
KR102079800B1 (en
Inventor
윤당혁
김채현
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020180003154A priority Critical patent/KR102079800B1/en
Publication of KR20190085255A publication Critical patent/KR20190085255A/en
Application granted granted Critical
Publication of KR102079800B1 publication Critical patent/KR102079800B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J101/00Adhesives based on cellulose, modified cellulose, or cellulose derivatives
    • C09J101/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/02Homopolymers or copolymers of unsaturated alcohols
    • C09J129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J2205/10
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

The present invention relates to a method of producing a Ti_3AlC_2 tape for a bonding material and a method of bonding silicon carbide using the Ti_3AlC_2 tape for the bonding material. When the Ti_3AlC_2 tape for a bonding material produced by the method according to the present invention is used, the method can realize bonding enabling the Ti_3AlC_2 tape for a bonding material to be used as a high temperature structural material or a nuclear reactor structural material by realizing bonding of silicon carbide monolith or silicon carbide fiber-reinforced silicon carbide composite (SiC_f/SiC) which can be used from room temperature to a high temperature of 1,500°C in an atmosphere where oxygen does not exist. Further, bonding uniformity can be improved by using the Ti_3AlC_2 tape for a bonding material produced by the method according to the present invention in bonding of a complicated shape. Further, characteristics′ deterioration due to the presence of a bonding material, an alien substance, is prevented and characteristics of a silicon carbide (SiC) base material can be obtained by providing a bonding method for maintaining the Ti_3AlC_2 tape for a bonding material at high temperatures for a long time, thereby diffusing the Ti_3AlC_2 tape for a bonding material into a bonding base material of silicon carbide (SiC) such that the bonding material is not present.

Description

접합재용 Ti3AlC2 테이프 제조방법 및 접합재용 Ti3AlC2 테이프를 이용한 탄화규소의 접합방법{Preparation method of Ti3AlC2 tape and the joining method of silicon carbide using the same}A method of manufacturing a Ti3AlC2 tape for a bonding material and a bonding method of silicon carbide using a Ti3AlC2 tape for a bonding material,

본 발명은 탄화규소(SiC) 단미체 또는 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 접합에 사용할 수 있는 접합재용 Ti3AlC2 테이프 제조방법과, 고온에서 장시간 유지하여 Ti3AlC2 접합재를 탄화규소(SiC) 접합모재 속으로 고상확산시킴으로써 접합재가 접합계면에 존재하지 않는 접합방법에 관한 것이다.Keeping the invention is a silicon carbide (SiC) monolith body or a silicon carbide fiber reinforced silicon carbide composites (SiC f / SiC) can be used for bonding junction re-dissolved Ti 3 AlC 2 tape production process, and for a long time at a high temperature in the by Ti 3 AlC 2 To a bonding method in which a bonding material is not present at a bonded interface by solid-phase diffusion of a bonding material into a silicon carbide (SiC) bonded base material.

탄화규소(SiC)는 우수한 열적, 기계적 및 화학적 특성으로 인하여 고온재료로 각광을 받고 있으며, 또한 중성자 조사 분위기 하에서의 안정성으로 인하여 고온에서 작동되는 원자로의 구조재료로 활용이 가능하다.Silicon carbide (SiC) is attracting attention as a high-temperature material due to its excellent thermal, mechanical and chemical properties, and can be used as a structural material of a reactor operating at high temperature due to its stability in a neutron irradiation atmosphere.

하지만 탄화규소(SiC)의 탄소(C)와 규소(Si)간의 강한 공유결합으로 인한 낮은 확산계수와 소결성 때문에 일반적으로 소결조제를 첨가한 후 고온의 소결과정에서 압력을 가하는 열간가압소결을 이용하여 치밀화가 이루어진다. However, due to the low diffusion coefficient and sinterability due to the strong covalent bond between carbon (C) and silicon (Si) of silicon carbide (SiC), hot sintering, which applies pressure during sintering at high temperature after addition of sintering additive, Densification is achieved.

열간가압소결(hot press)은 몰드를 이용하여 소결을 실시하기 때문에 평판형을 포함한 일반적으로 단순한 형상만의 소결이 가능하므로, 실제 적용에 필요한 복잡한 형상을 제작하기 위해서는 고온에서도 접합강도를 유지하는 접합재 및 접합법의 개발이 필수적이다.Since a hot press is sintered using a mold, it is possible to sinter only a generally simple shape including a flat plate. Therefore, in order to manufacture a complex shape necessary for practical application, a bonding material And bonding methods are essential.

현재까지 알려진 탄화규소(SiC)의 접합법은 고상확산법(solid-state diffusion), 유리질을 이용한 접합법(glass-ceramic bonding), 탄소-규소의 반응접합법(Si-C reaction bonding) 및 MAX상을 이용한 접합법(MAX phase bonding)을 포함한다. Conventional silicon carbide (SiC) bonding methods include solid-state diffusion, glass-ceramic bonding, Si-C reaction bonding and MAX bonding (MAX phase bonding).

MAX상은 Mn+1AXn의 화학식을 가지는 층상구조의 탄화물(carbide) 또는 질화물(nitride)을 의미하는 것으로, M은 전이원소, A는 주로 ⅢA 및 ⅣA 족의 원소, X는 탄소 또는 질소 원소를 의미하며, n=1 내지 3의 값을 갖는다. MAX means a carbide or nitride of a layered structure having a chemical formula of M n + 1 AX n , where M is a transition element, A is mainly an element of Groups IA and IVA, X is a carbon or nitrogen element , And n = 1 to 3.

MAX상은 녹는점이 3000oC 이상으로 내산화성과 기계적, 화학적 특성이 우수한 고온재료이지만, 접합모재인 탄화규소와는 다른 재료이므로 접합계면에서의 열팽창 계수의 차이 등으로 인하여 접합성능의 저하를 유발할 수 있다.The MAX phase is a high-temperature material with a melting point of 3000 ° C or higher, which is superior in oxidation resistance and mechanical and chemical properties. However, since the material is different from silicon carbide as a base material for bonding, there is a possibility that the bonding performance may be deteriorated due to a difference in thermal expansion coefficient at the bonding interface have.

한편, 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 접합은 단미체 SiC에 비하여 어려운 것으로 알려져 있는데 [J. Nucl. Mater. 283-287 (2000) 1258-1261, Scr. Mater. 37 (1997) 1151-1154], 최근 MAX상인 Ti3SiC2를 이용한 SiC 단미체의 접합은 보고되었다[J. Nucl. Mater. 466 (2015) 322-327, Ceram. Int. 42 (2016) 11463-11468].On the other hand, it is known that the bonding of the silicon carbide fiber-reinforced silicon carbide composite (SiC f / SiC) is difficult as compared with the case of the short-form SiC [J. Nucl. Mater. 283-287 (2000) 1258-1261, Scr. Mater. 37 (1997) 1151-1154], recently, the bonding of SiC termites using MAX-phase Ti 3 SiC 2 has been reported [J. Nucl. Mater. 466 (2015) 322-327, Ceram. Int. 42 (2016) 11463-11468].

그러나, 접합을 위하여 접합모재 사이에 삽입한 접합재는 이물질로 존재하기 때문에 접합모재인 탄화규소(SiC)의 기계적 특성을 포함한 다양한 특성 저하의 원인이 될 수 있으므로 접합을 이룬 후에 접합재를 제거할 수 있는 방법에 대한 연구 개발이 필요한 실정이다.However, since the bonding material inserted between the bonding base materials for bonding is a foreign material, it may cause deterioration of various properties including the mechanical properties of the silicon carbide (SiC) as the bonding base material. Therefore, Research and development of methods are needed.

1. 한국등록특허 제0882924호(2009.02.03. 공고)1. Korean Registered Patent No. 0882924 (Notice of Mar. 2, 2009) 2. 한국등록특허 제1179652호(2012.08.29. 공고)2. Korea registered patent No. 1179652 (Notice of August 29, 2012) 3. 미국등록특허 제7407903호(2008.08.05. 공개)3. US Patent No. 7407903 (Published Aug. 5, 2008)

본 발명의 목적은 일정한 두께의 Ti3AlC2 테이프를 삽입하여 접합모재의 형상에 관계없이 복잡한 형상의 접합에도 사용할 수 있는 테이프의 제조방법을 제공하는 데에 있다.It is an object of the present invention to provide a method of manufacturing a tape by inserting a Ti 3 AlC 2 tape having a constant thickness, which can be used for joining a complex shape regardless of the shape of the bonded base material.

또한, 실온 및 1500oC의 고온에서도 접합강도를 유지함으로써 고온 구조재료 및 원자로의 구조재료로 활용 가능한 탄화규소(SiC) 단미체 또는 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 접합방법을 제공하는 데에 있다.(SiC) or silicon carbide fiber reinforced silicon carbide composites (SiC f / SiC) which can be utilized as structural materials for high-temperature structural materials and reactors by maintaining the bonding strength even at room temperature and high temperature of 1500 ° C. In order to solve the problem.

또한, MAX상인 Ti3AlC2을 이용한 탄화규소(SiC)의 접합 메커니즘 이해를 바탕으로 고상확산에 충분한 열 에너지와 반응시간을 접합과정 중에 제공하여 접합재인 Ti3AlC2를 접합모재로 확신시킴으로써 접합계면에 접합재가 존재하지 않는 접합방법을 제공하는 데에 있다.Based on the understanding of the bonding mechanism of silicon carbide (SiC) using the MAX phase Ti 3 AlC 2 , sufficient heat energy and reaction time for the solid-phase diffusion are provided during the bonding process to ensure that the bonding material, Ti 3 AlC 2 , And a bonding method in which a bonding material is not present at the interface.

상기 목적을 달성하기 위하여, 본 발명은 용매에 바인더, 가소제, 및 분산제를 용해시켜 바인더 혼합용액을 제조하는 단계; 상기 바인더 혼합용액에 티타늄-알루미늄 탄화물(이하'Ti3AlC2') 분말을 첨가한 후 볼 밀링(ball milling)을 통해 Ti3AlC2 슬러리를 제조하는 단계; 및 상기 Ti3AlC2 슬러리를 테이프 캐스팅(tape casting)하여 Ti3AlC2 테이프를 제조하는 단계를 포함하는, 접합재용 Ti3AlC2 테이프 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a binder solution, comprising: preparing a binder mixed solution by dissolving a binder, a plasticizer, and a dispersant in a solvent; (Ti 3 AlC 2 ) powder is added to the binder mixed solution, followed by ball milling to prepare a Ti 3 AlC 2 slurry; And it provides, bonded re-dissolved Ti 3 AlC 2 tape manufacturing method of the Ti 3 AlC 2 and the slurry was tape-casting (casting tape) comprising the step of manufacturing the tape 2 AlC Ti 3.

또한 본 발명은 상기 방법으로 제조된, 접합재용 Ti3AlC2 테이프를 제공한다.The present invention also provides a Ti 3 AlC 2 tape for a joint material produced by the above method.

또한 본 발명은 상기 접합재용 Ti3AlC2 테이프를 절단된 접합모재에 삽입시키는 단계; 및 상기 접합재용 Ti3AlC2 테이프가 삽입된 접합모재를 열처리하고 압력을 인가하는 단계를 포함하는, 접합재용 Ti3AlC2 테이프를 이용한 접합모재의 접합방법을 제공한다.Further, the present invention provides a method of manufacturing a bonding material, comprising: inserting a Ti 3 AlC 2 tape for a bonding material into a cut bonding base material; And a step of applying heat and applying a heat treatment to the joint base material having the Ti 3 AlC 2 tape for the joint material inserted thereinto, and a method of joining the joint material using the Ti 3 AlC 2 tape for joint material.

본 발명 따른 방법으로 제조된 접합재용 Ti3AlC2 테이프를 이용할 경우 실온부터 1500oC의 고온에서도 사용이 가능한 탄화규소(SiC) 단미체 또는 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 접합을 산소가 존재하지 않은 분위기에서 구현하여 고온 구조재료 및 원자로의 구조재료로써 활용이 가능한 접합을 구현할 수 있다. Produced by the invention process according bonded re-dissolved Ti 3 AlC 2 from room temperature when using the tape 1500 o capable of silicon carbide (SiC) monolith bodies or silicon carbide fibers used in a high temperature C reinforced silicon carbide composites (SiC f / SiC) The junction can be realized in an atmosphere free of oxygen to realize a junction that can be utilized as a structural material of a high-temperature structural material and a reactor.

또한, 본 발명 따른 방법으로 제조된 접합재용 Ti3AlC2 테이프를 복잡한 형상의 접합에 이용하여 접합 균일도를 향상시킬 수 있다.In addition, the uniformity of the bonding can be improved by using the Ti 3 AlC 2 tape for bonding material manufactured by the method of the present invention for bonding of complex shapes.

또한, 고온에서 장시간 유지함으로써 접합재용 Ti3AlC2 테이프를 탄화규소(SiC)의 접합모재 속으로 확산시켜 접합재가 존재하지 않는 접합방법을 제공함으로써, 이물질인 접합재의 존재로 인한 특성저하를 방지하고 탄화규소(SiC) 모재의 특성을 살릴 수 있다.Further, by keeping the Ti 3 AlC 2 tape for bonding material at a high temperature for a long time to diffuse into the base material of silicon carbide (SiC) to provide a joining method in which no joining material is present, property deterioration due to the presence of the joining material The characteristics of the silicon carbide (SiC) base material can be utilized.

도 1은 60 ㎛의 두께로 성형한 Ti3AlC2 테이프를 이용하여 1750℃, 3.5 MPa 압력 하에서 1시간 동안 열처리하여 접합한 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 디지털 이미지;
도 2는 60 ㎛의 두께의 Ti3AlC2 테이프를 이용하여 1600℃(a) 및 1750℃(b)의 온도에서 3.5 MPa의 압력을 가하면서 1시간 동안 열처리하여 접합한 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 SEM 이미지;
도 3은 60 ㎛의 두께의 Ti3AlC2 테이프를 이용하여 1600℃(a) 및 1750℃(b)의 온도에서 3.5 MPa의 압력을 가하면서 1시간 동안 열처리하여 접합한 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 접합면에 대한 XRD 패턴; 및
도 4는 접합재의 제거여부를 파악하기 위하여 8.6 ㎛의 두께로 성형한 Ti3AlC2 테이프를 이용하여 1750℃의 온도에서 20 MPa의 압력을 가하면서 7시간 동안 열처리하여 접합한 탄화규소(SiC) 단미체의 저배율(a) 및 고배율(b) SEM 이미지를 나타낸 것이다.
1 is a digital image of a silicon carbide fiber-reinforced silicon carbide composite (SiC f / SiC) bonded by heat treatment at 1750 ° C and 3.5 MPa pressure for 1 hour using a Ti 3 AlC 2 tape molded to a thickness of 60 μm;
Fig. 2 is a graph showing the results of a heat treatment of silicon carbide fiber-reinforced silicon carbide (SiC) bonded by heat treatment at a temperature of 1600 캜 (a) and 1750 캜 (b) at a pressure of 3.5 MPa for 1 hour using a Ti 3 AlC 2 tape having a thickness of 60 탆 SEM image of the composite (SiC f / SiC);
Fig. 3 is a graph showing the results obtained by using a Ti 3 AlC 2 tape having a thickness of 60 탆 and heat treating it at a temperature of 1600 캜 (a) and 1750 캜 (b) under a pressure of 3.5 MPa for 1 hour to obtain a silicon carbide fiber- XRD pattern for the junction surface of the composite (SiC f / SiC); And
FIG. 4 is a graph showing the relationship between the SiC content of the bonded silicon carbide (SiC) layer and the bonded silicon carbide (SiC) layer by using a Ti 3 AlC 2 tape formed to a thickness of 8.6 탆 at a temperature of 1750 캜 for 7 hours while applying a pressure of 20 MPa. (A) and high-power (b) SEM images of the short-form substance.

이하, 본 발명인 접합재용 Ti3AlC2 테이프 제조방법 및 접합재용 Ti3AlC2 테이프를 이용한 탄화규소의 접합방법을 보다 상세하게 설명한다.Will be described below, the inventors bonded re-dissolved Ti 3 AlC 2, a tape preparation and the bond re-dissolved Ti 3 AlC detailed than the bonding method of the silicon carbide with a second tape.

본 발명의 발명자들은 Ti3AlC2 접합재의 접합 메커니즘 이해를 바탕으로, 접합과정 중에 충분한 열 에너지와 시간을 공급하여 접합재용 Ti3AlC2 테이프를 탄화규소(SiC) 접합모재 사이로 고상확산시킴으로써 최종적으로 접합재가 존재하지 않는 접합이 가능함을 밝혀내어 본 발명을 완성하였다.Based on the understanding of the bonding mechanism of the Ti 3 AlC 2 bonding material, the inventors of the present invention have found that by supplying a sufficient amount of heat energy and time during the bonding process, the Ti 3 AlC 2 tape for the bonding material is diffused in a solid phase between the silicon carbide (SiC) The present inventors have found that bonding without bonding materials is possible, thereby completing the present invention.

본 발명은 용매에 바인더, 가소제, 및 분산제를 용해시켜 바인더 혼합용액을 제조하는 단계; 상기 바인더 혼합용액에 티타늄-알루미늄 탄화물(이하'Ti3AlC2') 분말을 첨가한 후 볼 밀링(ball milling)을 통해 Ti3AlC2 슬러리를 제조하는 단계; 및 상기 Ti3AlC2 슬러리를 테이프 캐스팅(tape casting)하여 Ti3AlC2 테이프를 제조하는 단계를 포함하는, 접합재용 Ti3AlC2 테이프 제조방법을 제공한다.The present invention relates to a process for producing a binder mixed solution, which comprises dissolving a binder, a plasticizer and a dispersant in a solvent to prepare a binder mixed solution; (Ti 3 AlC 2 ) powder is added to the binder mixed solution, followed by ball milling to prepare a Ti 3 AlC 2 slurry; And it provides, bonded re-dissolved Ti 3 AlC 2 tape manufacturing method of the Ti 3 AlC 2 and the slurry was tape-casting (casting tape) comprising the step of manufacturing the tape 2 AlC Ti 3.

상기 바인더 혼합용액을 제조하는 단계는 용매에 바인더를 용해시켜 제1용액을 제조하는 단계, 상기 제1용액에 가소제를 용해시켜 제2용액을 제조하는 단계, 및 상기 제2용액에 분산제를 용해시켜 바인더 혼합용액을 제조하는 단계를 포함할 수 있으며, 이에 제한되는 것은 아니다.The step of preparing the binder mixed solution includes the steps of preparing a first solution by dissolving a binder in a solvent, dissolving a plasticizer in the first solution to prepare a second solution, and dissolving the dispersant in the second solution And a step of preparing a binder mixed solution.

상기 제1용액을 제조하는 단계는 용매 100 중량부에 대해 바인더 30 내지 45 중량부를 용해시켜 제1용액을 제조하는 단계일 수 있으며, 이에 제한되는 것은 아니다.The step of preparing the first solution may be a step of dissolving 30 to 45 parts by weight of the binder in 100 parts by weight of the solvent to prepare the first solution, but the present invention is not limited thereto.

상기 제2용액을 제조하는 단계는 제1용액에 용해된 바인더 100 중량부에 대하여 가소제 30 내지 50 중량부를 용해시켜 제조하는 단계일 수 있으며, 이에 제한되는 것은 아니다.The second solution may be prepared by dissolving 30 to 50 parts by weight of a plasticizer in 100 parts by weight of the binder dissolved in the first solution, but is not limited thereto.

상기 바인더 혼합용액을 제조하는 단계는 제2용액에 용해된 바인더 100 중량부에 대하여 분산제 1.25 내지 6.25 중량부를 용해시켜 바인더 혼합용액을 제조하는 단계일 수 있으며, 이에 제한되는 것은 아니다.The step of preparing the binder mixed solution may include a step of dissolving 1.25 to 6.25 parts by weight of the dispersant in 100 parts by weight of the binder dissolved in the second solution to prepare a binder mixed solution, but the present invention is not limited thereto.

상기 바인더는 폴리비닐 부티랄(polyvinyl butyral), 에틸 셀룰로오스(ethyl cellulose), 및 폴리 아크릴(poly acrylate)로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The binder may be any one selected from the group consisting of polyvinyl butyral, ethyl cellulose, and polyacrylate, but is not limited thereto.

상기 가소제는 프탈산디옥틸(dioctyl phthalate), 노말부틸 프탈레이트(n-Butyl phthalate), 및 폴리에틸렌 글리콜(polyethylene glycol)로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The plasticizer may be any one selected from the group consisting of dioctyl phthalate, n-butyl phthalate, and polyethylene glycol, but is not limited thereto.

상기 분산제는 폴리에스터 및 폴리아민으로 이루어진 화합물(Hypermer KD 1), 폴리 아크릴산 염(salt of polyacrylic acid), 및 올레산(oleic acid)으로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The dispersing agent may be any one selected from the group consisting of a polyester and a polyamine compound (Hypermer KD 1), a salt of polyacrylic acid, and oleic acid, but is not limited thereto.

상기 Ti3AlC2 슬러리를 제조하는 단계는 바인더 혼합용액에 용해된 바인더 100 중량부에 대하여 Ti3AlC2 분말 1,000 내지 1,500 중량부를 첨가한 후 볼 밀링(ball milling)을 통해 Ti3AlC2 슬러리를 제조하는 단계일 수 있으며, 이에 제한되는 것은 아니다.In the step of preparing the Ti 3 AlC 2 slurry, 1,000 to 1,500 parts by weight of Ti 3 AlC 2 powder is added to 100 parts by weight of the binder dissolved in the binder mixed solution, followed by ball milling to form a Ti 3 AlC 2 slurry But it is not limited thereto.

상기 Ti3AlC2 슬러리는 300 ~ 1000 cPs의 점도를 갖는 것일 수 있으며, 이에 제한되는 것은 아니다.The Ti 3 AlC 2 slurry may have a viscosity of 300 to 1000 cPs, but is not limited thereto.

상기 Ti3AlC2 테이프는 평균 두께가 5 내지 100 ㎛일 수 있으며, 이에 제한되는 것은 아니다.The Ti 3 AlC 2 tape may have an average thickness of 5 to 100 μm, but is not limited thereto.

또한 본 발명은 상기 방법으로 제조된, 접합재용 Ti3AlC2 테이프를 제공한다.The present invention also provides a Ti 3 AlC 2 tape for a joint material produced by the above method.

또한 본 발명은 상기 접합재용 Ti3AlC2 테이프를 절단된 접합모재에 삽입시키는 단계; 및 상기 접합재용 Ti3AlC2 테이프가 삽입된 접합모재를 열처리하고 압력을 인가하는 단계를 포함하는, 접합재용 Ti3AlC2 테이프를 이용한 접합모재의 접합방법을 제공한다.Further, the present invention provides a method of manufacturing a bonding material, comprising: inserting a Ti 3 AlC 2 tape for a bonding material into a cut bonding base material; And a step of applying heat and applying a heat treatment to the joint base material having the Ti 3 AlC 2 tape for the joint material inserted thereinto, and a method of joining the joint material using the Ti 3 AlC 2 tape for joint material.

상기 접합모재는 탄화규소(SiC) 단미체 또는 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC) 중 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The bonding base material may be any one of a silicon carbide (SiC) short-form body or a silicon carbide fiber-reinforced silicon carbide composite (SiC f / SiC), but is not limited thereto.

상기 접합재용 Ti3AlC2 테이프가 삽입된 접합모재를 열처리하고 압력을 인가하는 단계는 상기 접합재용 Ti3AlC2 테이프가 삽입된 접합모재를 1600 내지 1750℃에서 30분 내지 7시간 동안 열처리하고 3.5 내지 20 MPa의 압력을 인가하는 단계 일 수 있으며, 이에 제한되는 것은 아니다.The step of heat-treating and applying pressure to the bonded base material having the Ti 3 AlC 2 tape for bonding material is performed by heat treating the bonded base material having the Ti 3 AlC 2 tape for bonding material at 1600 to 1750 ° C for 30 minutes to 7 hours, And applying a pressure of 20 MPa to a pressure of 20 MPa.

접합재용 Ti3AlC2 테이프를 이용한 접합모재의 접합방법은 절단된 접합모재에 삽입된 접합재용 Ti3AlC2 테이프가 고상확산을 통하여 접합되는 것일 수 있으며, 이에 제한되는 것은 아니다.Bonding method of bonding the base material using the bonding tape re-dissolved Ti 3 AlC 2 is inserted into the cut bonded mother material bonded re-dissolved Ti 3 AlC 2 is bonded through the tape may be a solid-phase diffusion, without being limited thereto.

이하, 하기 실시예에 의해 본 발명인 접합재용 Ti3AlC2 테이프 제조방법 및 접합재용 Ti3AlC2 테이프를 이용한 탄화규소의 접합방법 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the inventors bonded by the following examples damper Ti 3 AlC 2 will be described in the tape production process, and bonding re-dissolved Ti 3 AlC detailed than the bonding method of the silicon carbide with a second tape. However, the present invention is not limited by these examples.

<실시예 1> 접합재용 Ti&Lt; Example 1 > 33 AlCAlC 22 테이프 제조 Tape manufacturing

톨루엔/에탄올 혼합용매(6 : 4의 중량비) 100 중량부에 분자량이 55,000 g/mol인 폴리비닐부티랄(polyvinyl butyral; 이하 'PVB') 바인더 30 내지 45 중량부를 용해시켜 제1용액을 준비하였다.A first solution was prepared by dissolving 30 to 45 parts by weight of a polyvinyl butyral (PVB) binder having a molecular weight of 55,000 g / mol in 100 parts by weight of a toluene / ethanol mixed solvent (weight ratio of 6: 4) .

제1용액에 용해된 PVB 바인더 100 중량부에 대하여 40 중량부의 프탈산디옥틸(dioctyl phthalate; DOP) 가소제를 용해시켜 제2용액을 준비하였다.40 parts by weight of dioctyl phthalate (DOP) plasticizer was dissolved in 100 parts by weight of the PVB binder dissolved in the first solution to prepare a second solution.

제2용액에 용해된 PVB 바인더 100 중량부에 대하여 3.75 중량부의 폴리에스터/폴리아민 (Hypermer KD 1) 분산제를 용해시켜 바인더 혼합용액을 제조하였다.3.75 parts by weight of a polyester / polyamine (Hypermer KD 1) dispersant was dissolved in 100 parts by weight of the PVB binder dissolved in the second solution to prepare a binder mixed solution.

바인더 혼합용액에 용해된 PVB 바인더 100 중량부에 대하여 1,250 중량부의 티타늄-알루미늄 탄화물(이하'Ti3AlC2') 분말(평균 입경: 30 ㎛)을 첨가한 후 6 mm의 SiC 볼을 이용하여 36시간 동안 볼 밀링(ball milling)을 실시하여 60 S-1 전단속도(shear rate)에서 300 ~ 1000 cPs의 점도를 갖는 Ti3AlC2 슬러리를 준비하였다.1,250 parts by weight of titanium-aluminum carbide (hereinafter referred to as 'Ti 3 AlC 2 ') powder (average particle diameter: 30 μm) was added to 100 parts by weight of the PVB binder dissolved in the binder mixture solution, Hour ball milling to prepare a Ti 3 AlC 2 slurry having a viscosity of 300 to 1000 cPs at a shear rate of 60 S -1 .

Ti3AlC2 슬러리를 이용하여 60 ㎛의 두께로 테이프 캐스팅(tape casting)을 실시하여 접합재용 Ti3AlC2 테이프를 제조하였다.Ti 3 AlC 2 slurry was subjected to tape casting to a thickness of 60 탆 to prepare a Ti 3 AlC 2 tape for a bonding material.

<실시예 2> 접합재용 Ti&Lt; Example 2 > 33 AlCAlC 22 테이프를 이용한 탄화규소 섬유강화 탄화규소 복합체(SiC Tape-based silicon carbide fiber reinforced silicon carbide composites (SiC ff /SiC)의 접합/ SiC)

상기 실시예 1에 따라 제조된 접합재용 Ti3AlC2 테이프를 접합모재로 사용되는 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 접합면 형상으로 절단하고 접합면에 삽입시켰다.The Ti 3 AlC 2 tape for bonding material prepared according to Example 1 was cut into the bonding surface shape of the silicon carbide fiber-reinforced silicon carbide composite (SiC f / SiC) used as the bonding base material and inserted into the bonding surface.

이때 접합과정 중에 몰드와 접합체가 달라붙는 현상을 방지하기 위하여 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 표면에 BN 분말을 분사한 후, 압력을 인가할 수 있는 그라파이트 몰드에 위치시켰다.BN powder was sprayed on the surface of silicon carbide fiber reinforced silicon carbide composite (SiC f / SiC) and placed in a pressurizable graphite mold to prevent the mold and the bonded body from sticking during the bonding process.

이후 진공, 질소 또는 아르곤 가스 분위기 하에서 1650℃의 온도로 1시간 동안 열처리하고, 3.5 MPa의 압력을 인가하여 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)를 접합하였다.Then, the silicon carbide fiber reinforced silicon carbide composite (SiC f / SiC) was bonded by applying heat at a temperature of 1650 ° C. for 1 hour under a vacuum, nitrogen or argon gas atmosphere and applying a pressure of 3.5 MPa.

<실시예 3> 접합재용 Ti&Lt; Example 3 > 33 AlCAlC 22 테이프를 이용한 탄화규소 섬유강화 탄화규소 복합체(SiC Tape-based silicon carbide fiber reinforced silicon carbide composites (SiC ff /SiC)의 접합/ SiC)

1750oC의 온도로 열처리한 것을 제외하고는 상기 실시예 2와 동일한 조건으로 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)를 접합하였다(도 1 참조).The silicon carbide fiber-reinforced silicon carbide composite (SiC f / SiC) was bonded under the same conditions as in Example 2 except that the heat treatment was performed at a temperature of 1750 ° C (see FIG. 1).

<실험예 1> 접합재용 Ti&Lt; Experimental Example 1 > 33 AlCAlC 22 테이프를 이용하여 접합된 탄화규소 섬유강화 탄화규소 복합체(SiC Tape-bonded silicon carbide fiber reinforced silicon carbide composite (SiC ff /SiC)의 구조분석/ SiC)

1. 접합된 탄화규소 섬유강화 탄화규소 복합체(SiC1. A bonded silicon carbide fiber reinforced silicon carbide composite (SiC ff /SiC)의 표면 분석/ SiC)

상기 실시예 2 및 실시예 3에 따라 접합된 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 구조를 분석하기 위해 주사전자현미경(scanning electron microscope; 이하 'SEM', Hitachi S-4800)을 이용하였고, 그 결과를 도 2에 나타내었다.A scanning electron microscope (SEM) (Hitachi S-4800) was used to analyze the structure of the silicon carbide fiber-reinforced silicon carbide composite (SiC f / SiC) bonded according to Example 2 and Example 3 And the results are shown in Fig.

도 2는 60 ㎛의 두께의 접합재용 Ti3AlC2 테이프(실시예 1)를 이용하여 1600℃(a)(실시예 2) 및 1750℃(b)(실시예 3)의 온도에서 3.5 MPa의 압력을 가하면서 1시간 동안 열처리하여 접합한 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 SEM 이미지를 나타내고 있다.Figure 2 is a bond of 60 ㎛ thickness damper Ti 3 AlC 2 tape (Example 1) of 3.5 MPa at a temperature of 1600 ℃ (a) (Example 2) and 1750 ℃ (b) (Example 3) using SEM images of silicon carbide fiber reinforced silicon carbide composites (SiC f / SiC) bonded by heat treatment for 1 hour under pressure are shown.

도 2(a) 및 도 2(b)를 참조하면, 도 2(a) 및 도 2(b) 모두에서 Tyranno SA grade-3 탄화규소(SiC) 섬유를 함유한 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC) 사이에 존재하는 밝은 색의 접합재용 Ti3AlC2 테이프의 존재를 확인할 수 있으며, 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 접합계면 또는 접합재용 Ti3AlC2 테이프에 기공의 형성이나 갈라짐이 없이 안정한 접합을 이룸을 알 수 있다. 2 (a) and 2 (b), a silicon carbide fiber-reinforced silicon carbide composite containing Tyranno SA grade-3 silicon carbide (SiC) fibers in both FIG. 2 (a) SiC f / SiC) to check for the presence of bonding a light-colored damper Ti 3 AlC 2 tape existing between the silicon carbide fiber reinforced silicon carbide composite material (joining of the SiC f / SiC) interface or junction re-dissolved Ti 3 AlC 2 tape It can be seen that stable bonding is obtained without formation of pores or cracks.

또한, 초기에 사용한 60 ㎛의 두께의 접합재용 Ti3AlC2 테이프(실시예 1)가 1600℃(실시예 2) 접합의 경우에는 20 ㎛ 이하의 두께로 감소하였으며, 또한 1750℃(실시예 3) 접합의 경우에는 10 ㎛ 이하의 두께로 감소하였음을 알 수 있다. In addition, the Ti 3 AlC 2 tape (Example 1) for a bonding material having a thickness of 60 μm initially used decreased to a thickness of 20 μm or less in the case of the bonding at 1600 ° C. (Example 2) ) Bonding, it was found that the thickness decreased to 10 μm or less.

이러한 두께의 감소는 열간가압소결 중에 발생할 수 있는 최대 20 내지 30%의 선 수축을 감안하더라도 그 감소폭이 너무 크기 때문에 접합과정 중에 접합재용 Ti3AlC2 테이프가 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC) 속으로 확산되었을 가능성을 배제할 수 없다.This reduction in thickness is too large even when considering the maximum shrinkage of 20 to 30% that can occur during hot press sintering. Therefore, during the joining process, the Ti 3 AlC 2 tape for the joining material is a silicon carbide fiber reinforced silicon carbide composite (SiC f / SiC) in the presence of oxygen.

탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC) 접합에서의 접합재용 Ti3AlC2 테이프 접합 메커니즘을 이해하기 위하여 도 2(a) 및 도 2(b)에 표기된 A, B, C 영역에 대한 조성분석 결과를 표 1에 나타내었다. In order to understand the Ti 3 AlC 2 tape bonding mechanism for the bonding material in the silicon carbide fiber reinforced silicon carbide composite (SiC f / SiC) bonding, in order to understand the bonding mechanisms of A, B and C shown in FIG. 2 (a) The results of the composition analysis are shown in Table 1.

점 A와 점 B는 접합재용 Ti3AlC2 테이프의 영역이지만, 접합모재인 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 성분인 Si의 존재가 확인되며, 표 1에 나타난 바와 같이 다량의 C와 소량의 Ti가 존재하기 때문에 SiC와 TiC 상의 존재가 예상된다.The point A and the point B are areas of the Ti 3 AlC 2 tape for the bonding material, but the presence of Si, which is a component of the silicon carbide fiber reinforced silicon carbide composite (SiC f / SiC) as the bonding base material, Of C and a small amount of Ti are present, the presence of SiC and TiC phases is expected.

또한, 접합재인 Ti3AlC2와는 밝기가 다른 침상형으로 존재하는 점 C는 Ti와 Al의 원자량의 비율로 볼 때, TiAl이 중간화합물로 생성되었음을 유추할 수 있다. In addition, point C, which exists in an acicular form with different brightness from that of Ti 3 AlC 2 as a bonding material, can be inferred that TiAl is formed as an intermediate compound in terms of the atomic ratio of Ti and Al.

영역domain Ti(at. %)Ti (at.%) Si(at. %)Si (at.%) Al(at. %)Al (at.%) C(at. %)C (at.%) AA 8.348.34 28.7128.71 0.230.23 62.7162.71 BB 4.204.20 26.0826.08 -- 69.7269.72 CC 52.8952.89 -- 47.1147.11 --

2. 탄화규소 섬유강화 탄화규소 복합체(SiC2. Silicon carbide fiber reinforced silicon carbide composite (SiC ff /SiC)의 접합계면 분석/ SiC) bonded interface analysis

또한, 접합재용 Ti3AlC2 테이프를 이용하여 접합한 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 접합계면을 분석하기 위하여 X-선 회절분석(X-Ray Diffraction; 이하 'XRD', Pan Analytical X'Pert-PRO MPD)을 수행하였고, 그 결과를 도 3에 나타내었다.X-ray diffraction (XRD) analysis was performed to analyze the bonding interface of the silicon carbide fiber-reinforced silicon carbide composite (SiC f / SiC) bonded using the Ti 3 AlC 2 tape for bonding material. Pan Analytical X'Pert-PRO MPD) was performed, and the results are shown in FIG.

도 3의 XRD 분석결과를 참조하면, 접합재용 Ti3AlC2 테이프 외에도 TiAl, TiC, SiC 및 TiB2의 존재를 파악할 수 있기 때문에 상기 내용을 뒷받침할 수 있다.Referring to the XRD analysis results of FIG. 3, the presence of TiAl, TiC, SiC, and TiB 2 in addition to the Ti 3 AlC 2 tape for the bonding material can be grasped.

이러한 상들의 존재는 하기 반응식 1에 나타난 바와 같이 Ti3AlC2의 분해로 인한 TiC와 Ti2AlC의 생성으로 설명할 수 있다.The presence of these phases can be explained by the formation of TiC and Ti 2 AlC due to the decomposition of Ti 3 AlC 2 as shown in Scheme 1 below.

[반응식 1][Reaction Scheme 1]

Ti3AlC2 → TiC + Ti2AlCTi 3 AlC 2 - &gt; TiC + Ti 2 AlC

또한, 상기 반응식 1에서 생성된 Ti2AlC의 추가적인 분해로 인하여 하기 반응식 2에 의해 TiAl과 TiC가 생성된다.Further, due to the additional decomposition of Ti 2 AlC generated in the above reaction formula 1, TiAl and TiC are produced according to the following reaction formula 2.

[반응식 2][Reaction Scheme 2]

Ti2AlC→TiAl+TiC Ti 2 AlC? TiAl + TiC

도 3에 나타나는 TiB2의 존재는 시편분리를 용이하게 하기 위하여 사용한 BN 분말과 Ti의 반응에 의한 하기 반응식 3과 반응식 4로 설명할 수 있다.The existence of TiB 2 shown in FIG. 3 can be explained by the following Reaction Formula 3 and Reaction Formula 4 by reaction of BN powder and Ti used to facilitate sample separation.

[반응식 3][Reaction Scheme 3]

3Ti + 2BN → 2TiN + TiB2 3Ti + 2BN → 2TiN + TiB 2

[반응식 4][Reaction Scheme 4]

TiN + 2BN → 2TiB2+3/2N2 TiN + 2BN → 2TiB 2 + 3 / 2N 2

또한, D로 표시된 접합재용 Ti3AlC2 테이프와 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 계면을 살펴보면, 밝기가 다른 접합재용 Ti3AlC2 테이프가 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 SiC 섬유 사이의 기공을 통하여 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)로 이동하였음을 파악할 수 있고(도 2(a) 참조), 이는 고온에서 초소성(high temperature super plasticity)을 보여주는 Ti3AlC2의 유동성에 의한 것임을 알 수 있다.Further, the joint marked with D re-dissolved Ti 3 AlC 2 tape and the silicon carbide fiber reinforced silicon carbide composites (SiC f / SiC) Looking at the interface, the brightness is enhanced other bonding re-dissolved Ti 3 AlC 2 tape is silicon carbide fibers of silicon carbide composite ( (SiC f / SiC) through the pores between SiC fibers of SiC f / SiC (see FIG. 2 (a)), super plasticity of Ti 3 AlC 2 .

따라서, 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 접합재용 Ti3AlC2 테이프를 이용한 접합은 접합재의 분해에 따른 확산 및 고온에서의 접합재용 Ti3AlC2 테이프의 유동에 따른 고온 초소성로 인한 현상임을 추측할 수 있다.Therefore, the bonding re-dissolved Ti 3 AlC bonded with two tape of silicon carbide fiber reinforced silicon carbide composites (SiC f / SiC) is a high temperature seconds according to the flow of the dispersion and a high temperature junction re-dissolved Ti 3 AlC 2 tape in accordance with the bonding material decomposition It can be inferred that this phenomenon is caused by calcination.

<실험예 2> 접합재용 Ti&Lt; Experimental Example 2 > 33 AlCAlC 22 테이프를 이용하여 접합된 탄화규소 섬유강화 탄화규소 복합체(SiC Tape-bonded silicon carbide fiber reinforced silicon carbide composite (SiC ff /SiC)의 접합강도 분석/ SiC)

표 2에는 실시예 2 및 실시예 3에 따른 접합재용 Ti3AlC2 테이프를 이용하여 접합된 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 접합강도와 기존에 보고된 Ti3SiC2 분말을 사용하여 접합한 탄화규소(SiC) 단미체의 접합강도 값을 나타낸 것으로서, 공정한 비교를 위하여 Butt-joint 형상의 시편에 대한 4점 곡강도 측정결과 값을 나타내었다.Table 2 shows the bonding strengths of the silicon carbide fiber-reinforced silicon carbide composite (SiC f / SiC) bonded using the Ti 3 AlC 2 tape for bonding materials according to Examples 2 and 3 and the reported bonding strengths of the previously reported Ti 3 SiC 2 powder (SiC). The results of 4-point bending strength test for butt-joint specimens are shown for comparison.

No.No. 접합재binder 접합모재Joint base material 접합조건Bonding condition 접합감도(MPa)Bonding Sensitivity (MPa) 1One Ti3AlC2 테이프Ti 3 AlC 2 tape SiCf/SiC 복합체SiC f / SiC composite 실시예 2Example 2 100.97 ± 4.79100.97 + - 4.79 22 실시예 3Example 3 161.51 ± 12.41161.51 ± 12.41 33 Ti3SiC2 분말Ti 3 SiC 2 powder SiC 단미체SiC termite HP: 1600℃, 30min, 2040 MPaHP: 1600 占 폚, 30 min, 2040 MPa 110.4110.4 44 SPS: 1600℃, 5min, 30 MPaSPS: 1600 ° C, 5 min, 30 MPa ~ 33~ 33 55 Ti3SiC2 테이프Ti 3 SiC 2 tape SiC 단미체SiC termite SPS: 1500℃, 5min, 50 MPa
테이프 두께 = 60 ㎛
SPS: 1500 占 폚, 5 min, 50 MPa
Tape thickness = 60 탆
99.199.1
66 SPS: 1600℃, 5min, 50 MPa
테이프 두께 = 60 ㎛
SPS: 1600 ° C, 5 min, 50 MPa
Tape thickness = 60 탆
79.379.3

(HP: 열간가압소결(hot pressing), SPS: 스파크 플라즈마 소결(spark plasma sintering))(HP: hot pressing, SPS: spark plasma sintering)

표 2에 나타난 바와 같이, 실시예 2 및 실시예 3에 따른 접합재용 Ti3AlC2 테이프를 이용하여 접합된 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 접합강도가 기존에 보고된 Ti3SiC2 분말 또는 Ti3SiC2 테이프를 사용하여 접합한 탄화규소(SiC) 단미체의 접합강도보다 높게 나타남을 확인할 수 있다. As shown in Table 2, the bonding strength of the silicon carbide fiber-reinforced silicon carbide composite (SiC f / SiC) bonded using the Ti 3 AlC 2 tape for bonding material according to Example 2 and Example 3 was compared with that of the previously reported Ti 3 SiC 2 powder or Ti 3 SiC 2 tape, it is confirmed that the bonding strength of the silicon carbide (SiC) single body is higher than that of the silicon carbide (SiC).

이러한 현상은 탄화규소(SiC) 단미체에 비하여 일반적으로 접합이 어렵고, 또한 이로 인하여 상대적으로 낮은 접합강도를 보여주고 있는 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)를 이용한 접합결과이기 때문이다. This phenomenon is due to the result of bonding using silicon carbide fiber reinforced silicon carbide composite (SiCf / SiC), which is generally difficult to bond as compared with silicon carbide (SiC) termites and thus has a relatively low bonding strength.

기존의 보고에서 주로 사용한 Ti3SiC2 MAX상의 분말을 접합면에 삽입하여 접합을 실시하는 경우에는 분말 분포정도의 차이로 인한 불균일한 접합두께 및 미세 패턴에 대한 접합의 경우에 접합재로 사용하는 분말의 접합면에서의 벗어남 등으로 인하여 접합성능의 문제가 발생하므로, 이를 위하여 본 발명에 따라 제조된 접합재용 Ti3AlC2 테이프를 접합면의 형상과 일치하게 미세 절단 후 접합면에 삽입하고 접합을 실시하는 것이 바람직함을 확인하였다.In the case of using the Ti 3 SiC 2 MAX powders mainly used in the previous reports, the uneven bond thickness due to the difference of the powder distribution and the powder used as the bonding material in the case of bonding to the fine pattern The Ti 3 AlC 2 tape for bonding material manufactured according to the present invention is inserted into the bonding surface after the fine cutting in conformity with the shape of the bonding surface, It is confirmed that it is preferable to carry out the test.

<실시예 4> 접합재용 Ti&Lt; Example 4 > 33 AlCAlC 22 테이프 제조 Tape manufacturing

Ti3AlC2 슬러리를 이용하여 8.6 ㎛의 두께로 테이프 캐스팅(tape casting)을 실시하여 접합재용 Ti3AlC2 테이프를 제조한 것을 제외하고는, 상기 실시예 1과 동일한 조건이었다.Except that a Ti 3 AlC 2 slurry was used to perform tape casting to a thickness of 8.6 탆 to prepare a Ti 3 AlC 2 tape for a bonding material.

<실시예 5> 접합재용 Ti&Lt; Example 5 > Ti for bonding material 33 AlCAlC 22 테이프를 이용한 탄화규소 섬유강화 탄화규소 복합체(SiC Tape-based silicon carbide fiber reinforced silicon carbide composites (SiC ff /SiC)의 접합/ SiC)

상기 실시예 4에 따라 제조된 접합재용 Ti3AlC2 테이프를 접합모재로 사용되는 탄화규소(SiC) 단미체의 접합면 형상으로 절단하고 접합면에 삽입시켰다.The Ti 3 AlC 2 tape for bonding material produced according to Example 4 was cut into a bonding surface shape of a silicon carbide (SiC) short body used as a bonding base material and inserted into the bonding surface.

이때 접합과정 중에 몰드와 접합체가 달라붙는 현상을 방지하기 위하여 탄화규소(SiC) 단미체의 표면에 BN 분말을 분사한 후, 압력을 인가할 수 있는 그라파이트 몰드에 위치시켰다.BN powder was sprayed on the surface of the silicon carbide (SiC) semispherical body and placed in a pressurizable graphite mold to prevent the mold and the bonded body from sticking to each other during the bonding process.

이후 진공, 질소 또는 아르곤 가스 분위기 하에서 1750℃의 온도로 7시간 동안 열처리하고, 20 MPa의 압력을 인가하여 탄화규소(SiC) 단미체를 접합하였다.Then, heat treatment was performed at a temperature of 1750 ° C for 7 hours in a vacuum, nitrogen or argon gas atmosphere, and a pressure of 20 MPa was applied to bond the silicon carbide (SiC).

<실험예 3> 접합재용 Ti&Lt; Experimental Example 3 > 33 AlCAlC 22 테이프의 제거 가능 여부 분석 Analyzing tape removability

도 4(a) 및 도 4(b)에는 접합재의 제거 가능 여부를 파악하기 위하여 8.6 ㎛의 두께로 성형한 접합재용 Ti3AlC2 테이프(실시예 4)를 이용하여 1750oC의 온도에서 20 MPa의 압력을 가하면서 7시간 동안 열처리하여 접합(실시예 5)한 탄화규소(SiC) 단미체의 저배율(a) 및 고배율(b) SEM 이미지를 나타내고 있다. Figure 4 (a) and 4 (b) has a joint formed by a 8.6 ㎛ thickness to determine whether the possible removal of the bonding material re-dissolved Ti 3 AlC 2 tape (Example 4) 20 at a temperature of 1750 o C using (A) and high-power (b) SEM images of the silicon carbide (SiC) terminated material bonded by heat treatment for 7 hours while applying a pressure of 5 MPa.

도 4(a) 및 도 4(b)를 참조하면, 1750℃의 온도에서 20 MPa의 압력을 가하면서 7시간 동안 열처리를 한 경우에 탄화규소(SiC) 단미체의 접합계면에서의 접합재용 Ti3AlC2 테이프(실시예 4)의 존재는 거의 형상을 파악하기 어려울 정도로 소멸된다.4 (a) and 4 (b), when the heat treatment is performed for 7 hours while applying a pressure of 20 MPa at a temperature of 1750 ° C, Ti for the bonding material at the bonding interface of the silicon carbide (SiC) 3 AlC 2 tape (Example 4) is almost extinguished to such an extent that it is difficult to grasp the shape.

다만, 도 4(b)에 나타난 바와 같이 고배율 SEM 이미지에서만 부분적으로 접합재용 Ti3AlC2 테이프(실시예 4)의 존재를 확인할 수 있다.However, as shown in FIG. 4 (b), the presence of the Ti 3 AlC 2 tape (Example 4) for the bonding material can be partially observed only in the high magnification SEM image.

접합재용 Ti3AlC2 테이프를 이용하여 접합한 탄화규소(SiC) 단미체에서 접합재용 Ti3AlC2 테이프의 제거 여부 및 이에 따른 상의 분포를 파악하기 위하여, 도 4(a) 및 도 4(b)에 표기된 A, B, C 영역에 대한 조성분석 결과를 표 2에 나타내었다.4 (a) and 4 (b) show the removal of the Ti 3 AlC 2 tape for the bonding material in the silicon carbide (SiC) short body bonded using the Ti 3 AlC 2 tape for the bonding material and the distribution of the phase, Table 2 shows the compositional analysis results for the areas A, B, and C shown in FIG.

영역domain 점 APoint A 점 BPoint B 점 CPoint C 점 DPoint D SiSi 37.7437.74 6.116.11 40.3540.35 31.0931.09 TiTi 2.132.13 51.6151.61 0.050.05 18.1418.14 AlAl 0.330.33 0.390.39 0.810.81 0.450.45 CC 59.8059.80 41.8941.89 58.7958.79 50.3250.32

표 3을 참조하면, 두께가 감소된 접합재용 Ti3AlC2 테이프의 바로 부근인 점 A에서는 주로 Si 및 C와 소량의 Ti와 Al의 존재가 관찰되어, 주 성분은 SiC이며 분해된 접합재의 원소가 소량 존재함을 확인할 수 있다.Referring to Table 3, the presence of Si and C and a small amount of Ti and Al was observed mainly at the point A near the vicinity of the reduced thickness Ti 3 AlC 2 tape for the joint material, and the main component was SiC, Can be confirmed to be present in a small amount.

또한, 초기 접합재용 Ti3AlC2 테이프가 존재하였으나 고온 분해 및 확산에 의하여 그 존재가 사라진 점 C와 D에서도 점 A와 같이 주로 SiC가 존재하고 있음을 확인할 수 있다. In addition, although Ti 3 AlC 2 tape for the initial bonding material was present, it can be confirmed that SiC exists mainly at points A and D where the existence thereof is lost due to high temperature decomposition and diffusion.

다만, 도 4(b)에 표기된 점 B에서는 초기의 접합재용 Ti3AlC2 테이프가 주로 분포하고 있음을 유추할 수 있다.However, at point B shown in Fig. 4 (b), it can be inferred that the initial Ti 3 AlC 2 tape for bonding material is mainly distributed.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various modifications and changes may be made without departing from the scope of the appended claims.

Claims (16)

용매에 바인더, 가소제, 및 분산제를 용해시켜 바인더 혼합용액을 제조하는 단계;
상기 바인더 혼합용액에 티타늄-알루미늄 탄화물(이하'Ti3AlC2') 분말을 첨가한 후 볼 밀링(ball milling)을 통해 Ti3AlC2 슬러리를 제조하는 단계; 및
상기 Ti3AlC2 슬러리를 테이프 캐스팅(tape casting)하여 Ti3AlC2 테이프를 제조하는 단계
를 포함하는, 접합재용 Ti3AlC2 테이프 제조방법.
Dissolving a binder, a plasticizer, and a dispersant in a solvent to prepare a binder mixed solution;
(Ti 3 AlC 2 ) powder is added to the binder mixed solution, followed by ball milling to prepare a Ti 3 AlC 2 slurry; And
The step of tape casting the Ti 3 AlC 2 slurry to produce a Ti 3 AlC 2 tape
Wherein the Ti 3 AlC 2 tape for joining material has a thickness of at least 10 mm.
청구항 1에 있어서,
상기 바인더 혼합용액을 제조하는 단계는,
용매에 바인더를 용해시켜 제1용액을 제조하는 단계,
상기 제1용액에 가소제를 용해시켜 제2용액을 제조하는 단계, 및
상기 제2용액에 분산제를 용해시켜 바인더 혼합용액을 제조하는 단계
를 포함하는, 접합재용 Ti3AlC2 테이프 제조방법.
The method according to claim 1,
The step of preparing the binder mixed solution includes:
Dissolving the binder in a solvent to prepare a first solution,
Dissolving a plasticizer in the first solution to prepare a second solution, and
Dissolving the dispersant in the second solution to prepare a binder mixed solution
Wherein the Ti 3 AlC 2 tape for joining material has a thickness of at least 10 mm.
청구항 2에 있어서,
상기 제1용액을 제조하는 단계는,
용매 100 중량부에 대해 바인더 30 내지 45 중량부를 용해시켜 제1용액을 제조하는 것을 특징으로 하는, 접합재용 Ti3AlC2 테이프 제조방법.
The method of claim 2,
Wherein the step of preparing the first solution comprises:
By dissolving the binder of 30 to 45 parts by weight based on 100 parts by weight of a solvent portion, characterized in that for producing a first solution, re-dissolving the bonding Ti 3 AlC 2 Tape method.
청구항 2에 있어서,
상기 제2용액을 제조하는 단계는,
제1용액에 용해된 바인더 100 중량부에 대하여 가소제 30 내지 50 중량부를 용해시켜 제조하는 것을 특징으로 하는, 접합재용 Ti3AlC2 테이프 제조방법.
The method of claim 2,
Wherein the step of preparing the second solution comprises:
And dissolving 30 to 50 parts by weight of a plasticizer in 100 parts by weight of the binder dissolved in the first solution to prepare a Ti 3 AlC 2 tape for a joint material.
청구항 2에 있어서,
상기 바인더 혼합용액을 제조하는 단계는,
제2용액에 용해된 바인더 100 중량부에 대하여 분산제 1.25 내지 6.25 중량부를 용해시켜 바인더 혼합용액을 제조하는 것을 특징으로 하는, 접합재용 Ti3AlC2 테이프 제조방법.
The method of claim 2,
The step of preparing the binder mixed solution includes:
The second solution the binder to 100 parts by weight based on the dispersant by dissolving 1.25 to 6.25 parts by weight, characterized in that for preparing a binder mixture, re-dissolve the bonding Ti 3 AlC 2 tape method to dissolve.
청구항 1에 있어서,
상기 바인더는,
폴리비닐 부티랄(polyvinyl butyral), 에틸 셀룰로오스(ethyl cellulose), 및 폴리 아크릴(poly acrylate)로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 접합재용 Ti3AlC2 테이프 제조방법.
The method according to claim 1,
Wherein the binder comprises:
A method for producing a Ti 3 AlC 2 tape for a joint material, characterized in that it is any one selected from the group consisting of polyvinyl butyral, ethyl cellulose, and poly acrylate.
청구항 1에 있어서,
상기 가소제는,
프탈산디옥틸(dioctyl phthalate), 노말부틸 프탈레이트(n-Butyl phthalate), 및 폴리에틸렌 글리콜(polyethylene glycol)로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 접합재용 Ti3AlC2 테이프 제조방법.
The method according to claim 1,
The above-
A method for producing a Ti 3 AlC 2 tape for a joint material, characterized in that it is any one selected from the group consisting of dioctyl phthalate, n-butyl phthalate, and polyethylene glycol.
청구항 1에 있어서,
상기 분산제는,
폴리에스터 및 폴리아민으로 이루어진 화합물(Hypermer KD 1), 폴리 아크릴산 염(salt of polyacrylic acid), 및 올레산(oleic acid)으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 접합재용 Ti3AlC2 테이프 제조방법.
The method according to claim 1,
Preferably,
A method for manufacturing a Ti 3 AlC 2 tape for a joint material, characterized in that it is any one selected from the group consisting of a compound consisting of a polyester and a polyamine (Hypermer KD 1), a salt of polyacrylic acid, and oleic acid Way.
청구항 1에 있어서,
상기 Ti3AlC2 슬러리를 제조하는 단계는,
바인더 혼합용액에 용해된 바인더 100 중량부에 대하여 Ti3AlC2 분말 1,000 내지 1,500 중량부를 첨가한 후 볼 밀링(ball milling)을 통해 Ti3AlC2 슬러리를 제조하는 것을 특징으로 하는, 접합재용 Ti3AlC2 테이프 제조방법.
The method according to claim 1,
The step of preparing the Ti 3 AlC 2 slurry may comprise:
Through the binder 100 parts by weight of milling (ball milling) seen after adding Ti 3 AlC 2 powder to 1,000 to 1,500 parts by weight with respect to dissolution in the binder mixture, characterized in that for producing the AlC 2 slurry Ti 3, bonding re-dissolved Ti 3 AlC 2 tape manufacturing method.
청구항 1에 있어서,
상기 Ti3AlC2 슬러리는,
300 ~ 1000 cPs의 점도를 갖는 것을 특징으로 하는, 접합재용 Ti3AlC2 테이프 제조방법.
The method according to claim 1,
The Ti 3 AlC 2 slurry,
That has a viscosity of 300 ~ 1000 cPs, characterized in, joint damper Ti 3 AlC 2 tape method.
청구항 1에 있어서,
상기 Ti3AlC2 테이프는,
평균 두께가 5 내지 100 ㎛인 것을 특징으로 하는, 접합재용 Ti3AlC2 테이프 제조방법.
The method according to claim 1,
In the Ti 3 AlC 2 tape,
Wherein the average thickness of the Ti 3 AlC 2 tape for bonding material is 5 to 100 탆.
청구항 1 내지 청구항 11 중 어느 하나에 따른 방법으로 제조된, 접합재용 Ti3AlC2 테이프.A Ti 3 AlC 2 tape for bonding materials, produced by the process according to any one of claims 1 to 11. 청구항 12에 따른 접합재용 Ti3AlC2 테이프를 절단된 접합모재에 삽입시키는 단계; 및
상기 접합재용 Ti3AlC2 테이프가 삽입된 접합모재를 열처리하고 압력을 인가하는 단계
를 포함하는, 접합재용 Ti3AlC2 테이프를 이용한 접합모재의 접합방법.
Inserting the Ti 3 AlC 2 tape for a joint material according to claim 12 into a cut joint base material; And
Heat-treating the joint base material into which the Ti 3 AlC 2 tape for joining material is inserted and applying pressure
Wherein the bonding material is bonded to the base material by using a Ti 3 AlC 2 tape for bonding material.
청구항 13에 있어서,
상기 접합모재는,
탄화규소(SiC) 단미체 또는 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC) 중 어느 하나인 것을 특징으로 하는, 접합재용 Ti3AlC2 테이프를 이용한 접합모재의 접합방법.
14. The method of claim 13,
The bonding base material,
A method for bonding a base material using a Ti 3 AlC 2 tape for a bonding material, characterized in that the base material is any one of a silicon carbide (SiC) simple substance or a silicon carbide fiber reinforced silicon carbide composite (SiC f / SiC).
청구항 13에 있어서,
상기 접합재용 Ti3AlC2 테이프가 삽입된 접합모재를 열처리하고 압력을 인가하는 단계는,
상기 접합재용 Ti3AlC2 테이프가 삽입된 접합모재를 1600 내지 1750℃에서 30분 내지 7시간 동안 열처리하고 3.5 내지 20 MPa의 압력을 인가하는 것을 특징으로 하는, 접합재용 Ti3AlC2 테이프를 이용한 접합모재의 접합방법.
14. The method of claim 13,
The step of applying heat and applying pressure to the joint base material having the Ti 3 AlC 2 tape for joining material inserted therein,
Said joint damper Ti 3 AlC 2 tape with AlC 2 tape, bonded re-dissolved Ti 3 of the insert the bonded base material of the 1600 to from 1750 ℃ 30 minutes to heat treatment and 3.5 to 20 MPa for 7 hours the pressure characterized in that it is Joining method of joint base material.
청구항 13에 있어서,
접합재용 Ti3AlC2 테이프를 이용한 접합모재의 접합방법은,
절단된 접합모재에 삽입된 접합재용 Ti3AlC2 테이프가 고상확산을 통하여 접합되는 것을 특징으로 하는, 접합재용 Ti3AlC2 테이프를 이용한 접합모재의 접합방법.
14. The method of claim 13,
The joining method of the joining base material using the Ti 3 AlC 2 tape for joining material,
And the Ti 3 AlC 2 tape for the bonding material inserted into the cut joint base material is bonded via solid phase diffusion to the bonding material base material using the Ti 3 AlC 2 tape for bonding material.
KR1020180003154A 2018-01-10 2018-01-10 Preparation method of Ti3AlC2 tape and the joining method of silicon carbide using the same KR102079800B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180003154A KR102079800B1 (en) 2018-01-10 2018-01-10 Preparation method of Ti3AlC2 tape and the joining method of silicon carbide using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180003154A KR102079800B1 (en) 2018-01-10 2018-01-10 Preparation method of Ti3AlC2 tape and the joining method of silicon carbide using the same

Publications (2)

Publication Number Publication Date
KR20190085255A true KR20190085255A (en) 2019-07-18
KR102079800B1 KR102079800B1 (en) 2020-02-20

Family

ID=67469523

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180003154A KR102079800B1 (en) 2018-01-10 2018-01-10 Preparation method of Ti3AlC2 tape and the joining method of silicon carbide using the same

Country Status (1)

Country Link
KR (1) KR102079800B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407903B2 (en) 2003-02-07 2008-08-05 Sandvik Intellectual Property Ab Material for high temperatures
KR100882924B1 (en) 2007-12-07 2009-02-10 한국과학기술연구원 Ti3alc2 composite materials with high strength and manufacturing process of the same
KR101179652B1 (en) 2010-03-24 2012-09-04 한국원자력연구원 Method for fabrication of high density SiCf/SiC composites by electrophoretic deposition combined with ultrasonication
KR20170086270A (en) * 2016-01-18 2017-07-26 한국원자력연구원 Ti3SiC2 COATING COMPOSITION AND COATING METHOD USING THE SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407903B2 (en) 2003-02-07 2008-08-05 Sandvik Intellectual Property Ab Material for high temperatures
KR100882924B1 (en) 2007-12-07 2009-02-10 한국과학기술연구원 Ti3alc2 composite materials with high strength and manufacturing process of the same
KR101179652B1 (en) 2010-03-24 2012-09-04 한국원자력연구원 Method for fabrication of high density SiCf/SiC composites by electrophoretic deposition combined with ultrasonication
KR20170086270A (en) * 2016-01-18 2017-07-26 한국원자력연구원 Ti3SiC2 COATING COMPOSITION AND COATING METHOD USING THE SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
X. Zhou et al., J. Nucl. Mater. 466 (2015) 322-327.* *

Also Published As

Publication number Publication date
KR102079800B1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US5592686A (en) Porous metal structures and processes for their production
JP4536950B2 (en) Hot press manufacturing method for SiC fiber reinforced SiC composite material
KR102276101B1 (en) Bonding material composition, bonded nitride aluminum body, and method of manufacturing the same
KR101324952B1 (en) Method for producing ceramic joined body
JP2009227565A (en) Carbon fiber-reinforced silicon carbide composite and method for producing the same
WO1997004958A1 (en) Process for the production of thin walled ceramic structures
CN114956844A (en) Three-dimensional carbon fiber toughened ceramic matrix composite material and preparation method thereof
KR101101244B1 (en) Method for manufacturing high density SiCf/SiC composites
He et al. Study on microstructures and mechanical properties of short-carbon-fiber-reinforced SiC composites prepared by hot-pressing
EP0361238B1 (en) Method of joining porous silicon carbide bodies
CN112479691B (en) Preparation method of high-temperature-resistant reinforced and toughened alumina fiber reinforced alumina matrix composite material
KR20190085255A (en) Preparation method of Ti3AlC2 tape and the joining method of silicon carbide using the same
KR101972350B1 (en) A ZrC Composites and A Manufacturing method of the same
Lewinsohn et al. Silicon Carbide Based Joining Materials for Fusion Energy and Other High‐Temperature, Structural Applications
Kaba et al. Diffusional Reaction‐Bonding of Si3N4 Ceramics Under High Pressure
JP2696387B2 (en) Method for producing fiber reinforced B 4C composite
Yang et al. SPARK PLASMASINTERING OF SILICON CARBIDE POWDERS WITH CARBON AND BORONAS ADDITIVES
JPH0881275A (en) Production of fiber composite material having silicon carbide group
Liang et al. Preparation and characterization of an all oxide ceramic matrix composite by a novel method
KR20100118835A (en) Manufacturing method of sic composite using calcined al-b-c sintering additive
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JP5166223B2 (en) Method for joining members to be joined of silicon nitride ceramics
Rabin et al. Joining of SiC and SiC/SiC Composites
JP2944787B2 (en) SiC-based oxide sintered body and method for producing the same
Gocmez et al. The Influence of SiC, B4C and ZrO2 on the densification and mechanical properties of ZrB2

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right