KR20190084512A - NOx Adsorbent in Which Copper Oxide And Barium Oxide Are Co-Impregnated And Method of Removing NOx Using the Same - Google Patents
NOx Adsorbent in Which Copper Oxide And Barium Oxide Are Co-Impregnated And Method of Removing NOx Using the Same Download PDFInfo
- Publication number
- KR20190084512A KR20190084512A KR1020180002345A KR20180002345A KR20190084512A KR 20190084512 A KR20190084512 A KR 20190084512A KR 1020180002345 A KR1020180002345 A KR 1020180002345A KR 20180002345 A KR20180002345 A KR 20180002345A KR 20190084512 A KR20190084512 A KR 20190084512A
- Authority
- KR
- South Korea
- Prior art keywords
- oxide
- nitrogen
- copper
- barium
- adsorbent
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3234—Inorganic material layers
- B01J20/3236—Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0233—Compounds of Cu, Ag, Au
- B01J20/0237—Compounds of Cu
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/041—Oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28059—Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28069—Pore volume, e.g. total pore volume, mesopore volume, micropore volume
- B01J20/28073—Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/28083—Pore diameter being in the range 2-50 nm, i.e. mesopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
- B01J23/04—Alkali metals
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
본 발명은 구리산화물과 바륨산화물을 공함침시킨 질소산화물 흡착제 및 이를 이용한 질소산화물의 제거방법에 관한 것으로서, 더욱 상세하게는 담지체에 흡착활성물질로 구리산화물과 바륨산화물을 동시에 공함침시킨 질소산화물 흡착제를 제조함으로써 흡착된 질소산화물의 탈착온도가 감소하여 이미 흡착되어 있는 질소산화물에 대한 탈착성능이 우수한 구리산화물과 바륨산화물을 공함침시킨 질소산화물 흡착제 및 이를 이용한 질소산화물의 제거방법에 관한 것이다.The present invention relates to a nitrogen oxide adsorbent co-impregnated with copper oxide and barium oxide, and a method for removing nitrogen oxides using the same. More specifically, the present invention relates to a nitrogen oxide adsorbent comprising copper oxide and barium oxide, The present invention relates to a nitrogen oxide adsorbent having copper oxide and barium oxide co-impregnated with an adsorbed nitrogen oxide having a desorbing temperature lower than that of adsorbed nitrogen oxide, and a method for removing nitrogen oxide using the same.
전세계적으로 환경문제를 해결하고자 자동차 배출가스에 대한 규제가 점차 강화되고 있고, 이에 따라 가솔린 및 디젤 차량에서 발생하는 유해 가스 배출량을 줄이는 기술이 많이 개발되고 있다.Regulations for automobile emissions are being strengthened to solve environmental problems around the world, and technologies for reducing harmful gas emissions from gasoline and diesel vehicles are being developed.
그러나 연료 소비를 줄이기 위한 고연비 기술이 적용됨에 따라 질소산화물을 제거하는데 사용되던 기존의 삼원 촉매의 효율이 감소하는 문제가 발생하게 되었다. 이는 연소 시 공기의 투입량이 많아져 질소산화물 생성량 자체가 많아진 것과 더불어 배출가스의 온도가 낮아져 기존 촉매의 활성온도에 적합하지 않기 때문이다. 또한 조사에 따르면, 주행 중에 배출되는 질소산화물의 양을 측정해본 결과, 엔진이 충분히 가열되지 않은 상태로 주행할 때, 이른바 cold-start 구간에서 배출되는 질소산화물의 양이 더 많다는 것을 확인할 수 있었다. 이에 따라 저온에서 질소산화물을 효율적으로 흡/탈착할 수 있는 흡착제를 개발한다면, 고연비 기술에 적용가능한 질소산화물 흡착제가 될 뿐만 아니라 탈착 공정에서도 에너지 소모를 낮추어 저에너지저배출 자동차를 구현하는데 도움이 될 것이다.However, due to the application of the high fuel consumption technology for reducing the fuel consumption, the efficiency of the conventional three-way catalyst used for removing nitrogen oxides has been reduced. This is because the amount of air introduced during combustion increases and the amount of nitrogen oxides is increased, and the exhaust gas temperature is lowered, which is not suitable for the activation temperature of the conventional catalyst. Further, according to the investigation, it was confirmed that the amount of nitrogen oxides discharged during running was measured. As a result, it was confirmed that the amount of nitrogen oxide discharged from the so-called cold-start section was larger when the engine was running without being heated sufficiently. Accordingly, if an adsorbent capable of efficiently adsorbing and desorbing nitrogen oxides at low temperature is developed, it will be useful not only as a nitrogen oxide adsorbent applicable to a fuel-efficient technology, but also in lowering energy consumption in a desorption process, thereby realizing a low- .
질소산화물을 제거하기 위한 기술은 크게 두 가지로 나뉘어지는데 SCR (selective catalytic reaction)과 NSR (NOx storage and reduction) 혹은 LNT (lean-NOx trap)이다. SCR은 질소산화물을 촉매 반응을 통하여 NH3와 직접 반응시켜 질소와 산소로 환원시키는 방법이다. 이 기술에는 NH3의 전구체로 사용되는 요소수를 사용하기 때문에 추가적인 저장 탱크가 필요하고 요소수를 지속적으로 충전해야 하는 문제점이 있다. 이와 비교하여 NSR은 환원 능력을 가진 흡착제 및 촉매를 사용하며 희박-연소(lean-burn) 조건에서는 질소산화물을 흡착하고, 농후-연소(rich-burn) 조건에서는 질소산화물을 환원시켜 탈착하는 방법이다. 이 기술은 별도의 장비가 필요하지 않아 비교적 설비가 저렴하나 질소산화물 제거 효율이 SCR에 비해 낮다는 단점이 있다.Techniques for removing nitrogen oxides are divided into two categories: selective catalytic reaction (SCR) and NOx storage and reduction (NSR) or lean-NO x trap (LNT). SCR is a method in which nitrogen oxide is directly reacted with NH 3 through a catalytic reaction to reduce it to nitrogen and oxygen. This technique uses a urea water which is used as a precursor of NH 3 , so that there is a problem that an additional storage tank is required and the urea water is continuously charged. In comparison, NSR uses adsorbents and catalysts with reducibility, adsorbing nitrogen oxides under lean-burn conditions and desorbing nitrogen oxides under rich-burn conditions . This technique is relatively inexpensive because it requires no separate equipment, but has a disadvantage in that the removal efficiency of nitrogen oxide is lower than that of SCR.
일본공개특허 제2007-319768A호는 알루미늄을 담지체로 사용하여 초산바륨을 함침시킨 바륨산화물 형태의 흡착제를 개시하고 있고, 대한민국 등록특허 제10-1018576호는 바륨 이외에도 세륨, 스트론튬 또는 이들의 조합물로 구성된 흡착제를 개시하고 있다.Japanese Patent Laid-Open No. 2007-319768A discloses a barium oxide-type adsorbent in which aluminum is impregnated with barium acetate using a support, and Korean Patent No. 10-1018576 discloses an adsorbent comprising barium, cerium, strontium or a combination thereof ≪ / RTI >
구리산화물을 사용하는 흡착제로는 SCR에 적용하는 예로서 제올라이트를 기반으로 하여 구리산화물을 포함하는 특허는 다수 공개되어 있고, 그 예로는 Cu-CHA 형태의 흡착제(미국공개특허 US 20110305614 A1) 및 Cu-ZSM34 흡착제(미국공개특허 US 201200148767 A1)가 공개되어 있다.Examples of adsorbents using copper oxide include a number of patents including copper oxide based on zeolite as an example of application to SCR. Examples thereof include Cu-CHA type adsorbents (U.S. Patent No. US 20110305614 A1) and Cu -ZSM34 adsorbent (US patent publication US 201200148767 A1) is disclosed.
상기 개발된 알루미나 기반 바륨산화물 흡착제는 흡탈착 온도가 비교적 높다(최적 흡착 온도: 300~400℃, 탈착 온도: 500~600℃). 그로 인해 연소 후 가스 온도가 비교적 낮은 고연비 기술에 해당 소재를 적용하기 어렵다는 문제점이 있다. 흡착제를 효율적으로 사용하기 위해서는 절대적인 흡착량뿐만 아니라 재생 에너지를 감소시키기 위해 탈착 온도가 비교적 낮은 흡착제의 개발이 절실하게 요구되고 있는 실정이다.The developed alumina-based barium oxide adsorbent has a relatively high adsorption / desorption temperature (optimum adsorption temperature: 300 to 400 ° C., desorption temperature: 500 to 600 ° C.). Therefore, there is a problem that it is difficult to apply the material to a fuel-efficient technology with relatively low gas temperature after combustion. In order to efficiently use the adsorbent, it is desired to develop an adsorbent having a relatively low desorption temperature in order to reduce not only the absolute adsorption amount but also the regenerated energy.
상기 개발된 구리산화물을 사용하는 흡착제는 질소산화물에 대한 환원반응을 촉진시키는 데는 우수한 성능을 나타내고 있으나, 단순한 흡착 측면에서는 비교적 낮은 흡착능을 나타내는 문제점이 있다.The adsorbent using the developed copper oxide exhibits excellent performance for promoting the reduction reaction to nitrogen oxides, but has a problem that it exhibits relatively low adsorptivity in terms of simple adsorption.
이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 구리산화물에서 질소산화물에 대한 탈착 온도가 낮게 형성된다는 점에 착안하여 구리산화물과 바륨산화물을 적절한 비율로 동시에 흡착 활성물질로 공함침시킬 경우, 흡착된 질소산화물의 탈착온도가 감소하여 이미 흡착되어 있는 질소산화물에 대한 탈착성능이 획기적으로 증가된 흡착제를 제조할 수 있는 것을 확인하고, 본 발명을 완성하게 되었다.As a result of intensive efforts to solve the above problems, the inventors of the present invention focused on the fact that the desorption temperature for the nitrogen oxide is low in the copper oxide, and the copper oxide and the barium oxide are simultaneously impregnated with the adsorbing active material , The desorption temperature of the adsorbed nitrogen oxide is decreased, and the desorbing performance of the already adsorbed nitrogen oxide is remarkably increased. Thus, the present invention has been completed.
본 발명의 목적은 탈착 온도가 낮아 이미 흡착된 질소산화물에 대한 탈착능이 우수한 질소산화물 흡착제 및 그 제조방법을 제공하는데 있다.An object of the present invention is to provide a nitrogen oxide adsorbent having a desorbing temperature which is low and which is excellent in desorbing ability to nitrogen oxide already adsorbed, and a method for producing the same.
본 발명의 다른 목적은 상기 질소산화물 흡착제를 이용하여 저온에서의 질소산화물의 제거방법을 제공하는데 있다.It is another object of the present invention to provide a method for removing nitrogen oxide at low temperature using the nitrogen oxide adsorbent.
상기 목적을 달성하기 위하여, 본 발명은 담지체에 흡착활성물질로 구리산화물과 바륨산화물을 공함침시킨 것을 특징으로 하는 질소산화물 흡착제를 제공한다.In order to attain the above object, the present invention provides a nitrogen oxide adsorbent, wherein copper oxide and barium oxide are co-impregnated with a carrier as an adsorbent active material.
본 발명은 또한, (a) 구리산화물 전구체 함유 수용액과 바륨산화물 전구체 함유 수용액을 담지체에 공함침시키고 건조시키는 단계; (b) 상기 (a) 단계를 1회 내지 수회 반복하는 단계; (c) 건조시키는 단계; 및 (d) 공기를 흘려주면서 소성시키는 단계를 포함하는 질소산화물 흡착제의 제조방법을 제공한다.(A) co-impregnating and drying an aqueous solution containing a copper oxide precursor and an aqueous solution containing a barium oxide precursor to a support; (b) repeating the step (a) from one time to several times; (c) drying; And (d) firing the mixture while flowing air. The present invention also provides a method for producing the nitrogen oxide adsorbent.
본 발명은 또한, 상기 질소산화물 흡착제를 이용하여 일산화질소(NO) 또는 이산화질소(NO2)의 질소산화물 함유 가스를 흡착 및 탈착시키는 것을 특징으로 하는 질소산화물의 제거방법을 제공한다.The present invention also provides a method for removing nitrogen oxides, which comprises adsorbing and desorbing a nitrogen oxide-containing gas of nitrogen monoxide (NO) or nitrogen dioxide (NO 2 ) using the nitrogen oxide adsorbent.
본 발명에 따르면, 기존 알루미나 기반 질소산화물 흡착제와 달리 구리산화물과 바륨산화물을 동시에 흡착활성물질로 공함침함으로써 흡착 대상 가스인 일산화질소와 이산화질소의 질소산화물 단독뿐만 아니라 고연비 시스템에서의 배출 가스인 일산화질소와 산소를 혼합한 기체에서도 낮은 온도에서 질소산화물을 흡착 및 탈착시킬 수 있으며, 기존 흡착제 보다 낮은 온도에서 탈착이 가능한 효과가 있다.According to the present invention, unlike a conventional alumina-based nitrogen oxide adsorbent, copper oxide and barium oxide are simultaneously impregnated with an adsorbing active material, whereby not only nitrogen oxide of nitrogen gas and nitrogen dioxide which are adsorption gases but also nitrogen monoxide And oxygen can adsorb and desorb nitrogen oxides at a low temperature and can be desorbed at a lower temperature than existing adsorbents.
도 1은 본 발명의 일 실시예에 따라 흡착활성물질을 달리한 소재의 XRD 스펙트럼이다(아래에서부터 바륨산화물 단독 함침, 바륨산화물과 구리산화물 공함침, 구리산화물 단독 함침 소재).
도 2는 본 발명의 일 실시예에 따른 흡착활성물질에 따른 소재의 질소 흡탈착 곡선이다.
도 3는 본 발명의 일 실시예에 따른 질소산화물 조성에 따른 소재별 TPD 분석결과이다((a) NO 10%/He (b) NO 10%/O2 10%/He (c) NO2 10%/He).BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is an XRD spectrum of a material with different adsorbent active materials according to an embodiment of the present invention (barium oxide alone impregnated, barium oxide and copper oxide impregnated, copper oxide sole impregnated material from below).
2 is a nitrogen adsorption / desorption curve of a material according to an adsorbent active material according to an embodiment of the present invention.
Figure 3 is a TPD Analysis of the material results in accordance with the nitrogen oxide composition in accordance with one embodiment of the present invention ((a)
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명의 일 실시예에서는 흡착제의 흡탈착 온도를 낮추기 위해 바륨산화물과 더불어 구리산화물을 공함침함으로써 낮은 온도(150℃)에서 질소산화물을 흡착 시켰을 때, 바륨산화물을 단독적으로 함침시킨 소재보다 구리산화물과 바륨산화물이 공함침되어 있는 소재의 탈착 온도가 기존 흡착제와 비교했을 때 400℃ 이하로 낮아지는 것을 확인하였다.In an embodiment of the present invention, when nitrogen oxides are adsorbed at a low temperature (150 ° C) by co-impregnating copper oxide with barium oxide to lower the adsorption / desorption temperature of the adsorbent, copper oxides And barium oxide impregnated material decreased to 400 ℃ or lower when compared with the conventional adsorbent.
따라서, 본 발명은 일 관점에서, 담지체에 흡착활성물질로 구리산화물과 바륨산화물을 공함침시킨 것을 특징으로 하는 질소산화물 흡착제에 관한 것이다.Accordingly, the present invention relates to a nitrogen oxide adsorbent characterized in that copper oxide and barium oxide are co-impregnated with a carrier as an adsorbent active material in one aspect.
본 발명은 저온에서의 질소화합물 포집을 위해 공침법을 통한 알루미나 등과 같은 담지체 기반 흡착제 제조 방법에 있어 구리산화물과 바륨산화물의 공침 효과와 최적 질량비를 분석한 것이다.The present invention is to analyze the coprecipitation effect and the optimum mass ratio of copper oxide and barium oxide in a method for preparing a carrier-based adsorbent such as alumina by coprecipitation for capturing nitrogen compounds at low temperatures.
본 발명에 있어서, 상기 흡착활성물질의 함량은 1~30중량%, 바람직하게는 3~20중량%일 수 있다. 상기 흡착활성물질의 함량이 1~30중량%일 때 흡착활성물질이 지지체에 고르게 잘 분포할 수 있는 효과가 있다. 1중량% 미만일 때는 흡착활성물질의 질량 대비 흡착량의 차이를 관찰하기 힘든 문제점이 있고, 30중량%를 초과할 경우에는 흡착활성물질이 지지체에 다 올라가지 못하여 고르게 분포하지 못하는 문제점이 있다.In the present invention, the content of the adsorptive active material may be 1 to 30% by weight, preferably 3 to 20% by weight. When the content of the adsorptive active material is 1 to 30% by weight, the adsorptive active material can be distributed evenly on the support. When the amount of the adsorbing active material is less than 1% by weight, it is difficult to observe a difference in adsorption amount of the adsorbing active material. When the amount of the adsorbing active material is more than 30% by weight, the adsorbing active material can not reach the support.
본 발명에 있어서, 상기 구리산화물과 바륨산화물의 질량비가 1:0.25~4, 바람직하게는 1:0.5~2일 수 있다. 상기 구리산화물과 바륨산화물의 질량비가 1:0.25~4일 때 구리산화물과 바륨산화물이 공존하여 구리산화물이 바륨산화물의 탈착 온도를 낮출 수 있는 효과가 있다. 1:0.25 미만일 때는 흡착량 및 탈착량이 크게 감소하는 문제점이 있고, 1:4를 초과할 경우에는 구리산화물로 인한 탈착온도 감소 효과가 줄어드는 문제점이 있다.In the present invention, the mass ratio of the copper oxide to the barium oxide may be 1: 0.25 to 4, preferably 1: 0.5 to 2. When the mass ratio of the copper oxide to the barium oxide is 1: 0.25 to 4, copper oxide and barium oxide coexist so that the copper oxide can lower the desorption temperature of the barium oxide. When the ratio is less than 1: 0.25, there is a problem that the adsorption amount and desorption amount are greatly reduced. When the ratio is more than 1: 4, the effect of reducing the desorption temperature due to copper oxide is reduced.
본 발명에 있어서, 상기 흡착활성물질:담지체의 질량비가 1:2~99, 바람직하게는 1:4~33일 수 있다. 상기 흡착활성물질:담지체의 질량비가 1:2~99일 때 흡착활성물질이 지지체에 고르게 잘 분포할 수 있는 효과가 있다. 1:2 미만일 때는 흡착활성물질이 지지체에 다 올라가지 못하여 고르게 분호하지 못하는 문제점이 있고, 1:99를 초과할 경우에는 흡착활성물질의 질량 대비 흡착량의 차이를 관찰하기 힘든 문제점이 있다.In the present invention, the mass ratio of the adsorptive active material to the carrier may be 1: 2 to 99, preferably 1: 4 to 33. When the mass ratio of the adsorptive active material to the support is in the range of 1: 2 to 99, the adsorptive active material can be distributed evenly on the support. When the ratio is less than 1: 2, there is a problem that the adsorbing active material can not reach the support and can not be equally divided. When the ratio exceeds 1:99, it is difficult to observe the difference in the adsorbed amount of the adsorbing active material.
본 발명에 있어서, 질소산화물 흡착제는 110~130m2/g의 표면적, 0.6~0.7cm3/g의 기공 부피 및 17~19nm의 기공 크기를 가질 수 있다.In the present invention, the nitrogen oxide adsorbent may have a surface area of 110 to 130 m 2 / g, a pore volume of 0.6 to 0.7 cm 3 / g and a pore size of 17 to 19 nm.
본 발명에 있어서, 상기 담지체는 알루미나, 폴리프로필렌, 폴리에틸렌, 폴리테트라플루오로에틸렌, 폴리설폰, 폴리이미드, 실리카, 글래스 감마-알루미나, 멀라이트(mullite), 지르코니아(zirconia), 티타니아(titania), 이트리아(yttria), 세리아(ceria), 바나디아(vanadia), 실리콘, 스테인레스 스틸 및 카본으로 구성된 군에서 선택되는 1종 이상일 수 있으며, 바람직하게는 알파-알루미나, 베타-알루미나 또는 감마-알루미나 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the support may be formed of alumina, polypropylene, polyethylene, polytetrafluoroethylene, polysulfone, polyimide, silica, glass gamma-alumina, mullite, zirconia, titania, Yttria, ceria, vanadia, silicon, stainless steel and carbon, and preferably at least one selected from the group consisting of alpha-alumina, beta-alumina or gamma-alumina Or the like may be used, but the present invention is not limited thereto.
본 발명의 다른 관점은 (a) 구리산화물 전구체와 바륨산화물 전구체를 함유하는 수용액을 담지체에 공함침시키고 건조시키는 단계; (b) 상기 (a) 단계를 1회 내지 수회 반복하는 단계; 및 (c) 공기를 흘려주면서 소성시키는 단계를 포함하는 질소산화물 흡착제의 제조방법에 관한 것이다.Another aspect of the present invention is a process for preparing a metal oxide nanoparticle comprising: (a) co-impregnating and drying an aqueous solution containing a copper oxide precursor and a barium oxide precursor to a carrier; (b) repeating the step (a) from one time to several times; And (c) firing the mixture while flowing air. The present invention also relates to a method for producing the nitrogen oxide adsorbent.
본 발명의 다른 관점은 (a) 구리산화물 전구체 함유 수용액과 바륨 산화물 전구체를 함유 수용액을 담지체에 공함침시키고 건조시키는 단계; (b) 상기 (a) 단계를 1회 내지 수회 반복하는 단계; (c) 상기 (b) 단계를 마친 후 장시간 건조시키는 단계; 및 (d) 공기를 흘려주면서 소성시키는 단계를 포함하는 질소산화물 흡착제의 제조방법에 관한 것이다.Another aspect of the present invention is a method for producing a porous oxide precursor, comprising: (a) co-impregnating and drying an aqueous solution containing a copper oxide precursor and an aqueous solution containing a barium oxide precursor to a carrier; (b) repeating the step (a) from one time to several times; (c) after the step (b) is completed, drying for a long time; And (d) firing the mixture while flowing air.
본 발명에 있어서, 상기 구리산화물 전구체는 초산구리 및 질산구리로 구성된 군에서 1종 이상 선택될 수 있고, 바람직하게는 초산구리를 사용하나, 이에 한정된 것은 아니다. 상기 바륨산화물 전구체는 초산바륨 및 질산바륨으로 구성된 군에서 1종 이상 선택될 수 있고, 바람직하게는 초산바륨을 사용하나, 이에 한정되는 것은 아니다.In the present invention, the copper oxide precursor may be at least one selected from the group consisting of copper acetate and copper nitrate, preferably copper acetate, but not limited thereto. The barium oxide precursor may be selected from the group consisting of barium acetate and barium nitrate, and preferably barium acetate is used, but it is not limited thereto.
본 발명에 있어서, 상기 (a) 단계에서 100~120℃에서 0.5~2시간 동안 건조시킬 수 있다.In the present invention, the drying may be performed at 100 to 120 ° C for 0.5 to 2 hours in the step (a).
본 발명에 있어서, 상기 (c) 단계에서 100~120℃에서 12~24시간 동안 건조시킬 수 있다.In the present invention, drying may be performed at 100 to 120 ° C for 12 to 24 hours in the step (c).
본 발명에 있어서, 상기 (d) 단계에서 500~800℃에서 1~8시간 동안 소성시킬 수 있다.In the present invention, the calcination may be performed at 500 to 800 ° C for 1 to 8 hours in the step (d).
본 발명의 다른 실시예에서는 본 발명에 의한 구리산화물과 바륨산화물을 동시에 흡착활성물질로 공함침한 흡착제를 이용하여 일산화질소 또는 이산화질소의 질소산화물 단독 또는 고연비 시스템에서의 배출 가스 조성에 해당하는 일산화질소와 산소를 혼합한 기체에서 흡착 및 탈착을 수행한 결과, 낮은 온도에서 질소산화물을 흡착시켰을 때 탈착온도가 감소하여 저온에서의 질소산화물에 대한 흡착능이 우수한 것을 확인하였다.In another embodiment of the present invention, the adsorbent co-impregnated with copper oxide and barium oxide simultaneously with the adsorbing active material according to the present invention can be used to remove either nitrogen monoxide or nitrogen oxide of nitrogen dioxide alone or nitrogen monoxide As a result of adsorption and desorption in a gas mixed with oxygen, it was confirmed that desorption temperature was decreased when nitrogen oxide was adsorbed at a low temperature, and thus the adsorbability to nitrogen oxides at a low temperature was excellent.
따라서, 본 발명은 또 다른 관점에서 상기 질소산화물 흡착제를 이용하여 일산화질소 또는 이산화질소의 질소산화물 함유 가스를 흡착 및 탈착시키는 것을 특징으로 하는 질소산화물의 제거방법에 관한 것이다.Therefore, the present invention relates to a method for removing nitrogen oxides, which adsorbs and desorbs nitrogen monoxide-containing gas of nitrogen monoxide or nitrogen dioxide using the nitrogen oxide adsorbent from another viewpoint.
본 발명에 의하여 질소산화물을 제거하는 방법은 NSR (NOx storage and reduction) 방식을 적용한다. NSR은 환원 능력을 가진 흡착제 및 촉매를 사용하며 희박-연소(lean-burn) 조건에서는 질소산화물을 흡착하고, 농후-연소(rich-burn) 조건에서는 질소산화물을 환원시켜 탈착하는 방법이다. 이 기술은 별도의 장비가 필요하지 않아 비교적 설비가 저렴하나 질소산화물 제거 효율이 SCR에 비해 낮다는 단점이 있다.According to the present invention, a NOx storage and reduction (NSR) method is applied to remove nitrogen oxide. NSR is a method of adsorbing nitrogen oxides under lean-burn conditions and desorbing nitrogen oxides under rich-burn conditions using adsorbents and catalysts with reducing ability. This technique is relatively inexpensive because it requires no separate equipment, but has a disadvantage in that the removal efficiency of nitrogen oxide is lower than that of SCR.
본 발명의 질소산화물의 제거방법에 있어서, 소듐, 포타슘, 리튬, 마그네슘, 아연 및 구리로 구성된 군에서 선택되는 1종 이상의 촉매활성물질을 추가로 포함할 수 있다.In the method for removing nitrogen oxides according to the present invention, at least one catalytically active substance selected from the group consisting of sodium, potassium, lithium, magnesium, zinc and copper may be further included.
본 발명의 질소산화물의 제거방법은 150~400℃의 저온에서 수행할 수 있다. 특히 탈착을 저온에서 수행할 수 있다.The nitrogen oxide removal method of the present invention can be carried out at a low temperature of 150 to 400 ° C. In particular, desorption can be carried out at a low temperature.
본 발명에 있어서, 상기 질소산화물 함유 가스는 He, CH4, N2, O2, C2H4, C2H6, C3H6 및 C3H8으로 구성된 군에서 선택되는 가스를 추가로 포함할 수 있다.In the present invention, the nitrogen oxide-containing gas is He, CH 4, N 2, O 2, C 2 H 4, C 2 H 6, C 3 H 6 And it may further comprise a gas selected from the group consisting of C 3 H 8.
이와 같이 자동차 배기가스의 NOx를 감소시키는 데에도 적용 가능하여 대기 정화 기술에 매우 높은 가능성을 보일 것으로 기대된다.As such, it is also applicable to the reduction of NOx of automobile exhaust gas, and it is expected to show a very high possibility for the atmospheric purification technology.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are for illustrative purposes only and that the scope of the present invention is not limited by these embodiments.
[실시예][Example]
실시예Example 1: 구리산화물과 바륨산화물이 1: copper oxide and barium oxide 공함침된Impregnated 흡착제의 합성 Synthesis of adsorbent
흡착활성 물질로 적용할 구리산화물과 바륨산화물의 전구체로는 초산구리와 초산바륨을 각각 사용하였다. 담지체로 사용할 알루미나는 감마 상의 알루미나를 사용하였고 초기습식함침법(incipient wetness impregnation)을 사용하여 함침시켰다. Copper acetate and barium acetate were used as precursors of copper oxide and barium oxide to be adsorbed active materials, respectively. The alumina used as the support was gamma-phase alumina and impregnated using incipient wetness impregnation.
사용된 초산구리와 초산바륨의 질량은 각각 1.14g과 0.83g이며, 담지체로 사용된 감마 상의 알루미나의 질량은 4g이다.The masses of copper acetate and barium acetate used were 1.14 g and 0.83 g, respectively, and the mass of gamma-phase alumina used as the support was 4 g.
합성비율은 흡착활성물질 대비 담지체 질량비는 1:4이며, 구리산화물과 바륨산화물의 질량비는 1:1이다. 수용액 상태의 초산 구리나 초산 바륨을 6번에 걸쳐서 같은 부피로 담지체에 나누어 함침시키고 1회 함침 후 110℃를 유지하는 오븐에서 건조시켰다. 6번의 함침이 끝난 상태의 합성물을 24시간 동안 110℃의 오븐에서 건조시킨 후 600℃에서 8시간 동안 공기를 흘려주면서 소성시켰다.The synthesis ratio is 1: 4, and the mass ratio of copper oxide to barium oxide is 1: 1. The aqueous solution of copper acetate or barium acetate was impregnated in the same volume over 6 times, dried in an oven maintained at 110 ° C after impregnation once. The compound having been impregnated six times was dried in an oven at 110 DEG C for 24 hours and then fired while flowing air at 600 DEG C for 8 hours.
도 1은 합성한 흡착제의 XRD 분석 결과를 나타낸 것이다. 담지체로 사용된 알루미나 구조는 모든 소재에서 발견되었고, 바륨산화물 또는 구리산화물만 사용한 소재는 각각 활성물질에 대한 구조를 확인할 수 있었다. 그러나 구리산화물과 바륨산화물을 공함침시킨 소재의 경우에는 구리산화물에 대한 특성 피크(peak)는 크기가 소폭 감소하고, 바륨산화물에 대한 특성 피크는 작게 나온 것을 볼 수 있다. 초산 구리와 초산 바륨이 산화물 형태로 소성되는 과정에서 구리의 원자 크기가 작다는 점과 초산 구리의 열분해 온도가 낮다는 점을 고려해볼 때 구리산화물이 우세하게 결정형태를 이루고 있을 것이라 판단할 수 있다. 합성한 소재는 함침된 활성물질의 원소기호와 함께 질량 퍼센트를 숫자로 표현하였으며, Ac는 초산형태의 전구체가 사용되었음을, Al은 알루미나가 담지체로 사용되었음을 각각 나타낸다. 그 뒤에는 소성조건(온도, 분위기)을 나타낸다.Figure 1 shows the XRD analysis results of the synthesized adsorbent. The alumina structure used as the support was found in all the materials, and the materials using only barium oxide or copper oxide could confirm the structure of the active material, respectively. However, in the case of a material in which copper oxide and barium oxide are co-impregnated, the characteristic peak for copper oxide is slightly reduced in size and the characteristic peak for barium oxide is small. Considering that the atomic size of copper is small and the pyrolysis temperature of copper acetate is low in the process of calcination of copper acetate and barium acetate in oxide form, it can be concluded that copper oxide is predominantly crystalline form . The synthesized material is represented by the numerical mass percentage with the element symbol of the impregnated active material, Ac indicates that acetic acid type precursor is used, and Al indicates that alumina is used as the support. Followed by firing conditions (temperature, atmosphere).
표 1과 도 2는 각각 합성한 소재들의 77K 온도에서의 질소 흡착 분석 결과와 흡탈착 곡선을 나타낸 것이다. 결과값은 BET 식과 BJH 탈착식을 통하여 계산한 결과이다.Table 1 and Fig. 2 show the adsorption and desorption curves of the synthesized materials at a temperature of 77K under nitrogen adsorption. The result is calculated by BET equation and BJH removable equation.
표 1을 보면 함침을 진행한 소재들은 전부 함침을 하지 않고 소성 조건만 동일하게 진행한 알루미늄에 비해 표면특성이 감소한 것을 확인할 수 있다. 추가적으로 흡착활성물질을 달리하여 함침을 진행한 것을 비교해보면 각각의 표면특성이 크게 달라지지 않은 것을 알 수 있다. 다만, 원자 크기가 큰 바륨을 사용했을 때가 구리를 사용했을 때보다 조금 더 작은 것을 확인할 수 있다.Table 1 shows that the impregnated materials did not impregnate all but impaired surface properties compared to aluminum that had undergone only the same firing conditions. In addition, it can be seen that the surface characteristics of each of them are not largely changed when the impregnation is carried out by different adsorbing active materials. However, it can be seen that the use of barium having a large atom size is slightly smaller than when copper is used.
(m2/g)BET Surface area
(m 2 / g)
(nm)Pore size
(nm)
도 2의 흡탈착 곡선에서는 순수한 알루미늄에 대한 곡선이 함침시킨 다른 소재들의 곡선보다 질소의 총 흡착량이 높은 것을 확인할 수 있고 흡탈착을 통한 히스테리시스(hysteresis)는 전체적으로 유사한 추세를 갖고 있는 것을 알 수 있다.It can be seen that the adsorption / desorption curve of FIG. 2 shows that the total adsorption amount of nitrogen is higher than the curves of other materials impregnated with curves for pure aluminum, and hysteresis through adsorption / desorption has a similar tendency as a whole.
실시예Example 2: 질소산화물 2: Nitrogen oxide 흡탈착Absorption / desorption 성능 Performance
도 3은 소재별로 질소산화물의 조성을 달리하였을 때 TPD (Temperature programmed desorption) 분석 결과를 나타낸다. 실험은 전처리를 600℃에서 1시간 동안 실시한 후 150℃에서 질소산화물을 흡착시키고 난 후 3℃/min으로 승온시키면서 측정하였다. 이에 따라 흡착된 질소산화물의 온도에 따른 탈착량과 함께 피크의 면적을 통해 흡착량을 간접적으로 비교할 수 있다. 위에서부터 차례로 NO, NO+O2, NO2 기체를 흡착시켜 주었다.FIG. 3 shows the result of TPD (Temperature programmed desorption) analysis when the compositions of nitrogen oxides are different for each material. The pretreatment was carried out at 600 ° C for 1 hour, followed by adsorption of nitrogen oxides at 150 ° C, followed by heating at 3 ° C / min. Thus, the amount of adsorbed nitrogen oxide can be indirectly compared with the adsorption amount through the area of the peak along with the desorption amount depending on the temperature. NO, NO + O 2 , and NO 2 gases were adsorbed in order from the top.
모든 그래프에서 바륨산화물을 함침시킨 소재의 경우에는 높은 온도에서 질소산화물이 탈착되는 것을 확인할 수 있다. 고연비 기술에 적용하기 위해 탈착 온도를 낮춰서 400℃까지의 탈착되는 양을 비교해보면 구리산화물과 바륨산화물을 공함침시킨 소재가 단독적으로 사용한 소재에 비해서 탈착되는 양이 더 많고 탈착이 일어나는 피크 또한 400℃보다 낮은 온도에서 형성되는 것을 확인할 수 있었다. NO2 기체를 흘려주었을 때는 NO나 NO+O2를 흘려주었을 때보다 구리산화물을 함침시킨 소재의 탈착량이 더 많아진 것을 볼 수 있지만 여전히 구리산화물과 바륨산화물을 공함침시킨 소재에서 탈착량이 더 우세한 것을 확인할 수 있다.In all the graphs, it can be seen that nitrogen oxides are desorbed at high temperatures in the case of a material impregnated with barium oxide. Compared with the desorption temperature up to 400 ° C, the amount of desorption of copper oxide and barium oxide impregnated material was higher than that of the material used singly, and the desorption peaks at 400 ° C It was confirmed that it was formed at a lower temperature. When the NO 2 gas was flowed, the desorption amount of the material impregnated with the copper oxide was found to be larger than that when the NO or NO + O 2 was supplied. However, the desorption amount was still higher in the material in which the copper oxide and the barium oxide were co- Can be confirmed.
(mmol/gcat)NO 10% / He
(mmol / g cat )
(mmol/gcat)NO 10% /
(mmol / g cat )
(mmol/gcat)NO 2 10% / He
(mmol / g cat )
표 2에 나타낸 바와 같이, 400℃ 이하에서 탈착된 질소산화물의 양을 TPD 분석기와 연동되는 'ChemMaster' 소프트웨어(software)를 통해 계산하여 각 소재별로 분석하였다.As shown in Table 2, the amount of nitrogen oxide desorbed at 400 ° C or less was calculated through 'ChemMaster' software (software) linked to the TPD analyzer and analyzed for each material.
표 2 및 도 3에 나타낸 바와 같이, 구리산화물과 바륨산화물을 공함침한 경우, 400℃ 이하에서 탈착되는 양이 훨씬 더 많은 것을 알 수 있다. 이에 따라 구리산화물과 바륨산화물을 알루미나에 공함침하여 사용할 때 저온에서의 흡착량을 증가시키고 재생에 드는 에너지를 감축시킬 수 있다는 것을 확인하였다.As shown in Table 2 and Fig. 3, it can be seen that when the copper oxide and the barium oxide are co-impregnated, the amount desorbed at 400 캜 or less is much larger. Thus, it was confirmed that when copper oxide and barium oxide are co-impregnated with alumina, the amount of adsorption at low temperature can be increased and the energy for regeneration can be reduced.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereto will be. Accordingly, the actual scope of the invention will be defined by the claims and their equivalents.
Claims (15)
Wherein the carrier is impregnated with copper oxide and barium oxide as an adsorbing active material.
The adsorbent according to claim 1, wherein the content of the adsorptive active material is 1 to 30% by weight.
2. The nitrogen oxide adsorbent according to claim 1, wherein the mass ratio of the copper oxide to the barium oxide is 1: 0.25-4.
The adsorbent according to claim 1, wherein the mass ratio of the adsorptive active material to the support is 1: 2 to 99.
The nitrogen oxide adsorbent according to claim 1, having a surface area of 110 to 130 m 2 / g, a pore volume of 0.6 to 0.7 cm 3 / g and a pore size of 17 to 19 nm.
The method according to claim 1, wherein the carrier is selected from the group consisting of alumina, polypropylene, polyethylene, polytetrafluoroethylene, polysulfone, polyimide, silica, glass gamma-alumina, mullite, zirconia, titania Wherein the nitrogen oxide adsorbent is at least one selected from the group consisting of yttria, ceria, vanadia, silicon, stainless steel, and carbon.
(a) 구리산화물 전구체 함유 수용액과 바륨산화물 전구체 함유 수용액을 담지체에 공함침시키고 건조시키는 단계;
(b) 상기 (a) 단계를 1회 내지 수회 반복하는 단계;
(c) 건조시키는 단계; 및
(d) 공기를 흘려주면서 소성시키는 단계.
A method for producing a nitrogen oxide adsorbent comprising the steps of:
(a) co-impregnating and drying an aqueous solution containing a copper oxide precursor and an aqueous solution containing a barium oxide precursor in a carrier;
(b) repeating the step (a) from one time to several times;
(c) drying; And
(d) firing while flowing air.
The method of claim 7, wherein the copper oxide precursor is at least one selected from the group consisting of copper acetate and copper nitrate, and the barium oxide precursor is at least one selected from the group consisting of barium acetate and barium nitrate. (2).
The method of claim 7, wherein the drying is performed at 100 to 120 ° C for 0.5 to 2 hours in the step (a).
The method of claim 7, wherein the drying is performed at 100 to 120 ° C for 12 to 24 hours in the step (c).
The method of claim 7, wherein the calcination is performed at 500 to 800 ° C for 1 to 8 hours in the step (d).
A method for removing nitrogen oxides, comprising adsorbing and desorbing a nitrogen oxide-containing gas of nitrogen monoxide or nitrogen dioxide using the nitrogen oxide adsorbent of any one of claims 1 to 6.
13. The method of claim 12, further comprising at least one catalytically active material selected from the group consisting of sodium, potassium, lithium, magnesium, zinc, and copper.
The method for removing nitrogen oxides according to claim 12, wherein the removal is performed at a temperature of 150 to 400 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180002345A KR102073307B1 (en) | 2018-01-08 | 2018-01-08 | NOx Adsorbent in Which Copper Oxide And Barium Oxide Are Co-Impregnated And Method of Removing NOx Using the Same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180002345A KR102073307B1 (en) | 2018-01-08 | 2018-01-08 | NOx Adsorbent in Which Copper Oxide And Barium Oxide Are Co-Impregnated And Method of Removing NOx Using the Same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190084512A true KR20190084512A (en) | 2019-07-17 |
KR102073307B1 KR102073307B1 (en) | 2020-02-04 |
Family
ID=67512894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180002345A KR102073307B1 (en) | 2018-01-08 | 2018-01-08 | NOx Adsorbent in Which Copper Oxide And Barium Oxide Are Co-Impregnated And Method of Removing NOx Using the Same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102073307B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210115916A (en) | 2020-03-17 | 2021-09-27 | 임철기 | NOx REMOVING SYSTEM THROUGH OXIDATION, DEOXIDATION AND RETURN OF EXHAUST GAS |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR930004501B1 (en) * | 1990-12-27 | 1993-05-27 | 포항종합제철 주식회사 | Catalyst for removing nitrogen dioxide and nitric oxide |
JPH07171349A (en) * | 1993-10-27 | 1995-07-11 | Toyota Motor Corp | Exhaust gas purification |
JPH0975741A (en) * | 1995-09-11 | 1997-03-25 | Nissan Motor Co Ltd | Catalyst for purification of exhaust gas |
JP3031824B2 (en) * | 1994-08-03 | 2000-04-10 | 株式会社日本触媒 | Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent |
JP3569295B2 (en) * | 1992-05-15 | 2004-09-22 | 同和鉱業株式会社 | Method for producing nitrogen oxide absorbent |
-
2018
- 2018-01-08 KR KR1020180002345A patent/KR102073307B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR930004501B1 (en) * | 1990-12-27 | 1993-05-27 | 포항종합제철 주식회사 | Catalyst for removing nitrogen dioxide and nitric oxide |
JP3569295B2 (en) * | 1992-05-15 | 2004-09-22 | 同和鉱業株式会社 | Method for producing nitrogen oxide absorbent |
JPH07171349A (en) * | 1993-10-27 | 1995-07-11 | Toyota Motor Corp | Exhaust gas purification |
JP3031824B2 (en) * | 1994-08-03 | 2000-04-10 | 株式会社日本触媒 | Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent |
JPH0975741A (en) * | 1995-09-11 | 1997-03-25 | Nissan Motor Co Ltd | Catalyst for purification of exhaust gas |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210115916A (en) | 2020-03-17 | 2021-09-27 | 임철기 | NOx REMOVING SYSTEM THROUGH OXIDATION, DEOXIDATION AND RETURN OF EXHAUST GAS |
Also Published As
Publication number | Publication date |
---|---|
KR102073307B1 (en) | 2020-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101953402B1 (en) | NOx ABSORBER CATALYST | |
US9855528B2 (en) | System for the purification of exhaust gas from an internal combustion engine | |
JP4950359B2 (en) | Method to improve the reduction of hydrocarbons, carbon monoxide and nitrogen oxides in exhaust | |
US8207078B2 (en) | Close coupled catalyst for purification of exhaust gas and the preparation thereof | |
CN112118906B (en) | Hydrocarbon trap catalyst | |
Li et al. | A Study on the Properties and Mechanisms for NO x Storage Over Pt/BaAl 2 O 4-Al 2 O 3 Catalyst | |
KR20050100650A (en) | Sox trap for enhancing nox trap performance and methods of making and using the same | |
KR20110028426A (en) | Zero platinum group metal catalysts | |
US20090297416A1 (en) | ALUMINA-BASED NITROGEN OXIDE (NOx) TRAPPING COMPOSITIONS AND TREATMENT OF VEHICULAR EXHAUST GASES THEREWITH | |
EP2841187B1 (en) | Nox trap composition | |
JP2800499B2 (en) | Hydrocarbon adsorbent | |
JPH08224449A (en) | Combined catalyst and hydrocarbon trap for preventing air pollution from occurring | |
US5906958A (en) | Catalyst for purifying automobile exhausts and method of manufacturing the catalyst | |
JP2001170446A (en) | Nitrogen oxide removing method using ilmenite material | |
US6551564B1 (en) | Process for eliminating oxides of nitrogen | |
KR102073307B1 (en) | NOx Adsorbent in Which Copper Oxide And Barium Oxide Are Co-Impregnated And Method of Removing NOx Using the Same | |
KR100752372B1 (en) | A catalyst containing zeolite for reducing h2s from the exhaust gas | |
EP1214976A1 (en) | Nitrogen oxide removal catalyst | |
JP2005500152A (en) | Substance for removing nitrogen oxides using lamellar structure | |
EP4000718A1 (en) | Catalyst composition | |
RU2757393C2 (en) | Composition based on aluminum oxide containing manganese oxide, method for its preparation and its application | |
KR0166465B1 (en) | Preparation of catalyst for cleaning exhaust gases | |
KR100384016B1 (en) | High durable Pd-Rh three way catalyst for NOx reduction | |
CN117337214A (en) | Synthesis of palladium-containing composite AFX-BEA zeolite catalyst for NOx adsorption | |
KR100410801B1 (en) | High porous and HC removal Pd only Three way Catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |