KR20190081613A - Water separating ultrafiltration membrane using complex of amphiphilic copolymer-metal oxide and method for manufacturing thereof - Google Patents

Water separating ultrafiltration membrane using complex of amphiphilic copolymer-metal oxide and method for manufacturing thereof Download PDF

Info

Publication number
KR20190081613A
KR20190081613A KR1020170184271A KR20170184271A KR20190081613A KR 20190081613 A KR20190081613 A KR 20190081613A KR 1020170184271 A KR1020170184271 A KR 1020170184271A KR 20170184271 A KR20170184271 A KR 20170184271A KR 20190081613 A KR20190081613 A KR 20190081613A
Authority
KR
South Korea
Prior art keywords
ultrafiltration membrane
group
methacrylate
poem
water
Prior art date
Application number
KR1020170184271A
Other languages
Korean (ko)
Other versions
KR102036585B1 (en
Inventor
김종학
박민수
박병주
김나운
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020170184271A priority Critical patent/KR102036585B1/en
Publication of KR20190081613A publication Critical patent/KR20190081613A/en
Application granted granted Critical
Publication of KR102036585B1 publication Critical patent/KR102036585B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/301Polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • B01D2323/22Specific non-solvents or non-solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

One aspect of the present invention provides a method for manufacturing an ultrafiltration membrane for water treatment, which comprises the steps of: (a) mixing an amphiphilic copolymer, a metal oxide precursor, and a solvent to manufacture a solution; and (b) applying the solution onto a substrate to manufacture an ultrafiltration membrane using a phase transition method.

Description

양친성 공중합체-금속 산화물 복합체를 이용한 수처리용 한외여과막 및 그 제조방법{WATER SEPARATING ULTRAFILTRATION MEMBRANE USING COMPLEX OF AMPHIPHILIC COPOLYMER-METAL OXIDE AND METHOD FOR MANUFACTURING THEREOF}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrafiltration membrane for water treatment using an amphiphilic copolymer-metal oxide complex and a method for producing the same. 2. Description of the Related Art [0002]

본 발명은 양친성 공중합체-금속 산화물 복합체를 이용한 수처리용 한외여과막과 그 제조방법에 관한 것으로, 보다 상세하게는, 수투과도와 막오염도 저감 효과가 향상된 수처리용 한외여과막 및 그 제조방법에 관한 것이다.TECHNICAL FIELD The present invention relates to an ultrafiltration membrane for water treatment using an amphiphilic copolymer-metal oxide composite and a method for producing the same, and more particularly, to an ultrafiltration membrane for water treatment having improved water permeability and membrane pollution reducing effect, .

세계의 수질 오염 문제는 폐수가 발생하는 한 피할 수 없는 문제이다. 이 때문에 최소한의 비용으로 최대한 많은 물을 최대한 깨끗하게 배출하는 것이 수처리 분야에서 중요한 문제 중 하나로 대두되고 있다. 이를 위해 다양한 소재가 개발되고 있는데, 특히, 상대적으로 저렴한 고분자를 사용한 수처리막이 많이 연구되고 있으며, 폴리비닐리덴플루오라이드(polyvinylidene fluoride, PVDF)나 폴리에테르이미드(polyetherimide, PEI) 등이 대표적인 상용 수처리막에 사용되는 고분자로 알려져 있다.The water pollution problem in the world is an inevitable problem as long as wastewater is generated. For this reason, it is becoming an important issue in the water treatment field to discharge as much of the maximum amount of water as possible with the minimum cost. Various materials have been developed for this purpose. Particularly, water treatment films using relatively inexpensive polymers are being studied extensively. Polyvinylidene fluoride (PVDF) and polyetherimide (PEI) It is known as a polymer used for

이렇게 현재까지 개발된 고분자 여과막 중 폴리비닐클로라이드(polyvinyl chloride, PVC)를 사용한 막은 내구성이 우수하고 화학적으로도 안정한 장점을 가지고 있지만, 본질적인 소수성에 의해 수처리 시 막오염이 과도하게 발생하고, 상전이법에 의한 기공 형성이 용이하지 않은 문제가 있다.Among the polymer filtration membranes developed so far, membranes using polyvinyl chloride (PVC) have the advantages of excellent durability and chemical stability, but due to inherent hydrophobicity, excessive membrane contamination occurs during water treatment, There is a problem that the pore formation due to the pores is not easy.

기존의 고분자를 이용한 여과막의 경우 주로 표면 중합을 하거나 계면활성제 등을 이용해 그 표면에 기공을 형성하는 경우가 대부분이다. 이는 기존의 막에 친수성 물질을 공중합체로 형성하는 경우 물에 의한 막의 팽창 때문에 막의 기계적 강도가 부족해지기 때문이다.In the case of a filtration membrane using a conventional polymer, surface polymerization is performed mainly or pores are formed on the surface thereof by using a surfactant or the like. This is because when the hydrophilic material is formed of a copolymer in a conventional membrane, the mechanical strength of the membrane becomes insufficient due to expansion of the membrane due to water.

본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 높은 수투과도와 낮은 막오염도를 가진 수처리용 한외여과막의 제조방법을 제공하는 것이다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a method for producing an ultrafiltration membrane for water treatment having high water permeability and low membrane contamination.

본 발명의 일 측면은, (a) 양친성 공중합체, 금속 산화물 전구체 및 용매를 혼합하여 용액을 제조하는 단계; 및 (b) 상기 용액을 기재 상에 도포한 후 상전이법을 이용하여 한외여과막을 제조하는 단계;를 포함하는 것을 특징으로 하는 수처리용 한외여과막의 제조방법을 제공한다.One aspect of the present invention is a process for preparing a solution, comprising: (a) preparing a solution by mixing an amphiphilic copolymer, a metal oxide precursor, and a solvent; And (b) applying the solution to a substrate and then preparing an ultrafiltration membrane using a phase transition method. [7] The present invention also provides a method of manufacturing an ultrafiltration membrane for water treatment.

일 실시예에 있어서, 상기 양친성 공중합체는 소수성 고분자와 친수성 고분자가 그래프트 공중합된 것일 수 있다.In one embodiment, the amphiphilic copolymer may be a graft copolymer of a hydrophobic polymer and a hydrophilic polymer.

일 실시예에 있어서, 상기 양친성 공중합체는 원자 전달 라디칼 중합반응으로 합성된 것일 수 있다.In one embodiment, the amphiphilic copolymer may be one that has been synthesized by atom transfer radical polymerization.

일 실시예에 있어서, 상기 소수성 고분자는 폴리비닐클로라이드, 폴리클로로트리플루오로에틸렌, 폴리디클로로디플루오로메탄, 폴리비닐리덴클로라이드, 폴리비닐리덴플루오라이드-co-클로로트리플루오로에틸렌 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나일 수 있다.In one embodiment, the hydrophobic polymer is selected from the group consisting of polyvinyl chloride, polychlorotrifluoroethylene, polydichlorodifluoromethane, polyvinylidene chloride, polyvinylidene fluoride-co-chlorotrifluoroethylene, and 2 And combinations thereof.

일 실시예에 있어서, 상기 친수성 고분자는 폴리옥시에틸렌메타크릴레이트, 폴리히드록시에틸메타크릴레이트, 폴리t-부틸메타크릴레이트, 폴리아크릴아미드, 폴리N-비닐피롤리돈, 폴리아미노스티렌, 폴리스티렌술폰산, 폴리메틸프로펜술폰산, 폴리술포프로필메타크릴레이트, 폴리술포에틸메타크릴레이트, 폴리술포부틸메타크릴레이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나일 수 있다.In one embodiment, the hydrophilic polymer is selected from the group consisting of polyoxyethylene methacrylate, polyhydroxyethylmethacrylate, polyt-butyl methacrylate, polyacrylamide, poly N-vinylpyrrolidone, polyaminostyrene, polystyrene Sulfonic acid, polymethylpropanesulfonic acid, polysulfopropyl methacrylate, polysulfoethyl methacrylate, polysulfobutyl methacrylate, and a combination of two or more thereof.

일 실시예에 있어서, 상기 친수성 고분자와 상기 소수성 고분자의 중량비는 1 : 8 내지 10 일 수 있다.In one embodiment, the weight ratio of the hydrophilic polymer to the hydrophobic polymer may be 1: 8-10.

일 실시예에 있어서, 상기 금속 산화물 전구체는 티타늄 이소프로폭시드, 티타늄 부톡시드, 티타늄 에톡시드, 티타늄 프로폭시드, 티타늄 테트라클로라이드 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나일 수 있다.In one embodiment, the metal oxide precursor may be one selected from the group consisting of titanium isopropoxide, titanium butoxide, titanium ethoxide, titanium propoxide, titanium tetrachloride, and combinations of at least two of the foregoing.

일 실시예에 있어서, 상기 상전이법은 물, 아세토나이트릴, 에탄올, 메탄올, 테트라하이드로퓨란 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 비용매와, N-메틸피롤리돈, 디메틸아세타미드, 디메틸포름아미드, 트리에틸포스페이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 용매를 이용한 비용매 유도 상전이법일 수 있다.In one embodiment, the phase transfer method comprises reacting a non-solvent selected from the group consisting of water, acetonitrile, ethanol, methanol, tetrahydrofuran, and combinations of two or more thereof with N-methylpyrrolidone, dimethylacetamide, Dimethylformamide, triethyl phosphate, and a combination of two or more thereof.

본 발명의 다른 일 측면에 따르면, 상기 수처리용 한외여과막의 제조방법으로 제조된 수처리용 한외여과막을 제공한다.According to another aspect of the present invention, there is provided an ultrafiltration membrane for water treatment manufactured by the method for manufacturing the ultrafiltration membrane for water treatment.

일 실시예에 있어서, 상기 수처리용 한외여과막은, 80% 내지 90%의 기공도(porosity) 및 85% 내지 95%의 보빈세럼알부민 배제율(Bovine serum albumin rejection)을 가질 수 있다.In one embodiment, the water treatment ultrafiltration membrane may have a porosity of 80% to 90% and a bovine serum albumin rejection of 85% to 95%.

본 발명의 일 측면에 따르면, 양친성 공중합체와 금속 산화물 전구체를 포함하는 용액으로부터 상전이법을 이용하여 수처리용 한외여과막을 제조함으로써, 상기 수처리용 한외여과막의 수투과도를 개선하고 막오염도를 낮출 수 있다.According to one aspect of the present invention, water permeability of the ultrafiltration membrane for water treatment can be improved and membrane contamination can be lowered by preparing an ultrafiltration membrane for water treatment using a phase transfer method from a solution containing an amphiphilic copolymer and a metal oxide precursor have.

본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the effects described above, but include all effects that can be deduced from the description of the invention or the composition of the invention set forth in the claims.

도 1은 제조예에 사용된 각 고분자와 상기 고분자로부터 합성된 공중합체를 적외선 분광기(Fourier transform infrared spectroscopy, FT-IR)를 통해 분석한 결과를 나타낸 그래프이다.
도 2는 제조예에서 합성된 공중합체를 핵자기 공명 분광법(Proton nuclear magnetic resonance spectroscopy, 1H-NMR)을 통해 분석한 결과를 나타낸 그래프이다.
도 3은 제조예에 사용된 소수성 고분자와 실시예 1 및 비교예 1에서 제조된 한외여과막을 투과 전자 현미경(Transmission electron microscopy, TEM)으로 관찰한 결과를 나타낸 이미지(200 nm)로, (a)는 소수성 고분자 PVC, (b)는 비교예 1, (c)는 실시예 1을 나타낸다.
도 4는 실시예 1, 2와 비교예 1, 2에서 제조된 한외여과막의 표면을 주사 전자 현미경(Scanning electron microscopy, SEM)으로 관찰한 결과를 나타낸 이미지(200 nm)로, (a)는 비교예 1, (b)는 비교예 2, (c)는 실시예 1, (d)는 실시예 2를 나타낸다.
도 5는 실시예 1, 2와 비교예 1, 2에서 제조된 한외여과막의 단면을 SEM으로 관찰한 결과를 나타낸 이미지(20 μm)로, (a)는 비교예 1, (b)는 비교예 2, (c)는 실시예 1, (d)는 실시예 2를 나타낸다.
도 6은 실시예 1, 2와 비교예 1, 2에서 제조된 한외여과막을 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 통해 분석한 결과를 나타낸 그래프로, (a)는 탄소와 염소 원자를 나타내고, (b)는 티타늄과 산소 원자를 나타낸다.
도 7은 실시예 1, 2와 비교예 1, 2에서 제조된 한외여과막을 FT-IR을 통해 분석한 결과를 나타낸 그래프이다.
도 8은 실시예 1, 2와 비교예 1, 2에서 제조된 한외여과막을 크로스 플로우 여과법(Cross flow filtration)을 통해 분석한 결과를 나타낸 그래프로, (a)는 상대적으로 배제도가 높은 실시예 1과 비교예 2를 나타내고, (b)는 상대적으로 배제도가 낮은 실시예 2와 비교예 1을 나타낸다.
FIG. 1 is a graph showing the results of analysis of a copolymer synthesized from each of the polymers used in Production Examples and the polymer through an infrared spectroscopy (Fourier transform infrared spectroscopy, FT-IR).
FIG. 2 is a graph showing the results of analysis of the copolymer synthesized in Preparation Example through proton nuclear magnetic resonance spectroscopy ( 1 H-NMR).
3 is an image (200 nm) showing the result of observation of the hydrophobic polymer used in the production example and the ultrafiltration membrane prepared in Example 1 and Comparative Example 1 by a transmission electron microscopy (TEM) (B) shows a comparative example 1, and (c) shows a first embodiment.
4 is an image (200 nm) showing the results of observing the surfaces of the ultrafiltration membranes prepared in Examples 1 and 2 and Comparative Examples 1 and 2 by scanning electron microscopy (SEM) Example 1, (b) shows Comparative Example 2, (c) shows Example 1, and (d) shows Example 2.
5 is an image (20 μm) showing the cross section of the ultrafiltration membrane prepared in Examples 1 and 2 and Comparative Examples 1 and 2 by SEM, wherein (a) is Comparative Example 1, (b) 2, (c) shows the first embodiment, and (d) shows the second embodiment.
FIG. 6 is a graph showing the results of X-ray photoelectron spectroscopy (XPS) analysis of the ultrafiltration membranes prepared in Examples 1 and 2 and Comparative Examples 1 and 2. FIG. 6 (a) A chlorine atom, and (b) represents titanium and an oxygen atom.
FIG. 7 is a graph showing the results of FT-IR analysis of the ultrafiltration membranes prepared in Examples 1 and 2 and Comparative Examples 1 and 2. FIG.
FIG. 8 is a graph showing the results of analysis of the ultrafiltration membranes prepared in Examples 1 and 2 and Comparative Examples 1 and 2 through cross flow filtration, wherein (a) 1 and Comparative Example 2, and (b) shows Example 2 and Comparative Example 1 which are relatively low in rejection.

본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다.The invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when an element is referred to as " comprising ", it means that it can include other elements, not excluding other elements unless specifically stated otherwise.

이하, 본 발명의 실시예에 관하여 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail.

본 발명의 일 측면에 따른 수처리용 한외여과막의 제조방법이, (a) 양친성 공중합체, 금속 산화물 전구체 및 용매를 혼합하여 용액을 제조하는 단계; 및 (b) 상기 용액을 기재 상에 도포한 후 상전이법을 이용하여 한외여과막을 제조하는 단계;를 포함할 수 있다.A method for preparing an ultrafiltration membrane for water treatment according to one aspect of the present invention comprises the steps of: (a) preparing a solution by mixing an amphiphilic copolymer, a metal oxide precursor, and a solvent; And (b) applying the solution to a substrate and then preparing an ultrafiltration membrane using a phase transfer method.

본 명세서에서 양친성 공중합체(Amphiphilic copolymer)란 2종 이상의 단위체를 구성단위로 하여 소수성 부위와 친수성 부위를 모두 갖는 중합체를 의미한다.In the present specification, an amphiphilic copolymer means a polymer having both a hydrophobic region and a hydrophilic region with two or more monomer units as constituent units.

상기 금속 산화물 전구체는 친수성으로 상기 양친성 공중합체의 친수성 부위와 선택적 상호작용을 하여 양친성 공중합체-금속 산화물 복합체를 형성한다. 이는 친수성 고분자의 나노구조 단위체 크기를 증가시켜 결과적으로 기공 크기를 더 크게 만드는 역할을 한다.The metal oxide precursor is hydrophilic and selectively interacts with the hydrophilic site of the amphipathic copolymer to form an amphiphilic copolymer-metal oxide complex. This increases the size of the nanostructured unit of the hydrophilic polymer and consequently increases the pore size.

상기 양친성 공중합체는 소수성 고분자와 친수성 고분자가 그래프트 공중합된 것일 수 있다.The amphiphilic copolymer may be a graft copolymer of a hydrophobic polymer and a hydrophilic polymer.

소수성 고분자만을 이용한 한외여과막은 막이 오염되기 쉽고, 상전이법에서 비용매가 이동하는 통로를 형성하기 힘들어 낮은 표면 기공도를 얻게 된다. 친수성 고분자를 공중합한 기존의 한외여과막은 수투과도를 높이고 막오염을 방지할 수 있지만, 물에 의한 막의 팽창으로 인해 막의 기계적 강도가 약해진다. 이 문제를 해결하기 위해 소수성 고분자에 친수성 고분자를 그래프트 공중합하여 기공형성을 할 수 있다.The ultrafiltration membrane using only the hydrophobic polymer tends to be contaminated with the membrane, and it is difficult to form a passage through which the non-solvent moves in the phase transition method, thereby obtaining a low surface porosity. Conventional ultrafiltration membranes copolymerized with hydrophilic polymers can increase the water permeability and prevent membrane contamination, but the mechanical strength of the membrane is weakened due to the expansion of the membrane due to water. To solve this problem, it is possible to form a pore by graft copolymerizing a hydrophilic polymer with a hydrophobic polymer.

상기 양친성 공중합체는 원자 전달 라디칼 중합반응(Atomic-transfer radical-polymerization, ATRP)으로 합성된 것일 수 있다.The amphiphilic copolymer may be synthesized by atomic transfer radical polymerization (ATRP).

상기 소수성 고분자는 폴리비닐클로라이드, 폴리클로로트리플루오로에틸렌, 폴리디클로로디플루오로메탄, 폴리비닐리덴클로라이드, 폴리비닐리덴플루오라이드-co-클로로트리플루오로에틸렌 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택될 수 있으나, 이에 한정되는 것은 아니다.Wherein the hydrophobic polymer is selected from the group consisting of polyvinyl chloride, polychlorotrifluoroethylene, polydichloro difluoromethane, polyvinylidene chloride, polyvinylidene fluoride-co-chlorotrifluoroethylene, and a combination of two or more thereof But is not limited thereto.

상기 친수성 고분자는 폴리옥시에틸렌메타크릴레이트, 폴리히드록시에틸메타크릴레이트, 폴리t-부틸메타크릴레이트, 폴리아크릴아미드, 폴리N-비닐피롤리돈, 폴리아미노스티렌, 폴리스티렌술폰산, 폴리메틸프로펜술폰산, 폴리술포프로필메타크릴레이트, 폴리술포에틸메타크릴레이트, 폴리술포부틸메타크릴레이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택될 수 있으나, 이에 한정되는 것은 아니다.The hydrophilic polymer may be at least one selected from the group consisting of polyoxyethylene methacrylate, polyhydroxyethylmethacrylate, polyt-butyl methacrylate, polyacrylamide, poly N-vinylpyrrolidone, polyaminostyrene, polystyrenesulfonic acid, But are not limited to, sulfonic acid, polysulfopropyl methacrylate, polysulfoethyl methacrylate, polysulfobutyl methacrylate, and combinations of two or more thereof.

상기 친수성 고분자와 상기 소수성 고분자의 중량비는 1 : 8 내지 10일 수 있다. 친수성 고분자의 비가 늘어나는 경우, 물에 의한 막의 팽창 때문에 막의 기계적 강도가 부족해질 수 있다.The weight ratio of the hydrophilic polymer to the hydrophobic polymer may be 1: 8 to 10. If the ratio of the hydrophilic polymer is increased, the mechanical strength of the membrane may become insufficient due to expansion of the membrane by water.

상기 금속 산화물 전구체는 티타늄 이소프로폭시드, 티타늄 부톡시드, 티타늄 에톡시드, 티타늄 프로폭시드, 티타늄 테트라클로라이드 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택될 수 있으나, 이에 한정되는 것은 아니다.The metal oxide precursor may be selected from the group consisting of titanium isopropoxide, titanium butoxide, titanium ethoxide, titanium propoxide, titanium tetrachloride, and combinations of two or more thereof, but is not limited thereto.

상기 상전이법은 물, 아세토나이트릴, 에탄올, 메탄올, 테트라하이드로퓨란 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 비용매와, N-메틸피롤리돈, 디메틸아세타미드, 디메틸포름아미드, 트리에틸포스페이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 용매를 이용한 비용매 유도 상전이법일 수 있으나, 이에 한정되는 것은 아니다.The phase transfer method may be carried out by reacting a non-solvent selected from the group consisting of water, acetonitrile, ethanol, methanol, tetrahydrofuran, and combinations of two or more thereof with N, Phosphate, and a solvent selected from the group consisting of a combination of two or more of them. However, the present invention is not limited thereto.

상기 비용매 유도 상전이법은 70-90 ℃의 물을 비용매로 이용하여 수행될 수 있다. 고온의 물로 비용매 유도 상전이법을 수행하는 경우, 용매의 교환 속도에 영향을 미쳐 더 큰 기공을 형성할 수 있다.The non-solvent-derived phase transformation method may be performed using water at 70-90 DEG C as non-solvent. When the non-solvent induction phase transfer method is carried out with hot water, the exchange rate of the solvent is influenced and larger pores can be formed.

본 발명의 다른 일 측면에 따른 수처리용 한외여과막은, 상기 수처리용 한외여과막의 제조방법으로 제조된 것일 수 있다.The ultrafiltration membrane for water treatment according to another aspect of the present invention may be one manufactured by the method for manufacturing the ultrafiltration membrane for water treatment.

상기 수처리용 한외여과막은, 80% 내지 90%의 기공도(porosity) 및 85% 내지 95%의 보빈세럼알부민 배제율(Bovine serum albumin rejection)을 가질 수 있다.The water treatment ultrafiltration membrane may have a porosity of 80% to 90% and a bovine serum albumin rejection of 85% to 95%.

상기 수처리용 한외여과막은, 하기 화학식 1로 표시되는 양친성 공중합체를 포함할 수 있다.The ultrafiltration membrane for water treatment may include an amphiphilic copolymer represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서 x : y = 1 : 8-10, n=8-10일 수 있고, 바람직하게는 x : y = 1 : 9, n = 9일 수 있다.In the above formula (1), x: y = 1: 8-10, n = 8-10, and preferably x: y = 1: 9 and n = 9.

이하, 본 발명의 실시예에 관하여 더욱 상세히 설명하기로 한다. 다만, 이하의 실험결과는 상기 실시예 중 대표적인 실험결과만을 기재한 것이며, 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 아래에서 명시적으로 제시하지 않은 본 발명의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다.Hereinafter, embodiments of the present invention will be described in more detail. However, the following experimental results only describe representative experimental results of the above embodiments, and the scope and contents of the present invention can not be construed to be limited or limited by the embodiments and the like. Each effect of the various embodiments of the present invention not expressly set forth below will be specifically described in that section.

이하의 실험결과는 폴리비닐클로라이드(polyvinyl chloride, PVC)와 폴리옥시에틸렌메타크릴레이트(polyoxyethylene methacrylate, POEM)를 통해 양친성 공중합체인 폴리비닐클로라이드-그래프트-폴리옥시에틸렌메타크릴레이트(polyvinyl chloride-graft-polyoxyethylene methacrylate, PVC-g-POEM)를 합성하고, 상기 양친성 공중합체와 티타늄 이소프로폭시드(titanium isopropoxide, TTIP)를 혼합하여 폴리비닐클로라이드-그래프트-폴리옥시에틸렌메타크릴레이트/티타늄 이소프로폭시드 복합체(PVC-g-POEM/TTIP)를 만들어 수처리용 한외여과막을 만드는 과정이다.Experimental Results The following is a polyvinyl chloride (polyvinyl chloride, PVC) and polyoxyethylene methacrylate amphiphilic copolymer polyvinyl through (polyoxyethylene methacrylate, POEM) chloride-grafted-polyoxyethylene methacrylate (graft polyvinyl chloride- -Polyoxyethylene methacrylate, PVC- g- POEM) was synthesized, and the amphiphilic copolymer was mixed with titanium isopropoxide (TTIP) to prepare a polyvinyl chloride- graft -polyoxyethylene methacrylate / (PVC- g- POEM / TTIP) to make an ultrafiltration membrane for water treatment.

제조예. 양친성 공중합체 PVC-Production example. Amphiphilic Copolymer PVC- gg -POEM의 합성Synthesis of POEM

PVC 18 g을 N-메틸피롤리돈(N-methylpyrrolidone) 150 mL에 50 ℃ 가열 상태에서 6시간 동안 용해시켰다. POEM (Mn = 500 g mol-1) 12 g을 넣어서 균일하게 만든 후 염화 구리(I) 0.3 g과 HMTETA (1,1,4,7,10,10-hexamethyltriethylenetetramine) 0.69 mL를 넣어서 균일하게 만들었다. 그 후, 교반기의 온도를 90 ℃로 설정하여 24시간 동안 반응을 진행하였다. 반응이 종료된 용액을 다량의 메탄올에 천천히 흘려주어 고분자 중합체가 석출되면서 용매 및 잔존 POEM이 메탄올에 녹아 나오도록 세척하는 과정을 3번 진행하였다. 세척된 고분자는 잔존 용매 및 메탄올의 제거를 위해 50 ℃ 오븐에 건조한 후 다시 진공 오븐에 10시간 건조하여 고분자 주 사슬에 POEM이 곁사슬로 그래프트 공중합되게 하였다. 이렇게 합성된 PVC-g-POEM 0.3 g을 디메틸포름아미드 : 테트라하이드로퓨란이 7 : 1의 부피비로 혼합된 용매에 12중량% 비율로 넣고, 4시간 동안 50 ℃에서 완전히 용해시켜 PVC-g-POEM 용액을 제조하였다.18 g of PVC was dissolved in 150 mL of N-methylpyrrolidone at 50 DEG C for 6 hours. 12 g of POEM (M n = 500 g mol -1 ) was added to make it homogeneous, and 0.3 g of copper (I) chloride and 0.69 mL of HMTETA (1,1,4,7,10,10-hexamethyltriethylenetetramine) . Thereafter, the reaction was carried out for 24 hours by setting the temperature of the stirrer to 90 占 폚. The reaction-terminated solution was slowly poured into a large amount of methanol to wash the polymer and polymer so that the solvent and remaining POEM were dissolved in methanol. The washed polymer was dried in an oven at 50 ° C for removal of residual solvent and methanol, and then dried in a vacuum oven for 10 hours so that POEM was graft-copolymerized with the side chain of the polymer main chain. 0.3 g of the thus-synthesized PVC- g- POEM was added to a mixed solvent of dimethylformamide: tetrahydrofuran in a volume ratio of 7: 1 in a proportion of 12% by weight and completely dissolved at 50 캜 for 4 hours to obtain PVC- g- POEM Solution.

상기 염화 구리(I)는 개시제로 사용되었고, 상기 HMTETA는 리간드로서 PVC의 염소와 POEM의 이중결합에 작용하여 라디칼을 생성하였다.The copper (I) chloride was used as an initiator and the HMTETA acted as a ligand on the double bond of POEM and chlorine of PVC to produce radicals.

실시예 1. 본 발명에 따른 PVC-EXAMPLES Example 1 Preparation of PVC- gg -POEM/TTIP 한외여과막 제조-POEM / TTIP Ultrafiltration membrane manufacturing

상기 제조예의 PVC-g-POEM 용액에 하기 TTIP 무기 용액 0.15 mL를 첨가한 후 하룻밤 동안 교반하였다. 완성된 PVC-g-POEM/TTIP 용액을 닥터-블레이드 기법을 통해 평평한 유리판 위에 200 μm 두께로 넓게 펴서 코팅하고, 20초 후 상온의 물에 두 시간 동안 담갔다. 이후 형성된 막을 유리판과 분리하고, 완성된 한외여과막을 증류수에 보관하였다.To the PVC- g- POEM solution of the above preparation example, 0.15 mL of the following TTIP inorganic solution was added, followed by stirring overnight. The completed PVC- g- POEM / TTIP solution was spread over a flat glass plate with a thickness of 200 μm by doctor-blade technique, and after 20 seconds, it was immersed in water at room temperature for two hours. The formed film was then separated from the glass plate, and the finished ultrafiltration membrane was stored in distilled water.

TTIP 무기 용액은 1 mL TTIP 용액을 격렬히 교반하며 0.312 mL 염산을 천천히 섞어서 준비한 후 5분 동안 둔 후 테트라하이드로퓨란 3 mL를 첨가한 후 2분 동안 교반하여 제조하였다.The TTIP inorganic solution was prepared by mixing 1 mL of TTIP solution vigorously, 0.312 mL of hydrochloric acid slowly, leaving it for 5 minutes, adding 3 mL of tetrahydrofuran, and stirring for 2 minutes.

실시예 2. 본 발명에 따른 PVC-Example 2: Preparation of PVC- gg -POEM/TTIP 한외여과막 제조-POEM / TTIP Ultrafiltration membrane manufacturing

상기 실시예 1에서 PVC-g-POEM/TTIP 용액이 코팅된 유리판을 상온의 물 대신 80 ℃ 물에 담그는 것을 제외하고는 동일한 방법으로 제조하였다.The glass plate coated with the PVC- g- POEM / TTIP solution in Example 1 was prepared in the same manner except that the glass plate was immersed in water at 80 ° C instead of water at room temperature.

비교예 1. PVC-Comparative Example 1. PVC- gg -POEM 한외여과막 제조-POEM ultrafiltration membrane manufacturing

상기 제조예의 PVC-g-POEM 용액을 하룻밤 동안 교반한 후 닥터-블레이드 기법을 통해 평평한 유리판 위에 200 μm 두께로 넓게 펴서 코팅하고, 20초 후 상온의 물에 두 시간 동안 담갔다. 이후 형성된 막을 유리판과 분리하고, 완성된 한외여과막을 증류수에 보관하였다.The PVC- g- POEM solution of the above preparation example was stirred overnight, coated on a flat glass plate by a doctor-blade technique to a thickness of 200 袖 m, and after 20 seconds, it was immersed in water at room temperature for two hours. The formed film was then separated from the glass plate, and the finished ultrafiltration membrane was stored in distilled water.

비교예 2. PVC-Comparative Example 2. PVC- gg -POEM 한외여과막 제조-POEM ultrafiltration membrane manufacturing

상기 비교예 1에서 PVC-g-POEM 용액이 코팅된 유리판을 상온의 물 대신 80 ℃ 물에 담그는 것을 제외하고는 동일한 방법으로 제조하였다.Except that a glass plate coated with a PVC- g- POEM solution in Comparative Example 1 was immersed in water at 80 ° C instead of water at room temperature.

실험예 1. PVC-Experimental Example 1. Preparation of PVC- gg -POEM 구조 분석-POEM structure analysis

상기 제조예에 사용된 각 고분자와 상기 고분자로부터 합성된 공중합체를 적외선 분광기(Fourier-transform infrared spectroscopy, FT-IR), 핵자기 공명 분광법(Proton nuclear magnetic resonance spectroscopy, 1H-NMR), 투과 전자 현미경(Transmission electron microscopy, TEM)을 통해 분석하였으며, 그 결과를 각각 도 1, 2 및 3에 나타내었다.The copolymer synthesized from each polymer and the polymer used in the above Preparation Examples was analyzed by Fourier transform infrared spectroscopy (FT-IR), Proton nuclear magnetic resonance spectroscopy ( 1 H-NMR) And analyzed by a transmission electron microscopy (TEM). The results are shown in FIGS. 1, 2 and 3, respectively.

도 1을 참고하면, PVC-g-POEM 스펙트럼에서 합성 전인 PVC 스펙트럼에 존재하지 않는 1728 및 1097 cm-1피크가 새로 형성되었다. 이는 PVC에 결합한 POEM 내의 카르보닐 작용기 (C=O, 1728 cm-1) 및 에테르 작용기 (C-O-C, 1097 cm-1)에 의한 것임을 확인하였다.Referring to Figure 1, in the PVC- g- POEM spectrum, 1728 and 1097 cm < -1 > peaks that were not present in the PVC spectrum prior to synthesis were newly formed. This was confirmed by the carbonyl functionality (C = O, 1728 cm -1 ) and the ether functionality (COC, 1097 cm -1 ) in POEM bonded to PVC.

POEM 단량체에 존재하는 카르보닐 작용기 (C=O, 1717 cm-1)가 1728 cm-1피크로 이동하였으며, 이는 POEM이 PVC에 결합하면서 파이-컨쥬게이션의 손실과 곁사슬로 인한 구조적 장애가 생긴 것 때문이다.The carbonyl functionality (C = O, 1717 cm -1 ) present in the POEM monomer migrated to the 1728 cm -1 peak due to the loss of pi-conjugation and structural failure due to side chains as POEM bound to PVC to be.

또한, POEM 단량체에 있던 탄소 이중결합 (-C=C-, 1637 cm-1) 피크가 합성되면서 사라졌음을 확인하였다. 이는 고분자 합성과정이 거의 100% 진행되고, 나머지 미반응한 POEM 단량체가 메탄올 세척에 모두 용해되어 사라졌다는 것을 의미한다. 위의 결과를 통해 POEM이 PVC에 잘 그래프트 되었음을 확인하였다.Also, it was confirmed that the carbon double bond (-C═C-, 1637 cm -1 ) peak in the POEM monomer was synthesized and disappeared. This means that the synthesis process of the polymer is almost 100%, and the remaining unreacted POEM monomer is completely dissolved in the methanol washing. The above results confirm that POEM is grafted well to PVC.

도 2를 참고하면, 4.6-4.4 ppm 영역의 신호는 PVC 주사슬의 CH2 작용기이며, 4.4 - 4.3 ppm 영역 신호는 PVC 주사슬의 CHCl 작용기를 의미한다. 또한, 4.0, 3.5, 3.25 ppm 영역은 POEM 곁사슬의 에틸렌옥시드 단위체를 의미한다. 이 신호들의 면적분을 통해 PVC 주사슬에 PVC-g-POEM 전체의 약 10% 중량비만큼의 POEM 곁사슬이 결합되었음을 확인할 수 있었다.Referring to FIG. 2, the signal in the 4.6-4.4 ppm region is the CH 2 functional group of the PVC main chain and the signal region of 4.4 - 4.3 ppm means the CHCl functional group of the PVC main chain. Also, the 4.0, 3.5, and 3.25 ppm regions refer to the ethylene oxide units of POEM side chains. Through the area of these signals, it was confirmed that about 10% by weight of POEM side chain of PVC- g- POEM was bonded to the PVC main chain.

도 3을 참고하면, PVC 단일 고분자의 경우 어떠한 구조도 관찰되지 않는다는 점에서 전자 밀도의 차이가 없음을 확인하였다.Referring to FIG. 3, it was confirmed that there was no difference in the electron density in that the PVC single polymer had no structure observed.

합성된 공중합체인 PVC-g-POEM의 경우, 염소 원자로 인해 전자 밀도가 높은 PVC가 어두운 영역으로 관찰되며, 전자 밀도가 낮은 POEM은 밝은 영역으로 관찰됨을 확인하였다. In the case of PVC- g- POEM, which is a synthesized copolymer, PVC with high electron density was observed in the dark region due to chlorine atom, and POEM with low electron density was observed in the bright region.

PVC-g-POEM/TTIP의 경우, 용액의 친수성이 강해져 PVC의 어두운 영역이 더 작은 크기로 균일하게 관찰됨을 확인하였다.In the case of PVC- g- POEM / TTIP, it was confirmed that the hydrophilic property of the solution became strong and the dark region of PVC was uniformly observed at a smaller size.

실험예 2. SEM 분석Experimental Example 2: SEM analysis

상기 실시예 1, 2와 비교예 1, 2에 따라 제조된 한외여과막의 기공 및 단면 성질을 주사 전자 현미경(Scanning electron microscopy, SEM)을 통해 분석하였으며, 그 결과를 각각 도 4, 5에 나타내었다.The pore and cross-sectional properties of the ultrafiltration membranes prepared according to Examples 1 and 2 and Comparative Examples 1 and 2 were analyzed by scanning electron microscopy (SEM), and the results are shown in FIGS. 4 and 5, respectively .

도 4를 참고하면, PVC-g-POEM을 상온의 물에 상전이 한 경우(비교예 1) 매우 작은 기공이 드물게 관찰되었다. 이는 PVC-g-POEM 고분자 성질이 물의 존재에 따라 팽창과 수축이 심하기 때문이고, POEM 곁사슬을 통해 용매 교환이 이루어지며 기공이 나타난 것으로 해석할 수 있다.Referring to FIG. 4, very small pores were rarely observed when PVC- g- POEM phase-transitions to water at room temperature (Comparative Example 1). It can be interpreted that the PVC- g- POEM polymer properties are swelled and shrunk according to the presence of water, and solvent exchange is performed through the POEM side chain and pores are formed.

PVC-g-POEM을 80 ℃의 물에 상전이 한 경우(비교예 2), 표면에서의 급격한 용매 교환이 일어나서 큰 기공들이 임의로 형성됨을 확인하였다.When PVC- g- POEM phase transitions to water at 80 캜 (Comparative Example 2), rapid solvent exchange takes place on the surface, and large pores are arbitrarily formed.

PVC-g-POEM 용액에 TTIP 무기 용액을 첨가하여 상온의 물에 상전이 한 경우(실시예 1), 표면에 기공이 잘 보임을 확인하였고, 이는 TTIP가 POEM 곁사슬을 쌍극자 인력을 통해 부분적으로 고정하기 때문에 이를 통해 친수성 용매인 디메틸포름아미드와 물의 용매 교환이 순수 고분자 용액일 때와 비교했을 때 더 잘 일어났다고 해석할 수 있다.When the TTIP inorganic solution was added to the PVC- g- POEM solution and the phase transition to water at room temperature (Example 1), it was confirmed that the pores were clearly visible on the surface. This was confirmed by the fact that TTIP partially fixed the POEM side chain through the dipole attraction Therefore, it can be interpreted that the solvent exchange between dimethylformamide, which is a hydrophilic solvent, and water is more effective than when pure polymer solution is used.

PVC-g-POEM 용액에 TTIP 무기 용액을 첨가하여 80 ℃의 물에 상전이 한 경우(실시예 2), TTIP가 곁사슬을 고정시켜서 비교예 2처럼 급격하게 용매 교환이 일어나지 않지만, 열역학적으로 사슬의 이동도 및 용매 교환 속도가 상승하여 더 크고 많은 기공이 형성되었음을 확인하였다. When the TTIP inorganic solution was added to the PVC- g- POEM solution and the phase transition occurred in water at 80 ° C (Example 2), TTIP fixed the side chain and did not cause rapid solvent exchange as in Comparative Example 2, but thermodynamically chain transfer And the rate of solvent exchange was increased to confirm that larger and more pores were formed.

도 5를 참고하면, 비교예 2를 제외한 나머지 경우, 꼭대기의 선택적 층과 손가락 모양의 아래층을 갖는 일반적인 비대칭적 구조가 형성되었음을 확인하였고, 실시예 2와 비교예 2의 경우가 실시예 1과 비교예 1에 비해 더 두꺼운 선택적 층을 가지고 있음을 확인하였다.5, it was confirmed that a general asymmetric structure having a selective layer at the top and a finger-shaped lower layer was formed in the other cases except for Comparative Example 2. In the case of Example 2 and Comparative Example 2, It is confirmed that the selective layer has a thicker layer than that of Example 1.

실험예 3. TTIP의 잔존 여부 분석Experimental Example 3. Analysis of TTIP Residue

상기 실시예 1, 2와 비교예 1, 2에 따라 제조된 한외여과막을 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)과 FT-IR을 통해 분석하였으며, 그 결과를 각각 도 6, 7에 나타내었다.The ultrafiltration membranes prepared according to Examples 1 and 2 and Comparative Examples 1 and 2 were analyzed by X-ray photoelectron spectroscopy (XPS) and FT-IR. The results are shown in FIGS. 6 and 7 Respectively.

도 6을 참고하면, 모든 경우에서 피크가 동일한 위치에 형성되었음을 확인하였으며, 이는 상전이 과정에서 TTIP가 모두 제거되었음을 의미한다.Referring to FIG. 6, it was confirmed that peaks were formed at the same positions in all cases, which means that all the TTIPs were removed during the phase transition.

도 7을 참고하면, 모든 경우에서 동일한 모양과 동일한 피크를 가짐을 확인하였으며, 이는 상전이 과정에서 TTIP가 모두 제거되었음을 의미한다.Referring to FIG. 7, it was confirmed that all cases had the same shape and same peak, which means that all the TTIPs were removed during the phase transition.

실험예 4. 한외여과막의 수처리 성능 평가Experimental Example 4. Evaluation of water treatment performance of ultrafiltration membrane

상기 실시예 1, 2와 비교예 1, 2에 따라 제조된 한외여과막의 수투과도와 보빈세럼알부민(Bovine serum albumin, BSA) 투과도를 측정하였으며, 그 결과를 도 8에 나타내었고 구체적인 분석 값은 하기 표 1에 나타내었다. 수투과도는 크로스 플로우 여과법을 통해 분석하였다. BSA 배제율은 투과한 BSA 용액을 278 nm 영역의 UV-가시광 분석기로 분석하여 그 투과도를 측정하고, 이로부터 배제율을 계산하였다.The water permeability of the ultrafiltration membrane prepared according to Examples 1 and 2 and Comparative Examples 1 and 2 and the permeability of bovine serum albumin (BSA) were measured. The results are shown in FIG. 8, Table 1 shows the results. Water permeability was analyzed by cross-flow filtration. The BSA rejection ratio was measured by analyzing the permeated BSA solution with a UV-Visible spectrometer in the 278 nm region, and the rejection rate was calculated from the permeability.

도 8을 참고하면, 실시예 1과 비교예 2가 실시예 2와 비교예 1에 비해 높은 BSA 배제율을 가진다는 것을 확인하였다.Referring to FIG. 8, it was confirmed that Example 1 and Comparative Example 2 had higher BSA elimination rates than Example 2 and Comparative Example 1.

구분division 비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예 1Example 1 실시예 2Example 2 Water permeance (LMH)Water permeance (LMH) 275275 138138 338338 185185 BSA solution permeance (LMH)BSA solution permeance (LMH) 4646 5959 7575 117117 BSA rejection (%)BSA rejection (%) 74.074.0 92.692.6 89.489.4 47.747.7 FRR (%)FRR (%) 40.540.5 64.664.6 91.991.9 97.697.6 Contatct angle (o)Contatct angle ( o ) 66.0 ± 0.966.0 ± 0.9 61.7 ± 4.961.7 ± 4.9 69.6 ± 3.669.6 ± 3.6 67.1 ± 1.967.1 ± 1.9 O/C atomic ratioO / C atomic ratio 0.1650.165 0.1760.176 0.1600.160 0.1620.162 Water content
(g/g membrane)
Water content
(g / g membrane)
6.26 ± 0.276.26 ± 0.27 2.62 ± 0.012.62 ± 0.01 7.03 ± 0.267.03 0.26 6.00 ± 0.406.00 0.40
Porosity (%)Porosity (%) 86.2 ± 0.5286.2 ± 0.52 72.4 ± 0.0572.4 ± 0.05 87.5 ± 0.3987.5 ± 0.39 85.7 ± 0.8285.7 ± 0.82

상기 표 1을 참고하면, 수투과도(Water permeance)는 TTIP 무기 용액을 첨가하여 상온에서 상전이 한 경우(실시예 1)가 가장 높음을 확인할 수 있다. 이는 TTIP와 POEM 곁사슬의 인력을 통해 통로를 잘 형성하여 더 높은 기공도(Porosity)를 가지게 되었기 때문이고, 이로 인해 물에 의한 팽창(Water content) 또한 실시예 1이 가장 높게 나타남을 확인할 수 있다.Referring to Table 1, it can be confirmed that the water permeance is highest when phase transition occurs at room temperature by adding an inorganic TTIP solution (Example 1). This is because the passages are well formed through the attraction of the TTIP and POEM side chains and thus have a higher porosity. As a result, it can be seen that Example 1 has the highest water content.

BSA에 대한 배제율(BSA rejection)을 보았을 때, 실시예 1과 비교예 1을 비교하면 TTIP와 POEM의 인력으로 인해 더 균일한 기공을 형성하여 상대적으로 더 높은 배제율을 얻었음을 확인하였다. 고분자 용액을 80 ℃ 물에서 상전이를 진행한 경우(비교예 2) 표면의 기공은 갑작스러운 용매 교환으로 큰 기공을 형성했지만, 그 아래 층에서 더 두꺼운 선택적 층을 형성하였고 이 때문에 낮은 수투과도와 높은 BSA 배제율을 보인 것으로 해석할 수 있다. TTIP 무기 용액을 첨가한 고분자 용액으로 80 ℃ 물에서 상전이를 진행한 경우(실시예 2) 두꺼운 선택층으로 인해 수투과도는 낮았지만, 기공의 크기가 커서 BSA 배제율이 더 낮음을 확인하였다.Comparing Example 1 with Comparative Example 1, BSA rejection showed that the exclusion rate was relatively higher due to the more uniform pore formation due to the attraction of TTIP and POEM. When the polymer solution was phase-transformed in water at 80 캜 (Comparative Example 2), pores on the surface formed large pores by sudden solvent exchange, but formed a thicker selective layer in the lower layer, BSA exclusion rate can be interpreted as showing. Example 2: Phase transformation in water at 80 캜 with a polymer solution containing TTIP inorganic solution (Example 2) Although the water permeability was low due to the thick selective layer, it was confirmed that the pore size was large and the BSA elimination rate was lower.

막오염도에 관하여 분석하였을 때, 실시예 1, 2는 막오염도의 측면에서 더 우수한 성능을 나타내었다. 고분자 용액을 사용한 경우(비교예 1, 2) 주로 POEM 통로를 통해 용매가 교환되지만, 동시에 PVC를 통해서도 상대적으로 많은 용매가 교환되므로 이렇게 형성된 기공에는 물로 씻을 수 없는 BSA 오염이 있었음을 FRR(Fractional flow reverse)로 확인하였다. 이에 반해 고분자 용액에 TTIP 무기 용액을 첨가한 경우(실시예 1, 2)는 확연히 높은 FRR 값을 가진다는 점을 확인하였다.When analyzed for membrane contamination, Examples 1 and 2 showed better performance in terms of membrane contamination. In the case of using the polymer solution (Comparative Examples 1 and 2), the solvent was exchanged mainly through the POEM passage, but at the same time, since a relatively large amount of solvent was exchanged also through the PVC, the FRA reverse). On the other hand, it was confirmed that when the TTIP inorganic solution was added to the polymer solution (Examples 1 and 2), the FRR value was remarkably high.

물의 접촉각과 산소/탄소 원자 비율을 확인한 결과, 고분자 용액에 TTIP 무기 용액을 첨가한 경우(실시예 1, 2) 막의 표면이 더 친수성을 가진다는 것을 확인하였다. 친수성 막 표면을 가진 경우 막의 오염이 줄어든다는 것이 공지의 사실이므로 실시예 1, 2가 상대적으로 막오염도 저감 효과가 뛰어난 것을 확인하였다.As a result of checking the contact angle of water and the oxygen / carbon atom ratio, it was confirmed that the surface of the membrane was more hydrophilic when the TTIP inorganic solution was added to the polymer solution (Examples 1 and 2). It is known that when a hydrophilic membrane surface is provided, the contamination of the membrane is reduced. Therefore, it is confirmed that Examples 1 and 2 are excellent in the effect of reducing membrane contamination.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. For example, each component described as a single entity may be distributed and implemented, and components described as being distributed may also be implemented in a combined form.

본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is defined by the appended claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included within the scope of the present invention.

Claims (10)

(a) 양친성 공중합체, 금속 산화물 전구체 및 용매를 혼합하여 용액을 제조하는 단계; 및
(b) 상기 용액을 기재 상에 도포한 후 상전이법을 이용하여 한외여과막을 제조하는 단계;를 포함하는 것을 특징으로 하는 수처리용 한외여과막의 제조방법.
(a) preparing a solution by mixing an amphipathic copolymer, a metal oxide precursor, and a solvent; And
(b) coating the solution on a substrate and then preparing an ultrafiltration membrane using a phase transfer method.
제1항에 있어서,
상기 양친성 공중합체는 소수성 고분자와 친수성 고분자가 그래프트 공중합된 것을 특징으로 하는 수처리용 한외여과막의 제조방법.
The method according to claim 1,
Wherein the amphiphilic copolymer is graft-copolymerized with a hydrophobic polymer and a hydrophilic polymer.
제1항에 있어서,
상기 양친성 공중합체는 원자 전달 라디칼 중합반응으로 합성된 것을 특징으로 하는 수처리용 한외여과막의 제조방법.
The method according to claim 1,
Wherein the amphiphilic copolymer is synthesized by an atom transfer radical polymerization reaction.
제2항에 있어서,
상기 소수성 고분자는 폴리비닐클로라이드, 폴리클로로트리플루오로에틸렌, 폴리디클로로디플루오로메탄, 폴리비닐리덴클로라이드, 폴리비닐리덴플루오라이드-co-클로로트리플루오로에틸렌 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나인 것을 특징으로 하는 수처리용 한외여과막의 제조방법.
3. The method of claim 2,
Wherein the hydrophobic polymer is selected from the group consisting of polyvinyl chloride, polychlorotrifluoroethylene, polydichloro difluoromethane, polyvinylidene chloride, polyvinylidene fluoride-co-chlorotrifluoroethylene, and a combination of two or more thereof Wherein the ultrafiltration membrane is a selected one.
제2항에 있어서,
상기 친수성 고분자는 폴리옥시에틸렌메타크릴레이트, 폴리히드록시에틸메타크릴레이트, 폴리t-부틸메타크릴레이트, 폴리아크릴아미드, 폴리N-비닐피롤리돈, 폴리아미노스티렌, 폴리스티렌술폰산, 폴리메틸프로펜술폰산, 폴리술포프로필메타크릴레이트, 폴리술포에틸메타크릴레이트, 폴리술포부틸메타크릴레이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나인 것을 특징으로 하는 수처리용 한외여과막의 제조방법.
3. The method of claim 2,
The hydrophilic polymer may be at least one selected from the group consisting of polyoxyethylene methacrylate, polyhydroxyethylmethacrylate, polyt-butyl methacrylate, polyacrylamide, poly N-vinylpyrrolidone, polyaminostyrene, polystyrenesulfonic acid, Wherein the ultrafiltration membrane is one selected from the group consisting of sulfonic acid, polysulfopropyl methacrylate, polysulfoethyl methacrylate, polysulfobutyl methacrylate, and combinations of two or more thereof.
제2항에 있어서,
상기 친수성 고분자와 상기 소수성 고분자의 중량비는 1 : 8 내지 10인 것을 특징으로 하는 수처리용 한외여과막의 제조방법.
3. The method of claim 2,
Wherein the weight ratio of the hydrophilic polymer to the hydrophobic polymer is 1: 8-10.
제1항에 있어서,
상기 금속 산화물 전구체는 티타늄 이소프로폭시드, 티타늄 부톡시드, 티타늄 에톡시드, 티타늄 프로폭시드, 티타늄 테트라클로라이드 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나인 것을 특징으로 하는 수처리용 한외여과막의 제조방법.
The method according to claim 1,
Wherein the metal oxide precursor is one selected from the group consisting of titanium isopropoxide, titanium butoxide, titanium ethoxide, titanium propoxide, titanium tetrachloride, and combinations of at least two of them. Way.
제1항에 있어서,
상기 상전이법은 물, 아세토나이트릴, 에탄올, 메탄올, 테트라하이드로퓨란 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 비용매와,
N-메틸피롤리돈, 디메틸아세타미드, 디메틸포름아미드, 트리에틸포스페이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 용매를 이용한 비용매 유도 상전이법인 것을 특징으로 하는 수처리용 한외여과막의 제조방법.
The method according to claim 1,
The phase transfer method may be carried out by mixing a non-solvent selected from the group consisting of water, acetonitrile, ethanol, methanol, tetrahydrofuran, and combinations of two or more thereof,
Wherein the solvent is selected from the group consisting of N-methylpyrrolidone, dimethylacetamide, dimethylformamide, triethylphosphate, and a combination of two or more thereof.
제1항 내지 제8항 중 어느 한 항에 따른 방법으로 제조된 것을 특징으로 하는 수처리용 한외여과막.9. An ultrafiltration membrane for water treatment characterized by being manufactured by the method according to any one of claims 1 to 8. 제9항에 있어서,
상기 수처리용 한외여과막은, 80% 내지 90%의 기공도(porosity) 및 85% 내지 95%의 보빈세럼알부민 배제율(Bovine serum albumin rejection)을 가지는 것을 특징으로 하는 수처리용 한외여과막.
10. The method of claim 9,
Wherein the water treatment ultrafiltration membrane has a porosity of 80% to 90% and a bovine serum albumin rejection of 85% to 95%.
KR1020170184271A 2017-12-29 2017-12-29 Water separating ultrafiltration membrane using complex of amphiphilic copolymer-metal oxide and method for manufacturing thereof KR102036585B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170184271A KR102036585B1 (en) 2017-12-29 2017-12-29 Water separating ultrafiltration membrane using complex of amphiphilic copolymer-metal oxide and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170184271A KR102036585B1 (en) 2017-12-29 2017-12-29 Water separating ultrafiltration membrane using complex of amphiphilic copolymer-metal oxide and method for manufacturing thereof

Publications (2)

Publication Number Publication Date
KR20190081613A true KR20190081613A (en) 2019-07-09
KR102036585B1 KR102036585B1 (en) 2019-10-25

Family

ID=67261113

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170184271A KR102036585B1 (en) 2017-12-29 2017-12-29 Water separating ultrafiltration membrane using complex of amphiphilic copolymer-metal oxide and method for manufacturing thereof

Country Status (1)

Country Link
KR (1) KR102036585B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220007757A (en) * 2020-07-09 2022-01-19 연세대학교 산학협력단 A polymer membrane comprising an amphiphilic branched copolymer, a gas separation membrane comprising the polymer membrane, and a method for manufacturing the polymer membrane
KR20220055745A (en) * 2020-10-27 2022-05-04 연세대학교 산학협력단 A amphiphilic comb-type copolymer, a polymer membrane comprising the same, a gas separation membrane comprising the polymer membrane, and a method for manufacturing the polymer membrane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101264202B1 (en) * 2010-12-31 2013-05-14 연세대학교 산학협력단 Mesoporous titanium dioxide membrane, dye-sensitive solar cell comprising the same, and preparation method therof
KR20150008687A (en) * 2013-07-15 2015-01-23 연세대학교 산학협력단 Method of preparing meso-porous magnesium titanate and carbon dioxide separation membranes using graft copolymer and method of preparing the same
KR20150064456A (en) * 2013-12-03 2015-06-11 삼성전자주식회사 Organic/inorganic hybrid membrane for fouling resistance, method of preparing membrane for fouling resistance, and water treatment device including said membrane
KR20150066362A (en) * 2013-12-06 2015-06-16 삼성전자주식회사 Semipermeable membranes and production methods thereof
KR20150141960A (en) * 2013-03-13 2015-12-21 폴리멤 Copolymer having amphiphilic blocks, and use thereof for manufacturing polymer filtration membranes
KR20170005039A (en) * 2014-05-01 2017-01-11 사빅 글로벌 테크놀러지스 비.브이. Amphiphilic block copolymercomposition membrane and separation module thereofand methods of making same
KR101763610B1 (en) * 2016-05-10 2017-08-14 한국과학기술연구원 A polymer membrane prepared using block copolymer and metallic salt as additive agents, and a method for preparing the polymer membrane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101264202B1 (en) * 2010-12-31 2013-05-14 연세대학교 산학협력단 Mesoporous titanium dioxide membrane, dye-sensitive solar cell comprising the same, and preparation method therof
KR20150141960A (en) * 2013-03-13 2015-12-21 폴리멤 Copolymer having amphiphilic blocks, and use thereof for manufacturing polymer filtration membranes
KR20150008687A (en) * 2013-07-15 2015-01-23 연세대학교 산학협력단 Method of preparing meso-porous magnesium titanate and carbon dioxide separation membranes using graft copolymer and method of preparing the same
KR20150064456A (en) * 2013-12-03 2015-06-11 삼성전자주식회사 Organic/inorganic hybrid membrane for fouling resistance, method of preparing membrane for fouling resistance, and water treatment device including said membrane
KR20150066362A (en) * 2013-12-06 2015-06-16 삼성전자주식회사 Semipermeable membranes and production methods thereof
KR20170005039A (en) * 2014-05-01 2017-01-11 사빅 글로벌 테크놀러지스 비.브이. Amphiphilic block copolymercomposition membrane and separation module thereofand methods of making same
KR101763610B1 (en) * 2016-05-10 2017-08-14 한국과학기술연구원 A polymer membrane prepared using block copolymer and metallic salt as additive agents, and a method for preparing the polymer membrane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Scientific Reports, 2016, Vol. 6, pp. 1-10 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220007757A (en) * 2020-07-09 2022-01-19 연세대학교 산학협력단 A polymer membrane comprising an amphiphilic branched copolymer, a gas separation membrane comprising the polymer membrane, and a method for manufacturing the polymer membrane
KR20220055745A (en) * 2020-10-27 2022-05-04 연세대학교 산학협력단 A amphiphilic comb-type copolymer, a polymer membrane comprising the same, a gas separation membrane comprising the polymer membrane, and a method for manufacturing the polymer membrane

Also Published As

Publication number Publication date
KR102036585B1 (en) 2019-10-25

Similar Documents

Publication Publication Date Title
He et al. Performance improvement for thin-film composite nanofiltration membranes prepared on PSf/PSf-g-PEG blended substrates
CN110475602B (en) Homogeneous pore self-assembled block copolymer membrane containing high molecular weight hydrophilic additive and preparation method thereof
KR20160136572A (en) Double crosslinked sodium alginate/polyvinyl alcohol composite nanofiltration membrane and preparation method thereof
KR20120132164A (en) Organic/inorganic hybrid compound for fouling resistance, membrane for fouling resistance, method of preparing membrane for fouling resistance
Patel et al. Synthesis of poly (vinyl chloride)-g-poly (3-sulfopropyl methacrylate) graft copolymers and their use in pressure retarded osmosis (PRO) membranes
CN103781537A (en) Composite membrane formed from polymer blend including self-assembling block copolymers
KR20190081613A (en) Water separating ultrafiltration membrane using complex of amphiphilic copolymer-metal oxide and method for manufacturing thereof
KR20190112693A (en) Membranes and method for producing membranes
KR101394396B1 (en) Porous polymer membrane with covalent bonding network structure and fabrication method thereof
KR20190081086A (en) Mixed matrix membrane comprising metal organic frameworks for separating carbon dioxide
KR101171983B1 (en) Organic-inorganic composite compositions, preparation methods thereof, water treatment membranes and water treatment modules comprising the same
KR20150000789A (en) Organic/inorganic hybrid compound for fouling resistance, membrane for fouling resistance, method of preparing membrane for fouling resistance
KR101823050B1 (en) Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof
Oor et al. Fabrication of organic solvent nanofiltration membranes with graphene oxide-enhanced covalent organic framework via interfacial polymerization
KR20120083695A (en) Polyacrylonitrile copolymer, method for manufacturing membrane including the same, membrane including the same and water treatment module using the same
US11554346B2 (en) Cross-linked nanofiltration membranes
KR102478269B1 (en) Anion-exchange membrane based on aminated poly(tyrene-ethylene-butylene-styrene) copolymer and manufacturing method thereof
CN114768549A (en) High-pressure deformation resistant porous membrane capable of being used as distillation membrane and preparation method thereof
CN107551834B (en) Composite forward osmosis membrane and preparation method thereof
KR101680077B1 (en) Gas separation membrane containing amphiphilic copolymer and method for preparing the same
Park et al. Ultrafiltration membranes based on hybrids of an amphiphilic graft copolymer and titanium isopropoxide
KR20130049113A (en) Organic/inorganic hybrid compound for fouling resistance, membrane for fouling resistance, method of preparing membrane for fouling resistance
JPH047026A (en) Composite semi-permeable membrane
KR102043348B1 (en) Gas separation membrane comprising thin layer containing metal-organic polyhedra and preparation method thereof
CN117683310B (en) Composite, ion exchange membrane, and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant