KR20190074099A - Organic compounds and organic electro luminescence device comprising the same - Google Patents

Organic compounds and organic electro luminescence device comprising the same Download PDF

Info

Publication number
KR20190074099A
KR20190074099A KR1020170175482A KR20170175482A KR20190074099A KR 20190074099 A KR20190074099 A KR 20190074099A KR 1020170175482 A KR1020170175482 A KR 1020170175482A KR 20170175482 A KR20170175482 A KR 20170175482A KR 20190074099 A KR20190074099 A KR 20190074099A
Authority
KR
South Korea
Prior art keywords
group
mmol
mol
layer
aryl
Prior art date
Application number
KR1020170175482A
Other languages
Korean (ko)
Other versions
KR102535175B1 (en
Inventor
김홍석
라종규
조현종
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Priority to KR1020170175482A priority Critical patent/KR102535175B1/en
Publication of KR20190074099A publication Critical patent/KR20190074099A/en
Application granted granted Critical
Publication of KR102535175B1 publication Critical patent/KR102535175B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • H01L51/0072
    • H01L51/0074
    • H01L51/5012
    • H01L51/5048
    • H01L51/5088
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Abstract

The present invention relates to a novel compound and an organic electroluminescent device comprising the same. A compound according to the present invention is used for an organic layer, preferably a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer, or an electron injecting layer of the organic electroluminescent device, thereby being able to improve luminous efficiency, driving voltage, lifespan and the like of the organic electroluminescent device.

Description

유기 화합물 및 이를 포함하는 유기 전계 발광 소자{ORGANIC COMPOUNDS AND ORGANIC ELECTRO LUMINESCENCE DEVICE COMPRISING THE SAME}TECHNICAL FIELD [0001] The present invention relates to an organic compound and an organic electroluminescent device including the organic compound.

본 발명은 유기 전계 발광 소자용 재료로서 사용될 수 있는 신규 유기 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것이다.The present invention relates to a novel organic compound that can be used as a material for an organic electroluminescence device and an organic electroluminescence device including the same.

1950년대 베르나소스(Bernanose)의 유기 박막 발광 관측을 시점으로 하여, 1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광(electroluminescent, EL) 소자에 대한 연구가 이어져 오다가, 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층 구조의 유기 전계 발광 소자가 제시되었다. 이후, 고효율, 고수명의 유기 전계 발광 소자를 만들기 위하여, 소자 내 각각의 특징적인 유기물층을 도입하는 형태로 발전하여 왔으며, 이에 사용되는 특화된 물질의 개발로 이어졌다.The electroluminescent (EL) devices that led to blue electroluminescence using anthracene single crystals in 1965 were followed up with the observation of organic thin film emission from Bernanose in the 1950s. In 1987, Tang The organic light emitting device having a laminated structure in which the hole layer and the functional layer of the light emitting layer are divided. Thereafter, in order to form a high efficiency and high number of organic electroluminescent devices, each organic material layer has been developed into a form in which each organic material layer has been introduced into the device, leading to the development of specialized materials used therefor.

유기 전계 발광 소자는 두 전극 사이에 전압을 걸어주면 양극에서는 정공이 유기물층으로 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이때, 유기물층으로 사용되는 물질은 그 기능에 따라, 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다.In the organic electroluminescent device, when a voltage is applied between two electrodes, holes are injected into the organic layer in the anode, and electrons are injected into the organic layer in the cathode. When the injected holes and electrons meet, an exciton is formed. When the exciton falls to the ground state, light is emitted. At this time, the material used as the organic material layer can be classified into a light emitting material, a hole injecting material, a hole transporting material, an electron transporting material, an electron injecting material and the like depending on its function.

발광 물질은 발광색에 따라 청색, 녹색, 적색 발광 물질과, 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 물질로 구분될 수 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 물질로서 호스트/도펀트 계를 사용할 수 있다.The luminescent material can be classified into blue, green and red luminescent materials according to luminescent colors and yellow and orange luminescent materials necessary for realizing better natural colors. Further, in order to increase the color purity and increase the luminous efficiency through energy transfer, a host / dopant system can be used as a light emitting material.

도펀트 물질은 유기 물질을 사용하는 형광 도펀트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도펀트로 나눌 수 있다. 이때, 인광 재료는 이론적으로 형광 재료에 비해 4배의 발광 효율을 향상시킬 수 있기 때문에, 인광 도펀트 뿐만 아니라 인광 호스트 재료들에 대한 연구도 많이 진행되고 있다.The dopant material can be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt. Since the phosphorescent material can theoretically improve the luminous efficiency four times higher than that of the fluorescent material, studies on the phosphorescent host materials as well as the phosphorescent dopant are being conducted.

현재까지 정공 주입층, 정공 수송층, 정공 차단층, 전자 수송층 재료로는 NPB, BCP, Alq3 등이 널리 알려져 있으며, 발광층 재료로는 안트라센 유도체들이 보고되고 있다. 특히, 발광 재료 중 효율 향상 측면에서 장점을 가지고 있는 인광 재료들은 청색(blue), 녹색(green), 적색(red) 도판트 재료로서 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등의 Ir을 포함하는 금속 착체 화합물이 사용되고 있다. 현재까지는 4,4-디카바졸리비페닐(4,4-dicarbazolybiphenyl, CBP)은 인광 호스트 재료로서 우수한 특성을 나타내고 있다.To date, NPB, BCP and Alq 3 have been widely known as the hole injecting layer, the hole transporting layer, the hole blocking layer and the electron transporting layer material, and anthracene derivatives have been reported as the light emitting layer material. Particularly, phosphorescent materials having advantages in terms of efficiency improvement of light emitting materials include blue, green and red dopant materials such as Firpic, Ir (ppy) 3 , (acac) Ir (btp) 2 A metal complex compound containing Ir is used. Up to now, 4,4-dicarbazolybiphenyl (CBP) has shown excellent properties as a phosphorescent host material.

그러나, 기존의 재료들은 발광 특성 측면에서는 유리한 면이 있으나, 유리전이온도가 낮아 열적 안정성이 떨어지기 때문에, 유기 전계 발광 소자의 수명 측면에서 만족할 만한 수준이 되지 못하는 실정이다. 따라서, 보다 성능이 뛰어난 재료의 개발이 요구되고 있다.However, conventional materials have advantages in terms of light emission characteristics, but their thermal stability is lowered due to a low glass transition temperature, and thus the life of the organic light emitting device is not satisfactory. Therefore, development of materials with higher performance is required.

본 발명은 높은 유리 전이온도로 인해 열적 안전성이 우수하면서, 정공과 전자의 결합력을 향상시킬 수 있는 신규 유기 화합물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a novel organic compound capable of improving the bonding force between holes and electrons while having a high thermal stability due to a high glass transition temperature.

또한, 본 발명은 상기 신규 유기 화합물을 포함하여 낮은 구동 전압과 높은 발광 효율을 나타내며 수명이 향상된 유기 전계 발광 소자를 제공하는 것을 목적으로 한다.It is another object of the present invention to provide an organic electroluminescent device including the novel organic compound and exhibiting a low driving voltage and a high luminous efficiency and having an improved lifetime.

상기한 목적을 달성하기 위해, 본 발명의 일례는 하기 화학식 1로 표시되는 화합물을 제공한다.In order to achieve the above object, an example of the present invention provides a compound represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서,In Formula 1,

X1 및 X2 중 어느 하나는 N, 다른 하나는 C(R11)이고,One of X 1 and X 2 is N and the other is C (R 11 )

R1 내지 R11은 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 인접한 기와 결합하여 축합 고리를 형성하며, 이때, R1과 R2, R2와 R3, R3와 R4 중 반드시 하나는 서로 결합하여 축합 고리를 형성하고, R5와 R6, R6와 R7, R7과 R8 중 반드시 하나는 서로 결합하여 축합 고리를 형성하며, R9과 R10은 서로 결합하여 축합 고리를 형성하고,R 1 to R 11 each independently represent hydrogen, deuterium, a halogen, a cyano group, a nitro group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ of C 40 cycloalkyl group, a number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 6 ~ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 1 ~ alkyloxy group of C 40, C 6 ~ aryloxy group of C 60, C 3 ~ C 40 alkylsilyl group, C group 6 ~ C 60 aryl silyl, C 1 ~ arylboronic of C 40 group of an alkyl boron, C 6 ~ C 60 group, C 6 ~ aryl phosphine of C 60 pingi, C 6 ~ C 60 mono or diaryl phosphine blood group and a C 6 ~, or selected from the group consisting of an aryl amine of the C 60, the combined contiguous groups to form a fused ring, wherein, R 1 and R 2, R 2 and R 3, R 3 and R 4 must be one of which is to be bonded to each other to form a condensed ring, R 5 and R 6, R 6 and R 7, R 7 and R 8 must be either each other To form a condensed ring, R 9 and R 10 are bonded to each other to form a condensed ring,

L은 단일결합, C6~C18의 아릴렌기 및 핵원자수 5 내지 18개의 헤테로아릴렌기로 이루어진 군에서 선택되고,L is selected from the group consisting of a single bond, an arylene group having 6 to 18 carbon atoms and a heteroarylene group having 5 to 18 nuclear atoms,

상기 L의 아릴렌기, 헤테로아릴렌기 및 R1 내지 R11의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이할 수 있다.Aryl group, a heteroaryl alkyl group and R 1 to R 11 of the L, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aryloxy group, an alkyloxy group, a cycloalkyl group, a heterocycloalkyl group, an arylamine group, alkylsilyl group, an alkyl boron group, an aryl boron group, an aryl phosphine group, a mono- or diaryl phosphine blood group and an aryl silyl group each independently selected from deuterium, halogen, a cyano group, a nitro group, an alkyl group of C1 ~ C40, C 2 ~ C A C 2 to C 40 alkynyl group, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 6 to C 60 aryloxy group, a C 1 to C 40 An alkyloxyl group, a C 6 to C 60 arylamine group, a C 3 to C 40 cycloalkyl group, a cyclohexyl group having 3 to 40 nuclear atoms, a C 1 to C 40 alkylsilyl group, a C 1 to C 40 boron alkyl group, C 6 ~ C 60 aryl boron group, C 6 ~ C 60 aryl phosphine group, C 6 ~ C 60 mono or diaryl phosphine of blood group and a C 6 ~ C 60 aryl silyl When substituted by one or more substituent species selected from the group consisting of or being substituted by plural substituents Beach and ring, they may be the same or different from each other.

또한, 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하고, 상기 1층 이상의 유기물 층에서 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자를 제공한다.In addition, the present invention provides an organic electroluminescent device comprising a cathode, a cathode, and at least one organic layer sandwiched between the anode and the cathode, wherein at least one of the organic layers includes a compound represented by Formula 1 A light emitting device is provided.

여기서, 상기 화학식 1로 표시되는 화합물을 포함하는 1층 이상의 유기물층 중 적어도 하나는 정공 주입층, 정공 수송층, 전자수송층, 전자주입층 및 발광층으로 구성된 군으로부터 선택될 수 있으며, 발광층인 것이 바람직하다. 이때 상기 화학식 1로 표시되는 화합물은 녹색 또는 적색의 인광 호스트 재료이다.At least one organic layer including at least one compound represented by Formula 1 may be selected from the group consisting of a hole injecting layer, a hole transporting layer, an electron transporting layer, an electron injecting layer, and a light emitting layer, and is preferably a light emitting layer. Wherein the compound represented by Formula 1 is a green or red phosphorescent host material.

본 발명의 일례에 따른 화학식 1로 표시되는 화합물은 열적 안정성, 캐리어 수송능, 발광능 등이 우수하기 때문에 유기 전계 발광 소자의 유기물층 재료로 사용될 수 있다.The compound represented by the formula (1) according to an example of the present invention is excellent in thermal stability, carrier transport ability, and light emitting ability, and can be used as an organic material layer material of an organic electroluminescent device.

도 1은 본 발명의 일 실시예에 따른 유기 전계 발광 소자의 구조를 나타내는 단면도이다.
도 2는 본 발명의 일 실시예에 따른 유기 전계 발광 소자의 구조를 나타내는 단면도이다.
1 is a cross-sectional view illustrating a structure of an organic electroluminescent device according to an embodiment of the present invention.
2 is a cross-sectional view illustrating a structure of an organic electroluminescent device according to an embodiment of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

<신규 유기 화합물><New Organic Compound>

본 발명에 따른 신규 유기 화합물은 축합 형태의 다이벤죠카바졸계 코어 (core)로 기본 골격을 이루며, 이러한 기본 골격에 다양한 치환체가 결합된 구조로서, 상기 화학식 1로 표시된다.The novel organic compound according to the present invention is a condensation type dibenzocarbazole based core which has a basic skeleton and various substituents bonded to the basic skeleton,

구체적으로, 상기 축합 형태의 다이벤죠카바졸계 계열 코어 구조들은 전기화학적 안정성이 우수하고, 캐리어 수송 능력이 우수하다. 특히 전자 및 정공 수송 이동성이 매우 우수하여, 발광층 내에서의 캐리어들의 밸런스가 매우 우수한 특성들을 나타낸다.Specifically, the condensed dibenzocarbazole series core structures have excellent electrochemical stability and excellent carrier transport ability. In particular, the electron and hole transport mobility is very excellent, and the balance of the carriers in the light emitting layer exhibits very excellent properties.

또한 상기 화학식 1로 표시되는 화합물들은 다이벤죠카바졸계 코어와 적어도 하나의 전자끄는기(EWG, electron-withdrawing group)가 결합되는 구조적 특징을 갖는데, 이러한 구조는 전자 이동성이 특히 우수할 뿐만 아니라 유리 전이온도가 높고 열적 안정성이 우수하다. 바람직하게는 EWG는 탄소 10개 이상의 헤테로다환이어야 한다. 헤테로다환으로 인해 화합물의 분자량이 유의적으로 증대되어 유리전이온도가 향상됨에 따라 높은 열적 안정성을 나타낸다.In addition, the compounds represented by Formula 1 have a structural characteristic in which a dibenzocarbazole-based core and at least one electron withdrawing group (EWG) are bonded, It has high transition temperature and excellent thermal stability. Preferably, the EWG should be at least 10 hetero-polycyclic. The molecular weight of the compound is significantly increased due to the heterodyne ring, and the glass transition temperature is improved, thereby exhibiting high thermal stability.

실제로, 하기 표 1을 보면, 본 발명의 화학식 1로 표시되는 화합물 중 다이벤죠카바졸계 코어와 탄소 10개 이상의 헤테로환이 결합한 화합물(표 1의 R1)의 경우 유리 전이온도(Tg)가 125℃인데 반해 다이벤죠카바졸계 코어와 탄소 9개 이하의 헤테로환이 결합한 화합물(표 1의 화합물 A)의 경우 유리 전이온도 (Tg)가 97℃임을 알 수 있다. 본 발명에 따른 화합물 R1의 유리 전이온도(Tg)가 대조군 화합물 A의 유리 전이온도(Tg)에 비해 28℃ 높음을 알 수 있다.Actually, as shown in the following Table 1, in the compound represented by the formula (1) of the present invention, the compound having a dibenzocarbazole core and at least 10 heterocyclic rings bonded thereto (R1 in Table 1) has a glass transition temperature (Tg) (Compound A in Table 1), which is a compound in which a core of a dibenzocarbazole-based compound and a heterocycle having 9 or fewer carbon atoms are bonded, has a glass transition temperature (Tg) of 97 占 폚. It can be seen that the glass transition temperature (Tg) of the compound R1 according to the present invention is 28 占 폚 higher than the glass transition temperature (Tg) of the control compound A.

화합물compound TgTg

Figure pat00002
Figure pat00002
125℃125 ℃
Figure pat00003
Figure pat00003
97℃97 ℃

일반적으로 유기 전계 발광 소자용 유기 화합물의 유리 전이온도(Tg)는 110℃ 이상이 되어야 상용화가 가능하다. 이는 유기 화합물 증착 후 후처리 온도가 110℃ 이상이기 때문이다. 다이벤죠카바졸계 코어와 탄소 10개 이상의 헤테로환이 결합한 물질인 경우 유리 전이온도(Tg)가 110℃ 이상이므로 본 발명에서 제안하는 구조는 열적 안정성이 우수하며 높은 온도에도 변형이 되지 않기 때문에 소자의 내구성 및 안정성이 향상되어 소자의 수명이 효율적으로 증가될 수 있다.In general, the glass transition temperature (Tg) of the organic compound for an organic electroluminescence device must be 110 ° C or higher for commercialization. This is because the post-treatment temperature after the deposition of the organic compound is at least 110 ° C. Since the glass transition temperature (Tg) of the substance bonded to the dibenzocarbazole based core and the heterocycle having 10 or more carbon atoms is 110 ° C or higher, the structure proposed in the present invention has excellent thermal stability and does not deform at high temperatures. Durability and stability can be improved and the lifetime of the device can be efficiently increased.

아울러 발광층으로 전이된 정공과 전자들은, 상기 화학식 1로 표시되는 구조의 화합물에서 전하 밸런스가 우수하여 엑시톤 생성이 우수하고, 밴드갭(bandgap)이 3.0 eV 이하로 좁기 때문에 적색의 인광 발광층에 적합하다. 또한 인광 발광층에서 호스트 물질의 삼중항 에너지(T1)와 도판트의 삼중항 에너지(T1)의 차이가 0.2~0.3 eV 밖에 되지 않아서 도판트로의 에너지 전달이 높아 소자의 발광 효율이 개선될 수 있고, 소자의 내구성 및 안정성이 향상되어 소자의 수명이 효율적으로 증가될 수 있다. 여기서, 적색의 인광 호스트에 사용되는 일반적인 도판트의 삼중항 에너지(T1)는 2.0 eV이며, 본 발명에 따른 화학식 1의 화합물은 삼중항 에너지(T1)가 대략 2.2 ~ 2.3 eV 이하를 나타내어 적색의 인광 호스트에 적합하다.In addition, the hole and electrons transferred to the light emitting layer are suitable for a red phosphorescent light emitting layer because of excellent charge balance and excellent exciton generation and narrow bandgap of 3.0 eV or less in the compound represented by Chemical Formula 1 . In addition, since the difference between the triplet energy (T1) of the host material and the triplet energy (T1) of the dopant in the phosphorescent light emitting layer is only 0.2 to 0.3 eV, the energy transfer to the dopant is high, The durability and stability of the device are improved and the lifetime of the device can be efficiently increased. Here, the triplet energy (T1) of a common dopant used in a red phosphorescent host is 2.0 eV, and the compound of the formula (1) according to the present invention has a triplet energy (T1) of about 2.2 to 2.3 eV or less, Suitable for phosphorescent host.

실제로, 본 발명의 화학식 1로 표시되는 화합물은 대부분이 저전압 구동이 가능하고, 수명이 개선되는 물리적 특징들을 나타낸다. 일례로, 하기 표 2를 보면, 다이벤죠카바졸계 코어와 탄소 10개 이상의 헤테로환이 결합한 물질(R1)의 경우에 밴드갭(bandgap)은 2.88 eV로 적색의 인광 호스트에 적합하고, 도판트와의 삼중항 에너지 차이가 대략 0.3 eV 이하를 나타내기 때문에, 도판트로의 에너지 전달이 용이하다.In fact, the compounds represented by formula (1) of the present invention exhibit physical characteristics in which most of them can be driven at a low voltage and their lifetime is improved. For example, in Table 2, a bandgap of 2.about.88 eV is suitable for a red phosphorescent host in the case of a dibenzocarbazole-based core and a substance (R1) in which at least 10 hetero rings are bonded to each other. Is less than about 0.3 eV, the energy transfer to the dopant is easy.

다이벤죠카바졸 코어를 가진 화학식 1에 따른 화합물의 구조적 형태 또한 기존 구조들과의 차별점이 있다. 화합물 R1과 같이 코어가 위쪽으로 방향성을 가지는 화합물은 화합물 B와 같이 코어가 바깥쪽으로 방향성을 가지는 화합물 보다 다이벤죠카바졸 코어가 평면성을 갖는다. 평면성을 가지면 밴드갭 (bandgap)이 줄어 도판트로의 전자 및 정공 수송 이동성이 용이하다. 실제로 본 발명에서 제안하는 화합물 R1이 대조군 화합물 B에 비해 다이벤죠카바졸 코어가 평면성을 가지며 밴드갭 (bandgap)이 0.08 eV 더 작음을 알 수 있다.The structural form of the compound according to formula (1) with a dibenzocarbazole core also differentiates it from conventional structures. Compounds having an upward direction of the core such as the compound R1 have a plane nature of the dibenzocarbazole core as compared with the compound having the direction of the core outward as in the case of the compound B. If it has planarity, bandgap is reduced and electron and hole transport mobility of the dopant is easy. Indeed, it can be seen that the compound R1 proposed in the present invention has planarity of the dibenzocarbazole core and a bandgap of 0.08 eV smaller than that of the control compound B.

화합물compound 구조
(Structute)
rescue
(Structute)
밴드갭 (bandgap)Bandgap 삼중항 에너지 (T1)Triplet energy (T1)

Figure pat00004
Figure pat00004
Figure pat00005
Figure pat00005
2.88 eV2.88 eV 2.30 eV2.30 eV
Figure pat00006
Figure pat00006
Figure pat00007
Figure pat00007
2.96 eV2.96 eV 2.32 eV2.32 eV

전술한 사항들로 인해 상기 화학식 1로 표시되는 화합물은 발광 특성이 우수하기 때문에, 유기 전계 발광 소자의 유기물층인 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층 중 어느 하나의 재료로 사용될 수 있으며, 바람직하게는 적색의 인광 및 녹색의 인광 호스트 재료로 사용될 수 있다.Due to the above-mentioned facts, the compound represented by the above formula (1) has excellent luminescent properties and therefore can be used as a material for any one of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer And can preferably be used as a phosphorescent host material in red phosphorescence and green.

이에 따라, 본 발명의 화학식 1로 표시되는 화합물을 유기 전계 발광 소자의 유기물층 재료, 바람직하게는 발광층 재료(적색 및 녹색의 인광 호스트) 재료로 사용할 경우, 종래의 유기물층 재료(예를 들어, CBP)에 비해 유기 전계 발광 소자의 효율 및 수명 특성을 크게 향상시킬 수 있다. 또한 이러한 유기 전계 발광 소자 수명 향상은 풀 칼라 유기 발광 패널의 성능을 극대화시킬 수 있다.Accordingly, when the compound represented by the general formula (1) of the present invention is used as an organic layer material of an organic electroluminescent device, preferably as a light emitting layer material (red and green phosphorescent host) material, a conventional organic layer material (for example, CBP) The efficiency and lifetime characteristics of the organic electroluminescent device can be greatly improved. Further, the lifetime of the organic electroluminescent device can be maximized by maximizing the performance of the full-color organic electroluminescent panel.

본 발명의 일례에 따른 유기 화합물은 하기 화학식 1로 표시된다.An organic compound according to an example of the present invention is represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure pat00008
Figure pat00008

상기 화학식 1에서, X1 및 X2 중 어느 하나는 N, 다른 하나는 C(R11)이고,In Formula 1, any one of X 1 and X 2 is N and the other is C (R 11 )

R1 내지 R11은 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 인접한 기와 결합하여 축합 고리를 형성하며, 이때, R1과 R2, R2와 R3, R3와 R4 중 반드시 하나는 서로 결합하여 축합 고리를 형성하고, R5와 R6, R6와 R7, R7과 R8 중 반드시 하나는 서로 결합하여 축합 고리를 형성하며, R9과 R10은 서로 결합하여 축합 고리를 형성할 수 있다.R 1 to R 11 each independently represent hydrogen, deuterium, a halogen, a cyano group, a nitro group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ of C 40 cycloalkyl group, a number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 6 ~ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 1 ~ alkyloxy group of C 40, C 6 ~ aryloxy group of C 60, C 3 ~ C 40 alkylsilyl group, C group 6 ~ C 60 aryl silyl, C 1 ~ arylboronic of C 40 group of an alkyl boron, C 6 ~ C 60 group, C 6 ~ aryl phosphine of C 60 pingi, C 6 ~ C 60 mono or diaryl phosphine blood group and a C 6 ~, or selected from the group consisting of an aryl amine of the C 60, the combined contiguous groups to form a fused ring, wherein, R 1 and R 2, R 2 and R 3, R 3 and R 4 must be one of which is to be bonded to each other to form a condensed ring, R 5 and R 6, R 6 and R 7, R 7 and R 8 must be either each other To form a condensed ring, R 9 and R 10 may combine with each other to form a condensed ring.

여기서, R1 내지 R11의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이할 수 있다.Wherein, R 1 to the alkyl group of R 11, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aryloxy group, an alkyloxy group, a cycloalkyl group, a heterocycloalkyl group, an arylamine group, an alkylsilyl group, an alkyl boronic group, aryl boron group, an aryl phosphine group, a mono- or diaryl phosphine blood group and an aryl silyl group each independently selected from deuterium, halogen, a cyano group, a nitro group, the alkyl group of C1 ~ C40, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 6 ~ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 6 ~ aryloxy C 60, C 1 ~ alkyloxy group of C 40 of, C 6 ~ C 60 arylamine group, C 3 ~ C 40 cycloalkyl group, a number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 1 ~ C 40 alkylsilyl group, C 1 ~ alkyl boron C 40 of the group, C 6 ~ C 60 arylboronic group, C 6 ~ C 60 aryl phosphine of pingi, C 6 ~ C 60 mono or diaryl phosphine blood group and a C 6 ~ C 60 aryl silyl group selected from the group consisting of 1 When substituted with one substituent or unsubstituted and ring, which is substituted with plural substituents, they may be the same or different from each other.

바람직하게는

Figure pat00009
(*는 결합이 이루어지는 부위)로 표시되는 구조는 하기 S-1 내지 S-9으로 표시되는 구조로 이루어진 군에서 선택된다.Preferably,
Figure pat00009
(* Is a site where bonding is performed) is selected from the group consisting of the structures represented by the following S-1 to S-9.

Figure pat00010
Figure pat00010

Figure pat00011
Figure pat00011

Figure pat00012
Figure pat00012

상기 S-1 내지 S-9에서, R11은 화학식 1에서 정의된 바와 동일하다.In the above S-1 to S-9, R &lt; 11 &gt; is the same as defined in the formula (1).

또한 상기 화학식 1로 표시되는 화합물에서, 상기 L은 당 업계에 알려진 2가(divalent) 그룹의 연결기(linker)로서, 단일결합, C6~C18의 아릴렌기 및 핵원자수 5 내지 18개의 헤테로아릴렌기로 이루어진 군에서 선택될 수 있다.Also, in the compound represented by Formula 1, L is a divalent group linker known in the art and includes a single bond, a C 6 to C 18 arylene group, and a heteroaromatic group having 5 to 18 hetero atoms And an arylene group.

여기서, C6~C40의 아릴렌기와 핵원자수 5 내지 40의 헤테로아릴렌기의 예를 들면, 페닐렌기, 비페닐렌기, 나프틸렌기, 안트라세닐렌기, 인데닐렌기, 피란트레닐렌기, 카르바졸릴렌기, 티오페닐렌기, 인돌일렌기, 푸리닐렌기, 퀴놀리닐렌기, 피롤일렌기, 이미다졸릴렌기, 옥사졸릴렌기, 티아졸릴렌기, 트리아졸릴렌기, 피리디닐렌기, 피리미디닐렌기 등이 있다. 본 발명에서, 상기 L은 단일결합 또는 페닐렌기에서 선택되는 것이 바람직하다.Examples of the C 6 -C 40 arylene group and the heteroarylene group having 5 to 40 nuclear atoms include a phenylene group, a biphenylene group, a naphthylene group, an anthracenylene group, an indenylene group, a pyranthrenylene group, A thiophenylene group, a thiophenylene group, a pyridinylene group, a pyrrolylene group, a pyrrolylene group, a pyrrolylene group, an imidazolylene group, an oxazolylene group, a thiazolylene group, Rengi and so on. In the present invention, it is preferable that L is selected from a single bond or a phenylene group.

상기 L의 아릴렌기, 헤테로아릴렌기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이할 수 있다.Alkynyl group of the L of the aryl group, a hetero arylene group each independently selected from deuterium, halogen, a cyano group, a nitro group, an alkyl group of C1 ~ C40, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 of, C 6 ~ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 6 ~ C 60 aryloxy group, C 1 ~ C 40 alkyloxy group of, C of 6 ~ C 60 aryl amine group, a C 3 ~ C 40 cycloalkyl group, a number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 1 ~ C 40 alkyl silyl group, a alkyl boronic of C 1 ~ C 40, an aryl boronic a C 6 ~ C 60, C 6 ~ substituted with C 60 or aryl phosphine group, C 6 ~ C 60 mono or diaryl phosphine blood group and a C 6 ~ selected from aryl silyl group the group consisting of C 60 one kind of substituent or is unsubstituted, substituted with a plurality of substituents , They may be the same or different from each other.

본 발명의 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 5 중 어느 하나로 표시되는 화합물로 보다 구체화될 수 있다.The compound represented by the formula (1) of the present invention can be further represented by a compound represented by any one of the following formulas (2) to (5).

[화학식 2](2)

Figure pat00013
Figure pat00013

[화학식 3](3)

Figure pat00014
Figure pat00014

[화학식 4][Chemical Formula 4]

Figure pat00015
Figure pat00015

[화학식 5][Chemical Formula 5]

Figure pat00016
Figure pat00016

상기 화학식 2 내지 화학식 5에서,In the above Chemical Formulas 2 to 5,

X1, X2, R3 내지 R6, R9, R10 및 L은 화학식 1에서 정의된 바와 동일하다.X 1 , X 2 , R 3 to R 6 , R 9 , R 10 and L are the same as defined in formula (1).

보다 구체적으로, X1 및 X2 중 어느 하나는 N, 다른 하나는 C(R11)이고, 하기 S-1 내지 S-9으로 표시되는 구조로 이루어진 군에서 선택되는 것이 바람직하며,More specifically, it is preferable that one of X 1 and X 2 is N and the other is C (R 11 ) and is selected from the group consisting of the structures represented by the following S-1 to S-9,

Figure pat00017
Figure pat00017

Figure pat00018
Figure pat00018

Figure pat00019
Figure pat00019

L은 단일결합 또는 페닐렌기에서 선택되며,L is selected from a single bond or a phenylene group,

R12는 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된다.R 12 each independently represents hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 alkynyl, C 3 to C 40 A cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, an aryl group having 6 to 60 carbon atoms, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkyloxy group, a C 6 to C 60 An aryloxy group, a C 3 to C 40 alkylsilyl group, a C 6 to C 60 arylsilyl group, a C 1 to C 40 alkylboron group, a C 6 to C 60 arylboron group, a C 6 to C 60 an aryl phosphine group, and is selected from the group consisting of C 6 ~ C 60 mono or diaryl phosphine of blood group and a C 6 ~ C 60 aryl amine.

이상에서 설명한 본 발명의 일례에 따른 화학식 1로 표시되는 화합물은 하기 예시된 R1 내지 R235로 이루어진 화합물 구조들로 보다 구체화될 수 있다. 그러나 본 발명의 화학식 1로 표시되는 화합물이 하기 예시된 것들에 의해 한정되는 것은 아니다.The compound represented by formula (1) according to an example of the present invention described above can be further compounded into compound structures composed of R1 to R235 shown below. However, the compounds represented by formula (1) of the present invention are not limited by the following examples.

Figure pat00020
Figure pat00020

Figure pat00021
Figure pat00021

Figure pat00022
Figure pat00022

Figure pat00023
Figure pat00023

Figure pat00024
Figure pat00024

Figure pat00025
Figure pat00025

Figure pat00026
Figure pat00026

Figure pat00027
Figure pat00027

Figure pat00028
Figure pat00028

Figure pat00029
Figure pat00029

Figure pat00030
Figure pat00030

Figure pat00031
Figure pat00031

Figure pat00032
Figure pat00032

본 발명에서 "알킬"은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있으나, 이에 한정되지 않는다.In the present invention, "alkyl" means a monovalent substituent derived from a linear or branched saturated hydrocarbon having 1 to 40 carbon atoms. Examples thereof include, but are not limited to, methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl and hexyl.

본 발명에서 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등을 들 수 있으나, 이에 한정되지 않는다.In the present invention, "alkenyl" means a monovalent substituent derived from a straight-chain or branched-chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having at least one carbon-carbon double bond. Examples thereof include, but are not limited to, vinyl, allyl, isopropenyl, 2-butenyl, and the like.

본 발명에서 "알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등을 들 수 있으나, 이에 한정되지 않는다.In the present invention, "alkynyl" means a monovalent substituent derived from a straight-chain or branched-chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having at least one carbon-carbon triple bond. Examples thereof include, but are not limited to, ethynyl, 2-propynyl and the like.

본 발명에서 "아릴"은 단독 고리 또는 2이상의 고리가 조합된탄소수 6 내지 40의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등을 들 수 있으나, 이에 한정되지 않는다."Aryl" in the present invention means a monovalent substituent derived from an aromatic hydrocarbon having 6 to 40 carbon atoms in which a single ring or two or more rings are combined. Also, a form in which two or more rings are pendant or condensed with each other may be included. Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl and the like.

본 발명에서 "헤테로아릴"은 핵원자수 5 내지 40의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함될 수 있다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등을 들 수 있으나, 이에 한정되지 않는다."Heteroaryl" in the present invention means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 40 nuclear atoms. Wherein at least one of the carbons, preferably one to three carbons, is replaced by a heteroatom such as N, O, S or Se. In addition, a form in which two or more rings are pendant or condensed with each other may be included, and further, a condensed form with an aryl group may be included. Examples of such heteroaryls include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolizinyl, indolyl indolyl), purinyl, quinolyl, benzothiazole, carbazolyl, and heterocyclic rings such as 2-furanyl, N-imidazolyl, 2- , 2-pyridinyl, 2-pyrimidinyl, and the like, but are not limited thereto.

본 발명에서 "아릴옥시"는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 5 내지 40의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있으나, 이에 한정되지 않는다.In the present invention, "aryloxy" means a monovalent substituent represented by RO-, and R represents aryl having 5 to 40 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.

본 발명에서 "알킬옥시"는 R'O-로 표시되는 1가의 치환기로, 상기 R'는 탄소수 1 내지 40의 알킬을 의미하며, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있으나, 이에 한정되지 않는다.In the present invention, "alkyloxy" means a monovalent substituent group represented by R'O-, wherein R 'represents alkyl having 1 to 40 carbon atoms, and may be a linear, branched or cyclic structure . &Lt; / RTI &gt; Examples of alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy and pentoxy.

본 발명에서 "아릴아민"은 탄소수 6 내지 40의 아릴로 치환된 아민을 의미한다."Arylamine" in the present invention means an amine substituted with aryl having 6 to 40 carbon atoms.

본 발명에서 "시클로알킬"은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine) 등을 들 수 있으나, 이에 한정되지 않는다."Cycloalkyl" in the present invention means a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms. Examples of such cycloalkyls include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.

본 발명에서 "헤테로시클로알킬"은 핵원자수 3 내지 40의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등을 들 수 있으나, 이에 한정되지는 않는다."Heterocycloalkyl" in the present invention means a monovalent substituent derived from a non-aromatic hydrocarbon having 3 to 40 nuclear atoms, wherein at least one of the carbons, preferably one to three carbons, Or &lt; RTI ID = 0.0 &gt; Se. &Lt; / RTI &gt; Examples of such heterocycloalkyl include, but are not limited to, morpholine, piperazine, and the like.

본 발명에서 "알킬실릴"은 탄소수 1 내지 40의 알킬로 치환된 실릴이고, "아릴실릴"은 탄소수 5 내지 40의 아릴로 치환된 실릴을 의미한다.In the present invention, "alkylsilyl" means silyl substituted with alkyl having 1 to 40 carbon atoms, and "arylsilyl" means silyl substituted with aryl having 5 to 40 carbon atoms.

본 발명에서 "축합고리"는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.In the present invention, the term "condensed rings" means condensed aliphatic rings, condensed aromatic rings, condensed heteroaliphatic rings, condensed heteroaromatic rings, or a combination thereof.

본 발명의 일례에 따른 화학식 1의 화합물은 합성예를 참조하여 다양하게 합성할 수 있다. 본 발명의 화합물에 대한 상세한 합성 과정은 후술하는 합성예에서 구체적으로 기술하도록 한다.The compounds of formula (1) according to one embodiment of the present invention can be synthesized in various ways with reference to synthesis examples. Detailed synthesis of the compound of the present invention will be described in detail in Synthesis Examples to be described later.

<유기 전계 발광 소자>&Lt; Organic electroluminescent device &

한편, 본 발명의 다른 측면은 전술한 본 발명에 따른 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자(유기 EL 소자)에 관한 것이다.Another aspect of the present invention relates to an organic electroluminescent device (organic EL device) including the compound represented by the formula (1) according to the present invention described above.

구체적으로, 본 발명에 따른 유기 전계 발광 소자는 양극(anode), 음극(cathode), 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화합물은 단독으로 사용되거나, 또는 2종 이상 혼합되어 사용될 수 있다.Specifically, the organic electroluminescent device according to the present invention includes at least one anode, an anode, and at least one organic layer sandwiched between the anode and the cathode, wherein at least one of the one or more organic layers Include the compounds represented by the above formula (1). At this time, the compounds may be used alone or in combination of two or more.

상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광층, 발광 보조층, 전자 수송층, 전자 수송 보조층 및 전자 주입층 중 어느 하나 이상일 수 있고, 이 중에서 적어도 하나의 유기물층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 바람직하게, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 정공 주입층, 정공 수송층, 발광층, 전자 수송 보조층, 전자 수송층 및 전자 주입층으로 이루어진 군에서 선택된 1종 이상일 수 있고, 더 바람직하게 상기 화학식 1의 화합물을 포함하는 유기물층은 발광층, 전자 수송 보조층 및 전자 수송층으로 이루어진 군에서 선택된 1종 이상일 수 있다.The at least one organic material layer may be at least one of a hole injecting layer, a hole transporting layer, a light emitting layer, a light emitting auxiliary layer, an electron transporting layer, an electron transporting auxiliary layer and an electron injecting layer. &Lt; / RTI &gt; compounds. Preferably, the organic material layer containing the compound represented by Formula 1 may be at least one selected from the group consisting of a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting auxiliary layer, an electron transporting layer and an electron injecting layer, The organic material layer containing the compound of Formula 1 may be at least one selected from the group consisting of a light emitting layer, an electron transporting auxiliary layer and an electron transporting layer.

일례에 따르면, 상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화학식 1로 표시되는 화합물은 호스트 재료이다.According to an example, the at least one organic material layer includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, and the light emitting layer includes a compound represented by Formula 1. [ At this time, the compound represented by Formula 1 is a host material.

다른 일례에 따르면, 상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층을 포함하고, 상기 전자 수송층은 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화학식 1로 표시되는 화합물은 전자 수송층을 형성하는 재료이다.According to another example, the one or more organic layers include a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, and an electron injecting layer, and the electron transporting layer includes a compound represented by the above formula (1). At this time, the compound represented by Formula 1 is a material for forming an electron transport layer.

또 다른 일례에 따르면, 상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광층, 전자수송 보조층, 전자 수송층 및 전자 주입층을 포함하고, 상기 전자수송 보조층은 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화학식 1로 표시되는 화합물은 전자수송 보조층을 형성하는 재료이다.According to another example, the one or more organic material layers include a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting auxiliary layer, an electron transporting layer and an electron injecting layer, . At this time, the compound represented by Formula 1 is a material forming an electron transporting auxiliary layer.

전술한 본 발명에 따른 유기 전계 발광 소자의 구조는 특별히 한정되지 않으며, 당 분야에 공지된 통상적인 구조를 가질 수 있다. 일례로, 기판, 양극, 정공주입층, 정공 수송층, 발광 보조층, 발광층, 전자 수송층 및 음극이 순차적으로 적층된 구조를 가질 수 있다.The structure of the organic electroluminescent device according to the present invention is not particularly limited and may have a conventional structure known in the art. For example, a substrate, an anode, a hole injecting layer, a hole transporting layer, a light emitting auxiliary layer, a light emitting layer, an electron transporting layer, and a cathode may be sequentially stacked.

도 1은 본 발명의 일례에 따른 유기 전계 발광 소자의 단면도이다. 상기 유기 전계 발광 소자는 서로 대향하는 양극(10)과 음극(20), 및 상기 양극(10)과 음극(20) 사이에 위치하는 유기층(30)을 포함한다. 여기서, 상기 유기층(30)은 정공 수송층(31), 발광층(32) 및 전자 수송층(34)을 포함하고, 필요에 따라 상기 정공 수송층(31)과 발광층(32) 사이에 위치하는 정공 수송 보조층(33); 및/또는 상기 전자 수송층(34)과 발광층(32) 사이에 위치하는 전자 수송 보조층(35)을 더 포함할 수 있다.1 is a cross-sectional view of an organic electroluminescent device according to an example of the present invention. The organic electroluminescent device includes an anode 10 and a cathode 20 opposed to each other and an organic layer 30 positioned between the anode 10 and the cathode 20. The organic layer 30 includes a hole transporting layer 31, a light emitting layer 32 and an electron transporting layer 34. If necessary, the organic transporting layer 31 may include a hole transporting auxiliary layer 31 positioned between the hole transporting layer 31 and the light emitting layer 32, (33); And / or an electron transporting auxiliary layer (35) positioned between the electron transporting layer (34) and the light emitting layer (32).

유기 전계 발광 소자 내에서 정공은 양극에서 이온화 포텐셜 레벨을 타고 상기 발광층(32)으로 이동한다. 이때, 상기 유기 전계 발광 소자가 전자 수송 보조층(35)을 포함할 경우, 상기 발광층(32)으로 이동하는 정공은 전자수송 보조층의 높은 에너지 장벽에 막혀 전자 수송층(34)으로 확산되거나, 또는 이동하지 못하게 되고, 결과적으로 전자 수송 보조층(35)은 정공을 발광층에 제한시키는 기능을 한다. 이와 같이 정공을 발광층(32)에 제한시키는 기능은 환원에 의해 전자를 이동시키는 전자 수송층(34)으로 정공이 확산되는 것을 막아, 산화에 의한 비가역적 분해반응을 통한 수명저하 현상을 억제시키게 되며, 유기 발광 소자의 수명 개선에 기여할 수 있다. 한편, 상기 유기 전계 발광 소자가 정공 수송 보조층(33)을 더 포함할 경우, 상기 발광층(32)으로 이동하는 전자는 정공 수송 보조층의 높은 에너지 장벽에 막혀 정공 수송층(31)으로 확산되거나 이동하지 못하게 되고, 결과적으로 정공 수송 보조층(33)은 전자를 발광층에 제한시킬 수 있고, 따라서 유기 발광 소자의 수명 개선에 기여할 수 있다.In the organic electroluminescent device, holes move to the light emitting layer 32 in an anode at an ionization potential level. At this time, when the organic electroluminescent device includes the electron transporting auxiliary layer 35, holes migrating to the emitting layer 32 are clogged by the high energy barrier of the electron transporting auxiliary layer and diffused into the electron transporting layer 34, And as a result, the electron transporting auxiliary layer 35 functions to confine holes to the light emitting layer. The function of confining the holes to the light emitting layer 32 prevents diffusion of holes to the electron transporting layer 34 that moves the electrons by reduction and suppresses the lifetime degradation due to the irreversible decomposition reaction by oxidation, Thereby contributing to improvement in the lifetime of the organic light emitting device. When the organic electroluminescent device further includes a hole transporting auxiliary layer 33, electrons moving to the emitting layer 32 are blocked by a high energy barrier of the hole transporting auxiliary layer to diffuse or migrate to the hole transporting layer 31 And as a result, the hole transporting auxiliary layer 33 can restrict electrons to the light emitting layer, thereby contributing to improvement in the lifetime of the organic light emitting device.

도 2는 본 발명의 다른 일례에 따른 유기 전계 발광 소자의 단면도이다. 상기 유기 전계 발광 소자는 서로 대향하는 양극(10)과 음극(20), 및 상기 양극(10)과 음극(20) 사이에 위치하는 유기층(30)을 포함한다. 이때, 상기 유기층(30)은 정공 수송층(31), 정공 수송 보조층(33), 발광층(32), 전자 수송 보조층(35) 및 전자 수송층(34)을 포함하고, 필요에 따라 상기 정공 수송층(31)과 양극(10) 사이에 위치하는 정공 주입층(37); 및/또는 상기 음극(20)과 전자 수송층(34) 사이에 위치하는 전자 주입층(36)을 더 포함할 수 있다.2 is a cross-sectional view of an organic electroluminescent device according to another example of the present invention. The organic electroluminescent device includes an anode 10 and a cathode 20 opposed to each other and an organic layer 30 positioned between the anode 10 and the cathode 20. The organic layer 30 includes a hole transporting layer 31, a hole transporting auxiliary layer 33, a light emitting layer 32, an electron transporting auxiliary layer 35 and an electron transporting layer 34, A hole injection layer 37 located between the anode 31 and the anode 10; And / or an electron injection layer (36) positioned between the cathode (20) and the electron transport layer (34).

본 발명에서, 정공 주입층(37)은 양극으로 사용되는 ITO와, 정공 수송층(31)으로 사용되는 유기물질 사이의 계면 특성을 개선할 뿐만 아니라 그 표면이 평탄하지 않은 ITO의 상부에 도포되어 ITO의 표면을 부드럽게 만들어주는 기능을 하는 층이다. 이러한 정공 주입층(37) 재료로는 당 기술분야에서 통상적으로 사용되는 것이면 특별한 제한 없이 사용할 수 있으며, 일례로 아민계 화합물 등이 있는데, 이에 한정되는 것은 아니다.In the present invention, the hole injection layer 37 not only improves the interfacial characteristics between the ITO used as the anode and the organic material used as the hole transport layer 31, but also applied to the top of the ITO whose surface is not smooth, Which softens the surface of the substrate. The material of the hole injection layer 37 may be any material conventionally used in the art without any particular limitation. Examples of the hole injection layer 37 include, but are not limited to, amine-based compounds.

또한 상기 전자 주입층(36)은 전자 수송층(34)의 상부에 적층되어 음극으로부터의 전자 주입을 용이하게 해주어 궁극적으로 전력효율을 개선시키는 기능을 수행하는 층이다. 상기 전자주입층(36) 재료로는 당 기술분야에서 통상적으로 사용되는 것이면 특별한 제한없이 사용할 수 있다. 예컨대, LiF, Liq, NaCl, CsF, Li2O, BaO 등이 있는데, 이에 한정되지 않는다.The electron injection layer 36 is a layer which is stacked on the electron transport layer 34 to facilitate injection of electrons from the cathode, ultimately improving the power efficiency. The material of the electron injection layer 36 may be any material conventionally used in the art without any particular limitation. For example, there are such as LiF, Liq, NaCl, CsF, Li 2 O, BaO, not limited to this.

한편, 본 발명에 따른 유기 전계 발광 소자는 선택적으로 상기 정공 수송 보조층(33)과 발광층(32) 사이에 발광 보조층(도시되지 않음)을 더 포함할 수 있다. 상기 발광 보조층은 발광층(32)에 정공을 수송하는 역할을 하면서 유기층(30)의 두께를 조정하는 역할을 할 수 있다. 상기 발광 보조층은 당 분야의 정공 수송 물질을 포함할 수 있고, 정공 수송층(31)과 동일한 물질로 만들어질 수 있다.Meanwhile, the organic electroluminescent device according to the present invention may further include an emission auxiliary layer (not shown) selectively between the hole transporting auxiliary layer 33 and the emission layer 32. The light-emission-assisting layer may serve to adjust the thickness of the organic layer 30 while serving to transport holes to the light-emitting layer 32. The light emitting auxiliary layer may include a hole transporting material of the present invention and may be made of the same material as the hole transporting layer 31.

본 발명에 따른 유기 전계 발광 소자의 발광층은 호스트 재료를 포함하게 되는데, 이때 상기 화학식 1의 화합물은 호스트 재료로서 포함될 수 있으며, 또는 상기 화학식 1의 화합물 이외의 통상적인 화합물을 호스트로 포함할 수 있다. 일례로, 상기 화학식 1로 표시되는 화합물을 유기 전계 발광 소자의 발광층 재료로 사용하는 경우, 구체적으로 발광층의 인광 호스트, 형광 호스트 또는 도펀트 재료로 사용할 수 있으며, 특히 인광 호스트(녹색 및/또는 적색의 인광 호스트 재료)로 사용하는 것이 바람직하다.The light emitting layer of the organic electroluminescent device according to the present invention includes a host material. In this case, the compound of Formula 1 may be included as a host material, or may include a host compound other than the compound of Formula 1 as a host . For example, when the compound represented by Formula 1 is used as a light emitting layer material of an organic electroluminescent device, it can be specifically used as a phosphorescent host, a fluorescent host, or a dopant material of a light emitting layer. In particular, a phosphorescent host (green and / Phosphorescent host material).

또한 본 발명에 따른 유기 전계 발광 소자는, 상기한 바와 같이 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층되는 구조뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 추가로 포함되는 구조를 가질 수 있다.The organic electroluminescent device according to the present invention may have a structure in which not only an anode, at least one organic layer and at least one cathode are sequentially stacked, but also an insulating layer or an adhesive layer is further included at the interface between the electrode and the organic layer have.

본 발명의 유기 전계 발광 소자는, 전술한 유기물층 중 적어도 하나 이상(예컨대, 전자 수송 보조층)이 상기 화학식 1로 표시되는 화합물을 포함하도록 형성하는 것을 제외하고는, 당 기술 분야에 알려져 있는 재료 및 방법을 이용하여 다른 유기물층 및 전극을 형성하여 제조될 수 있다.The organic electroluminescent device of the present invention can be manufactured by using a material known in the art and an organic electroluminescent device, except that at least one or more of the above-described organic material layers (for example, an electron transporting auxiliary layer) Method to form another organic material layer and an electrode.

상기 유기물층은 진공 증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이에 한정되지 않는다.The organic material layer may be formed by a vacuum deposition method or a solution coating method. Examples of the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.

본 발명에서 사용 가능한 기판으로는 특별히 한정되지 않으며, 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등이 사용될 수 있다.The substrate usable in the present invention is not particularly limited, and a silicon wafer, quartz, a glass plate, a metal plate, a plastic film and a sheet can be used.

또, 양극 물질로는 예컨대 정공 주입이 원활하도록 일 함수가 높은 도전체로 만들어질 수 있다. 사용 가능한 양극 물질의 구체예로는, 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 또는 폴리아닐린과 같은 전도성 고분자; 및 카본블랙 등이 있으나, 이에 한정되지는 않는다.The anode material may be made of a conductor having a high work function to facilitate, for example, hole injection. Specific examples of the usable positive electrode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO: Al or SnO 2: a combination of a metal and an oxide such as Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole or polyaniline; And carbon black, but are not limited thereto.

또한 음극 물질로는 예컨대 전자 주입이 원활하도록 일 함수가 낮은 도전체로 만들어질 수 있다. 사용 가능한 음극 물질의 구체예로는, 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이에 한정되지는 않는다.The negative electrode material may be made of a conductor having a low work function for facilitating electron injection, for example. Specific examples of the negative electrode material that can be used include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin or lead or alloys thereof; And multi-layer structure materials such as LiF / Al or LiO 2 / Al, but are not limited thereto.

이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

[[ 준비예Preparation Example 1] A2의 합성 1] Synthesis of A2

<단계 1> A1의 합성<Step 1> Synthesis of A1

Figure pat00033
Figure pat00033

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), naphthalen-2-ylboronic acid, 2.9g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate, 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.Under nitrogen gas stream, 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), Pd (PPh 3) of naphthalen-2-ylboronic acid, 2.9g (16.9 mmol), 1.0g (5 mol%) 4, and potassium carbonate, 7.0 g (50.6 mmol) of Toluene / H 2 O / Ethanol (80 ml / 40 ml / 40 ml) was added thereto and stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A1 (3.6g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A1 (3.6 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 299.33 g/mol, 측정치: 299 g/mol)GC-Mass (299.33 g / mol, measured: 299 g / mol)

1H-NMR: δ 7.12~7.51(m, 4H), 7.65(s, 1H), 7.71~7.92(m, 5H), 8.41~8.88(m, 3H)(M, 4H), 7.65 (s, 1H), 7.71-7.92 (m, 5H), 8.41-8.88

<단계 2> A2의 합성<Step 2> Synthesis of A2

Figure pat00034
Figure pat00034

질소 기류 하에서 A1 3.6g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A2 (2.4g, 9.0 mmol, 수율 74%)을 얻었다.3.6 g (12.1 mmol) of A1, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed in a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the desired compound A2 (2.4 g, 9.0 mmol, yield 74%).

GC-Mass (이론치: 267.33 g/mol, 측정치: 267 g/mol)GC-Mass (theory: 267.33 g / mol, measured: 267 g / mol)

1H-NMR: δ 7.42~7.81(m, 6H), 8.21~8.68(m, 6H), 11.55(s, 1H)1H-NMR:? 7.42-7.81 (m, 6H), 8.21-8.68 (m, 6H), 11.55

[[ 준비예Preparation Example 2] A4의 합성 2] Synthesis of A4

<단계 1> A3의 합성<Step 1> Synthesis of A3

Figure pat00035
Figure pat00035

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g(20.2 mmol), (3-phenylnaphthalen-2-yl)boronic acid, 4.2g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.Under nitrogen gas stream, 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (3-phenylnaphthalen-2-yl) Pd (PPh 3) of boronic acid, 4.2g (16.9 mmol) , 1.0g (5 mol%) 4 , 7.0 g (50.6 mmol) of potassium carbonate and 80 ml / 40 ml / 40 ml of toluene / H 2 O / ethanol were added and stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A3 (4.6g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A3 (4.6 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 375.43 g/mol, 측정치: 375 g/mol)GC-Mass (theory: 375.43 g / mol, measured: 375 g / mol)

1H-NMR: δ 7.14~7.52(m, 4H), 7.65(s, 1H), 7.71~7.99(m, 8H), 8.31(s, 1H), 8.41~8.87(m, 3H)(M, 4H), 7.65 (s, IH), 7.71-7.99 (m, 8H), 8.31 (s, IH), 8.41-8.87

<단계 2> A4의 합성<Step 2> Synthesis of A4

Figure pat00036
Figure pat00036

질소 기류 하에서 A3 4.6g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A4 (3.2g, 9.2 mmol, 수율 76%)을 얻었다.4.6 g (12.1 mmol) of A3, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the target compound A4 (3.2 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 343.43 g/mol, 측정치: 343 g/mol)GC-Mass (theory: 343.43 g / mol, measurement: 343 g / mol)

1H-NMR: δ 7.13~7.52(m, 4H), 7.71~7.99(m, 8H), 8.30(s, 1H), 8.41~8.87(m, 3H, 11.57(s, 1H)1H, NMR:? 7.13-7.52 (m, 4H), 7.71-7.99 (m, 8H), 8.30

[[ 준비예Preparation Example 3] A6의 합성 3] Synthesis of A6

<단계 1> A5의 합성<Step 1> Synthesis of A5

Figure pat00037
Figure pat00037

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), [1,2'-binaphthalen]-3-ylboronic acid, 5.0g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.Under nitrogen gas stream, 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), [1,2'-binaphthalen] -3-ylboronic acid, Pd (PPh 3 of 5.0g (16.9 mmol), 1.0g ( 5 mol%) 3) 4, and potassium carbonate 7.0g (50.6 mmol) and 80 ml / 40 ml / 40 ml of the insert Toluene / H 2 O / Ethanol mixture was stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A5 (5.2g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A5 (5.2 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 425.49 g/mol, 측정치: 425 g/mol)GC-Mass (calculated: 425.49 g / mol, measured: 425 g / mol)

1H-NMR: δ 7.15~7.51(m, 4H), 7.64(s, 1H), 7.69~7.99(m, 10H), 8.31(s, 1H), 8.41~8.88(m, 3H)1 H-NMR:? 7.15-7.51 (m, 4H), 7.64 (s, 1H), 7.69-7.99 (m, 10H), 8.31

<단계 2> A6의 합성<Step 2> Synthesis of A6

Figure pat00038
Figure pat00038

질소 기류 하에서 A5 5.2g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A6 (3.6g, 9.2 mmol, 수율 76%)을 얻었다.5.2 g (12.1 mmol) of A5, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A6 (3.6 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 393.49 g/mol, 측정치: 393 g/mol)GC-Mass (theory: 393.49 g / mol, measured: 393 g / mol)

1H-NMR: δ 7.15~7.51(m, 4H), 7.69~7.98(m, 10H), 8.31(s, 1H), 8.41~8.87(m, 3H), 11.57(s, 1H)1 H-NMR:? 7.15-7.51 (m, 4H), 7.69-7.98 (m, 10H), 8.31

[준비예 4] A8의 합성[Preparation Example 4] Synthesis of A8

<단계 1> A7의 합성<Step 1> Synthesis of A7

Figure pat00039
Figure pat00039

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (7-phenylnaphthalen-2-yl)boronic acid, 4.2g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.Under nitrogen gas stream, 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (7-phenylnaphthalen-2-yl) boronic acid, 4.2g (16.9 mmol), Pd (PPh 3) of 1.0g (5 mol%) 4 , 7.0 g (50.6 mmol) of potassium carbonate and 80 ml / 40 ml / 40 ml of toluene / H 2 O / ethanol were added and stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A7 (4.6g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the desired compound A7 (4.6 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 375.43 g/mol, 측정치: 375 g/mol)GC-Mass (theory: 375.43 g / mol, measured: 375 g / mol)

1H-NMR: δ 7.13~7.55(m, 4H), 7.65(s, 1H), 7.71~7.99(m, 8H), 8.31(s, 1H), 8.40~8.85(m, 3H)1 H-NMR:? 7.13-7.55 (m, 4H), 7.65 (s, 1H), 7.71-7.99 (m, 8H), 8.31

<단계 2> A8의 합성<Step 2> Synthesis of A8

Figure pat00040
Figure pat00040

질소 기류 하에서 A7 4.6g(12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A8 (3.2g, 9.2 mmol, 수율 76%)을 얻었다.4.6 g (12.1 mmol) of A7, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A8 (3.2 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 343.43 g/mol, 측정치: 343 g/mol)GC-Mass (theory: 343.43 g / mol, measurement: 343 g / mol)

1H-NMR: δ 7.15~7.54(m, 4H), 7.72~7.99(m, 8H), 8.30(s, 1H), 8.41~8.87(m, 3H, 11.58(s, 1H)1 H-NMR:? 7.15-7.54 (m, 4H), 7.72-7.99 (m, 8H), 8.30

[준비예 5] A10의 합성[Preparation Example 5] Synthesis of A10

<단계 1> A9의 합성<Step 1> Synthesis of A9

Figure pat00041
Figure pat00041

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (3-(dibenzo[b,d]thiophen-3-yl)naphthalen-2-yl)boronic acid 6.0g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.5.1 g (20.2 mmol) of 1-bromo-2-nitrobenzene and 6.0 g (16.9 mmol) of (3- (dibenzo [b, d] thiophen-3-yl) naphthalen- (5 mol%) Pd (PPh 3 ) 4 and 7.0 g (50.6 mmol) of potassium carbonate and 80 ml / 40 ml / 40 ml of Toluene / H 2 O / Ethanol were stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A9 (5.9g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the desired compound A9 (5.9 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 481.57 g/mol, 측정치: 482 g/mol)GC-Mass (calculated: 481.57 g / mol, measured: 482 g / mol)

1H-NMR: δ 7.53~7.91(m, 8H), 8.01~8.88(m, 7H), 8.61~8.88(m, 4H)1H-NMR:? 7.53-7.91 (m, 8H), 8.01-8.88 (m, 7H), 8.61-8.88 (m, 4H)

<단계 2> A10의 합성<Step 2> Synthesis of A10

Figure pat00042
Figure pat00042

질소 기류 하에서 A9 5.9g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A10 (4.0g, 9.0 mmol, 수율 74%)을 얻었다.5.9 g (12.1 mmol) of A9, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the desired compound A10 (4.0 g, 9.0 mmol, yield 74%).

GC-Mass (이론치: 449.57 g/mol, 측정치: 450 g/mol)GC-Mass (calculated: 449.57 g / mol, measured: 450 g / mol)

1H-NMR: δ 7.53~7.90(m, 8H), 8.01~8.88(m, 7H), 8.61~8.88(m, 3H), 11.56(s, 1H)1H-NMR:? 7.53-7.90 (m, 8H), 8.01-8.88 (m, 7H), 8.61-8.88 (m, 3H), 11.56

[준비예 6] A12의 합성[Preparation Example 6] Synthesis of A12

<단계 1> A11의 합성<Step 1> Synthesis of A11

Figure pat00043
Figure pat00043

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), ((3-(benzo[b]naphtho[1,2-d]thiophen-10-yl)naphthalen-2-yl)boronic acid 6.8g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.A solution of 5.1 g (20.2 mmol) of 1-bromo-2-nitrobenzene, 6.8 g of ((3- (benzo [b] naphtho [1,2- d] thiophen-10- yl) naphthalen- (16.9 mmol), 1.0 g (5 mol%) of Pd (PPh 3 ) 4 and 7.0 g (50.6 mmol) of potassium carbonate and 80 ml / 40 ml / 40 ml of toluene / H 2 O / And stirred for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A11 (6.5g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the desired compound A11 (6.5 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 531.63 g/mol, 측정치: 532 g/mol)GC-Mass (calculated: 531.63 g / mol, measured: 532 g / mol)

1H-NMR: δ 7.51~7.93(m, 9H), 8.01~8.89(m, 7H), 8.61~8.88(m, 5H)1H-NMR:? 7.51-7.93 (m, 9H), 8.01-8.89 (m, 7H), 8.61-8.88 (m,

<단계 2> A12의 합성<Step 2> Synthesis of A12

Figure pat00044
Figure pat00044

질소 기류 하에서 A11.6.5g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A12 (4.6g, 9.2 mmol, 수율 76%)을 얻었다.(12.1 mmol) of triphenylphosphine, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A12 (4.6 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 499.63 g/mol, 측정치: 500 g/mol) GC-Mass (theory: 499.63 g / mol, measurement: 500 g / mol)

1H-NMR: δ 7.50~7.93(m, 9H), 8.01~8.89(m, 7H), 8.61~8.85(m, 4H), 11.56(s, 1H)1H-NMR:? 7.50-7.93 (m, 9H), 8.01-8.89 (m, 7H), 8.61-8.85 (m, 4H)

[준비예 7] A14의 합성[Preparation Example 7] Synthesis of A14

<단계 1> A13의 합성<Step 1> Synthesis of A13

Figure pat00045
Figure pat00045

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (4-(dibenzo[b,d]thiophen-3-yl)naphthalen-2-yl)boronic acid, 6.0g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.(Dibenzo [b, d] thiophen-3-yl) naphthalen-2-yl) boronic acid, 6.0 g (16.9 mmol), 1.0 (PPh 3 ) 4 , potassium carbonate (7.0 g, 50.6 mmol) and toluene / H 2 O / ethanol (80 ml / 40 ml / 40 ml)

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A13 (5.9g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A13 (5.9 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 481.57 g/mol, 측정치: 482 g/mol)GC-Mass (calculated: 481.57 g / mol, measured: 482 g / mol)

1H-NMR: δ 7.53~7.92(m, 8H), 8.01~8.88(m, 7H), 8.61~8.87(m, 4H)1H-NMR:? 7.53-7.92 (m, 8H), 8.01-8.88 (m, 7H), 8.61-8.87 (m, 4H)

<단계 2> A14의 합성&Lt; Step 2 > Synthesis of A14

Figure pat00046
Figure pat00046

질소 기류 하에서 A13 5.9g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A14 (4.6 g, 9.2 mmol, 수율 76%)을 얻었다.5.9 g (12.1 mmol) of A13, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A14 (4.6 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 499.57 g/mol, 측정치: 500 g/mol)GC-Mass (theory: 499.57 g / mol, measurement: 500 g / mol)

1H-NMR: δ 7.53~7.91(m, 8H), 8.01~8.88(m, 7H), 8.61~8.86(m, 4H), 11.55(s, 1H)(M, 8H), 8.01-8.88 (m, 7H), 8.61-8.86 (m, 4H), 11.55

[준비예 8] A16의 합성[Preparation Example 8] Synthesis of A16

<단계 1> A15의 합성<Step 1> Synthesis of A15

Figure pat00047
Figure pat00047

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (7-(dibenzo[b,d]thiophen-3-yl)naphthalen-2-yl)boronic acid 6.0g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.5.1 g (20.2 mmol) of 1-bromo-2-nitrobenzene and 6.0 g (16.9 mmol) of (7- (dibenzo [b, d] thiophen-3-yl) naphthalen- Pd (PPh 3 ) 4 and potassium carbonate (7.0 g, 50.6 mmol) and toluene / H 2 O / ethanol (80 ml / 40 ml / 40 ml) were stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A15 (5.9g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the desired compound A15 (5.9 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 481.57 g/mol, 측정치: 482 g/mol)GC-Mass (calculated: 481.57 g / mol, measured: 482 g / mol)

1H-NMR: δ 7.52~7.92(m, 8H), 8.01~8.88(m, 7H), 8.61~8.87(m, 4H)1H-NMR:? 7.52-7.92 (m, 8H), 8.01-8.88 (m, 7H), 8.61-8.87 (m, 4H)

<단계 2> A16의 합성<Step 2> Synthesis of A16

Figure pat00048
Figure pat00048

질소 기류 하에서 A15 5.9g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A16 (4.6g, 9.2 mmol, 수율 76%)을 얻었다.5.9 g (12.1 mmol) of A15, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the target compound A16 (4.6 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 499.57 g/mol, 측정치: 500 g/mol) GC-Mass (theory: 499.57 g / mol, measurement: 500 g / mol)

1H-NMR: δ 7.51~7.90(m, 8H), 8.00~8.87(m, 7H), 8.61~8.87(m, 3H), 11.57(s, 1H)1H-NMR:? 7.51-7.90 (m, 8H), 8.00-8.87 (m, 7H), 8.61-8.87 (m, 3H), 11.57

[준비예 9] A18의 합성[Preparation Example 9] Synthesis of A18

<단계 1> A9의 합성<Step 1> Synthesis of A9

Figure pat00049
Figure pat00049

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), ((3-(dibenzo[b,d]furan-3-yl)naphthalen-2-yl)boronic acid 5.7g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.5.1 g (20.2 mmol) of 1-bromo-2-nitrobenzene and 5.7 g (16.9 mmol) of ((3- (dibenzo [b, d] furan- 3- yl) naphthalen- (PPh 3 ) 4 , potassium carbonate (7.0 g, 50.6 mmol) and toluene / H 2 O / ethanol (80 ml / 40 ml / 40 ml)

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A17 (5.7g, 12.1mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the target compound A17 (5.7 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 465.51 g/mol, 측정치: 466 g/mol)GC-Mass (calculated: 465.51 g / mol, measured: 466 g / mol)

1H-NMR: δ 7.39~7.82(m, 8H), 7.95~8.78(m, 7H), 8.51~8.67(m, 4H)1H-NMR:? 7.39-7.82 (m, 8H), 7.95-8.88 (m, 7H), 8.51-8.67 (m,

<단계 2> A18의 합성<Step 2> Synthesis of A18

Figure pat00050
Figure pat00050

질소 기류 하에서 A17 5.7g(12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A18 (3.9g, 9.0 mmol, 수율 74%)을 얻었다.5.7 g (12.1 mmol) of A17, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A18 (3.9 g, 9.0 mmol, yield 74%).

GC-Mass (이론치: 433.51 g/mol, 측정치: 433 g/mol)GC-Mass (calculated: 433.51 g / mol, measured: 433 g / mol)

1H-NMR: δ 7.39~7.82(m, 8H), 7.95~8.78(m, 7H), 8.51~8.66(m, 3H), 11.45(s, 1H)1 H-NMR:? 7.39-7.82 (m, 8H), 7.95-8.88 (m, 7H), 8.51-8.66

[준비예 10] A20의 합성[Preparation Example 10] Synthesis of A20

<단계 1> A21의 합성<Step 1> Synthesis of A21

Figure pat00051
Figure pat00051

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (3-(9-phenyl-9H-carbazol-2-yl)naphthalen-2-yl)boronic acid 7.0g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.5.1 g (20.2 mmol) of 1-bromo-2-nitrobenzene and 7.0 g (16.9 mmol) of (3- (9-phenyl-9H-carbazol-2-yl) naphthalen- (5 mol%) Pd (PPh 3 ) 4 and 7.0 g (50.6 mmol) of potassium carbonate and 80 ml / 40 ml / 40 ml of Toluene / H 2 O / Ethanol were stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A19 (6.6g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A19 (6.6 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 540.62 g/mol, 측정치: 540 g/mol)GC-Mass (calculated: 540.62 g / mol, measured: 540 g / mol)

1H-NMR: δ 7.29~7.52(m, 8H), 7.67~7.98(m, 7H), 8.15~8.59(m, 4H), 8.65~8.89(m, 5H)8H), 7.67-7.98 (m, 7H), 8.15-8.59 (m, 4H), 8.65-8.89 (m, 5H)

<단계 2> A20의 합성<Step 2> Synthesis of A20

Figure pat00052
Figure pat00052

질소 기류 하에서 A19 6.6g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A20 (4.7g, 9.2 mmol, 수율 76%)을 얻었다.6.6 g (12.1 mmol) of A19, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the target compound A20 (4.7 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 508.62 g/mol, 측정치: 509 g/mol)GC-Mass (calculated: 508.62 g / mol, measured: 509 g / mol)

1H-NMR: δ 7.28~7.52(m, 8H), 7.77~7.98(m, 7H), 8.15~8.59(m, 4H), 8.65~8.89(m, 4H), 11.55(s, 1H)(M, 8H), 7.77-7.98 (m, 7H), 8.15-8.59 (m, 4H), 8.65-8.89 (m, 4H), 11.55

[준비예 11] A22의 합성[Preparation Example 11] Synthesis of A22

<단계 1> A21의 합성<Step 1> Synthesis of A21

Figure pat00053
Figure pat00053

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (3-(9,9-dimethyl-9H-fluoren-2-yl)naphthalen-2-yl)boronic acid 6.1g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.5.1 g (20.2 mmol) of 1-bromo-2-nitrobenzene and 6.1 g (16.9 mmol) of (3- (9,9-dimethyl-9H- fluoren-2-yl) naphthalen- 1.0 g (5 mol%) of Pd (PPh 3 ) 4 and 7.0 g (50.6 mmol) of potassium carbonate and 80 ml / 40 ml / 40 ml of Toluene / H 2 O / Ethanol were placed and stirred at 110 for 3 hours .

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A21 (6.0g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the target compound A21 (6.0 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 491.59 g/mol, 측정치: 492 g/mol)GC-Mass (calculated: 491.59 g / mol, measured: 492 g / mol)

1H-NMR: δ 1.61(s, 6H), 7.39~7.81(m, 8H), 7.95~8.78(m, 7H), 8.51~8.67(m, 4H)(M, 8H), 7.95-8.87 (m, 7H), 8.51-8. 67 (m, 4H)

<단계 2> A22의 합성&Lt; Step 2 > Synthesis of A22

Figure pat00054
Figure pat00054

질소 기류 하에서 A21 6.0g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A22 (4.2g, 9.2 mmol, 수율 76%)을 얻었다.6.0 g (12.1 mmol) of A21, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the desired compound A22 (4.2 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 459.59 g/mol, 측정치: 460 g/mol)GC-Mass (theory: 459.59 g / mol, measured: 460 g / mol)

1H-NMR: δ 1.61(s, 6H), 7.40~7.81(m, 8H), 7.95~8.78(m, 7H), 8.51~8.61(m, 3H), 11.52(s, 1H)(S, 6H), 7.40-7.81 (m, 8H), 7.95-8.88 (m, 7H), 8.51-8.61

[준비예 12] A24의 합성[Preparation Example 12] Synthesis of A24

<단계 1> A23의 합성<Step 1> Synthesis of A23

Figure pat00055
Figure pat00055

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (3-(dibenzo[b,e][1,4]dioxin-2-yl)naphthalen-2-yl)boronic acid 6.0g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.5.1 g (20.2 mmol) of 1-bromo-2-nitrobenzene and 6.0 g (3- (dibenzo [b, e] [1,4] dioxin-2-yl) naphthalen- (PPh 3 ) 4 , potassium carbonate (7.0 g, 50.6 mmol) and Toluene / H 2 O / Ethanol (80 ml / 40 ml / Lt; / RTI &gt;

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A15 (5.9g, 12.1mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the target compound A15 (5.9 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 481.51 g/mol, 측정치: 482 g/mol)GC-Mass (calculated: 481.51 g / mol, measured: 482 g / mol)

1H-NMR: δ 7.40~7.82(m, 8H), 7.95~8.78(m, 7H), 8.51~8.66(m, 4H)1H-NMR:? 7.40-7.82 (m, 8H), 7.95-8.88 (m, 7H), 8.51-8.66

<단계 2> A24의 합성<Step 2> Synthesis of A24

Figure pat00056
Figure pat00056

질소 기류 하에서 A23 5.9g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A24 (4.2g, 9.2 mmol, 수율 76%)을 얻었다.5.9 g (12.1 mmol) of A23, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed in a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the target compound A24 (4.2 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 449.51 g/mol, 측정치: 450 g/mol)GC-Mass (calculated: 449.51 g / mol, measured: 450 g / mol)

1H-NMR: δ 7.41~7.82(m, 8H), 7.95~8.78(m, 7H), 8.51~8.61(m, 3H), 11.55(s, 1H)1 H-NMR:? 7.41-7.82 (m, 8H), 7.95-8.88 (m, 7H), 8.51-8.61 (m, 3H)

[준비예 13] A25의 합성[Preparation Example 13] Synthesis of A25

<단계 1> A25의 합성<Step 1> Synthesis of A25

Figure pat00057
Figure pat00057

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), naphthalen-2-ylboronic acid, 2.9g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.Under nitrogen gas stream, 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), naphthalen-2-ylboronic acid, Pd (PPh 3) of 2.9g (16.9 mmol), 1.0g ( 5 mol%) 4 , and potassium carbonate 7.0g (50.6 mmol) and 80 ml / 40 ml / 40 ml of toluene / H 2 O / ethanol were added and stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A25 (3.6g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A25 (3.6 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 299.33 g/mol, 측정치: 299 g/mol)GC-Mass (299.33 g / mol, measured: 299 g / mol)

1H-NMR: δ 7.71~7.92(m, 6H), 8.01~8.38(m, 5H), 8.45(s, 1H), 8.55(s, 1H)1 H-NMR:? 7.71-7.92 (m, 6H), 8.01-8.38 (m, 5H), 8.45

<단계 2> A26의 합성<Step 2> Synthesis of A26

Figure pat00058
Figure pat00058

질소 기류 하에서 A25 3.6g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A26 (2.4g, 9.0 mmol, 수율 74%)을 얻었다.3.6 g (12.1 mmol) of A25, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the desired compound A26 (2.4 g, 9.0 mmol, yield 74%).

GC-Mass (이론치: 267.33 g/mol, 측정치: 267 g/mol) GC-Mass (theory: 267.33 g / mol, measured: 267 g / mol)

1H-NMR: δ 7.70~7.92(m, 6H), 8.01~8.35(m, 4H), 8.45(s, 1H), 8.55(s, 1H), 11.51(s, 1H)(M, 6H), 8.01-8.35 (m, 4H), 8.45 (s, 1H), 8.55

[준비예 14] A28의 합성[Preparation Example 14] Synthesis of A28

<단계 1> A27의 합성<Step 1> Synthesis of A27

Figure pat00059
Figure pat00059

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (1-phenylnaphthalen-2-yl)boronic acid 4.2g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4 및 potassium carbonate, 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다. 4 Pd (PPh 3) in a nitrogen stream of 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (1-phenylnaphthalen-2-yl) boronic acid 4.2g (16.9 mmol), 1.0g (5 mol%) and 7.0 g (50.6 mmol) of potassium carbonate and 80 ml / 40 ml / 40 ml of toluene / H 2 O / ethanol were added and stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A27 (4.6g, 12.1mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A27 (4.6 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 375.43 g/mol, 측정치: 375 g/mol)GC-Mass (theory: 375.43 g / mol, measured: 375 g / mol)

1H-NMR: δ 7.72~7.92(m, 6H), 8.00~8.39(m, 9H), 8.45(s, 1H), 8.55(s, 1H)(M, 6H), 8.00-8.39 (m, 9H), 8.45 (s, IH), 8.55

<단계 2> A28의 합성<Step 2> Synthesis of A28

Figure pat00060
Figure pat00060

질소 기류 하에서 A27 4.6g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A28 (3.2g, 9.2 mmol, 수율 76%)을 얻었다.4.6 g (12.1 mmol) of A27, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the target compound A28 (3.2 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 343.43 g/mol, 측정치: 343 g/mol)GC-Mass (theory: 343.43 g / mol, measurement: 343 g / mol)

1H-NMR: δ 7.74~7.92(m, 6H), 8.00~8.39(m, 8H), 8.45(s, 1H), 8.55(s, 1H), 11.57(s, 1H)(M, 6H), 8.00-8.39 (m, 8H), 8.45 (s, IH), 8.55 (s, IH), 11.57

[준비예 15] A39의 합성[Preparation Example 15] Synthesis of A39

<단계 1> A29의 합성<Step 1> Synthesis of A29

Figure pat00061
Figure pat00061

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g(20.2 mmol), (7-phenylnaphthalen-2-yl)boronic acid 5.0g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다. 4 Pd (PPh 3) in a nitrogen stream of 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (7-phenylnaphthalen-2-yl) boronic acid 5.0g (16.9 mmol), 1.0g (5 mol%) and 7.0 g (50.6 mmol) of potassium carbonate and 80 ml / 40 ml / 40 ml of toluene / H 2 O / ethanol were added and stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A29 (4.6g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A29 (4.6 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 375.43 g/mol, 측정치: 375 g/mol)GC-Mass (theory: 375.43 g / mol, measured: 375 g / mol)

1H-NMR: δ 7.73~7.88(m, 6H), 8.05~8.39(m, 9H), 8.45(s, 1H), 8.55(s, 1H)1 H-NMR:? 7.73-7.88 (m, 6H), 8.05-8.39 (m, 9H), 8.45

<단계 2> A30의 합성<Step 2> Synthesis of A30

Figure pat00062
Figure pat00062

질소 기류 하에서 A29 4.6g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A30 (3.2g, 9.2 mmol, 수율 76%)을 얻었다.4.6 g (12.1 mmol) of A29, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A30 (3.2 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 343.43 g/mol, 측정치: 343 g/mol)GC-Mass (theory: 343.43 g / mol, measurement: 343 g / mol)

1H-NMR: δ 7.76~7.88(m, 6H), 8.00~8.39(m, 8H), 8.45(s, 1H), 8.55(s, 1H), 11.57(s, 1H)(S, 1H), 8.55 (s, IH), 11.57 (s, IH)

[준비예 16] A32의 합성[Preparation Example 16] Synthesis of A32

<단계 1> A31의 합성<Step 1> Synthesis of A31

Figure pat00063
Figure pat00063

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (3-(dibenzo[b,d]thiophen-3-yl)naphthalen-2-yl)boronic acid 6.0g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.5.1 g (20.2 mmol) of 1-bromo-2-nitrobenzene and 6.0 g (16.9 mmol) of (3- (dibenzo [b, d] thiophen-3-yl) naphthalen- Pd (PPh 3 ) 4 and potassium carbonate (7.0 g, 50.6 mmol) and toluene / H 2 O / ethanol (80 ml / 40 ml / 40 ml) were stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A31 (5.9g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A31 (5.9 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 481.57 g/mol, 측정치: 482 g/mol)GC-Mass (calculated: 481.57 g / mol, measured: 482 g / mol)

1H-NMR: δ 7.72~7.95(m, 8H), 8.07~8.39(m, 9H), 8.45(s, 1H), 8.55(s, 1H)&Lt; 1 &gt; H-NMR: [delta] 7.72-7.95 (m, 8H), 8.07-8.39 (m, 9H)

<단계 2> A32의 합성<Step 2> Synthesis of A32

Figure pat00064
Figure pat00064

질소 기류 하에서 A31 5.9g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A32 (4.0g, 9.0 mmol, 수율 74%)을 얻었다.5.9 g (12.1 mmol) of A31, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed in a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A32 (4.0 g, 9.0 mmol, yield 74%).

GC-Mass (이론치: 449.57 g/mol, 측정치: 450 g/mol)GC-Mass (calculated: 449.57 g / mol, measured: 450 g / mol)

1H-NMR: δ 7.73~7.95(m, 8H), 8.06~8.35(m, 8H), 8.45(s, 1H), 8.55(s, 1H), 11.56(s, 1H)(S, IH), 8.55 (s, IH), 11.56 (s, IH), 8.05-8.35 (m,

[준비예 17] A34의 합성[Preparation Example 17] Synthesis of A34

<단계 1> A33의 합성<Step 1> Synthesis of A33

Figure pat00065
Figure pat00065

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (1-(benzo[b]naphtho[1,2-d]thiophen-10-yl)naphthalen-2-yl)boronic acid 6.0g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.A solution of 5.1 g (20.2 mmol) of 1-bromo-2-nitrobenzene, 6.0 g (1- (benzo [b] naphtho [1,2- d] thiophen-10- yl) naphthalen- 16.9 mmol), 1.0 g (5 mol%) of Pd (PPh 3 ) 4 and 7.0 g (50.6 mmol) of potassium carbonate and 80 ml / 40 ml / 40 ml of toluene / H 2 O / Lt; / RTI &gt;

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A33 (5.9 g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A33 (5.9 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 481.57 g/mol, 측정치: 482 g/mol)GC-Mass (calculated: 481.57 g / mol, measured: 482 g / mol)

1H-NMR: δ 7.72~7.94(m, 8H), 8.07~8.42(m, 11H), 8.49(s, 1H), 8.58(s, 1H)(M, 8H), 8.07-8.42 (m, 11H), 8.49 (s, IH), 8.58

<단계 2> A34의 합성<Step 2> Synthesis of A34

Figure pat00066
Figure pat00066

질소 기류 하에서 A33.5.9g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A34 (4.6g, 9.2 mmol, 수율 76%)을 얻었다.Under nitrogen flow, 33.5.9 g (12.1 mmol) of triphenylphosphine, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were added and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the desired compound A34 (4.6 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 499.57 g/mol, 측정치: 500 g/mol)GC-Mass (theory: 499.57 g / mol, measurement: 500 g / mol)

1H-NMR: δ 7.73~7.96(m, 8H), 8.07~8.42(m, 10H), 8.50(s, 1H), 8.58(s, 1H), 11.56(s, 1H)(S, 1H), 8.58 (s, 1H), 11.56 (s, 1H), 8.07-8.42

[준비예 18] A36의 합성[Preparation Example 18] Synthesis of A36

<단계 1> A35의 합성<Step 1> Synthesis of A35

Figure pat00067
Figure pat00067

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (1-(dibenzo[b,d]furan-3-yl)naphthalen-2-yl)boronic acid 5.7g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.5.1 g (20.2 mmol) of 1-bromo-2-nitrobenzene and 5.7 g (16.9 mmol) of l- (dibenzo [b, d] furan-3-yl) naphthalen- Pd (PPh 3 ) 4 and potassium carbonate (7.0 g, 50.6 mmol) and toluene / H 2 O / ethanol (80 ml / 40 ml / 40 ml) were stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A35 (5.7g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A35 (5.7 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 465.51 g/mol, 측정치: 467 g/mol)GC-Mass (calculated: 465.51 g / mol, measured: 467 g / mol)

1H-NMR: δ 7.75~7.95(m, 8H), 8.07~8.40(m, 9H), 8.45(s, 1H), 8.55(s, 1H)(M, 8H), 8.07-8.40 (m, 9H), 8.45 (s, IH), 8.55

<단계 2> A36의 합성<Step 2> Synthesis of A36

Figure pat00068
Figure pat00068

질소 기류 하에서 A35 5.7g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A36 (4.2g, 9.2 mmol, 수율 76%)을 얻었다.5.7 g (12.1 mmol) of A35, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A36 (4.2 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 433.51 g/mol, 측정치: 434 g/mol)GC-Mass (theory: 433.51 g / mol, measured: 434 g / mol)

1H-NMR: δ 7.75~7.95(m, 8H), 8.06~8.35(m, 8H), 8.46(s, 1H), 8.55(s, 1H), 11.56(s, 1H)1 H-NMR:? 7.75-7.95 (m, 8H), 8.06-8.35 (m, 8H), 8.46 (s,

[준비예 19] A38의 합성[Preparation Example 19] Synthesis of A38

<단계 1> A37의 합성<Step 1> Synthesis of A37

Figure pat00069
Figure pat00069

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g(20.2 mmol), (1-(9-phenyl-9H-carbazol-3-yl)naphthalen-2-yl)boronic acid, 7.0g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate, 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.3-yl) naphthalen-2-yl) boronic acid, 7.0 g (16.9 mmol), 1.0 (10.2 mmol) of 1-bromo- (PPh 3 ) 4 , potassium carbonate, 7.0 g (50.6 mmol) and 80 ml / 40 ml / 40 ml of Toluene / H 2 O / Ethanol were added and stirred at 110 ° C. for 3 hours .

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A37 (6.6g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the organic layer solvent, the residue was purified by column chromatography to obtain the target compound A37 (6.6 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 540.62 g/mol, 측정치: 541 g/mol)GC-Mass (calculated: 540.62 g / mol, measured: 541 g / mol)

1H-NMR: δ 7.75~7.95(m, 8H), 8.07~8.40(m, 9H), 8.45(s, 1H), 8.55(s, 1H), 8.64~8.89(m, 5H)(S, 1H), 8.55 (s, 1H), 8.64-8.89 (m, 5H), 8.07-8.40 (m,

<단계 2> A38의 합성<Step 2> Synthesis of A38

Figure pat00070
Figure pat00070

질소 기류 하에서 A37.6.6g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A38 (4.7g, 9.2 mmol, 수율 76%)을 얻었다.37.6.6 g (12.1 mmol) of triphenylphosphine, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A38 (4.7 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 508.62 g/mol, 측정치: 509 g/mol) GC-Mass (calculated: 508.62 g / mol, measured: 509 g / mol)

1H-NMR: δ 7.77~7.97(m, 8H), 8.07~8.40(m, 8H), 8.45(s, 1H), 8.55(s, 1H), 8.64~8.88(m, 5H), 11.56(s, 1H)(S, 1H), 8.55 (s, 1H), 8.64-8.88 (m, 5H), 11.56 (s, 1H), 8.07-8.40 1H)

[준비예 20] A40의 합성[Preparation Example 20] Synthesis of A40

<단계 1> A39의 합성<Step 1> Synthesis of A39

Figure pat00071
Figure pat00071

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), ((1-(9,9-dimethyl-9H-fluoren-2-yl)naphthalen-2-yl)boronic acid 6.1g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4 및 potassium carbonate 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.5.1 g (20.2 mmol) of 1-bromo-2-nitrobenzene and 6.1 g (16.9 mmol) of ((1- (9,9-dimethyl- 9H- fluoren- 2- yl) naphthalen- , 1.0 g (5 mol%) of Pd (PPh 3 ) 4 and 7.0 g (50.6 mmol) of potassium carbonate and 80 ml / 40 ml / 40 ml of toluene / H 2 O / ethanol were added and stirred at 110 for 3 hours .

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A39 (6.0g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A39 (6.0 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 491.59 g/mol, 측정치: 492 g/mol)GC-Mass (calculated: 491.59 g / mol, measured: 492 g / mol)

1H-NMR: δ 1.61(s, 6H), 7.75~7.95(m, 8H), 8.06~8.35(m, 9H), 8.46(s, 1H), 8.55(s, 1H)(S, 6H), 7.75-7.95 (m, 8H), 8.06-8.35 (m, 9H), 8.46

<단계 2> A40의 합성<Step 2> Synthesis of A40

Figure pat00072
Figure pat00072

질소 기류 하에서 A39 6.0g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A40 (4.2g, 9.2 mmol, 수율 76%)을 얻었다.6.0 g (12.1 mmol) of A39, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A40 (4.2 g, 9.2 mmol, yield 76%).

GC-Mass (이론치: 459.59 g/mol, 측정치: 460 g/mol)GC-Mass (theory: 459.59 g / mol, measured: 460 g / mol)

1H-NMR: δ 1.61(s, 6H), 7.75~7.95(m, 8H), 8.06~8.35(m, 8H), 8.46(s, 1H), 8.55(s, 1H), 11.56(s, 1H)1 H-NMR:? 1.61 (s, 6H), 7.75-7.95 (m, 8H), 8.06-8.35 (m, 8H), 8.46 (s,

[준비예 21] A42의 합성[Preparation Example 21] Synthesis of A42

<단계 1> A41의 합성<Step 1> Synthesis of A41

Figure pat00073
Figure pat00073

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), naphthalen-2-ylboronic acid, 2.9g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate, 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.Under nitrogen gas stream, 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), Pd (PPh 3) of naphthalen-2-ylboronic acid, 2.9g (16.9 mmol), 1.0g (5 mol%) 4, and potassium carbonate, 7.0 g (50.6 mmol) of Toluene / H 2 O / Ethanol (80 ml / 40 ml / 40 ml) was added thereto and stirred at 110 for 3 hours.

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A41 (3.6g, 12.1 mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A41 (3.6 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 299.33 g/mol, 측정치: 299 g/mol)GC-Mass (299.33 g / mol, measured: 299 g / mol)

1H-NMR: δ 7.91~8.12(m, 6H), 8.31~8.58(m, 5H), 8.75(s, 1H), 8.95(s, 1H)(M, 6H), 8.31-8.58 (m, 5H), 8.75 (s,

<단계 2> A42의 합성<Step 2> Synthesis of A42

Figure pat00074
Figure pat00074

질소 기류 하에서 A41 3.6g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A42 (2.4g, 9.0 mmol, 수율 74%)을 얻었다.3.6 g (12.1 mmol) of A41, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed under a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain the desired compound A42 (2.4 g, 9.0 mmol, yield 74%).

GC-Mass (이론치: 267.33g/mol, 측정치: 267g/mol)GC-Mass (theory: 267.33 g / mol, measured: 267 g / mol)

1H-NMR: δ 7.93~8.12(m, 6H), 8.31~8.58(m, 4H), 8.75(s, 1H), 8.95(s, 1H), 11.55(s, 1H)(M, 4H), 8.75 (s, 1H), 8.95 (s, 1H), 11.55

[준비예 22] A43의 합성[Preparation Example 22] Synthesis of A43

<단계 1> A44의 합성<Step 1> Synthesis of A44

Figure pat00075
Figure pat00075

질소 기류 하에서 1-bromo-2-nitrobenzene 5.1g (20.2 mmol), (4-(dibenzo[b,d]thiophen-2-yl)naphthalen-2-yl)boronic acid, 6.0g (16.9 mmol), 1.0g (5 mol%)의 Pd(PPh3)4, 및 potassium carbonate, 7.0g (50.6 mmol)와 80 ml/40 ml/40 ml의 Toluene/H2O/Ethanol를 넣고 110에서 3시간 동안 교반하였다.(Dibenzo [b, d] thiophen-2-yl) naphthalen-2-yl) boronic acid, 6.0 g (16.9 mmol), 1.0 (PPh 3 ) 4 , potassium carbonate, 7.0 g (50.6 mmol) and 80 ml / 40 ml / 40 ml of Toluene / H 2 O / Ethanol were added and stirred at 110 ° C. for 3 hours .

반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A43 (5.9g, 12.1mmol, 수율 72%)을 얻었다.After completion of the reaction, the organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the target compound A43 (5.9 g, 12.1 mmol, yield 72%).

GC-Mass (이론치: 481.57 g/mol, 측정치: 482 g/mol)GC-Mass (calculated: 481.57 g / mol, measured: 482 g / mol)

1H-NMR: δ 7.61~8.12(m, 8H), 8.21~8.58(m, 9H), 8.75(s, 1H), 8.95(s, 1H)(M, 8H), 8.21-8.58 (m, 9H), 8.75 (s,

<단계 2> A44의 합성<Step 2> Synthesis of A44

Figure pat00076
Figure pat00076

질소 기류 하에서 A31 5.9g (12.1 mmol)과 triphenylphosphine 8.0g (30.4 mmol), 1,2-dichlorobenzene 50 ml를 넣은 후 12시간 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 A44 (4.2g, 9.0 mmol, 수율 76%)을 얻었다.5.9 g (12.1 mmol) of A31, 8.0 g (30.4 mmol) of triphenylphosphine and 50 ml of 1,2-dichlorobenzene were placed in a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed. The organic layer was separated using methylene chloride, and water was removed using MgSO 4 . The solvent of the organic layer was removed, and the residue was purified by column chromatography to obtain the desired compound A44 (4.2 g, 9.0 mmol, yield 76%).

GC-Mass (이론치: 449.57 g/mol, 측정치: 450 g/mol)GC-Mass (calculated: 449.57 g / mol, measured: 450 g / mol)

1H-NMR: δ 7.62~8.12(m, 8H), 8.21~8.48(m, 8H), 8.75(s, 1H), 8.95(s, 1H), 11.56(s, 1H)(M, 8H), 8.75 (s, 1H), 8.95 (s, 1H), 11.56

[[ 합성예Synthetic example 1] R1의 합성 1] Synthesis of R1

Figure pat00077
Figure pat00077

질소 기류 하에서 A2 2.4g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g(27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.3 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R1 3.2g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.2 g (6.1 mmol, yield 68%) of the target compound R1.

GC-Mass (이론치: 521.62 g/mol, 측정치: 522 g/mol)GC-Mass (calculated: 521.62 g / mol, measured: 522 g / mol)

[[ 합성예Synthetic example 2] R5의 합성 2] Synthesis of R5

Figure pat00078
Figure pat00078

질소 기류 하에서 A2 2.4g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline, 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.2.4 g (9.0 mmol) of A2, 2-bromo-3-phenylbenzo [f] quinoxaline, 3.3 g (9.9 mmol), 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol) of sodium tert-butoxide, 2.6 g (27.0 mmol) of sodium tert-butoxide and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R5 3.2g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.2 g (6.1 mmol, yield 68%) of the desired compound R5.

GC-Mass (이론치: 521.62 g/mol, 측정치: 522 g/mol)GC-Mass (calculated: 521.62 g / mol, measured: 522 g / mol)

[[ 합성예Synthetic example 3] R7의 합성 3] Synthesis of R7

Figure pat00079
Figure pat00079

질소 기류 하에서 A2 2.4g (9.0 mmol), 2-chloro-3-(9-phenyl-9H-carbazol-3-yl)benzo[f]quinoxaline 4.5g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.4.5 g (9.9 mmol) of 2-chloro-3- (9-phenyl-9H-carbazol-3-yl) benzo [f] quinoxaline, 0.4 g (5 mol%) of A2 0.1 g (0.4 mmol) of Pd 2 (dba) 3 , tri- tert- butylphosphine and 2.6 g (27.0 mmol) of sodium tert-butoxide and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R7 4.4g (6.4 mmol, 수율 71%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.4 g (6.4 mmol, Yield: 71%) of the desired compound R7.

GC-Mass (이론치: 686.82 g/mol, 측정치: 687 g/mol)GC-Mass (686.82 g / mol, measured: 687 g / mol)

[[ 합성예Synthetic example 4] R8의 합성 4] Synthesis of R8

Figure pat00080
Figure pat00080

질소 기류 하에서 A2 2.4g (9.0 mmol), 2-bromo-4-phenylbenzo[4,5]thieno[3,2-d]pyrimidine 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.2.4 g (9.0 mmol) of A2, 3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [4,5] thieno [3,2-d] pyrimidine and 0.4 g (5 mol%) of Pd 2 dba) 3, tri- tert -butylphosphine 0.1g (0.4 mmol) and Sodium tert-butoxide 2.6g (27.0 mmol ) and placed in 100 ml of Toluene was stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R8 3.2g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.2 g (6.1 mmol, yield 68%) of the target compound R8.

GC-Mass (이론치: 527.65 g/mol, 측정치: 528 g/mol)GC-Mass (calculated: 527.65 g / mol, measured: 528 g / mol)

[[ 합성예Synthetic example 5] R10의 합성 5] Synthesis of R10

Figure pat00081
Figure pat00081

질소 기류 하에서 A2 2.4g (9.0 mmol), 2-chlorothiochromeno[4,3,2-de]quinazoline 2.7g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1 g(0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.In a nitrogen stream A2 2.4g (9.0 mmol), 2 -chlorothiochromeno [4,3,2-de] quinazoline 2.7g (9.9 mmol), Pd 2 (dba) of 0.4g (5 mol%) 3, tri- tert - 0.1 g (0.4 mmol) of butylphosphine, 2.6 g (27.0 mmol) of sodium tert-butoxide, and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R10 2.9g (5.8 mmol, 수율 65%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 2.9 g (5.8 mmol, yield 65%) of the desired compound R10.

GC-Mass (이론치: 501.61 g/mol, 측정치: 502 g/mol)GC-Mass (calculated: 501.61 g / mol, measured: 502 g / mol)

[[ 합성예Synthetic example 6] R11의 합성 6] Synthesis of R11

Figure pat00082
Figure pat00082

질소 기류 하에서 A4 3.2g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R11 3.4g (5.6 mmol, 수율 61%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.4 g (5.6 mmol, yield 61%) of the desired compound R11.

GC-Mass (이론치: 597.72 g/mol, 측정치: 598 g/mol)GC-Mass (calculated: 597.72 g / mol, measured: 598 g / mol)

[[ 합성예Synthetic example 7] R15의 합성 7] Synthesis of R15

Figure pat00083
Figure pat00083

질소 기류 하에서 A4 3.2g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.3 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R15 3.8g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.8 g (6.3 mmol, yield 68%) of the target compound R15.

GC-Mass (이론치: 597.72 g/mol, 측정치: 598 g/mol)GC-Mass (calculated: 597.72 g / mol, measured: 598 g / mol)

[[ 합성예Synthetic example 8] R21의 합성 8] Synthesis of R21

Figure pat00084
Figure pat00084

질소 기류 하에서 A6 3.6g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.6 g (9.0 mmol) of A6, 3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R21 4.1g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.1 g (6.3 mmol, yield 68%) of the desired compound R21.

GC-Mass (이론치: 647.78 g/mol, 측정치: 648 g/mol)GC-Mass (calculated: 647.78 g / mol, measured: 648 g / mol)

[[ 합성예Synthetic example 9] R25의 합성 9] Synthesis of R25

Figure pat00085
Figure pat00085

질소 기류 하에서 A6 3.6g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.6 g (9.0 mmol) of A6, 3.4 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R25 3.8g (5.8mmol, 수율 63%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.8 g (5.8 mmol, yield 63%) of the target compound R25.

GC-Mass (이론치: 647.78 g/mol, 측정치: 648 g/mol)GC-Mass (calculated: 647.78 g / mol, measured: 648 g / mol)

[[ 합성예Synthetic example 10] R31의 합성 10] Synthesis of R31

Figure pat00086
Figure pat00086

질소 기류 하에서 A8 3.2g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.2 g (9.0 mmol) of A8, 3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R31 3.8g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.8 g (6.3 mmol, yield 68%) of the target compound R31.

GC-Mass (이론치: 597.72 g/mol, 측정치: 598 g/mol)GC-Mass (calculated: 597.72 g / mol, measured: 598 g / mol)

[[ 합성예Synthetic example 11] R35의 합성 11] Synthesis of R35

Figure pat00087
Figure pat00087

질소 기류 하에서 A8 3.2g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.In a nitrogen atmosphere A8 3.2g (9.0 mmol), 2 -bromo-3-phenylbenzo [f] quinoxaline 3.4g (9.9 mmol), 0.4g Pd 2 (dba) of (5 mol%) 3, tri- tert -butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R35 3.8g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.8 g (6.3 mmol, yield 68%) of the target compound R35.

GC-Mass (이론치: 597.72 g/mol, 측정치: 598 g/mol)GC-Mass (calculated: 597.72 g / mol, measured: 598 g / mol)

[[ 합성예Synthetic example 12] R41의 합성 12] Synthesis of R41

Figure pat00088
Figure pat00088

질소 기류 하에서 A10 4.0g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1 g(0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.4.0 g (9.0 mmol) of A10, 3.3 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R41 4.3g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.3 g (6.1 mmol, yield 68%) of the target compound R41.

GC-Mass (이론치: 703.86 g/mol, 측정치: 704 g/mol) GC-Mass (calculated: 703.86 g / mol, measured: 704 g / mol)

[[ 합성예Synthetic example 13] R45의 합성 13] Synthesis of R45

Figure pat00089
Figure pat00089

질소 기류 하에서 A10 4.0g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.(9.0 mmol) of A10, 3.3 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert -butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R45 4.0g (5.7 mmol, 수율 63%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.0 g (5.7 mmol, yield 63%) of the objective compound R45.

GC-Mass (이론치: 703.86 g/mol, 측정치: 704 g/mol)GC-Mass (calculated: 703.86 g / mol, measured: 704 g / mol)

[[ 합성예Synthetic example 14] R51의 합성 14] Synthesis of R51

Figure pat00090
Figure pat00090

질소 기류 하에서 A12 4.6g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R51 4.7g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.7 g (6.3 mmol, yield 68%) of the target compound R51.

GC-Mass (이론치: 753.92 g/mol, 측정치: 754 g/mol)GC-Mass (calculated: 753.92 g / mol, measured: 754 g / mol)

[[ 합성예Synthetic example 15] R55의 합성 15] Synthesis of R55

Figure pat00091
Figure pat00091

질소 기류 하에서 A12 4.6g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R55 4.7g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.7 g (6.3 mmol, yield 68%) of the desired compound R55.

GC-Mass (이론치: 753.92 g/mol, 측정치: 754 g/mol)GC-Mass (calculated: 753.92 g / mol, measured: 754 g / mol)

[[ 합성예Synthetic example 16] R61의 합성 16] Synthesis of R61

Figure pat00092
Figure pat00092

질소 기류 하에서 A14 4.6g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R61 4.0 g (5.6 mmol, 수율 61%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.0 g (5.6 mmol, yield 61%) of the target compound R61.

GC-Mass (이론치: 703.86 g/mol, 측정치: 704 g/mol)GC-Mass (calculated: 703.86 g / mol, measured: 704 g / mol)

[[ 합성예Synthetic example 17] R65의 합성 17] Synthesis of R65

Figure pat00093
Figure pat00093

질소 기류 하에서 A14 4.6g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R65 4.4g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.4 g (6.3 mmol, yield 68%) of the desired compound R65.

GC-Mass (이론치: 703.86 g/mol, 측정치: 704 g/mol)GC-Mass (calculated: 703.86 g / mol, measured: 704 g / mol)

[[ 합성예Synthetic example 18] R71의 합성 18] Synthesis of R71

Figure pat00094
Figure pat00094

질소 기류 하에서 A16, 4.6g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.3 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol) of sodium tert-butoxide, 2.6 g (27.0 mmol) of sodium tert-butoxide and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R71 4.4g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.4 g (6.3 mmol, yield 68%) of the desired compound R71.

GC-Mass (이론치: 703.86 g/mol, 측정치: 704 g/mol)GC-Mass (calculated: 703.86 g / mol, measured: 704 g / mol)

[[ 합성예Synthetic example 19] R75의 합성 19] Synthesis of R75

Figure pat00095
Figure pat00095

질소 기류 하에서 A16 4.6g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.In a nitrogen stream A16 4.6g (9.0 mmol), 2 -bromo-3-phenylbenzo [f] quinoxaline 3.3g (9.9 mmol), 0.4g Pd 2 (dba) of (5 mol%) 3, tri- tert -butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R75 4.4g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.4 g (6.3 mmol, yield 68%) of R75 as a target compound.

GC-Mass (이론치: 703.86 g/mol, 측정치: 704 g/mol)GC-Mass (calculated: 703.86 g / mol, measured: 704 g / mol)

[[ 합성예Synthetic example 20] R81의 합성 20] Synthesis of R81

Figure pat00096
Figure pat00096

질소 기류 하에서 A18 3.9g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.3 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R81 4.2g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.2 g (6.1 mmol, yield 68%) of the desired compound R81.

GC-Mass (이론치: 687.80 g/mol, 측정치: 688 g/mol)GC-Mass (calculated: 687.80 g / mol, measured: 688 g / mol)

[[ 합성예Synthetic example 21] R85의 합성 21] Synthesis of R85

Figure pat00097
Figure pat00097

질소 기류 하에서 A18 3.9g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1 g (0.4 mmol) 및 Sodium tert-butoxide 2.6 g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.3 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol) of sodium tert-butoxide, 2.6 g (27.0 mmol) of sodium tert-butoxide and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R85 4.2g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.2 g (6.1 mmol, yield 68%) of the desired compound R85.

GC-Mass (이론치: 687.80 g/mol, 측정치: 688 g/mol)GC-Mass (calculated: 687.80 g / mol, measured: 688 g / mol)

[[ 합성예Synthetic example 22] R91의 합성 22] Synthesis of R91

Figure pat00098
Figure pat00098

질소 기류 하에서 A20 4.7g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R91 4.6g (6.1 mmol, 수율 66%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.6 g (6.1 mmol, yield 66%) of the desired compound R91.

GC-Mass (이론치: 762.92 g/mol, 측정치: 763 g/mol)GC-Mass (calculated: 762.92 g / mol, measured: 763 g / mol)

[[ 합성예Synthetic example 23] R95의 합성 23] Synthesis of R95

Figure pat00099
Figure pat00099

질소 기류 하에서 A20 4.7g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R95 4.8g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.8 g (6.3 mmol, yield 68%) of the desired compound R95.

GC-Mass (이론치: 762.92g/mol, 측정치: 763g/mol) GC-Mass (calculated: 762.92 g / mol, measured: 763 g / mol)

[[ 합성예Synthetic example 24] R101의 합성 24] Synthesis of R101

Figure pat00100
Figure pat00100

질소 기류 하에서 A22 4.2g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R101 4.5g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.5 g (6.3 mmol, yield 68%) of the desired compound R101.

GC-Mass (이론치: 713.88 g/mol, 측정치: 714 g/mol)GC-Mass (calculated: 713.88 g / mol, measured: 714 g / mol)

[[ 합성예Synthetic example 25] R105의 합성 25] Synthesis of R105

Figure pat00101
Figure pat00101

질소 기류 하에서 A22 4.2g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R105 4.5g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.5 g (6.3 mmol, yield 68%) of the target compound R105.

GC-Mass (이론치: 713.88 g/mol, 측정치: 714 g/mol)GC-Mass (calculated: 713.88 g / mol, measured: 714 g / mol)

[[ 합성예Synthetic example 26] R111의 합성 26] Synthesis of R111

Figure pat00102
Figure pat00102

질소 기류 하에서 A24 4.1g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert -butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R111 4.4g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.4 g (6.3 mmol, yield 68%) of the desired compound R111.

GC-Mass (이론치: 703.80 g/mol, 측정치: 704 g/mol)GC-Mass (calculated: 703.80 g / mol, measured: 704 g / mol)

[[ 합성예Synthetic example 27] R115의 합성 27] Synthesis of R115

Figure pat00103
Figure pat00103

질소 기류 하에서 A24 4.1g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.In a nitrogen stream A24 4.1g (9.0 mmol), 2 -bromo-3-phenylbenzo [f] quinoxaline 3.3g (9.9 mmol), 0.4g Pd 2 (dba) of (5 mol%) 3, tri- tert -butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R115 4.4g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.4 g (6.3 mmol, yield 68%) of the target compound R115.

GC-Mass (이론치: 703.80 g/mol, 측정치: 704 g/mol)GC-Mass (calculated: 703.80 g / mol, measured: 704 g / mol)

[[ 합성예Synthetic example 28] R121의 합성 28] Synthesis of R121

Figure pat00104
Figure pat00104

질소 기류 하에서 A26 2.4g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.3 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R121 3.2g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.2 g (6.1 mmol, yield 68%) of the target compound R121.

GC-Mass (이론치: 521.62 g/mol, 측정치: 522 g/mol)GC-Mass (calculated: 521.62 g / mol, measured: 522 g / mol)

[[ 합성예Synthetic example 29] R125의 합성 29] Synthesis of R125

Figure pat00105
Figure pat00105

질소 기류 하에서 A26 2.4g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.3 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R125 3.2g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.2 g (6.1 mmol, yield 68%) of the target compound R125.

GC-Mass (이론치: 521.62 g/mol, 측정치: 522 g/mol)GC-Mass (calculated: 521.62 g / mol, measured: 522 g / mol)

[[ 합성예Synthetic example 30] R131의 합성 30] Synthesis of R131

Figure pat00106
Figure pat00106

질소 기류 하에서 A28 3.2g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide, 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.2 g (9.0 mmol) of A28, 3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol) of sodium tert-butoxide, 2.6 g (27.0 mmol) of sodium tert-butoxide, and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R131 3.8g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.8 g (6.3 mmol, yield 68%) of the target compound R131.

GC-Mass (이론치: 597.72 g/mol, 측정치: 598 g/mol)GC-Mass (calculated: 597.72 g / mol, measured: 598 g / mol)

[[ 합성예Synthetic example 31] R135의 합성 31] Synthesis of R135

Figure pat00107
Figure pat00107

질소 기류 하에서 A28 3.2g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.2 g (9.0 mmol) of A28, 3.3 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R135 3.8g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.8 g (6.3 mmol, yield 68%) of the target compound R135.

GC-Mass (이론치: 597.72 g/mol, 측정치: 598 g/mol)GC-Mass (calculated: 597.72 g / mol, measured: 598 g / mol)

[[ 합성예Synthetic example 32] R141의 합성 32] Synthesis of R141

Figure pat00108
Figure pat00108

질소 기류 하에서 A30 3.2g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.2 g (9.0 mmol) of A30, 3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R141 3.5g (5.8 mmol, 수율 63%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.5 g (5.8 mmol, yield 63%) of the target compound R141.

GC-Mass (이론치: 597.72 g/mol, 측정치: 598 g/mol)GC-Mass (calculated: 597.72 g / mol, measured: 598 g / mol)

[[ 합성예Synthetic example 33] R145의 합성 33] Synthesis of R145

Figure pat00109
Figure pat00109

질소 기류 하에서 A30 3.2g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.In a nitrogen stream A30 3.2g (9.0 mmol), 2 -bromo-3-phenylbenzo [f] quinoxaline 3.4g (9.9 mmol), 0.4g Pd 2 (dba) of (5 mol%) 3, tri- tert -butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R145 3.8g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.8 g (6.3 mmol, yield 68%) of the target compound R145.

GC-Mass (이론치: 597.72 g/mol, 측정치: 598 g/mol)GC-Mass (calculated: 597.72 g / mol, measured: 598 g / mol)

[[ 합성예Synthetic example 34] R151의 합성 34] Synthesis of R151

Figure pat00110
Figure pat00110

질소 기류 하에서 A32 4.0g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.In a nitrogen stream A32 4.0g (9.0 mmol), 2 -bromo-4-phenylbenzo [h] quinazoline 3.3g (9.9 mmol), 0.4g Pd 2 (dba) of (5 mol%) 3, tri- tert -butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R151 4.3g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.3 g (6.1 mmol, yield 68%) of the target compound R151.

GC-Mass (이론치: 703.86 g/mol, 측정치: 704 g/mol)GC-Mass (calculated: 703.86 g / mol, measured: 704 g / mol)

[[ 합성예Synthetic example 35] R161의 합성 35] Synthesis of R161

Figure pat00111
Figure pat00111

질소 기류 하에서 A34 4.6g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R161 4.7g(6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.7 g (6.3 mmol, yield 68%) of the target compound R161.

GC-Mass (이론치: 753.92 g/mol, 측정치: 754 g/mol)GC-Mass (calculated: 753.92 g / mol, measured: 754 g / mol)

[[ 합성예Synthetic example 36] R165의 합성 36] Synthesis of R165

Figure pat00112
Figure pat00112

질소 기류 하에서 A34 4.6g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R165 4.7g(6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.7 g (6.3 mmol, yield 68%) of the target compound R165.

GC-Mass (이론치: 753.92 g/mol, 측정치: 754 g/mol)GC-Mass (calculated: 753.92 g / mol, measured: 754 g / mol)

[[ 합성예Synthetic example 37] R171의 합성 37] Synthesis of R171

Figure pat00113
Figure pat00113

질소 기류 하에서 A36 3.9g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.3 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R171 4.2g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.2 g (6.1 mmol, yield 68%) of the desired compound R171.

GC-Mass (이론치: 687.80 g/mol, 측정치: 688 g/mol)GC-Mass (calculated: 687.80 g / mol, measured: 688 g / mol)

[[ 합성예Synthetic example 38] R175의 합성 38] Synthesis of R175

Figure pat00114
Figure pat00114

질소 기류 하에서 A36 3.9g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.3 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R175 4.2g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.2 g (6.1 mmol, yield 68%) of the desired compound R175.

GC-Mass (이론치: 687.80 g/mol, 측정치: 688 g/mol)GC-Mass (calculated: 687.80 g / mol, measured: 688 g / mol)

[[ 합성예Synthetic example 39] R181의 합성 39] Synthesis of R181

Figure pat00115
Figure pat00115

질소 기류 하에서 A38 4.7g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1 g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R181 4.8g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.8 g (6.3 mmol, yield 68%) of the target compound R181.

GC-Mass (이론치: 762.92 g/mol, 측정치: 763 g/mol)GC-Mass (calculated: 762.92 g / mol, measured: 763 g / mol)

[[ 합성예Synthetic example 40] R185의 합성 40] Synthesis of R185

Figure pat00116
Figure pat00116

질소 기류 하에서 A38 4.7g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R185 4.8g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.8 g (6.3 mmol, yield 68%) of the target compound R185.

GC-Mass (이론치: 762.92 g/mol, 측정치: 763 g/mol)GC-Mass (calculated: 762.92 g / mol, measured: 763 g / mol)

[[ 합성예Synthetic example 41] R191의 합성 41] Synthesis of R191

Figure pat00117
Figure pat00117

질소 기류 하에서 A40 4.2g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R191 4.5g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.5 g (6.3 mmol, yield 68%) of the desired compound R191.

GC-Mass (이론치: 713.88 g/mol, 측정치: 714 g/mol)GC-Mass (calculated: 713.88 g / mol, measured: 714 g / mol)

[[ 합성예Synthetic example 42] R195의 합성 42] Synthesis of R195

Figure pat00118
Figure pat00118

질소 기류 하에서 A40 4.2g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R195 4.5g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.5 g (6.3 mmol, yield 68%) of the target compound R195.

GC-Mass (이론치: 713.88 g/mol, 측정치: 714 g/mol)GC-Mass (calculated: 713.88 g / mol, measured: 714 g / mol)

[[ 합성예Synthetic example 43] R201의 합성 43] Synthesis of R201

Figure pat00119
Figure pat00119

질소 기류 하에서 A42, 2.4g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.3 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert -butylphosphine 0.1 g (0.4 mmol) of sodium tert-butoxide, 2.6 g (27.0 mmol) of sodium tert-butoxide and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R201 3.2g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . Purification by column chromatography gave 3.2 g (6.1 mmol, yield 68%) of the target compound R201.

GC-Mass (이론치: 521.62 g/mol, 측정치: 522 g/mol)GC-Mass (calculated: 521.62 g / mol, measured: 522 g / mol)

[[ 합성예Synthetic example 44] R205의 합성 44] Synthesis of R205

Figure pat00120
Figure pat00120

질소 기류 하에서 A42 2.4g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.3g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.3 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R205 3.2g (6.1 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 3.2 g (6.1 mmol, yield 68%) of the target compound R205.

GC-Mass (이론치: 521.62 g/mol, 측정치: 522 g/mol)GC-Mass (calculated: 521.62 g / mol, measured: 522 g / mol)

[[ 합성예Synthetic example 45] R211의 합성 45] Synthesis of R211

Figure pat00121
Figure pat00121

질소 기류 하에서 A44 4.2g (9.0 mmol), 2-bromo-4-phenylbenzo[h]quinazoline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-4-phenylbenzo [h] quinazoline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R211 4.2g (6.0 mmol, 수율 65%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.2 g (6.0 mmol, yield 65%) of the objective compound R211.

GC-Mass (이론치: 703.86 g/mol, 측정치: 704 g/mol)GC-Mass (calculated: 703.86 g / mol, measured: 704 g / mol)

[[ 합성예Synthetic example 46] R215의 합성 46] Synthesis of R215

Figure pat00122
Figure pat00122

질소 기류 하에서 A44 4.2g (9.0 mmol), 2-bromo-3-phenylbenzo[f]quinoxaline 3.4g (9.9 mmol), 0.4g (5 mol%)의 Pd2(dba)3, tri-tert-butylphosphine 0.1g (0.4 mmol) 및 Sodium tert-butoxide 2.6g (27.0 mmol)와 100 ml의 Toluene을 넣고 110에서 4시간 동안 교반하였다.3.4 g (9.9 mmol) of 2-bromo-3-phenylbenzo [f] quinoxaline, 0.4 g (5 mol%) of Pd 2 (dba) 3 , tri- tert- butylphosphine 0.1 g (0.4 mmol), sodium tert-butoxide (2.6 g, 27.0 mmol), and 100 ml of toluene were placed and stirred at 110 for 4 hours.

반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R215 4.4g (6.3 mmol, 수율 68%)을 얻었다.After the reaction was completed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . The residue was purified by column chromatography to obtain 4.4 g (6.3 mmol, yield 68%) of the target compound R215.

GC-Mass (이론치: 703.86 g/mol, 측정치: 704 g/mol)GC-Mass (calculated: 703.86 g / mol, measured: 704 g / mol)

[[ 실시예Example 1 ~ 46] 적색 유기 EL 소자의 제작 Fabrication of Red OLED Devices

합성예에서 합성한 화합물을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 적색 유기 전계 발광 소자를 제작하였다.The compound synthesized in Synthesis Example was subjected to high purity sublimation purification by a conventionally known method, and a red organic electroluminescent device was fabricated according to the following procedure.

먼저, ITO (Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.First, a glass substrate coated with ITO (Indium Tin Oxide) with a thickness of 1500 Å was washed with distilled water ultrasonic waves. After the distilled water was washed, the substrate was ultrasonically washed with a solvent such as isopropyl alcohol, acetone, or methanol, dried and transferred to a UV OZONE cleaner (Power Sonic 405, Hoshin Tech), the substrate was cleaned using UV for 5 minutes, The substrate was transferred.

이렇게 준비된 ITO 투명 전극 위에 m-MTDATA (60 nm)/TCTA (80 nm)/ R1, R5, R7, R8, R10, R11, R15, R21, R25, R31, R35, R41, R45, R51, R55, R61, R65, R71, R75, R81, R85, R91, R95, R101, R105, R111, R115, R121, R125, R131, R135, R141, R145, R151, R161, R165, R171, R175, R181, R185, R191, R195, R201, R205, R211, R215의 각각의 화합물 + 10 % (piq)2Ir(acac) (300 nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제작하였다.(60 nm) / TCTA (80 nm) / R 1, R 5, R 7, R 8, R 10, R 11, R 15, R 21, R 25, R 31, R 35, R 41, R 45, R 51, R 55, R16, R65, R71, R75, R81, R85, R91, R95, R101, R105, R111, R115, R121, R125, R131, R135, R141, R145, R151, R161, R165, R171, (300 nm) / BCP (10 nm) / Alq 3 (30 nm) / LiF (1 nm) / 10% (piq) 2 Ir (acac) Al (200 nm) were stacked in this order to fabricate an organic electroluminescent device.

m-MTDATA, (piq)2Ir(acac), CBP, BCP, TCTA, 및 A의 구조는 하기와 같다.The structures of m-MTDATA, (piq) 2 Ir (acac), CBP, BCP, TCTA and A are as follows.

Figure pat00123
Figure pat00123

Figure pat00124
Figure pat00125
Figure pat00124
Figure pat00125

[[ 비교예Comparative Example 1] One]

발광층 형성시 발광 호스트 물질로서 화합물 R1 대신 CBP를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 과정으로 적색 유기 EL 소자를 제작하였다.A red organic EL device was fabricated in the same manner as in Example 1, except that CBP was used instead of the compound R1 as a luminescent host material in forming the light emitting layer.

[[ 비교예Comparative Example 2] 2]

발광층 형성시 발광 호스트 물질로서 화합물 R1 대신 A를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 과정으로 적색 유기 EL 소자를 제작하였다.A red organic EL device was fabricated in the same manner as in Example 1 except that A was used instead of the compound R1 as a luminescent host material in forming the light emitting layer.

[[ 평가예Evaluation example 1] One]

실시예 1 ~ 46 및 비교예 1, 2에서 제작한 각각의 유기 전계 발광 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압, 발광 피크 및 전류효율을 측정하고, 그 결과를 하기 표 3에 나타내었다.The driving voltage, the luminescent peak and the current efficiency at the current density of 10 mA / cm 2 were measured for each of the organic electroluminescent devices manufactured in Examples 1 to 46 and Comparative Examples 1 and 2, .

샘플Sample 호스트Host 구동 전압
(V)
Driving voltage
(V)
발광 피크
(nm)
Emission peak
(nm)
전류효율
(cd/A)
Current efficiency
(cd / A)
실시예 1Example 1 R1R1 4.64.6 621621 17.417.4 실시예 2Example 2 R5R5 3.53.5 621621 16.716.7 실시예 3Example 3 R7R7 4.24.2 621621 18.618.6 실시예 4Example 4 R8R8 4.54.5 621621 17.217.2 실시예 5Example 5 R10R10 3.53.5 621621 16.516.5 실시예 6Example 6 R11R11 4.54.5 621621 16.816.8 실시예 7Example 7 R15R15 4.54.5 621621 16.816.8 실시예 8Example 8 R21R21 4.54.5 621621 16.816.8 실시예 9Example 9 R25R25 4.94.9 621621 19.119.1 실시예 10Example 10 R31R31 4.64.6 621621 17.417.4 실시예 11Example 11 R35R35 4.74.7 621621 16.816.8 실시예 12Example 12 R41R41 4.54.5 621621 16.816.8 실시예 13Example 13 R45R45 4.34.3 621621 20.120.1 실시예 14Example 14 R51R51 4.34.3 621621 17.417.4 실시예 15Example 15 R55R55 4.24.2 621621 18.718.7 실시예 16Example 16 R61R61 4.34.3 621621 17.417.4 실시예 17Example 17 R65R65 4.24.2 621621 18.718.7 실시예 18Example 18 R71R71 4.54.5 621621 17.217.2 실시예 19Example 19 R75R75 4.24.2 621621 18.718.7 실시예 20Example 20 R81R81 4.54.5 621621 17.217.2 실시예 21Example 21 R85R85 3.53.5 621621 16.516.5 실시예 22Example 22 R91R91 4.84.8 621621 19.319.3 실시예 23Example 23 R95R95 4.24.2 621621 18.718.7 실시예 24Example 24 R101R101 4.34.3 621621 17.417.4 실시예 25Example 25 R105R105 4.24.2 621621 18.718.7 실시예 26Example 26 R111R111 4.54.5 621621 17.217.2 실시예 27Example 27 R115R115 4.74.7 621621 16.816.8 실시예 28Example 28 R121R121 4.64.6 621621 17.217.2 실시예 29Example 29 R125R125 4.34.3 621621 17.417.4 실시예 30Example 30 R131R131 4.24.2 621621 18.718.7 실시예 31Example 31 R135R135 4.54.5 621621 17.217.2 실시예 32Example 32 R141R141 3.53.5 621621 16.516.5 실시예 33Example 33 R145R145 4.84.8 621621 19.319.3 실시예 34Example 34 R151R151 4.54.5 621621 16.816.8 실시예 35Example 35 R161R161 4.64.6 621621 17.417.4 실시예 36Example 36 R165R165 4.74.7 621621 16.816.8 실시예 37Example 37 R171R171 4.64.6 621621 17.217.2 실시예 38Example 38 R175R175 4.34.3 621621 17.417.4 실시예 39Example 39 R181R181 4.24.2 621621 18.718.7 실시예 40Example 40 R185R185 4.54.5 621621 17.217.2 실시예 41Example 41 R191R191 4.74.7 621621 16.816.8 실시예 42Example 42 R195R195 4.64.6 621621 17.217.2 실시예 43Example 43 R201R201 4.64.6 621621 17.217.2 실시예 44Example 44 R205R205 4.74.7 621621 16.816.8 실시예 45Example 45 R211R211 4.94.9 621621 19.119.1 실시예 46Example 46 R215R215 4.64.6 621621 17.417.4 비교예 1Comparative Example 1 CBPCBP 6.26.2 622622 9.39.3 비교예 2Comparative Example 2 AA 5.65.6 621621 13.913.9

상기 표 3에 나타낸 바와 같이, 본 발명에 따른 화합물을 적색 유기 전계 발광 소자의 발광층의 재료로 사용하였을 경우(실시예 1~46), 종래 CBP와 A를 발광층의 재료로 사용한 적색 유기 전계 발광 소자(비교예 1, 2)와 비교해 볼 때 효율 및 구동전압 면에서 보다 우수한 성능을 나타내는 것을 알 수 있다.As shown in Table 3 above, when the compound according to the present invention was used as a material for the light emitting layer of a red organic electroluminescent device (Examples 1 to 46), the conventional organic electroluminescent device using CBP and A as the material of the light emitting layer (Comparative Examples 1 and 2), it can be seen that it shows superior performance in terms of efficiency and driving voltage.

[[ 실시예Example 47 ~ 49] 녹색 유기 EL 소자의 제작] 47 ~ 49] Fabrication of green organic EL device]

합성예에서 합성한 화합물을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 녹색 유기 EL 소자를 제작하였다.The compound synthesized in Synthesis Example was subjected to high purity sublimation purification by a conventionally known method, and a green organic EL device was fabricated according to the following procedure.

먼저, ITO (Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.First, a glass substrate coated with ITO (Indium Tin Oxide) with a thickness of 1500 Å was washed with distilled water ultrasonic waves. After the distilled water was washed, the substrate was ultrasonically washed with a solvent such as isopropyl alcohol, acetone, or methanol, dried and transferred to a UV OZONE cleaner (Power Sonic 405, Hoshin Tech), the substrate was cleaned using UV for 5 minutes, The substrate was transferred.

이렇게 준비된 ITO 투명 전극 위에 m-MTDATA (60 nm)/TCTA (80 nm)/ R7, R8, R10의 각각의 화합물 + 10% Ir(ppy)3 (300 nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 EL 소자를 제작하였다. (60 nm) / TCTA (80 nm) / compound of each of R7, R8 and R10 + 10% Ir (ppy) 3 (300 nm) / BCP (10 nm) / Alq 3 (30 nm) / LiF (1 nm) / Al (200 nm) in this order to obtain an organic EL device.

m-MTDATA, TCTA, Ir(ppy)3, CBP, BCP의 구조는 하기와 같다.The structures of m-MTDATA, TCTA, Ir (ppy) 3 , CBP and BCP are as follows.

Figure pat00126
Figure pat00126

Figure pat00127
Figure pat00127

[[ 비교예Comparative Example 3] 녹색 유기 EL 소자의 제작 3] Fabrication of green organic EL device

발광층 형성시 발광 호스트 물질로서 화합물 R7 대신 CBP를 사용하는 것을 제외하고는, 상기 실시예 47과 동일한 과정으로 녹색 유기 EL 소자를 제작하였다.A green organic EL device was fabricated in the same manner as in Example 47 except that CBP was used instead of the compound R7 as a luminescent host material in forming the light emitting layer.

[[ 평가예Evaluation example 2] 2]

실시예 47 ~ 49 및 비교예 3에서 제작한 각각의 녹색 유기 EL 소자에 대하여 전류밀도 (10) mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하고, 그 결과를 하기 표 4에 나타내었다. The driving voltage, current efficiency and emission peak at the current density (10) mA / cm2 were measured for each of the green organic EL devices manufactured in Examples 47 to 49 and Comparative Example 3. The results are shown in Table 4 .

샘플Sample 호스트Host 구동 전압
(V)
Driving voltage
(V)
발광 피크
(nm)
Emission peak
(nm)
전류효율
(cd/A)
Current efficiency
(cd / A)
실시예 47Example 47 R7R7 4.24.2 515515 20.320.3 실시예 48Example 48 R8R8 4.14.1 515515 21.321.3 실시예 49Example 49 R10R10 4.04.0 515515 19.919.9 비교예 3Comparative Example 3 CBPCBP 6.06.0 516516 13.013.0

상기 표 4에 나타낸 바와 같이, 본 발명에 따른 화합물을 녹색 유기 전계 발광 소자의 발광층의 재료로 사용하는 경우(실시예 47~49), 종래 CBP와 B를 발광층의 재료로 사용하는 녹색 유기 전계 발광 소자(비교예 3)와 비교해 볼 때 효율 및 구동전압 면에서 보다 우수한 성능을 나타내는 것을 알 수 있었다.As shown in Table 4, when the compound according to the present invention was used as a material for the light emitting layer of a green organic electroluminescent device (Examples 47 to 49), a conventional organic electroluminescent light emitting device using CBP and B as the material of the light emitting layer It was found that the device exhibited better performance in terms of efficiency and driving voltage as compared with the device (Comparative Example 3).

10: 양극 20: 음극
30: 유기층 31: 정공 수송층
32: 발광층 33: 정공 수송 보조층
34: 전자 수송층 35: 전자 수송 보조층
36: 전자 주입층 37: 정공 주입층
10: anode 20: cathode
30: organic layer 31: hole transport layer
32: light emitting layer 33: hole transporting auxiliary layer
34: Electron transport layer 35: Electron transport layer
36: electron injection layer 37: hole injection layer

Claims (8)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure pat00128

상기 화학식 1에서,
X1 및 X2 중 어느 하나는 N, 다른 하나는 C(R11)이고,
R1 내지 R11은 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 인접한 기와 결합하여 축합 고리를 형성하며, 이때, R1과 R2, R2와 R3, R3와 R4 중 반드시 하나는 서로 결합하여 축합 고리를 형성하고, R5와 R6, R6와 R7, R7과 R8 중 반드시 하나는 서로 결합하여 축합 고리를 형성하며, R9과 R10은 서로 결합하여 축합 고리를 형성하고,
L은 단일결합, C6~C18의 아릴렌기 및 핵원자수 5 내지 18개의 헤테로아릴렌기로 이루어진 군에서 선택되고,
상기 L의 아릴렌기, 헤테로아릴렌기 및 R1 내지 R11의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하다.
A compound represented by the following formula (1):
[Chemical Formula 1]
Figure pat00128

In Formula 1,
One of X 1 and X 2 is N and the other is C (R 11 )
R 1 to R 11 each independently represent hydrogen, deuterium, a halogen, a cyano group, a nitro group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ of C 40 cycloalkyl group, a number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 6 ~ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 1 ~ alkyloxy group of C 40, C 6 ~ aryloxy group of C 60, C 3 ~ C 40 alkylsilyl group, C group 6 ~ C 60 aryl silyl, C 1 ~ arylboronic of C 40 group of an alkyl boron, C 6 ~ C 60 group, C 6 ~ aryl phosphine of C 60 pingi, C 6 ~ C 60 mono or diaryl phosphine blood group and a C 6 ~, or selected from the group consisting of an aryl amine of the C 60, the combined contiguous groups to form a fused ring, wherein, R 1 and R 2, R 2 and R 3, R 3 and R 4 must be one of which is to be bonded to each other to form a condensed ring, R 5 and R 6, R 6 and R 7, R 7 and R 8 must be either each other To form a condensed ring, R 9 and R 10 are bonded to each other to form a condensed ring,
L is selected from the group consisting of a single bond, an arylene group having 6 to 18 carbon atoms and a heteroarylene group having 5 to 18 nuclear atoms,
Aryl group, a heteroaryl alkyl group and R 1 to R 11 of the L, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aryloxy group, an alkyloxy group, a cycloalkyl group, a heterocycloalkyl group, an arylamine group, alkylsilyl group, an alkyl boron group, an aryl boron group, an aryl phosphine group, a mono- or diaryl phosphine blood group and an aryl silyl group each independently selected from deuterium, halogen, a cyano group, a nitro group, an alkyl group of C1 ~ C40, C 2 ~ C A C 2 to C 40 alkynyl group, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 6 to C 60 aryloxy group, a C 1 to C 40 An alkyloxyl group, a C 6 to C 60 arylamine group, a C 3 to C 40 cycloalkyl group, a cyclohexyl group having 3 to 40 nuclear atoms, a C 1 to C 40 alkylsilyl group, a C 1 to C 40 boron alkyl group, C 6 ~ C 60 aryl boron group, C 6 ~ C 60 aryl phosphine group, C 6 ~ C 60 mono or diaryl phosphine of blood group and a C 6 ~ C 60 aryl silyl Substituted by one or more substituent species selected from the group consisting of or is unsubstituted, in the case where the substitution of a plurality of substituents, they are same as or different from each other.
제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 화학식 5 중 어느 하나로 표시되는 화합물:
[화학식 2]
Figure pat00129

[화학식 3]
Figure pat00130

[화학식 4]
Figure pat00131

[화학식 5]
Figure pat00132

상기 화학식 2 내지 화학식 5에서,
X1, X2, R3 내지 R6, R9, R10 및 L은 제1항에서 정의된 바와 동일하고,
R12는 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된다.
The compound of claim 1, wherein the compound represented by Formula 1 is represented by any one of Chemical Formulas 2 to 5:
(2)
Figure pat00129

(3)
Figure pat00130

[Chemical Formula 4]
Figure pat00131

[Chemical Formula 5]
Figure pat00132

In the above Chemical Formulas 2 to 5,
X 1 , X 2 , R 3 to R 6 , R 9 , R 10 and L are the same as defined in claim 1,
R 12 each independently represents hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 alkynyl, C 3 to C 40 A cycloalkyl group, a heterocycloalkyl group having 3 to 40 nuclear atoms, an aryl group having 6 to 60 carbon atoms, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkyloxy group, a C 6 to C 60 An aryloxy group, a C 3 to C 40 alkylsilyl group, a C 6 to C 60 arylsilyl group, a C 1 to C 40 alkylboron group, a C 6 to C 60 arylboron group, a C 6 to C 60 an aryl phosphine group, and is selected from the group consisting of C 6 ~ C 60 mono or diaryl phosphine of blood group and a C 6 ~ C 60 aryl amine.
제1항에 있어서,
Figure pat00133
(*는 결합이 이루어지는 부위)로 표시되는 구조는 하기 S-1 내지 S-9으로 표시되는 구조로 이루어진 군에서 선택되는 화합물:

Figure pat00134

Figure pat00135

Figure pat00136

상기 S-1 내지 S-9에서, R11은 제1항에서 정의된 바와 동일하다.
The method according to claim 1,
Figure pat00133
(* Is a site where bonding is carried out) is a compound selected from the group consisting of the structures represented by the following S-1 to S-9:

Figure pat00134

Figure pat00135

Figure pat00136

In the above S-1 to S-9, R &lt; 11 &gt; is the same as defined in claim 1.
제1항에 있어서,
상기 L은 단일결합 또는 페닐렌기인 화합물.
The method according to claim 1,
Wherein L is a single bond or a phenylene group.
제1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기 R1 내지 R235로 표시되는 화합물로 이루어진 군에서 선택되는 화합물.
Figure pat00137

Figure pat00138

Figure pat00139

Figure pat00140

Figure pat00141

Figure pat00142

Figure pat00143

Figure pat00144

Figure pat00145

Figure pat00146

Figure pat00147

Figure pat00148

Figure pat00149
The method according to claim 1,
The compound represented by the formula (1) is selected from the group consisting of the compounds represented by the following R1 to R235.
Figure pat00137

Figure pat00138

Figure pat00139

Figure pat00140

Figure pat00141

Figure pat00142

Figure pat00143

Figure pat00144

Figure pat00145

Figure pat00146

Figure pat00147

Figure pat00148

Figure pat00149
제1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기 화합물 R1, R5, R7, R8, R10, R11, R15, R21, R25, R31, R35, R41, R45, R51, R55, R61, R65, R71, R75, R81, R85, R91, R95, R101, R105, R111, R115, R121, R125, R131, R135, R141, R145, R151, R161, R165, R171, R175, R181, R185, R191, R195, R201, R205, R211 및 R215로 표시되는 화합물.
Figure pat00150
Figure pat00151
Figure pat00152
Figure pat00153
Figure pat00154
Figure pat00155
Figure pat00156
Figure pat00157
Figure pat00158
Figure pat00159
Figure pat00160
Figure pat00161
Figure pat00162
Figure pat00163
Figure pat00164
Figure pat00165
Figure pat00166
Figure pat00167

Figure pat00168
Figure pat00169
Figure pat00170
Figure pat00171
Figure pat00172
Figure pat00173
Figure pat00174
Figure pat00175
Figure pat00176
Figure pat00177
Figure pat00178
Figure pat00179
Figure pat00180
Figure pat00181
Figure pat00182
Figure pat00183
Figure pat00184
Figure pat00185
Figure pat00186
Figure pat00187
Figure pat00188
Figure pat00189
Figure pat00190
Figure pat00191
Figure pat00192
Figure pat00193
The method according to claim 1,
The compound represented by Formula 1 is represented by the following formula: R 1, R 5, R 7, R 8, R 10, R 11, R 15, R 21, R 25, R 31, R 35, R 41, R 45, R 51, R 55, R 61, R 65, R 71, R85, R91, R95, R101, R105, R111, R115, R121, R125, R131, R135, R141, R145, R151, R161, R165, R171, R175, R181, R185, Lt; / RTI &gt;
Figure pat00150
Figure pat00151
Figure pat00152
Figure pat00153
Figure pat00154
Figure pat00155
Figure pat00156
Figure pat00157
Figure pat00158
Figure pat00159
Figure pat00160
Figure pat00161
Figure pat00162
Figure pat00163
Figure pat00164
Figure pat00165
Figure pat00166
Figure pat00167

Figure pat00168
Figure pat00169
Figure pat00170
Figure pat00171
Figure pat00172
Figure pat00173
Figure pat00174
Figure pat00175
Figure pat00176
Figure pat00177
Figure pat00178
Figure pat00179
Figure pat00180
Figure pat00181
Figure pat00182
Figure pat00183
Figure pat00184
Figure pat00185
Figure pat00186
Figure pat00187
Figure pat00188
Figure pat00189
Figure pat00190
Figure pat00191
Figure pat00192
Figure pat00193
양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며,
상기 1층 이상의 유기물층 중 적어도 하나는 제1항 내지 제6항 중 어느 한 항에 기재된 화합물을 포함하는 유기 전계 발광 소자.
A cathode, and at least one organic layer interposed between the anode and the cathode,
Wherein at least one of the one or more organic layers includes the compound according to any one of claims 1 to 6.
제7항에 있어서,
상기 화합물을 포함하는 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광층, 전자 수송 보조층, 전자 수송층 및 전자 주입층으로 이루어진 군에서 선택되는 유기 전계 발광 소자.
8. The method of claim 7,
Wherein at least one organic compound layer containing the compound is selected from the group consisting of a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting auxiliary layer, an electron transporting layer, and an electron injecting layer.
KR1020170175482A 2017-12-19 2017-12-19 Organic compounds and organic electro luminescence device comprising the same KR102535175B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170175482A KR102535175B1 (en) 2017-12-19 2017-12-19 Organic compounds and organic electro luminescence device comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170175482A KR102535175B1 (en) 2017-12-19 2017-12-19 Organic compounds and organic electro luminescence device comprising the same

Publications (2)

Publication Number Publication Date
KR20190074099A true KR20190074099A (en) 2019-06-27
KR102535175B1 KR102535175B1 (en) 2023-05-23

Family

ID=67057392

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170175482A KR102535175B1 (en) 2017-12-19 2017-12-19 Organic compounds and organic electro luminescence device comprising the same

Country Status (1)

Country Link
KR (1) KR102535175B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022139180A1 (en) * 2020-12-21 2022-06-30 엘티소재주식회사 Heterocyclic compound and organic light-emitting device comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170057849A (en) * 2015-11-17 2017-05-25 주식회사 엘지화학 Hetero-cyclic compound and organic light emitting device comprising the same
CN107057684A (en) * 2017-04-19 2017-08-18 长春海谱润斯科技有限公司 A kind of luminous organic material and its organic luminescent device based on bipolar phosphorescence derivative
KR20190010498A (en) * 2017-07-20 2019-01-30 주식회사 엘지화학 Compound and organic light emitting device comprising the same
KR20190047631A (en) * 2017-10-27 2019-05-08 주식회사 엘지화학 Organic light emitting device comprising hetero-cyclic compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170057849A (en) * 2015-11-17 2017-05-25 주식회사 엘지화학 Hetero-cyclic compound and organic light emitting device comprising the same
CN107057684A (en) * 2017-04-19 2017-08-18 长春海谱润斯科技有限公司 A kind of luminous organic material and its organic luminescent device based on bipolar phosphorescence derivative
KR20190010498A (en) * 2017-07-20 2019-01-30 주식회사 엘지화학 Compound and organic light emitting device comprising the same
KR20190047631A (en) * 2017-10-27 2019-05-08 주식회사 엘지화학 Organic light emitting device comprising hetero-cyclic compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022139180A1 (en) * 2020-12-21 2022-06-30 엘티소재주식회사 Heterocyclic compound and organic light-emitting device comprising same

Also Published As

Publication number Publication date
KR102535175B1 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
KR102154878B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR102283293B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR101829108B1 (en) Organic compounds and organic electro luminescence device comprising the same
EP3919482A1 (en) Organic light-emitting compound, and organic electroluminescent device using same
KR102220220B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR20190004517A (en) Organic compound and organic electroluminescent device using the same
KR102610868B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR20140111898A (en) Organic compounds and organic electro luminescence device comprising the same
KR101599597B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR101561338B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR20130142816A (en) Novel compounds and organic electro luminescence device comprising the same
KR20190079181A (en) Organic compounds and organic electro luminescence device comprising the same
KR20180024891A (en) Organic compounds and organic electro luminescence device comprising the same
KR102423253B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR20200076004A (en) Organic compounds and organic electro luminescence device comprising the same
KR101577112B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR20150086084A (en) Organic compounds and organic electro luminescence device comprising the same
KR20150077175A (en) Organic compound and organic electroluminescent device using the same
KR101618413B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR101576566B1 (en) Organic compounds and organic electro luminescence device comprising the same
CN111989319A (en) Organic light-emitting compound and organic electroluminescent element using same
KR102535175B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR20150086071A (en) Organic compounds and organic electro luminescence device comprising the same
KR20190030391A (en) Organic compounds and organic electro luminescence device comprising the same
KR20140084413A (en) Organic compounds and organic electro luminescence device comprising the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant