KR20190080060A - 무인항공기를 이용한 산림병해충 의심목 선별 시스템 - Google Patents
무인항공기를 이용한 산림병해충 의심목 선별 시스템 Download PDFInfo
- Publication number
- KR20190080060A KR20190080060A KR1020170182245A KR20170182245A KR20190080060A KR 20190080060 A KR20190080060 A KR 20190080060A KR 1020170182245 A KR1020170182245 A KR 1020170182245A KR 20170182245 A KR20170182245 A KR 20170182245A KR 20190080060 A KR20190080060 A KR 20190080060A
- Authority
- KR
- South Korea
- Prior art keywords
- tree
- damage
- image
- suspect
- forest
- Prior art date
Links
- 241000607479 Yersinia pestis Species 0.000 title claims abstract description 20
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims abstract description 43
- 235000011613 Pinus brutia Nutrition 0.000 claims abstract description 43
- 241000018646 Pinus brutia Species 0.000 claims abstract description 43
- 239000000284 extract Substances 0.000 claims abstract description 10
- 238000001514 detection method Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 20
- 238000010801 machine learning Methods 0.000 claims description 7
- 239000002023 wood Substances 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 9
- 201000010099 disease Diseases 0.000 abstract description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 3
- 238000011835 investigation Methods 0.000 abstract description 3
- 210000003739 neck Anatomy 0.000 description 17
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- GRWFGVWFFZKLTI-UHFFFAOYSA-N α-pinene Chemical compound CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000005667 attractant Substances 0.000 description 3
- 230000031902 chemoattractant activity Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- GRWFGVWFFZKLTI-IUCAKERBSA-N 1S,5S-(-)-alpha-Pinene Natural products CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 2
- HNVRRHSXBLFLIG-UHFFFAOYSA-N 3-hydroxy-3-methylbut-1-ene Chemical compound CC(C)(O)C=C HNVRRHSXBLFLIG-UHFFFAOYSA-N 0.000 description 2
- 241000254173 Coleoptera Species 0.000 description 2
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- BZAZNULYLRVMSW-UHFFFAOYSA-N 2-Methyl-2-buten-3-ol Natural products CC(C)=C(C)O BZAZNULYLRVMSW-UHFFFAOYSA-N 0.000 description 1
- KLMGMPDXSPSCOC-UHFFFAOYSA-N 2-undecoxyethanol Chemical compound CCCCCCCCCCCOCCO KLMGMPDXSPSCOC-UHFFFAOYSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 208000035415 Reinfection Diseases 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- VEIYJWQZNGASMA-UHFFFAOYSA-N cyclohex-3-en-1-ylmethanol Chemical compound OCC1CCC=CC1 VEIYJWQZNGASMA-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000001069 nematicidal effect Effects 0.000 description 1
- 239000003016 pheromone Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
- B64C39/024—Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/80—UAVs characterised by their small size, e.g. micro air vehicles [MAV]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/80—Arrangement of on-board electronics, e.g. avionics systems or wiring
- B64U20/87—Mounting of imaging devices, e.g. mounting of gimbals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- B64C2201/127—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
- B64U2101/31—UAVs specially adapted for particular uses or applications for imaging, photography or videography for surveillance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/40—UAVs specially adapted for particular uses or applications for agriculture or forestry operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- General Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Marketing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Human Resources & Organizations (AREA)
- General Business, Economics & Management (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Remote Sensing (AREA)
- Economics (AREA)
- Animal Husbandry (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Marine Sciences & Fisheries (AREA)
- Mechanical Engineering (AREA)
- Image Processing (AREA)
- Radiology & Medical Imaging (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Quality & Reliability (AREA)
Abstract
본 발명은 무인항공기를 이용하여 산림병해충이 의심되는 지역을 촬영하여 조사함에 따라 신속하게 현지 조사가 가능하고, 촬영한 영상을 이미지프로세싱을 통하여 재선충병에 해당하는 영역을 벡터로 추출하고, 추출된 벡터를 통하여 공간자료에 대한 위치정보와 개체수를 파악할 수 있게 한 무인항공기를 이용한 산림병해충 의심목 선별 시스템에 관한 것이다.
Description
본 발명은 무인항공기를 이용한 산림병해충 의심목 선별 방법에 관한 것으로, 상세하게는 무인항공기를 이용하여 산림병해충이 의심되는 지역을 촬영하여 조사함에 따라 신속하게 현지 조사가 가능하고, 촬영한 영상을 이미지프로세싱을 통하여 재선충병에 해당하는 영역을 벡터로 추출하고, 추출된 벡터를 통하여 공간자료에 대한 위치정보와 개체수를 파악할 수 있게 한 무인항공기를 이용한 산림병해충 의심목 선별 시스템에 관한 것이다.
우리나라는 전국토의 64%가 산림으로 이루어져 있으며, 1980년대 이후 지구의 평균 기온이 0.6℃증가해 기후변화에 따른 환경요인과 맞물려 산림생태계에 영향을 줄 가능성도 높을 것으로 예상된다. 특히 소나무재선충병은 1988년 부산에서 처음 발생된 이후 최근 급격히 확산되어 산림생태계에 많은 피해를 주고 있는 실정이다.
이에 따라 산림생태계에 영향을 미치는 소나무재선충병, 솔잎혹파리, 솔껍질깍지벌레 등 산림병해충으로부터 소중한 산림자원을 지키기 위한 효과적인 관리체계가 요구되고 있다.
이에 따라 소나무재선충의 방제를 위한 다양한 기술이 개발되고 있그 그 예로는 특허문헌 1 내지 3이 있다.
특허문헌 1은 소나무 재선충에 대한 식선충 효능을 갖는 진균에 감염된 소나무 재선충을 함유하는 소나무 재선충 방제용 조성물에 관한 것이고, 특허문헌 2는 활발한 비산이동성을 나타내지 않는 솔수염하늘소와 북방수염하늘소의 생리적, 생태적 및 행동적 특성에 기초하여 방제지역에 그물망 형태의 트랩시스템을 형성하여 전 세대기간의 솔수염하늘소와 북방수염하늘소를 지속적, 효과적으로 포획할 수 있어 솔수염하늘소와 북방수염하늘소에 의해 매개되는 소나무재선충에 의한 피해를 방제할 수 있고 피해의 발생여부를 예찰할 수 있게한 것이고, 특허문헌 3은 2-운데실옥시-1-에탄올 및 2-메틸-3부텐-2-올을 포함하는 페로몬 성분과, 알파-피넨 및 에탄올을 포함하는 제1 유인제 성분과, 알파-피넨 캄펜 dl-리모넨 아세트산 및 3-시클로헥센-1-메탄올을 포함하는 제2 유인제 성분을 포함하는 소나무재선충병 매개충 유인제 조성물에 관한 것이다.
이러한 소나무재선충 방제 기술은 효과적으로 소나무재선충을 방제할 수 있는 효과가 있다.
그러나 소나무재선충이 발생한 후에 방제를 하는 것 보다는 재선충이 발생하기 전 또는 재선충이 주변 소나무로 번지는 것을 방지하는 것이 바람직하고, 이를 위해 소나무재선충병 피해목의 발생을 예찰(豫察)하는 것이 중요하다.
이에 따라 산림청에서는 소나무재선충 피해목의 예착을 위해 항공촬영 또는 지상조사 등의 다양한 방법을 사용하고 있으나, 소나무재선충병의 전국적인 확산으로 피해목을 직접적인 현지조사 방법으로 수행하는 데 정확성 및 신속성에 어려움이 있는 상황이다. 특히 소나무재선충과 같이 매개충(媒介蟲)에 의한 경우 생태적으로 예찰시기를 놓치는 경우 반복적인 확산이 일어날 수 있으므로 방제시기에 대한 골든타임을 지키는 것이 중요하다.
이러한 단점을 개선하여 보다 쉽고 빠르게 소나무재선충 피해목 예찰을 위한 기술이 개발되고 있으며, 현재는 항공정밀예찰조사 방법과 지상정밀예찰조사로 나뉘어 예찰활동을 하고 있다.
항공정밀예찰조사는 헬기를 활용하여 이루어지고, 지상정밀예찰조사에는 피해전지역, 선단지 및 외곽지, 피해기발생지역에 대한 전수조사와 표준지 조사를 실시하고는 있으나 막대한 예산과 정확성 및 신속성에 한계가 있는 실정이다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하고자 개발된 것으로, 무인항공기를 이용하여 산림병해충이 의심되는 지역을 촬영하여 조사함에 따라 신속하게 현지 조사가 가능하고, 촬영한 영상을 이미지프로세싱을 통하여 재선충병에 해당하는 영역을 벡터로 추출하고, 추출된 벡터를 통하여 공간자료에 대한 위치정보와 개체수를 파악할 수 있게 한 무인항공기를 이용한 산림병해충 의심목 선별 시스템을 제공하는 것을 목적으로 한다.
이러한 목적을 이루기 위한 본 발명의 무인항공기를 이용한 산림병해충 의심목 선별 시스템은 해당 지역을 항공 촬영하는 무인항공기로부터 촬영된 영상을 분석하여 병해충 의심목을 선별하는 산림재해관리서버을 포함하는 산림병해충 의심목 선별 시스템으로, 상기 산림재해관리 서버는, 상기 무인항공기에 의해 촬영된 항공영상과 피해목의 예찰데이터로부터 피해목의 모델을 생성하는 피해목 모델을 생성하는 모델생성수단; 피해목을 검출하고자하는 영상으로부터 피해목 서식 후보영역을 검출하고, 후보영역과 피해목 모델을 사용하여 피해목 분류 및 피해목의 위치를 검출하는 피해목탐지/검출수단을 포함하는 것을 특징으로 한다.
상기 모델생성수단은 항공영상으로부터 정상목, 바닥영역, 그림자, 인공물를 포함하는 피해목외의 영상정보를 추출하고, 머신러닝을 통해 학습하기 위해 피해목 영상정보와 피해목외의 영상정보로부터 색상, 텍스쳐, 또는 근적외선 값 중 적어도 하나의 정보로 피해목 특징을 검출하고, 소나무 개체 인식 기준값을 설정한다.
상기 피해목탐지/검출수단은 무인항공기를 이용하여 촬영한 항공영상에 대하여 정사사진을 작성하고, 정사사진으로부터 감염 의심 대상 영역의 영상 화소를 의심 대상 도형으로 추출하며, 추출된 의심 대상 도형을 모델생성수단에서 생성된 모델과 대비하여 감염 의심 속성을 부여하며, 소나무 개체 인식 기준값에 따라 추출된 의심 대상 도형으로부터 감염 소나무의 개체 도형을 추출하여 의심 대상 영역의 피해목을 추출한다.
상기 예찰데이터는 위성에서 촬영한 위성영상이 사용될 수 있다.
상기 위성영상은 이코노스(KONOS), 지오아이(GEOEYE)를 포함하는 위성 중 어느 하나에서 촬영된 고해상도 영상이 바람직하다.
상술한 바와 같이, 본 발명에 따른 무인항공기를 이용한 산림병해충 의심목 선별 시스템은 무인항공기를 이용하여 특정지역에 대한 촬영을 통하여 신속하게 현지조사가 가능한 효과가 있다.
또한, 본 발명은 촬영한 영상을 이용하여 재선충에 해당하는 값(RGB값, 밴드값)을 이용하여 GPS측량을 통하지 않고도 위치정보와 개체수 파악이 가능할 수 있는 효과도 있다.
또한 본 발명은 지속적인 촬영영상에 대한 체계적인 관리를 위하여 영상에 대한 정보(촬영일시, 목적, 촬영자, 벡터 정보 등)를 체계적인 관리 및 이력사항을 시스템화함에 따라 보다 쉽게 재선충의 진행 상황을 예측 및 분석할 수 있는 효과도 있다.
도 1은 본 발명에 따른 무인항공기를 이용한 산림병해충 의심목 선별 시스템과 연계된 관련 시스템의 구성도
도 2는 본 발명에 따른 무인항공기를 이용한 산림병해충 의심목 선별 시스템을 구성하는 피해목탐지/검출수단의 구성도
도 3은 본 발명에 따른 무인항공기를 이용한 산림병해충 의심목 선별 시스템을 이용한 피해목 추출과정도
도 4는 본 발명에 따른 무인항공기를 이용한 산림병해충 의심목 선별 시스템을 이용한 피해목 추출과정의 영상
도 2는 본 발명에 따른 무인항공기를 이용한 산림병해충 의심목 선별 시스템을 구성하는 피해목탐지/검출수단의 구성도
도 3은 본 발명에 따른 무인항공기를 이용한 산림병해충 의심목 선별 시스템을 이용한 피해목 추출과정도
도 4는 본 발명에 따른 무인항공기를 이용한 산림병해충 의심목 선별 시스템을 이용한 피해목 추출과정의 영상
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하 본 발명의 바람직한 실시 예에 대하여, 첨부도면을 참조하여 상세하게 설명한다.
본 발명은 무인항공기를 이용하여 산림병해충이 의심되는 지역을 촬영하여 조사함에 따라 신속하게 현지 조사가 가능하고, 촬영한 영상을 이미지프로세싱을 통하여 재선충병에 해당하는 영역을 벡터로 추출하고, 추출된 벡터를 통하여 공간자료에 대한 위치정보와 개체수를 파악할 수 있다.
이하에서는 재선충을 비롯한 병해충에 감염된 소나무를 "피해목"이라 통칭하고, 피해목으로 검출될 수 있는 여지가 있는 소나무를 "의심목"이라 칭한다.
본 발명에 따른 무인항공기를 이용한 산림병해충 의심목 선별 시스템은 도 1에 도시한 바와 같이, 재선충 의심지역을 항공 촬영하는 무인항공기(10)와, 상기 무인항공기에 의해 촬영된 항공영상으로부터 피해목을 검출하는 산림재해관리서버(20)을 포함한다. 또한, 산림재해관리서버(20)는 산림재해관리서버(20)에서 검출된 피해목 정보를 이용하여 산림을 관리하거나 환경을 관리하는 외부 전산 장치나 시스템인 관련전산장치(30)와 유무선으로 연결되어 있다.
상기 산림재해관리서버(20)는 상기 무인항공기에 의해촬영된 영상과 대비할 피해목 모델을 설정하는 모델생성수단(21)과, 무인항공기에 의해 촬영된 촬영영상을 피해목 모델과 대비하여 피해목을 검출하는 피해목탐지/검출수단(22)을 포함한다.
상기 모델생성수단(21)은 상기 무인항공기에 의해 촬영된 항공영상과 피해목의 예찰데이터로부터 피해목의 모델을 생성하는 피해목 모델을 생성하는 기능을 하는 것으로, 항공영상으로부터 정상목, 바닥영역, 그림자, 인공물를 포함하는 피해목외의 영상정보를 추출하고, 머신러닝을 통해 학습하기 위해 피해목 영상정보와 피해목외의 영상정보로부터 색상, 텍스쳐, 또는 근적외선 값 중 적어도 하나의 정보로 피해목 특징을 검출하고, 소나무 개체 인식 기준값을 설정한다.
즉, 상기 모델생성수단(21)은 피해목의 특징과 정상목의 특징을 명확하게 설정하는 기능을 하는 것으로, 이는 시스템의 최초 설정시 예찰을 통해 설정될 수 있다.
예찰데이터는 위성에서 촬영한 위성영상이 될 수 있고, 이 위성영상 중 의심목이 분포된 지역을 지상예찰하거나 육안식별 방법으로 확인하여 의심목이 피해목인지 여부를 확정하고, 이 확정된 결과와 위성영상을 대비하여 피해목 영상의 특징을 추출하는 것이다.
상기 위성영상은 이코노스(KONOS), 지오아이(GEOEYE)를 포함하는 위성 중 어느 하나에서 촬영된 고해상도 영상인 것이 바람직하다.
물론, 피해목의 특징은 위성영상을 기반으로 의심목 분포지역을 무인항공기로 다시 촬영하여 영상정보로부터 추출된다.
상기 모델생성수단(21)에 의해 모델화된 피해목의 특징은 상기한 바와 같이, 색상, 텍스쳐 값이 될 수 있고, 소나무가 차지하는 평균 평면적을 고려하여 소나무 개체 인식 기준값이 설정된다.
색상을 피해목의 특징으로 설정할 경우, 피해목이 고사함에 의해 색상이 변하는 것을 고려하여 설정될 수 있으며, 통상적으로 피해목이 고사하면 적색이나 갈색으로 변하므로, 적색 또는 갈색의 채도나 농도를 피해목의 기준으로 설정할 수 있다.
텍스쳐를 피해목의 특징으로 설정할 경우, 피해목이 고사함에 따라 피해목의 형탸가 변하는 것을 고려한 것으로, 정상목과 피해목이 가지고 있는 고유한 형태 정보 특히, 정상목과 피해목 영상의 에지의 특징을 피해목의 기준으로 설정할 수 있다.
근적외선을 피해목의 특징으로 설정할 수도 있으나, 근적외선 영상은 피해목과 정상목 사이의 차이가 두드러지지 않음으로 참조 정보가 될 수 있을 뿐, 이를 피해목 검출 기중 정보로 사용할 수는 없다.
상기 무인항공기(10)에 의해 촬영된 영상은 촬영시기에 따라 피해목의 선별에 차이를 갖을 수 있다. 즉, 가을철의 경우에는 활엽수에 단풍이 들어 활엽수가 피해목과 같이 색이 변하므로, 단순히 색상만을 대비하여 피해목을 선별할 수 없다. 이에 따라 상기한 바와 같이, 색상과 텍스쳐를 혼합하여 사용함에 따라 보다 정확한 피해목을 선별할 수 있는 것이다.
상기와 같은 피해목의 특징은 모든 영상에서 추출한 특징 정보를 머신러닝 기법을 통해 학습을 수행함에 의해 보다 정확한 피해목의 특징을 찾을 수 있다.
상기 머신러닝은 이미 알려진 기술로, 입력 데이터를 기반으로 예측이나 결정을 이끌어내기 위해 특정한 모델을 구축하는 방식으로, 다양한 머신러닝 기법 중, 적은 데이터를 사용해도 비교적 우수한 성능을 보이는 SVM을 사용하는 것이 바람직하다.
머신러닝은 각각의 특징이 2차원 공간상에 있다고 생각했을 때, 그 특징점들을 나눌 수 있는 선에 대한 수학적 모델을 찾는 과정으로 이루어질 수 있고, 모델로부터 분류작업은 입력으로 들어온 특징점이 어느 영역에 포함되는지 구분함에 의해 이루어진다.
상기 피해목탐지/검출수단(22)은 상기 무인항공기(10)에 의해 촬영된 영상으로부터 피해목 서식 후보영역을 검출하고, 후보영역과 모델생성수단(21)에 의해 설정된 피해목 모델을 사용하여 피해목 분류 및 피해목의 위치를 검출하는 기능을 한다.
상기 피해목탐지/검출수단(22)은 도 2에 도시한 바와 같이, 이미지 프로세싱 모듈, 벡터추출모듈, 백터 분석 모듈, 화면표출 모듈을 포함하는 프로그램으로 이루어질 수 있다.
상기 피해목탐지/검출수단(22)은 무인항공기를 이용하여 촬영한 항공영상에 대하여 정사사진을 작성하고, 정사사진으로부터 감염 의심 대상 영역의 영상 화소를 의심 대상 도형으로 추출하며, 추출된 의심 대상 도형을 모델생성수단에서 생성된 모델과 대비하여 감염 의심 속성을 부여하며, 소나무 개체 인식 기준값에 따라 추출된 의심 대상 도형으로부터 감염 소나무의 개체 도형을 추출하여 의심 대상 영역의 피해목을 추출하여 벡터화한다.
즉, 상기 피해목탐지/검출수단(22)의 벡터추출모듈은 도 3에 도시한 바와 같이, 무인항공기에 의해 실시간 촬영된 항공영상의 정사사진에서 다른 영역과 다른 색상이나 텍스쳐를 찾아 감염 의심 대상 영역의 영상 화소를 의심 대상 도형으로 추출한다.
상기 피해목탐지/검출수단(22)을 구성하는 이미지 프로세싱 모듈은 상기 모델생성수단(21)에서 생성된 피해목의 특징 정보를 수신하여 피해목의 측정값을 설정하고, 특정값과 유사한 값을 지정할 수 있다. 물론, 이 이미지 프로세싱 모듈은 모델생성수단(21)과 일체로 구성될 수도 있다.
상기 이미지 프로세싱 모듈은 도 4의 (a)와 같이 무인항공기(10)에 의해 촬영된 영상으로부터 다른 부분과 색상이 다른(도면상 연 붉은색 부분) 부분을 찾아 피해복의 기준 위치값을 입력하고, 입력된 기준 위치값으로부터 오차 범위에 해당하는 오차값을 입력하며, 이 오차값이 적용된 기준 위치값에 해당하는 영역의 화소를 추출한다.
상기 이미지 프로세싱 모듈에 의해 피해목 발생 위치의 화소가 추출되면, 이는 벡터추출모듈에 전달되고, 벡터 추출 모듈은 피해목 발생 위치의 화소를 도 4 (b)dp 도시한 바와 같이 도형으로 추출하고, 추출된 도형의 각 부분에 감염 의심 속성을 부여한다.
물론, 이때 감염 여부는 상기 모델생성수단(21)에 의해 설정된 피해목 모델과 대비함에 의해 이루어진다.
상기 벡터 추출 모듈에 의해 소정 영역의 추출된 도형에 감염 의심 속성이 부여되면, 벡터 분석 모듈은 해당 영역의 소나무 개체수를 분석한다.
이 벡터 분석 모듈에서 분석되는 소나무 개체 인식의 기준값은 상기 모델생성수단(21)에서 피해목 특징 설정시 설정될 수 있고, 개체 인식 기준값은 통상의 소나무의 평면적을 고려하여 설정될 수 있다. 또한 상기한 바와 같이 텍스쳐 정보를 이용하여 소나무의 에지 정보를 대입함에 의해 소나무 개체를 구분할 수도 있다.
소나무 개체 기준값에 따라 의심 영역의 소나무 개체수가 추출되면 각 소나누 개체는 각각의 도형으로 추출될 수 있고, 각 소나무 개체마다 피해목 확정 시간이나 확정판단자, 정확한 위치 등의 정보가 연계될 수 있다.
상기와 같이 피해목이 선별되면 해당 정보는 데이터베이스(23)에 저장된다.
데이터베이스(23)는 무인항공기에 의해 최초 촬영된 영상은 물론, 본 발명에 의해 선별된 선별 피해목 정보와 선별 과정에 대항 정보가 저장된다.
상기 화면표출 모듈은 선별 정보를 디스플레이로 전송하여 표시하는 수단으로, 피해목 선별 제반 과정이 표시하고, 각 단계에서 만들어진 정보를 레이어로 구분하여 데이터베이스에 저장된과 동시에 디스플레이로 표출되며, 단계별로 생성된 레이어를 중첩하여 최종적으로 검출 또는 선별된 피해목을 디스플레이하며, 일측에는 해당 피해목 또는 의심목과 관련된 제방 정보가 표시될 수 있다.
10: 무인항공기
20: 산림재해관리서버
21: 모델생성수단 22: 피해목탐지/검출수단
23: 데이터베이스
30: 관련전산망
20: 산림재해관리서버
21: 모델생성수단 22: 피해목탐지/검출수단
23: 데이터베이스
30: 관련전산망
Claims (6)
- 해당 지역을 항공 촬영하는 무인항공기(10)로부터 촬영된 영상을 분석하여 병해충 의심목을 선별하는 산림재해관리 서버(20)을 포함하는 산림병해충 의심목 선별 시스템으로,
상기 산림재해관리서버(20)는,
상기 무인항공기에 의해 촬영된 항공영상과 피해목의 예찰데이터로부터 피해목의 모델을 생성하는 피해목 모델을 생성하는 모델생성수단(21);
피해목을 검출하고자하는 영상으로부터 피해목 서식 후보영역을 검출하고, 후보영역과 피해목 모델을 사용하여 피해목 분류 및 피해목의 위치를 검출하는 피해목탐지/검출수단(22)을 포함하는 것을 특징으로 하는 무인항공기를 이용한 산림병해충 의심목 선별 시스템. - 제1항에 있어서,
상기 모델생성수단(21)과 피해목탐지/검출수단(22)은 프로그램에 의해 만들어진 것을 특징으로 하는 무인항공기를 이용한 산림병해충 의심목 선별 시스템. - 제1항 또는 제2항에 있어서,
상기 모델생성수단(21)은 항공영상으로부터 정상목, 바닥영역, 그림자, 인공물를 포함하는 피해목외의 영상정보를 추출하고, 머신러닝을 통해 학습하기 위해 피해목 영상정보와 피해목외의 영상정보로부터 색상, 텍스쳐, 또는 근적외선 값 중 적어도 하나의 정보로 피해목 특징을 검출하고, 소나무 개체 인식 기준값을 설정하는 것을 특징으로 하는 무인항공기를 이용한 산림병해충 의심목 선별 시스템. - 제1항 내지 제3항 중 어느 한항에 있어서,
상기 피해목탐지/검출수단(22)은 무인항공기를 이용하여 촬영한 항공영상에 대하여 정사사진을 작성하고, 정사사진으로부터 감염 의심 대상 영역의 영상 화소를 의심 대상 도형으로 추출하며, 추출된 의심 대상 도형을 모델생성수단에서 생성된 모델과 대비하여 감염 의심 속성을 부여하며, 소나무 개체 인식 기준값에 따라 추출된 의심 대상 도형으로부터 감염 소나무의 개체 도형을 추출하여 의심 대상 영역의 피해목을 추출하여 벡터화하는 것을 특징으로 하는 무인항공기를 이용한 산림병해충 의심목 선별 시스템. - 제4항에 있어서,
상기 예찰데이터는 위성에서 촬영한 위성영상인 것을 특징으로 하는 무인항공기를 이용한 산림병해충 의심목 선별 시스템. - 제5항에 있어서,
상기 위성영상은 이코노스(KONOS), 지오아이(GEOEYE)를 포함하는 위성 중 어느 하나에서 촬영된 고해상도 영상인 것을 특징으로 하는 무인항공기를 이용한 산림병해충 의심목 선별 시스템.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170182245A KR102098259B1 (ko) | 2017-12-28 | 2017-12-28 | 무인항공기를 이용한 산림병해충 의심목 선별 시스템 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170182245A KR102098259B1 (ko) | 2017-12-28 | 2017-12-28 | 무인항공기를 이용한 산림병해충 의심목 선별 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190080060A true KR20190080060A (ko) | 2019-07-08 |
KR102098259B1 KR102098259B1 (ko) | 2020-05-26 |
Family
ID=67256210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170182245A KR102098259B1 (ko) | 2017-12-28 | 2017-12-28 | 무인항공기를 이용한 산림병해충 의심목 선별 시스템 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102098259B1 (ko) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210047228A (ko) * | 2019-10-21 | 2021-04-29 | 배재대학교 산학협력단 | 시맨틱 분할을 이용한 소나무 재선충 확산 방지 시스템 및 방법 |
CN112753456A (zh) * | 2020-12-30 | 2021-05-07 | 山东农业大学 | 一种基于时空规律的松材线虫病精准防控方法及系统 |
KR20210144233A (ko) * | 2020-05-22 | 2021-11-30 | (주) 아이렘기술개발 | 해안쓰레기 모니터링을 위한 데이터베이스 구축 방법 및 이를 이용한 해안쓰레기 모니터링 시스템 |
CN114049311A (zh) * | 2021-10-27 | 2022-02-15 | 中电智能技术南京有限公司 | 基于rgb色彩识别虫板烟虫数量的计算方法及系统 |
KR20230027823A (ko) * | 2021-08-20 | 2023-02-28 | 국립공원공단 | 인공지능 기반의 고사목 검출장치 및 방법 |
KR20230110405A (ko) * | 2022-01-14 | 2023-07-24 | 한국전력공사 | 문제수목 확인드론 및 방법 |
CN116884041A (zh) * | 2023-09-05 | 2023-10-13 | 肥城市林业保护发展中心 | 基于区域历史数据的林业虫灾预测方法及系统 |
CN118124838A (zh) * | 2024-05-08 | 2024-06-04 | 杭州而墨农业技术有限公司 | 一种苗情和病虫害预警巡逻无人机及方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220168875A (ko) | 2021-06-17 | 2022-12-26 | 대한민국(농촌진흥청장) | 인공지능을 이용하여 벼 도복 피해면적을 산정하는 장치 및 방법 |
KR20230067326A (ko) | 2021-11-09 | 2023-05-16 | 서울과학기술대학교 산학협력단 | 무인항공기를 이용한 산림병해충 검출 시스템 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101033270B1 (ko) | 2010-06-21 | 2011-05-09 | (주)대덕바이오 | 소나무 재선충 방제용 조성물 및 이를 이용한 방제 방법 |
KR101530827B1 (ko) | 2014-08-19 | 2015-06-24 | 박영식 | 솔수염하늘소와 북방수염하늘소의 발생예찰 및 대량포획에 의한 소나무재선충병의 방제방법 |
KR101545479B1 (ko) * | 2015-03-31 | 2015-08-24 | 김명준 | 무인항공기 정사영상을 이용한 산림 병해충 피해목 검출 방법 |
KR101641927B1 (ko) | 2015-11-25 | 2016-07-25 | 주식회사 그린 아그로텍 | 소나무재선충병 매개충 유인제 조성물 및 이를 이용한 소나무재선충병의 방제방법 |
KR20170125470A (ko) * | 2016-05-04 | 2017-11-15 | 주식회사 씨에스랩 | 항공 영상을 이용한 병해충 피해목 탐지 방법 및 이를 위한 병해충 피해목 탐지 시스템 |
KR20170139849A (ko) * | 2016-06-10 | 2017-12-20 | 주식회사 비전아이티 | 드론을 이용하여 산림의 병해충을 모니터링하는 시스템 및 그의 운영 방법 |
-
2017
- 2017-12-28 KR KR1020170182245A patent/KR102098259B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101033270B1 (ko) | 2010-06-21 | 2011-05-09 | (주)대덕바이오 | 소나무 재선충 방제용 조성물 및 이를 이용한 방제 방법 |
KR101530827B1 (ko) | 2014-08-19 | 2015-06-24 | 박영식 | 솔수염하늘소와 북방수염하늘소의 발생예찰 및 대량포획에 의한 소나무재선충병의 방제방법 |
KR101545479B1 (ko) * | 2015-03-31 | 2015-08-24 | 김명준 | 무인항공기 정사영상을 이용한 산림 병해충 피해목 검출 방법 |
KR101641927B1 (ko) | 2015-11-25 | 2016-07-25 | 주식회사 그린 아그로텍 | 소나무재선충병 매개충 유인제 조성물 및 이를 이용한 소나무재선충병의 방제방법 |
KR20170125470A (ko) * | 2016-05-04 | 2017-11-15 | 주식회사 씨에스랩 | 항공 영상을 이용한 병해충 피해목 탐지 방법 및 이를 위한 병해충 피해목 탐지 시스템 |
KR20170139849A (ko) * | 2016-06-10 | 2017-12-20 | 주식회사 비전아이티 | 드론을 이용하여 산림의 병해충을 모니터링하는 시스템 및 그의 운영 방법 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210047228A (ko) * | 2019-10-21 | 2021-04-29 | 배재대학교 산학협력단 | 시맨틱 분할을 이용한 소나무 재선충 확산 방지 시스템 및 방법 |
KR20210144233A (ko) * | 2020-05-22 | 2021-11-30 | (주) 아이렘기술개발 | 해안쓰레기 모니터링을 위한 데이터베이스 구축 방법 및 이를 이용한 해안쓰레기 모니터링 시스템 |
CN112753456A (zh) * | 2020-12-30 | 2021-05-07 | 山东农业大学 | 一种基于时空规律的松材线虫病精准防控方法及系统 |
CN112753456B (zh) * | 2020-12-30 | 2021-12-21 | 山东农业大学 | 一种基于时空规律的松材线虫病精准防控方法及系统 |
KR20230027823A (ko) * | 2021-08-20 | 2023-02-28 | 국립공원공단 | 인공지능 기반의 고사목 검출장치 및 방법 |
CN114049311A (zh) * | 2021-10-27 | 2022-02-15 | 中电智能技术南京有限公司 | 基于rgb色彩识别虫板烟虫数量的计算方法及系统 |
KR20230110405A (ko) * | 2022-01-14 | 2023-07-24 | 한국전력공사 | 문제수목 확인드론 및 방법 |
CN116884041A (zh) * | 2023-09-05 | 2023-10-13 | 肥城市林业保护发展中心 | 基于区域历史数据的林业虫灾预测方法及系统 |
CN116884041B (zh) * | 2023-09-05 | 2023-11-10 | 肥城市林业保护发展中心 | 基于区域历史数据的林业虫灾预测方法及系统 |
CN118124838A (zh) * | 2024-05-08 | 2024-06-04 | 杭州而墨农业技术有限公司 | 一种苗情和病虫害预警巡逻无人机及方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102098259B1 (ko) | 2020-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20190080060A (ko) | 무인항공기를 이용한 산림병해충 의심목 선별 시스템 | |
JP6921095B2 (ja) | 航空画像を収集及び分析するための方法 | |
Ferraz et al. | Lidar detection of individual tree size in tropical forests | |
Zhu et al. | Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change | |
Lin et al. | Detecting newly grown tree leaves from unmanned-aerial-vehicle images using hyperspectral target detection techniques | |
Cardil et al. | Quantifying pine processionary moth defoliation in a pine-oak mixed forest using unmanned aerial systems and multispectral imagery | |
Abd-Elrahman et al. | Development of pattern recognition algorithm for automatic bird detection from unmanned aerial vehicle imagery | |
US8369567B1 (en) | Method for detecting and mapping fires using features extracted from overhead imagery | |
US9619711B2 (en) | Multi-spectral image labeling with radiometric attribute vectors of image space representation components | |
RU2634225C1 (ru) | Способы и системы поиска объекта в видеопотоке | |
Fust et al. | Development perspectives for the application of autonomous, unmanned aerial systems (UASs) in wildlife conservation | |
Amiri et al. | Estimation of regeneration coverage in a temperate forest by 3D segmentation using airborne laser scanning data | |
CN108960124A (zh) | 用于行人再识别的图像处理方法及装置 | |
Damodaran et al. | Assessment of the impact of dimensionality reduction methods on information classes and classifiers for hyperspectral image classification by multiple classifier system | |
Yang et al. | A hierarchical Dempster-Shafer evidence combination framework for urban area land cover classification | |
McClelland et al. | Manned aircraft versus small unmanned aerial system—forestry remote sensing comparison utilizing lidar and structure-from-motion for forest carbon modeling and disturbance detection | |
Snavely et al. | Mapping vegetation community types in a highly disturbed landscape: integrating hierarchical object-based image analysis with lidar-derived canopy height data | |
Jemaa et al. | Computer vision system for detecting orchard trees from UAV images | |
Yang et al. | Auto‐identification of two Sitophilus sibling species on stored wheat using deep convolutional neural network | |
Massetti et al. | Detection of Yucca gloriosa in Mediterranean coastal dunes: A comparative analysis of field-based sampling, human interpretation of UAV imagery and deep learning to develop an effective tool for controlling invasive plants | |
Akinbiola et al. | Application of UAV photogrammetry for the assessment of forest structure and species network in the tropical forests of southern nigeria | |
Pagacz et al. | Estimating ground surface visibility on thermal images from drone wildlife surveys in forests | |
Kong et al. | Toward the automatic detection of access holes in disaster rubble | |
Walter | Object-based classification of integrated multispectral and LIDAR data for change detection and quality control in urban areas | |
Kamarulzaman et al. | Integrated Segmentation Approach with Machine Learning Classifier in Detecting and Mapping Post Selective Logging Impacts Using UAV Imagery. Forests 2022, 13, 48 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |