KR20190071932A - Method of preparing carbon quantum dots from broccoli and method for detecting silver - Google Patents

Method of preparing carbon quantum dots from broccoli and method for detecting silver Download PDF

Info

Publication number
KR20190071932A
KR20190071932A KR1020170172858A KR20170172858A KR20190071932A KR 20190071932 A KR20190071932 A KR 20190071932A KR 1020170172858 A KR1020170172858 A KR 1020170172858A KR 20170172858 A KR20170172858 A KR 20170172858A KR 20190071932 A KR20190071932 A KR 20190071932A
Authority
KR
South Korea
Prior art keywords
broccoli
carbon quantum
silver
quantum dots
emission intensity
Prior art date
Application number
KR1020170172858A
Other languages
Korean (ko)
Other versions
KR102584605B1 (en
Inventor
김종성
난디니 아루무감
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Priority to KR1020170172858A priority Critical patent/KR102584605B1/en
Publication of KR20190071932A publication Critical patent/KR20190071932A/en
Application granted granted Critical
Publication of KR102584605B1 publication Critical patent/KR102584605B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00421Means for dispensing and evacuation of reagents using centrifugation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention relates to a broccoli carbon quantum dot producing method which can be used as a silver ion sensor by having excellent photoluminescence quenching for silver ions, and a silver detection method using the same. A broccoli carbon quantum dot of the present invention shows excellent photoluminescence quenching for silver ions by having an amine group and a carboxyl group on the surface and facilitating complex formation with silver ions. The broccoli carbon quantum dot producing method of the present invention is environmentally friendly and economical not only by using environmentally friendly broccoli but also by rarely using organic solvents or reactants in a producing process. Moreover, the silver measuring method of the present invention is able to selectively measure silver concentration by using the broccoli carbon quantum dot which has higher photoluminescence quenching efficiency than cationic metal ions such as chromium, manganese, nickel, copper, and iron. The broccoli carbon quantum dot producing method comprises the following steps of: crushing broccoli and mixing the broccoli; thermally treating the broccoli solution; and obtaining carbon quantum dots.

Description

브로콜리 탄소 양자점 제조방법, 이를 이용한 은 검출 방법{Method of preparing carbon quantum dots from broccoli and method for detecting silver}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a broccoli carbon quantum dots,

본 발명은 브로콜리 탄소 양자점 제조방법, 이를 이용한 은 검출 방법에 관한 것으로서, 보다 상세하게는, 은 이온에 대해 우수한 광발광 ?칭(quenching)을 나타내어 은 이온 감지 센서로 이용가능한 브로콜리 탄소 양자점 제조방법, 이를 이용한 은 검출 방법에 관한 것이다.The present invention relates to a method for producing a broccoli carbon quantum dot and a silver detecting method using the method. More particularly, the present invention relates to a method for producing a broccoli carbon quantum dot, which exhibits excellent photoluminescence quenching for silver ions, And a silver detecting method using the same.

은 이온과 은나노 입자는 최근 들어 전자제품에 은의 사용이 급증하면서 은 이온이 수중생태계로 유입돼 박테리아나 물고기 내에 축적되어 독성을 나타낸다고 알려져 있다. 은나노 입자도 나노 화학의 발달로 그 사용이 증가되고 있는데 은나노 입자가 산화하면 쉽게 은 이온을 발생시키며 생성된 은 이온은 강한 활성산소를 발생시켜 박테리아의 성장과 재생능력을 방해하여 항균 및 살균 효과를 보인다. 하지만 은나노 입자들에서 생성된 은 이온은 하수도나 강으로 흘러들어 수중 생명체에 축적되며 독성 문제를 야기한다고 개시되어 있다[S. Y. Liau et al., Lett. Appl. Microbiol. 1997, 25, 279; C. A. Flemming et al., Appl. Environ. Microbiol. 1990, 56, 3191; H. T. Ratte, Environ. Toxicol. Chem, 1999, 18, 89; V. P. Hiriart-Baer et al., Aquat. Toxicol. 2006, 78, 136; M. K. Schnizler et al., Biochim. Biophys. Acta. 2007, 1768, 317].Silver ions and silver nanoparticles are known to have increased in recent years in the use of silver in electronic products, and silver ions enter the aquatic ecosystem and accumulate in bacteria or fish to become toxic. The use of silver nanoparticles is also increasing due to the development of nanochemistry. The silver nanoparticles easily generate silver ions when they oxidize. The generated silver ions generate strong active oxygen, which interferes with the growth and regeneration ability of the bacteria, see. However, it has been disclosed that silver ions generated from silver nanoparticles flow to sewer or river, accumulate in living organisms in water and cause toxicity problems [S. Y. Liau et al., Lett. Appl. Microbiol. 1997, 25, 279; C. A. Flemming et al., Appl. Environ. Microbiol. 1990, 56, 3191; H. T. Ratte, Environ. Toxicol. Chem., 1999, 18, 89; V. P. Hiriart-Baer et al., Aquat. Toxicol. 2006, 78, 136; M. K. Schnizler et al., Biochim. Biophys. Acta. 2007, 1768, 317].

은 이온 농도 측정을 위해 형광 프로브를 이용하고자 하는 노력이 있다. 한국 등록특허 10-1523311호에는 은 이온, 수소이온 농도 등을 다이펩타이드 유도체와 결합에 의한 형광세기 변화로 측정하는 방법이 개시되어 있다. 다만, 상기 한국 등록 특허는 다이펩타이드를 제조하는 공정이 복잡하고, 특히, 매 단계마다 유기화합물과 유기용매를 사용하여 유기 화합물을 합성하여야 한다는 문제점이 제기된다.There is an effort to use fluorescent probes for silver ion concentration measurement. Korean Patent No. 10-1523311 discloses a method of measuring silver ion, hydrogen ion concentration, etc. by fluorescence intensity change by binding with a dipeptide derivative. However, the Korean patent is complicated in the process for producing dipeptide, and in particular, an organic compound must be synthesized using an organic compound and an organic solvent at every stage.

본 발명은 공정이 간단하면서도 친환경적인 방법으로 은 농도를 측정할 수 있는 방법을 제공하는 것이다.The present invention provides a method for measuring silver concentration in a simple and environmentally friendly process.

본 발명은 제조가 복잡한 유기화합물을 사용하지 않고도 형광 측정이 가능한 은(Ag) 농도 측정용 소재를 제공하는 것이다.The present invention provides a material for silver (Ag) concentration measurement capable of fluorescence measurement without using an organic compound which is complicated to manufacture.

본 발명의 하나의 양상은 One aspect of the present invention is

브로콜리를 잘게 부순 후 탈이온수에 넣어 혼합하는 단계 ;Crushing the broccoli and mixing it in deionized water;

브로콜리 용액을 열처리하는 단계 ; 및Heat treating the broccoli solution; And

열처리된 브로콜리 용액을 원심분리하여 탄소 양자점을 수득하는 단계를 포함하는 브로콜리 탄소 양자점 제조방법에 관련된다.And centrifuging the heat-treated broccoli solution to obtain a carbon quantum dots.

다른 양상에서, 본 발명은 In another aspect,

크기가 2~10nm이고, 표면에 아미노기와 카르복실기를 포함하는 브로콜리 탄소 양자점에 관련된다.Has a size of 2 to 10 nm and is associated with a broccoli carbon quantum dot containing an amino group and a carboxyl group on its surface.

또 다른 양상에서, 본 발명은 In yet another aspect,

브로콜리 탄소 양자점을 제조하는 단계 ;Producing broccoli carbon quantum dots;

상기 브로콜리 탄소 양자점을 은을 포함하는 시료에 넣어 소정 시간 동안 반응시키는 단계 ; 및Adding the broccoli carbon quantum dots to a sample containing silver and reacting the sample for a predetermined time; And

자외선을 조사하여 발광세기를 검출하는 단계를 포함하는 브로콜리 탄소 양자점을 이용한 은(Ag) 측정 방법에 관련된다.(Ag) measurement using broccoli carbon quantum dots including the step of detecting the emission intensity by irradiating ultraviolet rays.

본 발명의 브로콜리 탄소 양자점은 표면에 아민기와 카르복실기를 가지고 있어 은 이온과 착물 형성이 용이하므로 은 이온에 대해 우수한 광발광 ?칭(quenching)을 보여준다. 또한, 본 발명의 브로콜리 탄소 양자점 제조방법은 친환경 소재인 브로콜리를 사용할 뿐만 아니라 제조과정 중에서도 유기용매나 반응물질을 거의 사용하지 않으므로 친환경적일뿐만 아니라 경제적이다. 또한, 본 발명은 은 측정 방법은 크롬, 망간, 니켈, 구리, 철 등의 양이온성 금속 이온에 비해 광발광 ?칭 효율이 높은 브로콜리 탄소 양자점을 사용하므로 선택적으로 은 농도를 측정할 수 있다.The broccoli carbon quantum dots of the present invention have an amine group and a carboxyl group on the surface thereof, and thus exhibit excellent photoluminescence quenching for silver ions since complex formation with silver ions is easy. In addition, the broccoli carbon quantum dot manufacturing method of the present invention is not only environmentally friendly but also economical since it uses almost no organic solvents or reactants in the manufacturing process as well as an eco-friendly broccoli. In addition, since the silver detection method of the present invention uses a broccoli carbon quantum dot having a higher photoluminescence efficiency than a cationic metal ion such as chromium, manganese, nickel, copper, and iron, silver concentration can be selectively measured.

도 1은 본 발명에 따른 브로콜리 탄소 양자점의 제조 공정과 이를 이용한 은 이온 농도 측정 방법을 보여준다.
도 2는 실시예 1에서 제조된 브로콜리 탄소 양자점의 FTIR, XRD 패턴, TEM, HRTEM 이미지이다.
도 3은 실험 1에서 측정된 광흡수 스펙트럼, pH변화에 따른 발광세기, 시간에 따른 발광세기를 각각 나타낸다.
도 4a는 은 농도(0 ~ 600 μ에 따른 브로콜리 탄소 양자점의 발광스펙트럼을 보여주고, 도 4b는 실험 2에서의 금속이온별 발광세기를 비교한 것이다.
FIG. 1 shows a process for preparing a broccoli carbon quantum dots according to the present invention and a silver ion concentration measurement method using the same.
2 is an FTIR, XRD pattern, TEM, HRTEM image of the broccoli carbon quantum dots prepared in Example 1. Fig.
FIG. 3 shows the light absorption spectra measured in Experiment 1, the luminescence intensity according to the pH change, and the luminescence intensity with time, respectively.
FIG. 4A shows emission spectra of broccoli carbon quantum dots according to silver concentration (0 to 600 μ, and FIG. 4B shows emission intensity per metal ion in Experiment 2).

이하에서, 본 발명의 바람직한 실시 태양을 도면을 들어 설명한다. 그러나 본 발명의 범위는 하기 실시 태양에 대한 설명 또는 도면에 제한되지 아니한다. 즉, 본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 본 명세서에서 기술되는 "포함 한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to the description or drawings of the embodiments below. That is, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. It is also to be understood that the terms such as " comprising "or" having ", as used herein, are intended to specify the presence of stated features, integers, It should be understood that the foregoing does not preclude the presence or addition of other features, numbers, steps, operations, elements, parts, or combinations thereof.

도 1은 본 발명에 따른 브로콜리 탄소 양자점의 제조 공정과 이를 이용한 은 이온 농도 측정을 보여준다. 먼저, 도 1을 참고하면, 본 발명의 브로콜리 탄소 양자점은 혼합단계, 열처리 단계 및 원심분리 단계를 포함할 수 있다. FIG. 1 shows a process for preparing a broccoli carbon quantum dots according to the present invention and measurement of silver ion concentration using the same. First, referring to FIG. 1, the broccoli carbon quantum dots of the present invention may comprise a mixing step, a heat treatment step and a centrifugation step.

상기 혼합단계는 브로콜리를 잘게 부순 후 탈이온수에 넣어 혼합하는 단계이다. 상기 혼합단계에서 첨가되는 브로콜리의 함량이나 탈이온수에 혼합된 브로콜리 농도에 대해서 특별한 제한이 있는 것은 아니다. In the mixing step, the broccoli is crushed and mixed with deionized water. There is no particular limitation on the content of broccoli added in the mixing step or the concentration of broccoli mixed in deionized water.

예를 들면, 상기 혼합단계에서는 브로콜리 50-100g을 잘게 파쇄하고, 이를 탈 이온수 75ml에 넣어 혼합할 수 있다.For example, in the mixing step, 50-100 g of broccoli can be finely crushed and mixed with 75 ml of deionized water.

상기 열처리 단계는 열처리 장치를 이용하여 브로콜리를 탄화시키는 단계이다. 상기 열처리 단계는 하이드로써밀 장치(Hydrothermal reactor), 진공퍼니스 장치, 오토클레이브 장치, 전자렌지 장치, 초음파 장치, 감마선 장치, 전자선 장치, 이온빔 장치, 중성자빔 장치 및 자외선 장치 중에서 선택된 열처리 장치를 사용할 수 있다.The heat treatment step is a step of carbonizing the broccoli using a heat treatment apparatus. The heat treatment step may use a heat treatment apparatus selected from a hydrothermal reactor, a vacuum furnace apparatus, an autoclave apparatus, a microwave oven apparatus, an ultrasonic apparatus, a gamma ray apparatus, an electron beam apparatus, an ion beam apparatus, a neutron beam apparatus, have.

상기 열처리 단계는 100~250℃에서 1~10시간, 바람직하게는 180~200℃에서 4~8시간 동안 수행할 수 있다.The heat treatment may be performed at 100 to 250 ° C for 1 to 10 hours, preferably 180 to 200 ° C for 4 to 8 hours.

본 발명은 처리된 브로콜리 용액을 원심분리하여 탄소 양자점을 수득한다. 예를 들면, 본 발명은 5,000~20,000 rpm, 바람직하게는 5,000~10,000rpm으로 5분~2시간, 바람직하게는 5분에서 1시간 정도 원심분리를 실시할 수 있다.The present invention centrifuges the treated broccoli solution to obtain carbon quantum dots. For example, the present invention can perform centrifugation at 5,000 to 20,000 rpm, preferably 5,000 to 10,000 rpm, for 5 minutes to 2 hours, preferably 5 minutes to 1 hour.

상기 방법으로 제조된 브로콜리 탄소 양자점은 크기가 2~10nm 일 수 있다.The broccoli carbon quantum dots prepared by the above method may have a size of 2 to 10 nm.

상기 브로콜리 탄소 양자점은 표면에 아미노기와 카르복실기를 포함한다. 상기 브로콜리 탄소 양자점은 탄소 구조 표면에 OH, N-H와 C=O의 기능기들을 구비하므로 친수성을 나타낸다.The broccoli carbon quantum dots include an amino group and a carboxyl group on the surface. The brooklet carbon quantum dots exhibit hydrophilicity because they have OH, N-H and C = O functional groups on the surface of the carbon structure.

이와 같이, 본 발명의 브로콜리 탄소 양자점은 표면에 아민기와 카르복실기를 가지고 있어 은 이온과 착물 형성이 용이하므로 은 이온에 대해 우수한 광발광 ?칭(quenching)을 보여준다. 본 발명의 브로콜리 탄소 양자점은 자외선 조사에 의해 푸른색의 광발광을 보여준다.As described above, the broccoli carbon quantum dots of the present invention have an amine group and a carboxyl group on the surface thereof, and thus exhibit excellent photoluminescence quenching for silver ions since complex formation with silver ions is easy. The broccoli carbon quantum dots of the present invention show blue light emission by ultraviolet irradiation.

브로콜리 탄소 양자점은 용액에 분산되어 있는 경우, 용액의 pH가 2~7로 증가할 때 광 발광 세기가 증가하지만, pH가 7~12로 증가하는 경우 광 발광 세기가 감소한다. When the broccoli carbon quantum dots are dispersed in a solution, the photoluminescence intensity is increased when the pH of the solution is increased to 2 to 7, but the photoluminescence intensity is decreased when the pH is increased to 7 to 12.

본 발명은 앞에서 제조된 브로콜리 탄소 양자점을 이용하여 은 농도를 측정할 수 있다. 은 측정 방법은 브로콜리 탄소 양자점을 은을 포함하는 시료에 넣어 소정시간 동안 반응시키는 단계 및 자외선을 조사하여 발광세기를 검출하는 단계를 포함할 수 있다.The present invention can measure the silver concentration using the broccoli carbon quantum dots prepared above. The measurement method may include a step of putting the broccoli carbon quantum dots into a sample containing silver for a predetermined time and irradiating ultraviolet rays to detect the emission intensity.

상기 방법은 검출된 발광세기로부터 은 농도를 산출하는 단계를 추가로 포함할 수 있다.The method may further comprise calculating a silver concentration from the detected emission intensity.

상기 반응단계는 상온과 상압에서 1분 ~ 30분 정도 반응시킬 수 있다.The reaction may be carried out at normal temperature and normal pressure for about 1 minute to 30 minutes.

상기 반응단계는 은 이온과 상기 브로콜리 탄소 양자점 표면의 아민기와 킬레이트 착화합물을 형성하는 단계이다.The reaction step is a step of forming a chelate complex with the silver ion and the amine group on the surface of the brooklet carbon quantum dots.

상기 검출단계는 공지된 발광 측정장지를 사용하여 발광세기를 측정할 수 있다. 상기 광 발광 측정장치는 자외선-가시광성 분광광도계(UVvis spectrophotometer) 일 수 있다. The detecting step can measure the luminescence intensity using a known luminescence measuring instrument. The photoluminescence measurement apparatus may be an ultraviolet-visible spectrophotometer.

은 농도 산출 단계는 기측정된 (은 이온을 첨가하지 않은) 브로콜리 탄소 양자점 용액의 발광세기(F0)를 불러오는 단계, 검출 단계에서 측정된 발광세기(F)와 기 측정된 상기 발광세기(F0)를 이용하여 발광세기 변동값((F-F0)/F0)을 산출하는 단계, 기 측정된 은 농도-발광세기 변동값((F-F0)/F0)의 그래프에 상기 산출단계에서 계산된 발광세기 변동값을 입력하여 은 농도를 결정하는 단계를 포함한다.The step of calculating the silver concentration may include the steps of bringing the luminescence intensity (F 0 ) of the broccoli carbon quantum dot solution measured before (not added with silver ions), the luminescence intensity (F) measured in the detection step, using a 0) and calculating the emission intensity variation ((FF 0) / F 0 ), group the measured concentration-calculated in the calculation step in the graph of emission intensity variation ((FF 0) / F 0 ) And determining the silver concentration by inputting the emission intensity variation value.

발광세기(F)는 상기 검출 단계에서 측정된 발광세기이다.The emission intensity F is the emission intensity measured in the detection step.

발광세기 변동값은 (F-F0)/F0로 산출할 수 있다.The emission intensity variation value can be calculated as (FF 0 ) / F 0 .

기 측정된 은 농도-발광세기 변동값((F-F0)/F0) 그래프는, 도 4에 도시된 바와 같이, 은 농도 변화에 따른 브로콜리 탄소 양자점의 발광세기 변동값을 plot하여 나타낸 것이다. 도 4의 농도-발광세기 변동값((F-F0)/F0) 그래프는 은의 농도가 발광세기 변동값에 의존하고 있음을 보여준다. Stern-Volmer 식에 따르면, 도 4의 은 농도-발광세기 변동값((F-F0)/F0) 그래프는 0~600μ에서 은 농도에 따른 발광 세기 사이에는 상관계수 R2 = 0.992를 가진다. 즉, 은 농도에 따른 발광세기가 선형적으로 증가함을 확인할 수 있다. 은 농도는 농도-발광세기 변동값((F-F0)/F0)의 그래프에 상기 산출단계에서 계산된 발광세기 변동값을 입력하여 결정할 수 있다.As shown in FIG. 4, the plot of the measured silver concentration-emission intensity change value ((FF 0 ) / F 0 ) plot shows the emission intensity variation value of the Brocoli carbon quantum dots according to the silver concentration change. The graph of the concentration-emission intensity variation value ((FF 0 ) / F 0 ) in FIG. 4 shows that the concentration of silver depends on the emission intensity variation value. According to the Stern-Volmer equation, the graph of the concentration-emission intensity variation value ((FF 0 ) / F 0 ) of FIG. 4 has a correlation coefficient R2 = 0.992 between the emission intensities according to the silver concentration at 0 to 600 μ. That is, it can be confirmed that the emission intensity according to the silver concentration increases linearly. The silver concentration can be determined by inputting the emission intensity variation value calculated in the calculation step to the graph of the concentration-emission intensity variation value ((FF 0 ) / F 0 ).

이하, 본 발명을 첨부된 실시 예 및 도면을 참조하여 자세히 설명한다. 그러나 첨부된 실시예는 본 발명의 구체적인 실시태양을 예시할 뿐, 본 발명의 권리범위를 이에 한정하려는 의도는 아니다.Hereinafter, the present invention will be described in detail with reference to the embodiments and drawings. It should be understood, however, that the appended claims are illustrative of the specific embodiments of the invention and are not intended to limit the scope of the invention.

실시예Example 1 One

브로콜리 탄소 Broccoli carbon 양자점의Quantum dot 제조 Produce

브로콜리 50~100g을 잘게 파쇄하여 탈이온수(50㎖)에 넣었다. 이를 탈이온수 25ml에 넣어 혼합하였다. 하이드로써밀 장치(Hydrothermal reactor)에 혼합용액을 넣은 후 190℃에서 6시간 동안 열수처리하였다. 8,000rpm으로 20분간 원심분리하고 건조시켜 브로콜리 탄소 양자점을 수득하였다. 50 to 100 g of broccoli were finely crushed and placed in deionized water (50 ml). It was mixed with 25 ml of deionized water. The mixed solution was put into a hydrothermal reactor and hydrothermally treated at 190 ° C for 6 hours. Centrifuged at 8,000 rpm for 20 minutes and dried to obtain broccoli carbon quantum dots.

실험 1Experiment 1

제조된 브로콜리 탄소 양자점 100㎕ 를 3㎖ 증류수로 희석하였다. 질산은(0, 20, 100, 200, 300, 400, 500, 600μM)을 양자점 용액에 첨가하였다. 355nm에서 광발광 여기 스펙트럼을 측정하였다. 모든 실험은 상온에서 5분 간격으로 수행하였다. 100 쨉 l of the prepared broccoli carbon quantum dots were diluted with 3 ml of distilled water. Silver nitrate (0, 20, 100, 200, 300, 400, 500, 600 μM) was added to the quantum dot solution. The photoluminescence excitation spectrum was measured at 355 nm. All experiments were performed at 5 min intervals at room temperature.

실험 2Experiment 2

제조된 브로콜리 탄소 양자점의 은 선택성을 알아보기 위해 하기와 같이 수행하였다. 20 μM 용액의 각 금속이온들 (Cr3+,Mn2+,Ni2+,Ag+,Cd2+,Cu2+,Ca2+,Sn2+,Zn2+,Co2+,Fe3+)을 각각 브로콜리 탄소 양자점에 첨가한 후 반응시킨 다음 발광 스펙트럼을 측정하였다. The silver selectivity of the prepared broccoli carbon quantum dots was investigated as follows. Each of the metal ions of the 20 μM solution (Cr 3+, Mn 2+, Ni 2+, Ag +, Cd 2+, Cu 2+, Ca 2+, Sn 2+, Zn 2+, Co 2+, Fe 3 + ) Were added to broccoli carbon quantum dots, respectively.

도 2a는 실시예 1에서 제조된 브로콜리 탄소 양자점의 FTIR 스펙트럼을 보여준다. 도 2a의 3457 cm-1 파장은 N-H기, 3617cm-1 파장은 O-H기 진동을 보여주고, 1700 and 1519cm- 1는 C=O와 C=C 기능기가 존재함을 알려준다. 2A shows the FTIR spectrum of the broccoli carbon quantum dots prepared in Example 1. Fig. Figure 2a is the wavelength of 3457 cm -1 NH group, 3617cm -1 wavelength showing the vibration of OH groups, 1700 and 1519cm - 1 informs that the C = O and C = C functional group is present.

도 2b는 실시예 1의 제조된 브로콜리 탄소 양자점의 XRD 패턴이다. 도 2b를 참조하면, 실시예 1의 브로콜리 탄소 양자점은 낮은 결정성을 가지고, 탄소 양자점의 층간 공간(d)은 도 2e의 SAED(selected area electron diffraction) 패턴을 통해 0.42nm로 산출하였다. 도 2c와 2d는 각각 브로콜리 탄소 양자점의 TEM, HRTEM 이미지이다. 도 2의 c, d를 참조하면, 브로콜리 탄소 양자점의 크기는 2~6nm 정도이다. 도 2c를 통해, 브로콜리 탄소 양자점은 구형으로 단분산되고, 서로 잘 분리되어 있음을 알 수 있다. 2B is an XRD pattern of the prepared broccoli carbon quantum dots of Example 1. Fig. Referring to FIG. 2B, the brooklet carbon quantum dots of Example 1 have low crystallinity, and the interlayer spacing d of the carbon quantum dots is 0.42 nm through the SAED (selected area electron diffraction) pattern of FIG. 2E. Figures 2c and 2d are TEM and HRTEM images of broccoli carbon quantum dots, respectively. Referring to Figs. 2c and 2d, the size of broccoli carbon quantum dots is about 2 to 6 nm. 2C, it can be seen that the broccoli carbon quantum dots are spherically monodisperse and are well separated from each other.

도 3a는 실험 1에서 측정된 광흡수 스펙트럼을 보여준다. 도 3a 내부 사진은 자외선 조사에 의해 브로콜리 탄소 양자점이 푸른색을 띄는 것을 보여준다. 도 3b는 브로콜리 탄소 양자점의 광 발광이 여기 파장에 종속함을 보여준다. 가장 높은 발광 피크 450nm는 여기 파장 355nm 이후에 관찰된다. FIG. 3A shows the light absorption spectrum measured in Experiment 1. FIG. The inside photograph of Figure 3a shows that the broccoli carbon quantum dots are blue by ultraviolet irradiation. Figure 3b shows that the photoluminescence of the broccoli carbon quantum dots is dependent on the excitation wavelength. The highest emission peak 450 nm is observed after the excitation wavelength 355 nm.

도 3의 c는 pH 범위에 따른 광발광 세기를 보여준다. pH가 2~7로 증가할 때 발광 세기가 증가하지만, pH가 7~12로 증가하는 경우 발광세기는 감소한다. 도 3d는 양자점이 15일 동안 90% 이상의 초기 발광 세기를 유지함을 보여주는 그래프이다. FIG. 3C shows the photoluminescence intensity according to the pH range. As the pH increases from 2 to 7, the emission intensity increases, but when the pH increases from 7 to 12, the emission intensity decreases. FIG. 3D is a graph showing that the quantum dot maintains an initial luminescence intensity of 90% or more for 15 days.

도 4a는 은 농도(0 ~ 600μM)에 따른 탄소 양자점의 발광스펙트럼을 보여준다. 양자점은 450nm 파장에서 강한 발광을 나타내고, 은 농도 첨가에 따라 발광세기가 감소한다. 도 4a 내부의 작은 그래프는 은의 농도가 은의 농도가 발광세기 변동값에 의존하고 있음을 보여준다. 은의 한계 검지농도는 0.5μM정도로 민감하다. 4A shows the emission spectra of carbon quantum dots according to the silver concentration (0 to 600 μM). The quantum dot exhibits strong luminescence at a wavelength of 450 nm, and the luminescence intensity decreases with the addition of silver concentration. A small graph inside FIG. 4A shows that the concentration of silver depends on the value of the luminous intensity variation of the concentration of silver. The limit detection concentration of silver is sensitive to about 0.5 μM.

도 4b는 실험 2에서의 금속이온별 발광세기를 비교한 것으로서, 은의 경우가 가장 많이 발광세기가 감소되었음을 확인할 수 있다. 따라서, 본 발명의 탄소 양자점은 다른 금속에 비해 은 검지에 선택성이 있음을 알 수 있다. FIG. 4B is a graph comparing the luminescence intensity of each metal ion in Experiment 2, and it can be confirmed that the luminescence intensity is the most reduced in the case of silver. Therefore, it can be seen that the carbon quantum dots of the present invention have selectivity in silver detection compared to other metals.

이상에서, 본 발명의 바람직한 구현 예에 대하여 상세하게 설명하였으나, 이들은 단지 설명의 목적을 위한 것으로 본 발명의 보호 범위가 이들로 제한되는 것은 아니다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments.

Claims (11)

브로콜리를 잘게 부순 후 탈이온수에 넣어 혼합하는 단계 ;
브로콜리 용액을 열처리하는 단계 ; 및
열처리된 브로콜리 용액을 원심분리하여 탄소 양자점을 수득하는 단계를 포함하는 브로콜리 탄소 양자점 제조방법.
Crushing the broccoli and mixing it in deionized water;
Heat treating the broccoli solution; And
And centrifuging the heat-treated broccoli solution to obtain a carbon quantum dots.
제 1항에 있어서, 상기 열처리 단계는 하이드로써밀 장치(Hydrothermal reactor), 진공퍼니스 장치, 오토클레이브 장치, 전자렌지 장치, 초음파 장치, 감마선 장치, 전자선 장치, 이온빔 장치, 중성자빔 장치 및 자외선 장치 중에서 선택된 열처리 장치를 사용하는 것을 특징으로 하는 브로콜리 탄소 양자점 제조방법.The method according to claim 1, wherein the heat treatment step is performed by using at least one of a hydrothermal reactor, a vacuum furnace device, an autoclave device, a microwave oven device, an ultrasonic device, a gamma ray device, an electron beam device, an ion beam device, a neutron beam device, Wherein the selected heat treatment apparatus is used. 제 1항에 있어서, 상기 열처리 단계는 100~250℃에서 1~10시간 동안 수행하는 것을 특징으로 하는 브로콜리 탄소 양자점 제조방법.The method of claim 1, wherein the heat treatment is performed at 100 to 250 ° C for 1 to 10 hours. 제 1항 내지 제 3항 중 어느 한 항에 따라 제조된 브로콜리 탄소 양자점.A broccoli carbon quantum dots produced according to any one of claims 1 to 3. 제 4항에 있어서, 상기 탄소 양자점은 크기가 2~10nm 인 것을 특징으로 하는 브로콜리 탄소 양자점.The brooklet carbon quantum dots according to claim 4, wherein the carbon quantum dots have a size of 2 to 10 nm. 제 4항에 있어서, 상기 탄소 양자점은 표면에 아미노기와 카르복실기를 포함하는 것을 특징으로 하는 브로콜리 탄소 양자점.The brooklet carbon quantum dots according to claim 4, wherein the carbon quantum dots include an amino group and a carboxyl group on the surface. 제 1 항 내지 제 3항의 방법으로 브로콜리 탄소 양자점을 제조하는 단계 ;
상기 브로콜리 탄소 양자점을 은을 포함하는 시료에 넣어 소정 시간 동안 반응시키는 단계 ;
자외선을 조사하여 발광세기를 검출하는 단계 ; 및
검출된 발광세기로부터 은 농도를 산출하는 단계를 브로콜리 탄소 양자점을 이용한 은 측정 방법.
Preparing broccoli carbon quantum dots by the method of any one of claims 1 to 3;
Adding the broccoli carbon quantum dots to a sample containing silver and reacting the sample for a predetermined time;
Irradiating ultraviolet light to detect the intensity of light emission; And
Calculating the silver concentration from the detected emission intensity using the Broccoli carbon quantum dots.
제 7항에 있어서, 상기 반응단계는 상온과 상압에서 1분 ~ 30분 반응시키는 것을 특징으로 하는 브로콜리 탄소 양자점을 이용한 은 측정 방법. The method according to claim 7, wherein the reaction is carried out at room temperature and atmospheric pressure for 1 minute to 30 minutes. 제 7항에 있어서, 상기 반응단계는 은 이온과 상기 브로콜리 탄소 양자점 표면의 아민기와 킬레이트 착화합물을 형성하는 단계인 것을 특징으로 하는 브로콜리 탄소 양자점을 이용한 은 측정 방법. [8] The method according to claim 7, wherein the reaction step is a step of forming a chelate complex with silver ions and amine groups on the surface of the brooklet carbon quantum dots. 제 7항에 있어서, 상기 은 농도 산출 단계는
기측정된 (은이 첨가되지 않은) 브로콜리 탄소 양자점 함유 용액의 발광세기(F0)를 불러오는 단계 ;
검출 단계에서 측정된 발광세기(F)와 기 측정된 상기 발광세기(F0)를 이용하여 발광세기 변동값((F-F0)/F0)을 산출하는 단계 ;
기 측정된 은 농도-발광세기 변동값((F-F0)/F0)의 그래프에 산출단계에서 계산된 발광세기 변동값을 입력하여 은 농도를 결정하는 단계를 포함하는 것을 특징으로 하는 브로콜리 탄소 양자점을 이용한 은 측정 방법.
8. The method according to claim 7, wherein the silver concentration calculating step
Bringing the luminescence intensity (F 0 ) of the previously measured (no silver added) broccoli carbon quantum dot containing solution;
Calculating an emission intensity variation value (FF 0 ) / F 0 using the emission intensity F measured in the detection step and the emission intensity F 0 measured in the previous step;
And determining the silver concentration by inputting the emission intensity variation value calculated in the calculation step to the graph of the measured silver concentration-emission intensity variation value (FF 0 ) / F 0 . A silver measuring method using.
제 1항 내지 제 3항 중 어느 한 항에 따라 제조된 브로콜리 탄소 양자점과 광발광 측정장치를 포함하되, 미지의 은 이온 첨가에 따른 브로콜리 탄소 양자점의 발광세기 변동값((F-F0)/F0)으로부터 은 이온 농도를 검출하는 은 이온 검출 센서.

A broach carbon quantum dots and a photoluminescence measurement apparatus according to any one of claims 1 to 3, wherein the brocoli carbon quantum dots and the photoluminescence measurement apparatus are provided, wherein the emission intensity variation value ((FF 0 ) / F 0 And a silver ion concentration sensor for detecting silver ion concentration.

KR1020170172858A 2017-12-15 2017-12-15 Method of preparing carbon quantum dots from broccoli and method for detecting silver KR102584605B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170172858A KR102584605B1 (en) 2017-12-15 2017-12-15 Method of preparing carbon quantum dots from broccoli and method for detecting silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170172858A KR102584605B1 (en) 2017-12-15 2017-12-15 Method of preparing carbon quantum dots from broccoli and method for detecting silver

Publications (2)

Publication Number Publication Date
KR20190071932A true KR20190071932A (en) 2019-06-25
KR102584605B1 KR102584605B1 (en) 2023-10-04

Family

ID=67065528

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170172858A KR102584605B1 (en) 2017-12-15 2017-12-15 Method of preparing carbon quantum dots from broccoli and method for detecting silver

Country Status (1)

Country Link
KR (1) KR102584605B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982514A (en) * 2019-12-16 2020-04-10 中国民用航空总局第二研究所 Preparation method of carbon dot fluorescent probe, product and application thereof
CN111204737A (en) * 2020-03-12 2020-05-29 新余学院 Preparation method of carbon quantum dots
CN114854394A (en) * 2022-05-25 2022-08-05 甘肃政法大学 Preparation of fluorescent carbon dot nano composite material and application of fluorescent carbon dot nano composite material in latent fingerprint display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130090174A (en) * 2012-02-03 2013-08-13 삼성테크윈 주식회사 A biosensor using quenching system and a method for detecting using thereof
CN103773369A (en) * 2014-01-10 2014-05-07 西安交通大学 Gadolinium (III)-carbon quantum dot and preparation method thereof, and application thereof in magnetic resonance-fluorescence double-modal imaging probe
KR101523311B1 (en) * 2012-10-17 2015-06-01 인하대학교 산학협력단 Dipeptide derivatives, preparation method thereof, chemosensor having the same and detection method of silver ion, mercury ion, copper(I) ion and silver nano particle using the same
KR20160014188A (en) * 2014-07-28 2016-02-11 건양대학교산학협력단 Method to prepare highly photoluminescence carbon quantum dots by hydrothermal reaction
KR101663748B1 (en) * 2015-09-16 2016-10-10 지리산한지(유) Method of manufacturing nitrogen-doped carbon dots
KR101703436B1 (en) * 2015-07-31 2017-02-06 숭실대학교산학협력단 Detecting method of trivalent chromium using EDTA

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130090174A (en) * 2012-02-03 2013-08-13 삼성테크윈 주식회사 A biosensor using quenching system and a method for detecting using thereof
KR101523311B1 (en) * 2012-10-17 2015-06-01 인하대학교 산학협력단 Dipeptide derivatives, preparation method thereof, chemosensor having the same and detection method of silver ion, mercury ion, copper(I) ion and silver nano particle using the same
CN103773369A (en) * 2014-01-10 2014-05-07 西安交通大学 Gadolinium (III)-carbon quantum dot and preparation method thereof, and application thereof in magnetic resonance-fluorescence double-modal imaging probe
KR20160014188A (en) * 2014-07-28 2016-02-11 건양대학교산학협력단 Method to prepare highly photoluminescence carbon quantum dots by hydrothermal reaction
KR101703436B1 (en) * 2015-07-31 2017-02-06 숭실대학교산학협력단 Detecting method of trivalent chromium using EDTA
KR101663748B1 (en) * 2015-09-16 2016-10-10 지리산한지(유) Method of manufacturing nitrogen-doped carbon dots

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Mater. Chem. B, 2017, 5, 8904-8924* *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982514A (en) * 2019-12-16 2020-04-10 中国民用航空总局第二研究所 Preparation method of carbon dot fluorescent probe, product and application thereof
CN111204737A (en) * 2020-03-12 2020-05-29 新余学院 Preparation method of carbon quantum dots
CN114854394A (en) * 2022-05-25 2022-08-05 甘肃政法大学 Preparation of fluorescent carbon dot nano composite material and application of fluorescent carbon dot nano composite material in latent fingerprint display
CN114854394B (en) * 2022-05-25 2023-11-21 甘肃政法大学 Preparation of fluorescent carbon dot nanocomposite and application of fluorescent carbon dot nanocomposite in latent fingerprint display

Also Published As

Publication number Publication date
KR102584605B1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
Liu et al. Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions
Cen et al. A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma
Wang et al. Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications
Pathan et al. Aggregation-induced enhanced photoluminescence in magnetic graphene oxide quantum dots as a fluorescence probe for As (III) sensing
Chang et al. Synthesis of yellow fluorescent carbon dots and their application to the determination of chromium (III) with selectivity improved by pH tuning
Jayaweera et al. Facile preparation of fluorescent carbon dots for label-free detection of Fe3+
Anh et al. Sulfur-doped graphene quantum dot-based paper sensor for highly sensitive and selective detection of 4-nitrophenol in contaminated water and wastewater
US7807265B2 (en) Partially passivated quantum dots, process for making, and sensors therefrom
KR102584605B1 (en) Method of preparing carbon quantum dots from broccoli and method for detecting silver
Liu et al. Fluorescent silver nanoclusters for user-friendly detection of Cu 2+ on a paper platform
Zhang et al. A selective sensor for cyanide ion (CN−) based on the inner filter effect of metal nanoparticles with photoluminescent carbon dots as the fluorophore
CN113861971B (en) Rare earth element doped carbon quantum dot ratiometric fluorescent probe, and preparation method and application thereof
Hou et al. Nitrogen-doped photoluminescent carbon nanospheres: green, simple synthesis via hair and application as a sensor for Hg 2+ ions
Xu et al. Copper nanoclusters-based fluorescent sensor array to identify metal ions and dissolved organic matter
Abbasi et al. An inner filter effect based Schiff base chemosensor for recognition of Cr (VI) and ascorbic acid in water matrices
KR102197222B1 (en) Method of preparing carbon quantum dots using amino acid s and method for detecting lead
Wang et al. One-step facile synthesis of novel β-amino alcohol functionalized carbon dots for the fabrication of a selective copper ion sensing interface based on the biuret reaction
Xue et al. Preparation of AgInS2 quantum dots and their application for Pb2+ detection based on fluorescence quenching effect
Guo et al. Novel fluorescent probes based on nitrogen–sulfur co-doped carbon dots for chromium ion detection
Luo et al. Quantum dot-based turn-on fluorescent probe for imaging intracellular zinc (II) and cadmium (II) ions
Zhu et al. A rapid and sensitive electrochemiluminescent sensor for nitrites based on C 3 N 4 quantum dots on C 3 N 4 nanosheets
Cilamkoti et al. Silicon dioxide quantum dots anchored on the surface of carbon nanodiscs as photoluminescent probe for Cr (VI) detection
Dorontic et al. Blue luminescent amino-functionalized graphene quantum dots as a responsive material for potential detection of metal ions and malathion
Shiravand et al. A Fluorescent g-C3N4 nanosensor for detection of dichromate ions
Khan et al. Electrochemical detection and removal of brilliant blue dye via photocatalytic degradation and adsorption using phyto-synthesized nanoparticles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant